
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Customizing Data-plane Processing in Edge Routers / Risso, FULVIO GIOVANNI OTTAVIO; Cerrato, Ivano. - STAMPA.
- (2012), pp. 114-120. (Intervento presentato al convegno European Workshop on Software Defined Networks
(EWSDN) tenutosi a Darmstadt, Germany nel October 25-26, 2012) [10.1109/EWSDN.2012.14].

Original

Customizing Data-plane Processing in Edge Routers

Publisher:

Published
DOI:10.1109/EWSDN.2012.14

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2503366 since:

IEEE

Customizing Data-plane Processing in Edge Routers

Fulvio Risso and Ivano Cerrato
Department of Computer and Control Engineering

Politecnico di Torino
Torino, 10129, Italy

Email: {fulvio.risso, ivano.cerrato}@polito.it

Abstract—While OpenFlow enables the customization of the
control plane of a router, currently no solutions are available
for the customization of the data plane. This paper presents
a prototype that offers to third parties (even end-users) the
possibility to install their own applications on the data plane
of a router, particularly the ones operating at the edge of
the network. This paper presents the motivation of the idea,
the reason why we use OpenFlow even if it does not seem
appropriate for the data plane, the architecture and the
implementation of our prototype, and a first characterization
of the system running in our lab.

Keywords-Openflow; Software Defined Networking; Data
plane processing.

I. INTRODUCTION

OpenFlow [1] offers the possibility to customize the be-
havior of the control plane of the network. In fact, its original
idea addressed the necessity to use real networks (instead
of “toy” networks or simulations) to make experiments,
enabling the deployment of many “virtual” networks on the
same physical infrastructure. So far, less work has been
done on the customization of the data plane of the network,
which includes the applications that operate on (all) the
traffic flowing through a network device, such as forwarding
and bridging, network address translation, firewall, intrusion
prevention systems, parental controls, etc.

The necessity to customize data plane processing is a
very known problem for many entities, starting from end
users that may be willing to inspect their traffic to/from the
Internet, Network Service Providers (NSPs) that may need
to optimize the network traffic, or content providers that
would like to offer personalized services to end users. The
possibility to install customized data plane applications on
edge routers may bring more intelligence in the network
and enable new features at lower costs, while core routers
are expected to stay unmodified and keep forwarding data
as fast as they can. For instance, we foresee that future
routers will greatly improve their capabilities in terms of
general purpose processing, and that they will include both
traditional network linecards (e.g., expansion blades with
network interfaces) and new processing linecards with dif-
ferent computing components (e.g., CPUs, GPUs, possibly
specialized hardware component for network processing
such as TCAMs, lookup tables, security accelerators, etc.),

which can be used by our data plane applications. Obviously,
computing components must be coupled with a huge amount
of memory and an high speed interconnect used to transfer
packets from one component to another. This way, our
current data plane applications (which are often packaged
as dedicated appliances) may evolve into a set of software
images installed on the new router, which is being asked to
provide a set of open primitives for supporting third-party
software, instead of being locked with the software provided
by the router manufacturer. In the end, this will result in
lower capital and operating costs for the hardware, higher
flexibility and scalability, and (potentially) more available
services as new actors will be enabled to install their
software on the routers.

This work focuses on the customization of the data plane
of a network device and is based on two pillars. First, we of-
fer the possibility to install data plane applications that can
inspect and (potentially) modify the traffic in transit. Second,
our network applications are under the direct control of
multiple actors (e.g., end users, Network Service Providers,
content providers). Those actors can install and manage their
data plane applications operating on their network traffic
(i.e., their slice of the network), without impacting on the
services requested by other actors.

While the necessity of data plane customization seems
clear, the idea to enable multiple actors to operate on data
plane of the network usually raises some objections, as the
most natural scenario consists in limiting this possibility
to the router manufacturers or, at most, to NSPs. How-
ever, the authors are deeply convinced that only the active
participation of new actors may bring a breath of fresh
air in the networking world. For instance, end users, with
their imagination, are the ones that drove the innovation
in the PC and smartphone markets with the creation of
many unexpected applications, and we expect them to be
the ones that will contribute most to network evolution. In
this respect, we envision for NSPs the possibility to evolve in
infrastructure providers (a sort of Network IaaS), offering to
multiple actors a pipe that transports bits (the network) and
a programmable platform where those bits can be processed
and even modified in transit.

