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Abstract

The reoptimization issue studied in this paper can be described as follows: given an

instance I of some problem Π, an optimal solution OPT for Π in I and an instance I ′ resulting

from a local perturbation of I that consists of insertions or removals of a small number of

data, we wish to use OPT in order to solve Π in I ′, either optimally or by guaranteeing

an approximation ratio better than that guaranteed by an ex nihilo computation and with

running time better that that needed for such a computation. We use this setting in order to

study weighted versions of several representatives of a broad class of problems known in the

literature as maximum induced hereditary subgraph problems. The main problems studied

are max independent set, max k-colorable subgraph and max split subgraph

under vertex insertions and deletions.

1 Introduction

Hereditary problems in graphs, also known as maximal subgraph problems, include a wide range
of classical combinatorial optimization problems, such as max independent set or max H-

free subgraph. Most of these problems are known to be NP-hard, and even inapproximable
within any constant approximation ratio unless P = NP [17, 20]. Some of them, and in par-
ticular max independent set, have been intensively studied in the polynomial approximation
framework [11, 15].

In what follows, we present approximation algorithms and inapproximability bounds for
various hereditary problems in the reoptimization setting, which can be described as follows:
considering an instance I of a given problem Π with a known optimum OPT, and an instance I ′

which results from a local perturbation of I, can the information provided by OPT be used to
solve I ′ in a more efficient way (i.e., with a lower complexity and/or with a better approximation
ratio) than if this information wasn’t available?

The reoptimization setting was introduced in [1] for metric tsp. Since then, many other
optimization problems were discussed in this setting, including Steiner tree [5, 8, 9, 14],
minimum spanning tree [13], as well as various versions of tsp [4, 7, 10]. In all cases, the goal
is to propose reoptimization algorithm that outperform their deterministic counterparts in terms
of complexity and/or approximation ratio. In [6], the max independent set problem, as well
as min vertex cover and min set cover problems, are discussed in a similar setting up to

∗Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-
010

1



the fact that perturbations there concerned the edge-set of the initial graph. The authors of [6]
manage to provide optimal approximation results under the basic assumption that the initial
solution is not necessarily optimal but ρ-approximate.

When one deals with hereditary problems, and I ′ results from a perturbation of the vertex
set (insertion or deletion), solutions of I remain feasible in I ′. This property is very interesting
when reoptimizing hereditary problems, and makes most of them APX in the reoptimization
setting. For exemple, a very simple algorithm provides a (1/2)-approximation for a whole class
of hereditary problems when a single vertex is inserted [3]. In what follows, we improve on this
result by presenting algorithms designed for four specific hereditary problems, and also provide
inapproximability bounds. We also discuss the reoptimization setting where vertices are deleted,
which, as we will see, is much harder to approximate.

The paper is organized as follows: general properties regarding hereditary problems are
presented in Section 2, while Sections 3 and 4 present approximation and inapproximability
results regarding respectively vertex insertion and deletion. In Table 1, our main results are
presented. One can see there that upper bounds match lower bounds everywhere.

Hereditary problems Approximation ratios
Inapproximability
bounds

max k-colorable subgraph

(insertion of h vertices)
max

{

k
k+h

, 12

}

max
{

k
k+h

, 12

}

+ ε

max k-colorable subgraph

(deletion of h < k vertices)
k−h
k

k−h
k

+ ε

max k-colorable subgraph

(deletion of h > k vertices)
∅ n−ε

max split subgraph

(insertion of h 6 2 vertices)
h+1
2h+1

h+1
2h+1 + ε

max split subgraph

(insertion of h = 3 vertices)
5
9

5
9 + ε

max split subgraph

(insertion of h > 4 vertices)
1
2

1
2 + ε

Table 1: Summary of the results

This paper is part of a larger work [12] devoted to the study of five maximum weight induced
hereditary subgraph problems, namely, max independent set, max k-colorable subgraph,
max Pk-free subgraph, max split subgraph and max planar subgraph. For reasons of
length limits some of the results are given without detailed proofs that can be found in appendix.

2 Preliminaries

Before presenting properties and results regarding reoptimization problems, we will first give for-
mal definitions of what are reoptimization problems, reoptimization instances, and approximate
reoptimization algorithms:

Definition 1. An optimization problem Π is given by a quadruple (IΠ, SolΠ,mΠ, goal(Π))
where: IΠ is the set of instances of Π; given I ∈ IΠ, SolΠ(I) is the set of feasible solutions of I;
given I ∈ IΠ, and S ∈ SolΠ(I), mΠ(I, S) denotes the value of the solution S of the instance I;
goal(Π) ∈ {min,max}.

A reoptimization problem RΠ is given by a pair (Π, RRΠ) where: Π is an optimization problem as
defined in Definition 1; RRΠ is a rule of modification on instances of Π, such as addition, deletion
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or alteration of a given amount of data; given I ∈ IΠ and RRΠ, modifRΠ(I,RRΠ) denotes the set
of instances resulting from applying modification RRΠ to I; notice that modifRΠ(I,RRΠ) ⊂ IΠ.

For a given reoptimization problem RΠ(Π, RRΠ), a reoptimization instance IRΠ of RΠ is
given by a triplet (I, S, I ′), where: I denotes an instance of Π, referred to as the initial in-
stance; S denotes a feasible solution for Π on the initial instance I; I ′ denotes an instance of Π
in modifRΠ(I,RRΠ); I ′ is referred to as the perturbed instance. For a given instance IRΠ(I, S, I

′)
of RΠ, the set of feasible solutions is SolΠ(I

′).

Definition 2. For a given optimization problem RΠ(Π, RRΠ), a reoptimization algorithm A

is said to be a ρ-approximation reoptimization algorithm for RΠ if and only if: (i) A returns
a feasible solution on all instances IRΠ(I, S, I

′); (ii) A returns a ρ-approximate solution on all
reoptimization instances IRΠ(I, S, I

′) where S is an optimal solution for I.

Note that Definition 2 is the most classical definition found in the literature, as well as the one
used in this paper. However, an alternate (and more general) definition exists (used for example
in [5, 6, 8, 9]), where a ρ1-approximation reoptimization algorithm for RΠ is supposed to ensure
a ρ1ρ2 approximation on any reoptimization instance IRΠ(I, S, I

′) where S is a ρ2 approximate
solution in the initial instance I.

A property P on a graph is hereditary if the following holds: if the graph satisfies P, then P
is also satisfied by all its induced subgraphs. Following this definition, independence, planarity,
bipartiteness are three examples of hereditary properties: in a given graph, any subset of an
independent set is an independent set itself, and the same holds for planar and bipartite sub-
graphs. On the opposite hand, connectivity is no hereditary property since there might exist
some subsets of G whose removal disconnect the graph. It is also well known that any hereditary
property in graphs can be characterized by a set of forbidden subgraphs or minors [18].

In other words a property P is hereditary if and only if, there is a set of graphs H such that
every graph that verifies P does not admit any graph in H as a minor or as an induced sub-
graph. To revisit the three examples of hereditary properties presented before: an independent
set is characterized by one forbidden subgraph, a K2 (a clique on 2 vertices, i.e., an edge); a
planar graph is characterized by two forbidden minors: K5 (a clique on 5 vertices), and K3,3 (a
complete bipartite graph with both its color-classes of size 3) (this result is known as Wagner’s
Theorem [19]); a bipartite graph is characterized by a infinite set of forbidden induced subgraphs:
all odd cycles H = {C2n+1, n > 1}.

