Turbulence Mixing and the study of Clouds

D.Tordella, M.Iovieno, S.Scarsoglio, F.De Santi, S.Di Savino

in collaboration with

Z.Warhaft (Cornell Univ.), J.Riley (U.Washington), R.Kerr (U.Warwick)

Venturefest 2012, Oxford

• • • • • • • • • •

3

э

William Turner, "Study of Clouds", about 1830 (Tate Gallery, London)

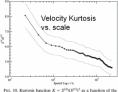
Motivation: Cloud entrainment

Isolated cumulous:

Entrainment throughout the cloud depth: from above, sides and at the base.

Effects of gravity vary

Stratocumulous: Entrainment mainly from the top



Field Data

normalized lag r/n. The dotted lines indicate a $\pm 10\%$ range for the

statistical sampling uncertainty (see text for more details).



FIG. 11. Variance $\sigma_{\rm integ.}^2$ as a function of the integration length r normalized with the Kolmogorov length $\eta \sim 1.8$ mm. An integral length scale of $L \rightarrow 100$ m limits $\eta < L^2 \eta \sim 25 \times 10^2$. A logarithmic fit (dished line) yields an intermittency exponent $\mu = 0.25$ with a standard error of 0.01.

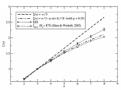
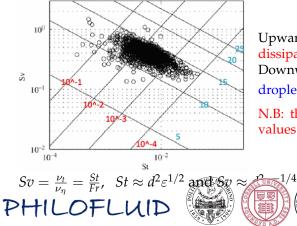


FIG. 9. The scaling exponents $\xi(n)'$ of the structure functions, as plotted via ESS theory in Fig. 8. Theoretical values for K41 and for K62 with an intermittency factor of $\mu = 0.25$ are shown for reference, together with data derived from wind-tunnel experiments by

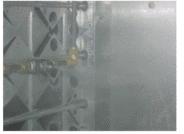
All turbulence measurements in a stratocumulous are consistent with laboratory experiments (data from Siebert at al., 2009)


Turbulence & Clouds

Field Data Small Cumulous

Settling parameter vs. Stokes number

Upward diagonals: dissipation rate $[m^2/s^3]$ Downward diagonals: droplet diameters $[\mu m]$ N.B: these are averaged values


Turbulence & Clouds

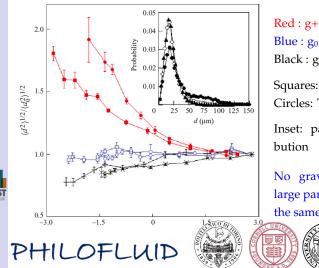
Laboratory experiments

Settling particle velocity enhancement/reduction in turbulence with gravity

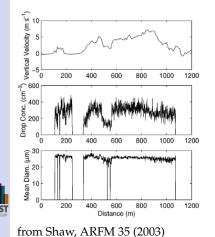
Alesida et al, JFM 468 (2002) Davila - Hunt, JFM 440 (2001) Kawanasi-Shiozaki, J.Hydr.Eng. 134 (2008) Lazaro-Lasheras, Phys.Fluids 1 (1989) Murray JGR 75 (1970) Nielsen, J.Sed.Petr. 35 (1993) Tooby et al, JGR 82 (1977) Wang - Maxey JFM 256 (1993)

Acceleration of inertial particles: Bodenschatz, Xu, Mordant, Ayyalasomayajula, Qureshi, ...

Clustering: Shaw, collins, Bec, Vassilicos, Hunt



PHILOFLUID


Particle diameter effect

Blue : g₀ Black : g-Squares: TT interface, Circles: TN interface Inset: particle size distribution

No gravity \Rightarrow small & large particles transported the same way

Shear

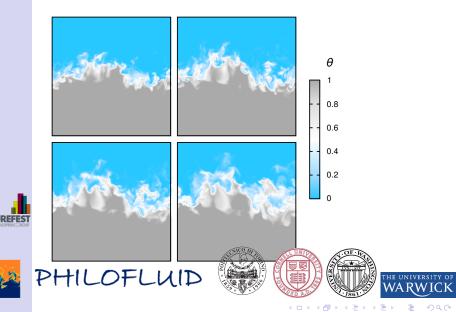
Real clouds: sharp interfaces and shear

Shear is important!

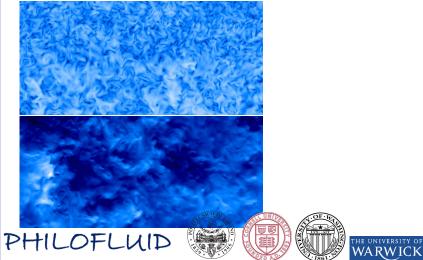
PHILOFLUID

What can simulations tell http://www.polito.it/philofluid

Entrainment



Entrainment -Interface



Entrainment

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

Energy/velocity field:

John Constable, "Study of Clouds", about 1820

(University of Oxford, Ashmolean museum)

< ≣ >

ъ

Conclusions

- gravity is very important in droplet distribution
- mixing is affected by large scales
- we are beginning to understand the mechanics of entrainment, *but* need to know more about:
 - evaporation
 - shear
 - convection
- rain making must understand droplet distribution *and* how it changes with time
- global warming ⇔ droplet size distribution (absorbtion/reflection of light)

Interdisciplinary holistic approach is necessary!

PHILOFLUID

(日)

Turbulence & Clouds