This paper focuses on this new vision of a network edge
node that supports custom data plane applications under the

control of multiple actors, presenting our long-term vision
and the first steps toward the objective. Particularly, our
current implementation is based on OpenFlow. Although this
protocol was not proposed to handle data plane applications,
OpenFlow represents the best option we have right now
to demonstrate our idea, as it can redirect all the traffic
of the data plane to an external controller. In our proof-of
concept, the controller (which, according to the OpenFlow
specifications, should handle the control plane) becomes
a sort of data plane extension of the router in which we
implement our customized processing. According to our
speculations, in the future this external controller (in fact,
a data plane extender) will be integrated in the router itself,
which would be able to support any data plane applications
through the new linecards oriented to generic processing
presented above. Furthermore, although OpenFlow currently
does not allow us to plan a production-ready deployment
of our solution, we expect that the future OpenFlow 2.0
will offer a better support for data plane applications, as it
should provide a more sophisticated model of the router and
should be able to support also data plane features. Therefore,
while our current prototype uses OpenFlow mainly because
it represents the best technology in our hands (although far
from perfect) and it offers us the possibility to create a
testbed using real network devices, future OpenFlow version
may look much more appropriate to our objectives.

This paper is structured as follows. Section II presents
the related work, Section III describes our prototype, while
Section IV offers the first numbers coming out from our
preliminary implementation. Finally, Section V presents
some conclusive remarks and gives some insights on our
future work.

II. RELATED WORK

The idea of customizing the data plane of a network
router was introduced several years ago by the Click mod-
ular router [2]. Other proposals, such as Shangri-La [3]
and NetVM [4], enabled the transparent deployment of
data plane software on multiple network processors (NPUs)
through a powerful abstraction of the hardware. However,
they targeted professional developers of network applica-
tions, i.e., the few employees of the major network manu-
facturers that develop those applications, and focused most
on performance issues, e.g., demonstrating that high-level
languages and NPU abstractions do not introduce notable
performance limitations. Given the failure of those proposals
in getting adopted in real products, we feel that the focus on
the above two points was a mistake. Particularly, we feel that
we should target also occasional developers, i.e., the ones
that were never involved in network programming but that
can make the difference in bringing new ideas in our world.
Performance issues are important but we can address them
later, when the advantages of our vision will be (hopefully)
confirmed.

While previous proposals were never able to go beyond
the research domain, recently network manufacturers started
pursuing the same objectives by opening their platforms
to third party applications. For instance, Juniper [5] and
Cisco [6] released proprietary frameworks that enable the
creation of network applications running on a limited set of
routers, equipped by special service linecards. However, (i)
the hardware has limited capabilities in terms of processing
and memory, hence (ii) those solutions may not seem so
appropriate for complex data-plane applications, and (iii) the
control of those applications is firmly in the hands of the
entity that operates the router. Furthermore, the exported
API is (iv) proprietary and (v) oriented to very skilled
programmers.

A solution based on OpenFlow can overcome most of
these limitations. In fact: (i) it can be deployed on real
networks thanks to the many manufacturers that support this
standard; (ii) it is more oriented to “occasional” developers
thanks to the simple API exported by the most advanced
OpenFlow controllers; (iii) controllers are executed on a
different box of the router, facilitating hardware upgrades
when more processing power is needed. Other options beside
OpenFlow are cited only for the sake of completeness. For
instance, ForCES [7] never gained attraction in the industry,
with few implementations limited to the research domain.
Instead, the Web Cache Communication Protocol [8] is
available on many network devices and it can be used to
redirect a set of generic network flows to a controller that
can inspect the traffic (in fact, version 2.0 does not limit its
operations to web data). While this protocol can be used to
perform custom operations on the data plane traffic, it does
not allow to configure shortcuts in the switching plane of the
network device, forcing all the selected traffic to go to the
upstream controller. Consequently, although OpenFlow was
not engineered for data plane processing and hence it does
not guarantee optimal performance, it represents the best
option we have right now to create data plane applications
operating on real networks.