Definition 3. Let G(V,E,w) be a vertex-weighted graph with w(v) > 0, for any v ∈ V . The
max weighted induced subgraph with property P problem (or, for short, max weighted subgraph
problem) is the problem consisting, given a graph G(V,E), of finding a subset of vertices S such
that G[S] satisfies a given property P and maximizes w(S) =

∑

v∈S w(v). We call hereditary
problems all such problems where P is a hereditary property.

For instance, max weighted independent set, max weighted induced bipartite sub-

graph, max weighted induced planar subgraph are three classical hereditary problems
that correspond to the three hereditary properties as defined in Definition 3.

As it is proved in [17] (see Theorem 1 just below) most hereditary problems are highly
inapproximable unless P = NP.

Theorem 1. ([17]) There exists an ε ∈ (0, 1) such that the maximum subgraph problem cannot
be approximated with ratio n−ε in polynomial time for any nontrivial hereditary property that is
false for some clique or independent set, or more generally is false for some complete multipartite
graph, unless P = NP.
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Throughout the paper, all inapproximability results will be obtained by the same technique,
which we sketch out here.

Considering an unweighted graph H(V,E) on which one wants to solve a given hereditary
problem Π, known to be inapproximable within any constant ratio, we build a reoptimization
instance Ip, where p denotes a vector of fixed size (i.e., independent of the size n of G; so, |p| is a
fixed constant) that contains integer parameters between 1 and n. This instance is characterized
by an initial graph Gp (that contains H), with a known solution, and a perturbed instance G′

p.
Then, we prove that, for some specific (yet unknown) value p′ of the parameter vector p,

an optimal solution can be easily determined in the initial graph Gp′ , and a ρ-approximate
solution Sp′ in G′

p′ necessarily induces a solution Sp′ [V ] in H, that is a constant approximation
for the initial problem in H(V,E).

Considering that the vector p can take at most n|p| possible values, it is possible in polynomial
time to build all instances Ip, to run the polynomial ρ-approximation algorithm on all of them,
and to return the best set Sp∗[V ] as solution for Π in H. The whole procedure is polynomial
and ensures a constant-approximation for Π, which is impossible unless P = NP, so that a
ρ-approximation algorithm cannot exist for the considered reoptimization version of Π, unless
P = NP.

In the sequel, Gp and G′
p will denote initial and perturbed instances, while OPTp and OPT′

p

will denote optimal solutions in Gp and G′
p, respectively. For simplicity and when no confusion

arises, we will omit subscript p. The function w refers to the weight function, taking a vertex,
a vertex set, or a graph as input (the weight of a graph is defined as the sum of weights of
its vertices). Finally, note that throughout the whole paper, the term “subgraph” will always
implicitly refer to “induced subgraph”.

We conclude this section by the following emphasized remark. The proofs of all of our results
in this paper always work, even if we assume that a ρ-approximate solution is given instead of
an optimal one. In this case, the bounds claimed are simply multiplied by ρ.

3 Vertex insertion

Under vertex insertion, the inapproximability bound of Theorems 1 is easily broken. In [3], a very
simple strategy, denoted by R1 in what follows, provides a (1/2)-approximation for any hereditary
problem. This strategy consists of outputting the best solution among the newly inserted vertex
and the initial optimum. Moreover, this strategy can also be applied when a constant number h
of vertices is inserted: it suffices to output the best solution between an optimum in the h newly
inserted vertices (that can be found in O(2h) through exhaustive search) and the initial optimum.
The 1/2 approximation ratio is also ensured in this case [3].

Note that an algorithm similar to R1 was proposed for knapsack in [2]. Indeed, this prob-
lem, although not being a graph problem, is hereditary in the sense defined above, so that
returning the best solution between a newly inserted item and the initial optimum ensures a
(1/2)-approximation ratio. The authors also show that any reoptimization algorithm that does
not consider objects discarded by the initial optimal solution cannot have ratio better than 1/2.

In what follows, we start by proving that this approximation ratio is the best constant
approximation ratio one can achieve for the max independent set problem (Section 3.1),
unless P = NP. Then, we present other simple polynomial constant-approximation strategies, as
well as inapproximability bounds for max k-colorable subgraph and max split subgraph.

3.1 max independent set

Since max independent set is a hereditary problem, strategy R1 provides a simple and fast
(1/2)-approximation in the reoptimization setting under insertion of one vertex. We will now
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prove that this ratio is the best one can hope, unless P = NP.

Proposition 1. In the reoptimization setting, under one vertex insertion, max independent

set is inapproximable within ratio 1/2 + ε in polynomial time, unless P = NP.

Proof. By contradiction, assume that there exists a reoptimization approximation algorithm A

for max independent set, which, in polynomial time, computes a solution with approximation
ratio bounded by 1/2 + ε. Now, consider a graph H(V,E). All n vertices in V have weight 1,
and no assumption is made on V . Note that in such a graph (which is actually unweighted),
max independent set is inapproximable within any constant ratio, unless P = NP.

We will now make use of A to build an ε-approximation for max independent set in H,
and thus prove that such an algorithm cannot exist. Denote by α the independence number
associated with H, that is, the - unknown - cardinality of an optimal independent set in H, and
consider the following instance Iα of max independent set in the reoptimization setting (here
the vector p is an 1-vector, so it is an integer between 1 and n):

• The initial graph denoted Gα(Vα, Eα) is obtained by adding a single vertex x to V , with
weight α, and connecting this new vertex to every vertex in V . Thus, Vα = V ∪ {x}, and
Eα = E ∪

⋃

vi∈V
(x, vi). In this graph, a trivial optimum independent set is {x}. This trivial

solution will be the initial optimum used in the reoptimization instance.
• The perturbed graph G′

α(V
′
α, E

′
α) is obtained by adding a single vertex y to Gα, also with

weight α, and connecting this new vertex to vertex x only.
Denote by OPT′ an optimal independent set in G′

α. Notice that y (whose weight is α) can be
added to an optimal independent set in H (whose weight is also α) to produce a feasible solution
in G′

α, so that: w(OPT′) > 2α.
Now, suppose that one runs the approximation algorithm A on the so-obtained reoptimization

instance Iα. By hypothesis on A, it holds that w(Sα) > (1/2 + ε)w(OPT′) > (1 + ε)α.
Considering the lower bound on its weight, we can assert that the solution returned by A, does

not contain x (the only independent set containing x is x itself, and thus it cannot have weight
more than α). Moreover, it must contain y, otherwise it would be restricted to an independent
set in G, so it couldn’t have weight more than α. So, it holds that w(Sα[V ]) = w(Sα)−w(y) >
(1 + ε)α− α = εα, where w(Sα[V ]) denotes the restriction of Sα to the initial graph H.

Now, consider the following approximation algorithm A1 for max independent set:

build n reoptimization instances Ii in the same way as Iα (only the weights of ver-
tices x and y will be different from one instance to the other), for i = 1, . . . , n, and
run the reoptimization A on each of them. Denoting by Si the solution returned by A

on instance Ii, and Si[V ] its restriction to the initial graph H, output the set Smax[V ]
with maximal weight among Si[V ]’s.

Obviously, considering that 1 6 α 6 n, it holds that Smax[V ] > Sα[V ] > εα. Thus, algorithm A1,
using n times the algorithm A as subroutine, produces in polynomial time an ε-approximation
for (unweighted) max independent set, which is impossible unless P = NP.

Note that the results also hold when a constant number h of vertices are inserted. Indeed, it
is easy to see that all the arguments of the proof remain valid when the set of inserted vertices
is {y1, . . . , yh} each with weight α/h and connected only to vertex x.

Proposition 2. Under insertion of one vertex and unless P = NP, max independent set

is not approximable within ratio (1/2 + (1/(n − 1)ǫ), for any ǫ > 0, where n is the order of the
perturbed graph.

Let us note that inapproximability bounds stated in Propositions 3, 6 and 8, that are of the
form ρ+ ε, ε ∈ (0, 1), can be strengthened to ρ+ n−ε. Indeed, the proofs of these propositions
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are based upon the argument that the existence of a (ρ + ε)-approximation algorithm for a
given reoptimization problem RΠ induce the existence of a O(ε)-approximation algorithm for
the “static” support Π of RΠ. However, the “static” problems dealt in these propositions are not
only inapproximable within O(ε), unless P = NP, but within O(n−ε). Hence, revisiting their
proofs, one can replace ε by n−ε getting so inapproximability bounds ρ+ n−ε instead.

3.2 max k-colorable subgraph

Given a graph G(V,E,w) and a constant k 6 n, the max k-colorable subgraph problem
consists of determining the maximum-weight subset V ′ ⊆ V that induces a subgraph of G that
is k-colorable.

Using the same technique, the result of Section 3.1 can be generalized to the max k-
colorable subgraph problem as shows the following proposition the proof of which can be
found in Appendix A.

Proposition 3. In the reoptimization setting, under the insertion of h vertices, max k-colo-

rable subgraph is inapproximable within ratio max
{

k
k+h

, 12

}

+ ε in polynomial time, unless

P = NP.

This inapproximability bound is tight for the max independent set problem (which can also
be defined as the Max 1-colorable subgraph), where an easy reoptimization algorithm
produces solutions with approximation ratio bounded by 1/2. We now show that this tightness
holds also for max k-colorable subgraph for any k > 1.

Proposition 4. Under the insertion of h vertices, max k-colorable subgraph problem is
(

max
{

k
k+h

, 12

})

-approximable.

Proof. Consider a reoptimization instance I of the max k-colorable subgraph problem.
The initial graph is denoted by G(V,E), and the perturbed one by G′(V ′, E′) where V ′ = V ∪{Y },
Y = y1, . . . , yh. Let OPT and OPT′ denote optimal k-colorable graphs on G, and G′ respectively.
The initial optimum OPT is given by a set of k independent sets: (S1, . . . , Sk), and w.l.o.g.,
suppose w(S1) > w(S2) > . . . ,> w(Sk). Now, consider the following algorithm:

if h > k, then apply the algorithm R1, described in [3] (ensuring a 1/2-approximate

solution for any hereditary problem), else (h < k), let SOL1 =
(

⋃k−h
i=1 Si

)

∪{Y }, and

SOL2 = OPT; return the best solution SOL between SOL1 and SOL2.

First, considering that the restriction of OPT′ to V cannot define a better solution than OPT,
w(SOL2) = w(OPT) > w(OPT′)−w(Y ). Note that SOL1 is a feasible solution. Indeed,

⋃k−h
i=1 Si

induces a (k − h)-colorable subgraph, thus, adding h vertices to it (here, the set Y ) induces a

k-colorable subgraph. Moreover, w
(

⋃k−h
i=1 Si

)

>
k−h
k

w(OPT) >
k−h
k

(w(OPT′)− w(Y )); so,

w(SOL1) >
k−h
k

(w(OPT′)− w(Y )) + w(Y ) > k−h
k

w(OPT′) + h
k
w(Y ).

Summing expressions for w(SOL1) and w(SOL2) given just above with coefficients 1 and k/h,
respectively, one gets w(SOL2) +

k
h
w(SOL1) >

k
h
w(OPT′)

Taking into account that k+h
h

w(SOL) > w(SOL2) +
k
h
w(SOL1), it holds that w(SOL) >

k
k+h

w(OPT′), and the proof is completed.

3.3 max split subgraph

Given a graph G(V,E,w), the max split subgraph problem consists of determining a maxi-
mum-weight subset V ′ ⊆ V that induces a split subgraph of G. A split graph is a graph whose
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vertices can be partitioned into two sets C and S, C being a clique, and S being an independent
set. Any subset of a clique remains a clique, and any subset of independent set remains an
independent set, hence, being a split graph is a hereditary property. Moreover, considering that
the property is false for a complete bipartite graph with at least two vertices in each independent
set, the result of Theorem 1 applies to the max split subgraph problem. So max split

subgraph is inapproximable within any constant ratio, unless P = NP.
We prove that this strong inapproximability result does not hold in the reoptimization setting,

but we first need to prove the following lemma, the proof of which can be found in Appendix B.

Lemma 1. Let G be a graph with h 6 3 vertices. It holds that w(GS) + w(GC ) >
h+1
h

w(G) if
h 6 2 and w(GS) + w(GC) >

5
4w(G) if h = 3, where GS and GC respectively denote an optimal

independent set and an optimal clique in G.

Proposition 5. Under insertion of h vertices, max split subgraph problem is h+1
2h+1 -approxi-

mable for h 6 2, and 5
9 -approximable for h = 3.

Proof. Consider a reoptimization instance I of the max split subgraph problem. The initial
graph is denoted by G(V,E), and the perturbed one G′(V ′, E′), where V ′ = V ∪ Y where
|Y | = h 6 3. Let OPT and OPT′ denote optimal split-graphs on G, and G′ respectively. The
initial optimum OPT is given by a clique C and an independent set S. Let YS and YC denote
optimal independent sets and cliques in Y . Consider the following algorithm:

let SOL1 = S ∪YC , SOL2 = C ∪YS, and SOL3 = OPT; return the best solution SOL
among SOL1, SOL2, and SOL3.

First, noticing that S∪YC and C∪YS both define split graphs, it holds that the algorithm returns
a feasible solution. Then summing w(SOL1), and w(SOL2), we get the following equality:

w(SOL1) + w(SOL2) = w(C) + w(S) + w(YC) + w(YS) >

{

w(OPT) + h+1
h

w(Y ) if h 6 2,

w(OPT) + 5
4w(Y ) if h = 3.