Within the OpenFlow domain, several works target the
operations of a network edge node. However, as the best of
the authors’ knowledge, they focus on creating independent
slices on the network, without going too much toward
“traditional” data plane applications, and without giving
end users the possibility to control those applications. For
instance, [9] creates a network virtualization layer allowing
multiple controllers, operated by different organizations, to
coexist on the same network infrastructure. [10] proposes
to partition the home gateway into independent slices that
can be used by different entities (e.g., service providers) to
provide different services. [11] focuses on security aspects,
engineering a network edge node able to recognize users
and apply the associated security policies. [12] proposes a
language to program the network that guarantees the creation
of independent slices.

Flow-based processing is another area of research. For
instance, [13] suggests to use OpenFlow to create cluster
of (virtual) machines to scale up the processing capabilities
of the (virtual) network edge. However, although flow-
based processing relates to data plane, we feel that data-
plane applications cannot be reduced to a “simple” flow
processing, as many aspects have to be considered, such as,
who controls those applications, permissions, programming
frameworks, etc.

III. THE PROTOTYPE

Our work focuses on the creation of user-driven data
plane applications that operate on a network slice asso-
ciated to a given actor, enabling the customization of the
processing of the traffic inside the network edge router. We
exploit OpenFlow (version 1.0) to build our first prototype,
although in the future we may switch to other technologies
(possibly, OpenFlow version 2.0) if those will be available.

A. Operating context

Our prototype operates in the context of a network edge
node directly connected to the final users, as shown in
Figure 1. Traffic coming from new hosts is redirected to
a captive portal, which implements user’s authentication. If
the authentication is successful, a new OpenFlow controller
is created that will receive all the traffic associated to
the new network slice, defined by the {MACuser → ∗,
∗ → MACuser} tuple. This controller can host a set of
(stacked) applications, usually installed by the user itself,
which will be called sequentially on each user’s packet.
The calling order is (statically) chosen by the user; if an
application modifies the content of a packet, all the following
ones will receive the modified payload.

Finally, other controllers are created ahead of time by the
entity that manages the network edge node (e.g., the NSP).
Those controllers do no longer target end users; instead, they
are dedicated to other actors (e.g., the NSP itself, a content
provider, etc.) and can operate on the traffic of multiple
users.

B. Network slices

Network slicing, i.e., the capability to create partitions
over the network and to allow different actors to operate
on their traffic, does not represent a novelty. However,
those partitions were always oriented to guarantee network
isolation, i.e., slices do not overlap.

As our objective is not to provide network isolation,
we envision two types of slices that can overlap. Vertical
slices guarantee network isolation between hosts and are
created upon the successful authentication of the user. As
a consequence, each packet will match the network tuple
(based on the host MAC address) associated with only one
slice, unless some special cases, such as the traffic between
two hosts that are both attached to the same router, or the

Internet

Management
server

User
authentication,

applications,
permissions…

Apps Service
Provider 1 (e.g., Wan

Accelerator)

Apps
User 1

Apps
User 3

Apps
User 5

Apps Service
Provider 2 (e.g.,

Content Delivery)

Apps
User 4

Apps
User 2

Apps Network Service Provider

L2 bridging L3 routing

Figure 1. The operating context: a network edge node and its end users.

 SoftSwitch

Host 1 -
User 1

ARP * : send to all ports

* ARP : send to all ports

DHCP *: send to all ports

* DHCP: send to all ports

mcast, bcast: send to all ports

Default : send to Controller

Network
gateway

Network Hypervisor

App1

App2

App3

App1

App4

App5

CNode
App

Web Node
Manager

Tomcat on

port 80

Controller
User 1

Controller
User 2

Controller
of this node

Default
App

Default
Controller

Transparent Bridging Application
NSP
Controller

Edge node (switching plane)

Edge node (controller plane)

Host 2 -
User 2

Figure 2. The architecture of the edge router in our earlier prototype.

broadcast/multicast traffic1. Vice versa, horizontal slices are
statically provisioned by the manager of the edge router
and match the traffic specified by the proper network tuple,
given as configuration parameter. Those slices are oriented
to actors that setup services shared among multiple end
hosts, such as a caching engine, a network optimizer, or the
bridging process. Horizontal slices can be either associated
with all the traffic of a given set of users (e.g., a network
firewall, active over a subset of the connected hosts), or be
limited to a portion of the users’ traffic (e.g., a web caching
engine, that intercepts only web traffic).