The second line follows noticing that w(C) + w(S) = w(OPT), and taking into account that,
according to Lemma 1, w(YS) + w(YC) >

h+1
h

w(Y ) if h 6 2, and w(YS) + w(YC) >
5
4w(Y ) if

h = 3. Notice that, since w(OPT) > w(OPT′)− w(Y ), it holds that:

w(SOL1) + w(SOL2) >

{

w(OPT′) + 1
h
w(Y ) if h 6 2

w(OPT′) + 1
4w(Y ) if h = 3

(1)

w(SOL3) > w(OPT′)− w(Y ) (2)

Finally, summing (1) and (2) with coefficients h and 1, if h 6 2, and 4 and 1 if h = 3:
{

(2h + 1)w(SOL) > h(w(SOL1) + w(SOL2)) + w(SOL3) > (h+ 1)w(OPT′) if h 6 2

9w(SOL) > 4(w(SOL1) + w(SOL2)) + w(SOL3) > 5w(OPT′) if h = 3

and the proof is completed.
Recall that for any h (and a fortiori for h > 4) the problem is 1/2-approximable by the

algorithm R1 presented in [3]. We prove that these simple approximation algorithms achieve the
best constant ratios possible.

Proposition 6. Under vertex insertion, max split subgraph is inapproximable within ratios
h+1
2h+1 + ε when h 6 2, 5

9 + ε when h = 3, and 1
2 + ε when h > 4 in polynomial time, unless

P = NP.
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Proof. [Sketch] Consider an unweighted graph H where one wishes to solve max split sub-

graph and denote by α its independence number, β its clique number. Construct the initial
instance Hα,β,h1,h2

(h1, h2 > 1) as described in Appendix C.1.
Assume h 6 2. We build a reoptimization instance, Iα,β,h in the following way:
• The initial graph is the graph Gα,β,h,1. We prove in Appendix C.1 that X is an optimum

on this graph. Here, its weight is (h+ 1)γ + 2.
• The perturbed graph G′

α,β,h,1 is obtained by adding a set of vertices Y to Gα,β,h,1, which
consists of an independent set of h vertices, each with weight γ. All vertices in Y are connected
to all vertices in XS only.

The overall structure is represented in Figure 1, as well as the weight of optimal independent
sets and cliques (denoted by S∗ and C∗ in the Figure) in all sets V , XC , XS and Y .

Y

S∗=hγ

C∗= γ

V

S∗=hγ

C∗= γ

XC

S∗=1

C∗=γ+1

XS

S∗=hγ+1

C∗=1

Figure 1: The reoptimization instance Iα,β,h, h 6 2

Notice that, in the perturbed graph Y ∪XC ∪ F ∗ (where F ∗ is an optimal independent set
in V ) defines an split graph of weight (2h+1)γ +1. Indeed, Y ∪F ∗ defines an independent set,
while XC defines an clique. Thus, denoting by OPT′ an optimal split graph in G′

α,β,h,1, it holds
that w(OPT′) > (2h+ 1)γ + 1.

Suppose that, for a given h 6 2, there exists an approximation algorithm A for the reop-
timization version of max split subgraph, which provides an approximation ratio bounded
by h+1

2h+1 + ε, under the insertion of h vertices. Denoting by Sα,β,h a solution returned by this
algorithm on the reoptimization instance Iα,β,h we just described, it holds that:

w(Sα,β,h) >

(

h+ 1

2h+ 1
+ ε

)

OPT′
> (1 + ε)(h+ 1)γ

However, a split graph SG in X ∪ Y (and a fortiori the restriction of Sα,β,h to X ∪ Y , denoted
by Sα,β,h[X ∪ Y ]) cannot have weight more than (h+1)γ +2. We distinguish here the following
two cases.

Case 1. SG takes at most one vertex in XS . Then w(SG[XS ]) 6 1, and thus:

w(SG) = w(SG[XS ]) + w(XC) +w(Y ) 6 1 + γ + 1 + hγ = (h+ 1)γ + 2

Case 2. SG takes at least two vertices in XS , then the independent set in SG can contain only
vertices of XS . In other words, the vertices of Y ∪XC can only be part of the clique in SG. It is
quite obvious that the biggest clique in Y ∪XC is XC itself so that in this case w(SG) 6 w(X) =
(h+1)γ+2. One immediately derives from this result that w(Sα,β,h[X ∪Y ]) 6 (h+1)γ+2 and
Case 2 is concluded.

8



So, in both cases it holds that w(Sα,β,h[V ]) = w(Sα,β,h) − w(Sα,β,h[X ∪ Y ]) > εγ − 2. Con-
sidering that γ is not a constant, if an algorithm A exists, one can get in polynomial time a
constant-approximate solution for max split subgraph in the graph Hα,β,h,1, which is impos-
sible unless P = NP.

The cases h = 3 and h > 4 are discussed in Appendices C.3 and C.4, respectively.

4 Vertex deletion

Let us consider now the opposite kind of perturbations: vertex-deletion. When dealing with
hereditary optimization problems, some properties discussed just above still remain valid, while
some others do not. As before, let us consider a given instance of a hereditary problem, for which
we know an optimal solution OPT. Consider now that one vertex of the graph is deleted, along
with its incident edges. Two cases might occur:

(i) the deleted vertex y was not part of the initial optimum, so it remains the same in the
new graph.

(ii) y was part of the initial optimum, and might even have been one of its most important
elements. Though having a priori no information on the quality of the initial optimum OPT\{y}
in the new graph G′ (or rather what is left of it), we can still assert that OPT \ {y} remains a
feasible solution in the new graph.

In what follows, we discuss to what extent the techniques used in the case of insertion can
be applied to the case of deletion. As in Section 3, we will start by an inapproximability result
on all inapproximable hereditary problems and we provide some tight positive results for max

k-colorable subgraph. We finally present general techniques for reoptimizing hereditary
problems in graphs of bounded degree.

4.1 A general negative result and some applications

When dealing with max independent set, the whole initial optimum can disappear when
deleting a single vertex, since the minimal size of a maximal solution is 1, put differently, a single
vertex can be a maximal solution. However, this fact does not hold for any hereditary property.
Consider for example the max bipartite subgraph problem. Regarding this problem, a single
vertex cannot define a maximal solution, and it takes at least two deleted vertices to delete the
whole initial optimum. We derive from this idea the following general inapproximability result:

Proposition 7. Let M(Π) denote the minimal size of a maximal solution for a given hereditary
problem Π. Under the deletion of h > M(Π) vertices, Π is inapproximable within any ratio n−ε

in polynomial time, unless P = NP.

Proof. Consider an instance of a given unweighted non trivial hereditary problem Π, that
consists of a graph H(V,E). We build the following reoptimization instance I: The initial
graph G is obtained by adding to H a set of vertices Y of size h > M(Π). This set contains a
gadget of size M(Π) that constitutes a maximal solution in G, where each vertex has weight n,
and h − M(Π) vertices with weight 0 (which will be ignored in what follows). The perturbed
graph is the graph H.

It is clear that the M(Π) vertices of weight n in Y define an optimal solution in the initial
graph G: This gadget is feasible and maximal, so that in G an optimal solution has weight at
least M(Π)n. On the other hand, any solution that does not take the whole gadget has weight at
most (M(Π)− 1)n+OPT 6 M(Π)n, where OPT denotes the cardinality of an optimal solution
in H. Thus, Y can be considered as the initial optimum of the reoptimization instance I.

Consider a reoptimization algorithm A, which, for a given h > M(Π), does provide an approxi-
mation ratio n−ε under the deletion of h vertices. When using it on the reoptimization instance I,
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we just described, this algorithm produces a n−ε-approximate solution in H in polynomial time,
which is impossible unless P = NP.

Corollary 1. max k-colorable subgraph, under deletion of h > k vertices, and max

split subgraph, under deletion of h > 3 vertices, are inapproximable within ratio n−ε unless
P = NP.

For max k-colorable subgraph and max split subgraph, it suffices to notice that Kk’s
can define maximal solution for both these problems. For max split subgraph, notice that
three vertices can define a maximal solution for max split subgraph: revisiting the proof of
Proposition 7, build the gadget in Y as follows: two vertices y1, y2 that are connected only one to
the other, and a vertex y3 connected to all vertices in H. Clearly, {y1, y2, y3} defines a maximal
(and optimal) solution in G.

Following Corollary 1, it holds that no constant approximation ratio can be expected in
polynomial when more than k vertices are deleted, However if the number of deleted vertices
is smaller than k, the non deleted part of the initial optimum is non-empty. Following this
idea we provide the following positive result for max k-colorable subgraph. Its proof is in
Appendix D.

Proposition 8. Under deletion of h < k vertices, max k-colorable subgraph is approx-
imable within ratio k−h

k
.

This constant approximation ratio is the best one can obtain by a polynomial algorithm (unless
P = NP) as the following proposition claims (see Appendix E for its proof).

Proposition 9. Under deletion of h < k vertices, max k-colorable subgraph is inapprox-
imable within ratio k−h

k
+ ε in polynomial time, unless P = NP.

4.2 Restriction to graphs of bounded degree

We will start with a general result that applies to any hereditary problem which can be charac-
terized in terms of forbidden subgraphs of bounded diameter. We denote such problem by max

H-free subgraph problem. Then we provide an example of what this general result amounts
to regarding the max independent set problem under vertex deletion in graphs of bounded
degree.

Proposition 10. In graphs of degree bounded by ∆, reoptimization of max H-free subgraph

(where each forbidden subgraph has diameter bounded by d) under deletion of a constant number
h of vertices is equivalent to reoptimization of the same problem under the insertion of h∆d

vertices.

Proof. Consider a reoptimization instance I of max H-free subgraph given by an initial
graph G(V,E) with degree bounded by ∆, and with a known optimal solution OPT, and a
perturbed graph G′(V ′, E′) = G[V \ Y ], |Y | = h.

Recall that all forbidden subgraphs have diameter bounded by a constant d. Let FS (for
forbidden subgraph) denote the set of vertices that are reachable from a deleted vertex by a path
that has at most d edges. Obviously |FS| 6 h∆d. It holds that OPT \ Y is an optimal solution
on G′[V ′ \ (FS \OPT)].

Indeed, consider a feasible solution S on the graph G′[V ′ \ (FS \ OPT)] each vertex of this
graph is either not reachable from any deleted vertex by a path of length d, thus it cannot be
part of a forbidden subgraph in G along with vertices of OPT ∩ Y , or it is in OPT; considering
that OPT is a feasible solution in G, these vertices cannot form a forbidden subgraph in G along
with OPT ∩ Y .

10



In all, no vertex in S can form a forbidden subgraph along with OPT∩Y , so that S∪(OPT∩Y )
is necessarily a feasible solution in G. Now, suppose that w(S) > w(OPT\Y ). This induces that
w(S ∪ (OPT ∩ Y )) > w(OPT), which is impossible considering that S ∪ (OPT ∩ Y ) is feasible
in G. We proved that OPT \ Y is an optimal solution on G′[V ′ \ (FS \OPT)].

Hence, any reoptimization instance I of max H-free subgraph under deletion of h vertices
can be characterized by a graph G′′(V ′′, E′′) = G′[V ′\(FS\OPT)] with a known optimal solution
OPT \ Y , and a graph G′(V ′, E′) where one wants to optimize the problem. The graph G′

contains G′′ as a subgraph, and has at most h∆d additional vertices with respect to G′′.
We just showed that an instance of max H-free subgraph, under deletion of h vertices

is equivalent to an instance of the problem under insertion of h∆d vertices, which concludes the
proof.

Recall that, for the case of insertion, another generic algorithm was proposed in [3]. This
algorithm, denoted by R2 uses a polynomial ρ-approximation algorithm for the deterministic
problem as subroutine to improve the approximation ratio for the reoptimization version from 1

2
to 1

2−ρ
. However, considering that most hereditary problems are not constant-approximable in

polynomial time (unless P = NP), R2 cannot be implemented in general graphs.
Note that, under vertex-deletion, max independent set in bounded-degree graphs is approx-

imable within ratio 1/2 [12]. Regarding this result, and considering that max independent set

is 3/(∆ + 2)-approximable in graphs of maximum degree ∆, Algorithm R2 can be implemented
in the vertex-deletion setting. Indeed, the following result, proved in Appendix F, improves the
result of [12] just claimed in italics and concludes the paper.

Proposition 11. In graphs of degree bounded by ∆, under deletion of h vertices, max inde-

pendent set is approximable within ratio ∆+2
2∆+1 in polynomial time.
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A Proof of Proposition 3

Consider a graph H, instance of max independent set, and denote by α the independence
number associated with this instance. We build in polynomial time a graph Hk, instance of max

k-colorable subgraph, by duplicating k times the instance of max independent set, and
connecting all pairs of vertices from different copies. The graph associated with this instance is
denoted Hk(V,E). In Hk, an optimal k-colorable subgraph has weight exactly kα. Indeed, given
the structure of instance Hk, it holds that its independence number is the same as H (namely α),
so that no k-colorable subgraph can weight more than kα. On the other hand, taking an optimal
independent set in each copy produces a k-colorable subgraph with weight exactly kα. We build
a reoptimization instance Iα,k,h of max k-colorable subgraph as follows:

• The initial graph Gα,k,h is obtained by adding to the graph Hk a clique X of k vertices
X = (x1, . . . , xk), each with weight α, and connecting all these vertices to all vertices of
V . In this graph, an optimal k-colorable subgraph is given by the k-clique X, and this
solution will be the initial optimum used in the reoptimization instance.

• The perturbed graph G′
α,k,h is obtained by adding a clique Y of h vertices y1, . . . , yh to

Gα,k,h, also with weight α, and connecting all these vertices to all vertices in X.

Denote by OPT′ an optimal k-colorable subgraph in G′
α,k,h. An optimal k-colorable subgraph

in Y has weight at most min{h, k}α, and, considering that Y is disconnected from V , the union of
a k-colorable subgraph in Y and one in V is also k-colorable. Recall that an optimal k-colorable
subgraph in V has weight kα, then it holds that w(OPT′) > (k +min{h, k})α.

Denote by A a max
{

k
k+h

, 12

}

+ ε approximation algorithm for the reoptimization of max

k-colorable subgraph under the insertion of h vertices. Let Sα,k,h be the solution returned
by A on the reoptimization instance Iα,k,h we just described. It holds that:

w(Sα,k,h) >

(

k

k +min{h, k}
+ ε

)

OPT′
> (1 + ε)kα

However, considering that X ∪ Y is a clique on k + h vertices, each with weight α , then
the restriction of Sα,k,h to X ∪ Y cannot have weight more than kα. Hence, w(Sα,k,h[V ]) =
w(Sα,k,h)− w(Sα,k,h[X ∪ Y ] > εkα.