C. The overall architecture

As depicted in Figure 2, the architecture of our edge router
is composed by the following components.

The softswitch runs at the very bottom of the network
stack, providing the basic switching capabilities to our sys-

1Currently, multicast and broadcast are not supported; those packets are
flooded on all the interfaces, without delivering them to any controller.

tem. It matches each incoming packet against a list of flow
tuples and, based on the result, the packet is either sent to a
specific output port or to the controller. Our prototype uses
the vanilla Open vSwitch for the sake of simplicity, but it can
be any router supporting OpenFlow 1.0. Our softswitch, as
shown in Figure 2, is configured with a few rules: multicast,
broadcast, DHCP and ARP packets are flooded to all ports,
while the rest of the traffic is redirected to the controller.
Optionally, user applications can install new flow tuples that
instruct the softswitch to send traffic directly on the output
port, without involving the controller. However, this feature
has not been implemented right now and it is left to the
future work.

The network hypervisor, based on FlowVisor [9], en-
ables the slicing we need in our prototype and it allows
an OpenFlow node to connect to multiple controllers. The
hypervisor receives packets from the softswitch and it sends
them to the controllers of all the slices the packets belong
to, according to the order defined by the priority associated
with the flow rules identifying the slices themselves. Fur-
thermore, it verifies that the tuples an application may want
to instantiate in the softswitch are compatible with those
assigned to the slice the application belongs to. Finally, the
hypervisor isolates controllers from the physical hardware of
the edge router, allowing each of them to use the resources
of the router as it was the sole user. All the communications
from the softswitch to FlowVisor, then from FlowVisor to
the controllers, use the OpenFlow protocol.

Controllers (detailed in Section III-D) are special con-
tainers that execute our data plane applications. A wrapping
framework receives traffic from the network hypervisor and
dispatches it to each application. Traffic is then sent again
to the hypervisor when the processing chain inside the
controller has been completed.

An embedded web server is available on our edge
node, to provide both global management and configuration
services. For instance, it implements the captive portal and
a set of web services that enable data exchange between
the different components (hosts, edge router, management
server). For example, one of those web services is used by
the management server to check if a controller is still active
and to keep up-to-date the status of the system.

The network gateway (a Linksys WRT54G) connects
our components to the Internet. This box has been used
in this first prototype because it implements two functions
that are needed in our system, namely the DHCP server
that assigns IP addresses to new hosts and the routing
process that allows our edge “router” to implement only the
(simpler) transparent bridging. However we plan to remove
this component in the next steps of the project and to
integrate those functions in our edge node.

Finally, an external management server coordinates the
entire set of edge routers. It contains the user database,
permissions, the list of applications to be installed, etc.

Furthermore, it stores the applications associated with each
user, which in fact are copied from this server to the edge
router each time a new controller has to be activated, e.g.
each time a user logs in.

D. User controllers

The technology used to implement the controllers is very
important in our system and we made our choice based on
the following four guidelines. First, the controller must be
extremely lightweight, as the forecasts from some NSPs
known by the authors indicate the necessity to handle about
100K hosts, hence 100K controllers, in each BNAS, i.e., the
edge router in which ADSL users sessions are terminated.
Second, the API exported by the controller must be compat-
ible with high-level programming languages: authors are
deeply convinced that the success of smartphones is also due
to their programming languages, such as Java for Android,
and Objective-C for iOS. Third, network applications should
be created by non-skilled programmers, i.e., we do not
require developers to be too much aware of how networks
work, because this would impose a strong limitation on the
potential number of developers for our platform. Fourth, as
multiple controllers coexist on the same edge router, the
system must be able to provide computing and memory
isolation in order to allow multiple actors to operate safely
on the same hardware.