Now, notice that Sα,k,h[V ] is a partitioned in at most k independent sets, the biggest of which
has weight at least εα, and is constrained to be included in a single copy of the original instance
of max independent set. Thus, building n reoptimization instances Ii,k,h (1 6 i 6 n), and
applying algorithm A on each of them, one can find in polynomial time an independent set of
size at least εα in the original instance of max independent set, which is impossible unless
P = NP.

B Proof of Lemma 1

If G is a clique, then w(GC ) = w(G) and w(GS) >
w(G)
h

, and symmetrically, if G is an indepen-

dent set, then w(GS) = w(G) and w(GC) >
w(G)
h

. In both cases, the proposition is verified.
If G is neither a clique nor an independent set (which might occur when h = 3), then there

are only two possible configurations, both represented in Figure 2.
In Case 1, there are two maximal cliques: {v1, v2} and {v1, v3}, sow(GC ) >

2w(v1)+w(v2)+w(v3)
2 .

On the other hand there are two maximal independent sets: {v1} and {v2, v3}, so w(GS) >

1
4w(v1) +

3
4(w(v2) +w(v3)). In all: w(GC) + w(GS) >

5w(v1)+5w(v2)+5w(v3)
4 = 5

4w(G).
Taking into account the symmetry between Cases 1 and 2, the same bound holds for Case 2,

which concludes the proof.

13



v1

v2 v3
(a) Case 1

v1

v2 v3
(b) Case 2

Figure 2: Graphs G that are neither cliques nor independent sets

C Proof of Proposition 6

C.1 Construction of the initial instance Hα,β,h1,h2

Consider an unweighted graph H where one wishes to solve max split subgraph. Denote by α
its independence number and by β its clique number. Now, suppose that one builds a graph Hα,β

by adding to H two graphs H1 and H2, that are complementary graphs of H, and connecting all
vertices in H to vertices in H2, while H1 is disconnected from H. Between H1 and H2, vertices
are connected in the following way:

• if α < β, then all vertices in H1 are connected to all vertices in H2,

• if α > β, H1 and H2 are completely disconnected.

In Hα,β, both the clique and independence numbers are α+ β. Indeed, Notice that each clique
in H becomes an independent set in both H1 and H2, and vice versa.

If a clique C takes at least one vertex in H1, then, either α > β and this clique must be
included in H1 (|C| 6 α), or α < β, and this clique can have vertices in H1 and H2 but not
in H, so that |C| 6 2α < α+ β. On the other hand, if C takes no vertex in H1, then it must be
composed of a clique in H (of size at most β) and a clique in H2 (of size at most α), so that the
clique number of Hα,β is exactly α+ β.

By symmetry, the same holds for the independence number.

H

H

HH

H

H1

H1

H1H1

H1

H2

H2

H2H2

H2

Figure 3: The graph Hα,β,3,3 (α > β)

In what follows, we note γ = α+ β. Consider the graph Hα,β,h1,h2
(h1, h2 > 1) that consists

of h1 + h2 − 1 copies of the graph Hα,β. Among them, h1 copies are disjoint from one another,
and h2 copies are connected by all possible pairs of vertices from different copies (an example is
provided in Figure 3). It holds that:
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• Hα,β,h1,h2
has independence number h1γ,

• Hα,β,h1,h2
has clique number h2γ,

• An ε-approximate solution for max split subgraph in Hα,β,h1,h2
can be easily derived

into a (2ε/3)-approximate solution for max split subgraph in H. Indeed, any solution
SG on Hα,β,h1,h2

can be partitioned into 3(h1+h2−1) feasible solutions on H, the biggest of
which has weight at least (2ε/3)γ when SG is an ε-approximate solution. Thus, max split

subgraph is inapproximable within any constant ratio in Hα,β,h1,h2
, unless P = NP.

In what follows, we will build three different reoptimization instances, for cases h 6 2 (Ap-
pendix C.2), h = 3 (Appendix C.3) and h > 4 (Appendix C.4). In the three cases, the initial
graphs will have the same generic structure, defined as Gα,β,h1,h2

(h1 and h2 will take different
values in the three specific cases).

This graph is obtained by adding to Hα,β,h1,h2
a set X of vertices, which consists of a clique XC

of size h2γ + 1 and an independent set XS of size h1γ + 1. Each vertex in the graph receives
weight 1. Clique XC is disconnected from V , and each vertex of XS is connected to all other
vertices of the graph, namely vertices of both V and XC . In this initial graph, it holds that a
split-graph SG has weight at most (h1 + h2)γ + 2. We distinguish the three following cases.

Case 1. SG ∩ V = ∅, then w(S) 6 w(X) 6 (h1 + h2)γ + 2.
Case 2. |SG ∩ V | = 1, and denote by v the single vertex of SG ∩ V . In this case, SG

cannot take more than max{h1, h2}γ +1 vertices in X. Indeed, if it takes more vertices, then it
means that SG contains at least two vertices of each set XS and XC , which necessarily forms a
forbidden subgraph along with v. It means that w(SG) 6 max{h1, h2}γ + 2 6 (h1 + h2)γ + 2.

Case 3. |SG ∩ V | > 2. Denote by SGC the clique in SG and by SGS the independent set
in SG.

If SG[V ] is a clique, then the clique in SG, SGC , can contain at most h2γ vertices in V and
one vertex in XS , so that w(SGC) 6 h2γ + 1. On the other hand, the biggest independent set
in X is XS , so that w(SGS) 6 w(SX) 6 h1γ + 1. In all:

w(SG) = w(SGS) +w(SGC ) 6 (h1 + h2)γ + 2

A symmetrical arguments holds when SG[V ] is an independent set.
Suppose now that SG[V ] is neither a clique nor an independent set. Then w(SG[V ]) 6

(h1 + h2)γ, and both SGS and SGC contain at least one vertex in V . Thus, SGC cannot
contain any vertex of XC , and at most one of vertex of XS . Symmetrically, SGS cannot contain
any vertex of XS , and at most one of vertex of XC . In all, w(SG[X]) 6 2, and once more,
w(SG) 6 (h1 + h2)γ + 2, concluding so Case 3.

Thus, any solution that has weight exactly (h1 + h2)γ + 2 is optimal in Gα,β,h1,h2
, so in all

reoptimization instances we will build, we can consider X as the initial optimum.

C.2 The case h 6 2

Assume h 6 2. We build a reoptimization instance, Iα,β,h in the following way:

• The initial graph is the graph Gα,β,h,1. We proved in Appendix C.1 that X is an optimum
on this graph. Here, its weight is (h+ 1)γ + 2.

• The perturbed graph G′
α,β,h,1 is obtained by adding a set of vertices Y to Gα,β,h,1, which

consists of an independent set of h vertices, each with weight γ. All vertices in Y are
connected to all vertices in XS only.
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The overall structure is represented in Figure 1, as well as the weight of optimal independent
sets and cliques (denoted by S∗ and C∗ in the Figure) in all sets V , XC , XS and Y .

Notice that, in the perturbed graph Y ∪XC ∪ F ∗ (where F ∗ is an optimal independent set
in V ) defines an split graph of weight (2h+1)γ +1. Indeed, Y ∪F ∗ defines an independent set,
while XC defines an clique. Thus, denoting by OPT′ an optimal split graph in G′

α,β,h,1, it holds
that w(OPT′) > (2h+ 1)γ + 1.

Suppose that, for a given h 6 2, there exists an approximation algorithm A for the reop-
timization version of max split subgraph, which provides an approximation ratio bounded
by h+1

2h+1 + ε, under the insertion of h vertices. Denoting by Sα,β,h a solution returned by this
algorithm on the reoptimization instance Iα,β,h we just described, it holds that:

w(Sα,β,h) >

(

h+ 1

2h+ 1
+ ε

)

OPT′
> (1 + ε)(h+ 1)γ

However, a split graph SG in X ∪ Y (and a fortiori the restriction of Sα,β,h to X ∪ Y , denoted
by Sα,β,h[X ∪ Y ]) cannot have weight more than (h+1)γ +2. We distinguish here the following
two cases.

Case 1. SG takes at most one vertex in XS , then w(SG[XS ]) 6 1, and thus:

w(SG) = w(SG[XS ]) + w(XC) +w(Y ) 6 1 + γ + 1 + hγ = (h+ 1)γ + 2

Case 2. SG takes at least two vertices in XS , then the independent set in SG can contain only
vertices of XS . In other words, the vertices of Y ∪XC can only be part of the clique in SG. It is
quite obvious that the biggest clique in Y ∪XC is XC itself so that in this case w(SG) 6 w(X) =
(h+1)γ+2. One immediately derives from this result that w(Sα,β,h[X ∪Y ]) 6 (h+1)γ+2 and
Case 2 is concluded.

So, in both cases it holds that w(Sα,β,h[V ]) = w(Sα,β,h) − w(Sα,β,h[X ∪ Y ]) > εγ − 2. Con-
sidering that γ is not a constant, if an algorithm A exists, one can get in polynomial time a
constant-approximate solution for max split subgraph in the graph Hα,β,h,1, which is impos-
sible unless P = NP.

C.3 The case h = 3

Suppose now that h = 3. In this case, the reoptimization instance Iα,β,h is built as follows:

• The initial graph is the graph Gα,β,2,3. X is an optimum on this graph. Here, its weight is
5γ + 2.

• The perturbed graph G′
α,β,2,3 is obtained by adding a path Y to Gα,β,2,3, which has three

vertices y1, y2 and y3; y1 is the central vertex of the path, and has weight 2γ, while y2
and y3 are end vertices of the path, and have both weight γ. All vertices in Y are connected
to all vertices in XS , but not to any vertex in XC . y1 is connected to all vertices in V ,
while vertices y2 and y3 are not connected to any vertex in V .

Notice that, in the perturbed graph Y ∪F ∗ (where F ∗ is an induced optimal split subgraph in V )
defines a split graph of weight at least 9γ − 1 (in V the maximum clique F ∗

C and the maximum
independent set F ∗

S might have one vertex in common). Indeed, y1 ∪ F ∗
C defines a clique, while

y2∪y3∪F
∗
S defines an independent set. Thus, denoting by OPT′ an optimal split graph in G′

α,β,h,
it holds that w(OPT′) > 9γ − 1.

Assume that there exists an approximation algorithm A for the reoptimization version of max

split subgraph, which provides an approximation ratio bounded by 5
9 + ε, under the insertion
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of h = 3 vertices. Denoting by Sα,β,h a solution returned by this algorithm on the reoptimization
instance Iα,β,h we just described, it holds that:

w(Sα,β,h) >

(

5

9
+ ε

)

OPT′
> (1 + 9ε)5γ −

5

9
− ε > (1 + ε)5γ (3)

where the last inequality follows from noticing that 5/9+ε < 8εγ, otherwise a single vertex defines
an 8ε-approximate solution in V , which is supposed to be impossible to provide in polynomial
time, unless P = NP.

However, it holds that a split graph SG in X ∪ Y has weight at most 5γ + 3 and we study
the following four cases.

Case 1. SG[Y ] = ∅. Then w(SG) 6 w(X) = 5γ + 2,
Case 2. |SG[Y ] = 1|. If the single vertex is part of the clique in SG, then this clique can

take at most one additional vertex in XS . Symmetrically, if this vertex is part of the independent
set in SG, then this independent set can take at most one additional vertex in XC :

w(SG) 6 w(y1) + 1 + max{w(XC ), w(XS)} 6 5γ + 3

Case 3. |SG[Y ] = 2|. If SG[Y ] has two connected vertices, then:

• w(SG[Y ]) = 3γ;

• the clique in SG can take at most one vertex in XS , and none in XC ;

• the independent set in SG cannot have weight more than w(XS) = 2γ + 1.

If, on the other hand, SG[Y ] has two disconnected vertices, then:

• w(SG[Y ]) = 2γ;

• the independent set in SG can take at most one vertex in XC , and none in XS ;

• the clique in SG cannot have weight more than w(XC) = 3γ + 1.

Hence, in both cases, one verifies that w(SG) 6 5γ + 3.
Case 4. |SG[Y ] = 3|. In this case, w(SG[Y ]) = 4γ, and SG can take at most two vertices

of X, one of XS that can be part of the clique in SG, of XC that can be part of the independent
set in SG. In all, w(SG) 6 4γ + 2, that concludes Case 4.

Taking into account that any split graph in X ∪Y cannot have weight more than 5γ+3, the
same holds a fortiori for Sα,β,h[X ∪Y ]. Combining this bound with (3), one immediately derives
that:

w(Sα,β,h[V ]) > (1 + ε)5γ − 5γ − 3 = εγ − 3 (4)

For reasons already explained, (4) makes impossible the existence of a polynomial algorithm A

that ensures a 5
9 + ε approximation ratio under the insertion of h = 3 vertices, unless P = NP.

C.4 The case h > 4

Finally, suppose that h > 4. We build the following reoptimization instance Iα,β,h:

• The initial graph is the graph Gα,β,1,1. In it, X defines an optimal split graph of weight
2γ + 2.
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Figure 4: The reoptimization instance Iα,β,h, h > 4

• The perturbed graph G′
α,β,h(Vα,β,h, Eα,β,h) is obtained by adding a set Y of h vertices, in

which 4 vertices have weight γ/2, and are as represented in Figure 4: all these vertices are
connected to all vertices in XS , while only y1 and y2 are connected to all vertices in V .
The other h− 4 vertices in Y have null weight, and will be ignored in what follows.

Notice that in V , an optimal split graph F ∗ has weight at least 2γ − 1 (since a clique and
independent set can have at most one vertex in common), notice also that Y ∪ F ∗ defines a
feasible solution: the clique in F ∗ forms a clique along with y1 and y2, and the independent
set in F ∗ forms an independent set along with y3 and y4. Thus, denoting by OPT′ an optimal
solution in the perturbed graph G′

α,β,h, it holds that w(OPT′) > 4γ − 1.
Suppose that, for a given h > 4, there exists an approximation algorithm A for the reopti-

mization version of max split subgraph, which provides an approximation ratio bounded by
1
2 + ε, under the insertion of h vertices. Denoting by Sα,β,h a solution returned by this algorithm
on the reoptimization instance Iα,β,h we just described, its weight can be bounded as follows:

w(Sα,β,h) >

(

1

2
+ ε

)

w(OPT′) > (1 + 2ε)2γ −
1

2
− ε > (1 + ε)2γ (5)

where the last inequality follows from noticing that 1/2 + ε < 2εγ. If not, then a single vertex
defines a ε-approximate solution in V .