Given the proof-of-concept nature of our system, we
decided to base our prototype on the available software
components whenever possible, leaving more optimizations
to a future refinement phase. Starting from the existing
OpenFlow controllers, we initially selected Beacon [14],
based on Java, and NodeFlow [15], based on Node.js. Both
solutions support a single language for the development
of applications, but that language is very powerful, well
known, and features many third party libraries. Furthermore,
both are based on lightweight virtual machines that can
provide acceptable computing isolation among controllers.
FloodLight, also based on Java, was discarded because it
does not allow to load/unload dynamically new applications
without killing the entire controller, which represents a
mandatory feature in our prototype.

Memory requirements, for both Java and Javascript VMs
(i.e., an empty VM with a simple “hello world” program)
are shown in the first part of Table I. The Javascript VM
appears lighter, and this was confirmed when launching the
OpenFlow controller (second part of Table I). Initially the
memory occupancy of Beacon was rather high, but we were
able to reduce it to a more reasonable value by removing
some components that were not needed in our prototype.
Although at the first sight NodeFlow looks a better choice
because of its reduced memory requirements, we selected
Beacon as the foundation of our controllers because it
appeared more mature and stable. For instance, NodeFlow
showed an unexpected increase in the memory occupancy

Table I
MEMORY OCCUPANCY FOR THE SELECTED OPENFLOW CONTROLLERS

Intel i5-3450S, 4GB RAM, OS Debian 7, 32 bits
Description Memory

Java (Oracle JRE 1.7, 32 bits) with “Hello World’ app 24 MB
Node.js (v. 0.6.12) with “Hello World” app 5 MB

Beacon (standard controller) 102 MB
Beacon (reduced controller) 43 MB

NodeFlow (standard controller) 8 MB

when the controller was flooded with traffic, at least in our
system.

Computing isolation among controllers is guaranteed by
running each controller in a different Java Virtual Machine
(JVM), which translates into different processes (with dis-
joint memory spaces) in the edge router. However, appli-
cations within the same controller share the same address
space, although this was considered reasonable as those
applications belong to the same user. Unfortunately, common
JVMs such as Oracle JVM or OpenJDK cannot control the
CPU and memory used by each process, which could trigger
denial-of-service phenomenons when a controller consumes
too many resources. It is worth noting that this limitation
comes from the JVM we use and it can be addressed in our
future releases.

E. Users, Groups and Permissions

Our current prototype supports users and groups associ-
ated with vertical slices; vice versa, horizontal slices cannot
be assigned to groups.

The owner of a slice can upload new applications in the
system; a new application will become active only when
explicitly installed and upon the definition of its calling
order within the controller. When uploading an application,
the owner can specify who can install it (only the owner
himself, all the members of its group, or everybody) using
the availability parameter. Furthermore, group administra-
tors can install applications in the slices of their group
members and choose, through the visibility parameter, if
that application is visible from the user or if it operates
in “hidden” mode. An hidden applications, for instance,
could be a parental control installed by a parent to its
kids; this way, kids can manage their slice (adding/removing
additional applications) without noticing that the parental
control is active. An additional parameter, available only if
the visibility is turned on, determines if the user can remove
that application from his slice. Users do not have any control
(nor visibility) on the applications installed in other slices,
even if their traffic crosses them as well (e.g., the transparent
bridging application in Figure 2).

Finally, some network privileges are associated with con-
trollers. For instance, normal users are usually enabled to
do whatever they want on their traffic, including generating
and/or modifying packets within the controller. A controller

of an entity in charge of network monitoring may have
instead a “read mode” privilege. Further, other controllers
could have also access to network parameters and influence
the forwarding process of the node, such as determining the
output interface for a given packet. Usually, the last privilege
is allowed only in the controller owned by the NSP.

F. Configuring and monitoring the applications

Each application running in the controller is requested
to implement two set of functions. The former includes a
set of callbacks operating on network traffic that are called
upon each packet arrival. The latter enables an (optional)
set of web services for monitoring and configuring the ap-
plication itself, which can be reached through a special URL
composed by the default locator for the user controller (i.e.,
http://config.ctrl) followed by a string including
the application name. All the URLs received in that format
are checked for permissions (e.g., a final user cannot manage
an “hidden” application, although this can be done by the
group administrator), then are redirected to the web services
exported by the application. Note that both the semantic and
the syntax of the data exchange is completely application-
dependent.