We prove now that a split graph SG in X ∪ Y (and a fortiori the restriction of Sα,β,h to this
set) cannot have weight bigger than 2γ + 2. For this, we study the following three cases.

Case 1. |SG ∩ Y | = 0. Obviously w(SG) 6 w(X) = 2γ + 2,
Case 2. |SG ∩ Y | = 1, 2. SG can take at most γ + 2 vertices in X, otherwise, it takes at

least 2 vertices in both XC and XS , which form a forbidden subset along with one vertex in Y .
Thus, w(SG) 6 γ + 4 6 2γ + 2

Case 3. |SG ∩ Y | > 3, 4. Given the structure of Y , then 3 (and a fortiori 4) vertices cannot
form an independent set, nor a clique. Thus, SG can take at most one vertex in each set XC

and XS , and w(SG) 6 2γ + 2 and Case 3 is concluded.
Hence, the restriction of Sα,β,h to X ∪ Y has weight bounded as follows:

w(Sα,β,h[X ∪ Y ]) 6
2

γ
+ 2 (6)
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Combining (5) and (6), one easily derives:

w(Sα,β,h[V ]) > (1 + ε)2γ − 2γ − 2 = εγ − 2 (7)

So, Sα,β,h[V ] is a constant-approximate solution for max split subgraph in the graph Hα,β,1,1,
which is impossible to provide in polynomial time unless P = NP.

D Proof of Proposition 8

Consider a reoptimization instance I of the max k-colorable subgraph problem, under
deletion of h < k vertices. The initial graph is denoted by G(V,E), and the perturbed one
by G′(V ′, E′) where G′ = G[V \ Y ]. Let OPT and OPT′ denote optimal k-colorable subgraphs
on G and G′ respectively. Considering that Y has h vertices, and denoting by h′ the number of
independent sets in OPT that contain at least one vertex of Y , it holds that h′ 6 h.

Let S1 denote the (k − h′)-colorable subgraph in OPT which does not contain any vertex
of Y and S2 the h′-colorable subgraph in OPT such that each independent set in it has at least
one vertex in Y . Consider the simple reoptimization algorithm that consists of returning the set
SOL = OPT \ Y (that is, the remaining part of the optimum after the deletion of Y ). It holds
that:

w(SOL) = w(S1) +w(S2 \ Y ) (8)

w(OPT′) 6 w(OPT′ \ S2) + w(S2 \ Y ) (9)

It also holds that S1 is an optimal (k−h′)-colorable subgraph in the induced subgraph G[V \S2]
(otherwise OPT wouldn’t be an optimal solution). It also holds that OPT′ \ S2 defines a k-
colorable subgraph in G[V \ S2]. Thus, the k − h′ biggest independent sets in OPT′ \ S2 have
weight at most w(S1), and at least k−h

k
w(OPT′ \ S2). Hence, one verifies that:

w(S1) >
k − h′

k
w(OPT′ \ S2) (10)

Combining (8), (9) and (10), one finally proves that:

SOL

OPT′ >

k−h′

k
w(OPT′ \ S2) + w(S2 \ Y )

w(OPT′ \ S2) + w(S2 \ Y )
>

k − h

k

that concludes the proof.

E Proof of Proposition 9

Revisit the proof of Proposition 3 in Appendix A: out of an instance H of max independent

set, with independence number α, we can build an instance Hα(V,E) of max k-colorable

subgraph, such that for any i 6 k, an optimal i-colorable subgraph in Hα has weight exactly iα,
and any constant approximation for max k-colorable subgraph is impossible in Hα, unless
P = NP. We build the following reoptimization instance Iα,h (h < k) of max k-colorable

subgraph:

• The initial graph Gα,h is obtained by adding to Hα a clique Y of k vertices, each connected
to all vertices of Hα, and each with weight α.

• The perturbed graph G′
α,h is obtained by deleting h of the k vertices of Y . Denote by Y ′

the set of remaining vertices of Y after the deletion (|Y ′| = k − h).
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For reasons already explained in the proof of Proposition 7, it holds that Y can be considered as
the initial optimum of the reoptimization instance.

Suppose that, for a given h, there exists an algorithm A that computes a k−h
k

+ε approximation
for max k-colorable subgraph under deletion of h vertices. And let Sα,h denote the solution
returned by A on the instance Iα,h, it holds that w(Sα,h) > (1+ ε)(k−h)α, and considering that
w(Y ′) = (k − h)α, it holds that w(Sα,h[V ]) > ε(k − h)α.

Thus, an algorithm A cannot exist for any h, otherwise it would provide a constant approxi-
mation for max k-colorable subgraph in the graph Hα(V,E), which is impossible to provide
in polynomial time unless P = NP.

F Proof of Proposition 11

Let G(V,E) be an instance of max independent set, with one known optimal solution OPT,
and let G′(V ′, E′) = G[V \ Y ], (|Y | = h). On this perturbed instance, an optimal solution is
denoted by OPT′. In what follows, N(S) is the set of neighbors of all the vertices in S. Denote
by Aρ a ρ-approximation algorithm for max independent set in graphs of bounded degree,
and Aρ(G) a solution returned by Aρ on a given graph G. Consider now the following algorithm:

• let SOL1 = OPT \ Y ;

• for each maximal independent set Si in N(OPT ∩ Y ) (they can all be enumerated in
O(2h∆)), set SOL2,i = Si ∪ Aρ(G

′[V ′ \ (Si ∪N(Si))]), and SOL2 = maxi(SOL2,i).

It holds that:

w(SOL1) > w(OPT′[V ′ \N(OPT ∩ Y )]) > w(OPT′)− w(OPT′ ∩N(OPT ∩ Y )) (11)

On the other hand, notice that OPT′ can be divided in two parts, OPT′ ∩ N(OPT ∩ Y ), and
OPT′ \ N(OPT ∩ Y ). Among all sets Si’s computed in the second part of the algorithm, one
must have computed the set Si∗ = OPT′ ∩ N(OPT ∩ Y ). Moreover, the second part of the
solution, Aρ(G′[V ′ \ (Si∗ ∪ N(Si∗)]) is a ρ approximation on a subgraph where the optimum is
OPT′ \N(OPT ∩ Y ). In all:

w(SOL2) > SOL2,i∗ > w(OPT′ ∩N(OPT ∩ Y )) + ρw(OPT′ \N(OPT ∩ Y )

> ρw(OPT′) + (1 − ρ)w(OPT′ ∩N(OPT ∩ Y )) (12)

Combining (11) and (12), with coefficients (1− ρ) and 1, one finally proves that:

w(SOL)

w(OPT′)
>

1

2− ρ
(13)

Replacing ρ with 3/(∆ + 2) in (13) leads to the claimed result.
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