G. Implemented applications

Given the early stage of our work, four simple applications
were developed. NetMon is a network monitor that extracts
some statistics on the traffic on the selected slice (traffic
sent/received per each IP address, the latest TCP connec-
tions, etc). DNSFilter is a DNS-based filtering for parental
control that checks DNS requests and drops all those that
are directed to sites belonging to a deny list. GSafe modifies
all the requests to the Google search engine, preventing
it from returning disturbing results. Finally, TransBridge
implements the transparent bridging process.

While those applications allowed us to setup some nice
demonstrations in our lab, we experienced some severe lim-
itations when developing richer applications. For instance,
traffic is received packet by packet, resulting in a huge
amount of work when the payload has to be modified (e.g.,
adding some bytes to an HTTP request). This is because low
level tasks such as TCP reassembly and session tracking had
to be implemented from scratch, as currently no high-level
libraries are available for those (annoying, but needed) tasks.

IV. EXPERIMENTAL RESULTS

A first prototype was built using an Intel Core 2 Duo
P8400 PC as controller and a TP-LINK TL-WR1043ND
access router with the OpenWRT Pantou release for the
fast path. However, this platform was later discarded for
two reasons. First, the throughput was not satisfying, e.g.,
the traffic between a user attached to the edge router and
a remote server was about 55Mbps, with a single user
controller running the DNSFilter application. Second, the

limited hardware of the TP-LINK (32MB RAM and 8MB
Flash) prevented us from installing all the components
(switching and control planes) on the same node, which
would lead to a more integrated solution and may open the
path to more aggressive optimizations.

As a next step, we set up an integrated box based on
an Intel i5-3450S processor with four physical cores, 4GB
RAM and 64GB SSD. We added also a WiFi adapter and
an Intel PCI-E card with 4-GbE ports in order to mimic the
hardware of a typical home access gateway. On that box we
integrated both the data path (the vanilla Open vSwitch) and
the “control” components (i.e., FlowVisor, controllers, web
node manager). The machine was preloaded with the Linux
Debian 7 operating system running at 32 bits.

The test setup included two hosts connected to the same
edge router, which has five controllers: two user controllers,
one associated to the edge router itself, one owned by the
NSP that hosts the TransBridge application, and the default
controller. Table II shows the latency of the system, split in
three components. The first measures the time required by
a packet from the NIC to the first controller and it includes
also the time spent in Open vSwitch and FlowVisor. The
second takes into account the time spent in the controllers
(e.g., user controllers, NSP controller), including the time
consumed by FlowVisor to redirect the packet to the second
controller. The third measures the exiting time, i.e., the last
hit in Flowvisor, Open vSwitch, and the output NIC. Latency
has been measured collecting the timestamp of the selected
packets with tcpdump and averaged over 1000 samples.

The first three tests have been done on an unloaded
network, exchanging ICMP traffic between the two hosts
and changing the number of applications installed in each
controller (from zero to three). Unexpectedly, the most part
of the time is spent in the low level components, such as
the NIC, Open vSwitch, FlowVisor. With respect to the time
spent in the controllers, this seems to be rather independent
from the number of applications installed, which suggests
that the framework that implements the controller (i.e.,
Beacon) represents an important bottleneck, impacting even
more than the application itself. The fourth test is still
done on an unloaded network, but in this case the traffic
is represented by an HTTP request to the Google search
engine, which has to be modified by the GSafe application.
Finally, we repeated the last test by adding a cross traffic
made by two large FTP transfers (from Host 1 to Host 2
and vice versa), accounting for about 350 Mbps each. Also
in this case we cannot see any noticeable difference in the
latency of the traffic crossing our edge node.

Table III shows the memory occupancy of the different
components of the system, in the conditions of the fifth
test mentioned above. The system reported 1072MB allo-
cated memory, while each user controller uses in average
165MB, although this value largely depends on the installed
applications (e.g., DNSFilter includes a set of forbidden

Table II
LATENCY IN THE CONTROLLER

Test description NIC - Controllers FlowVisor
FlowVisor - NIC

1) No apps (ICMP) 215 µs 120 µs 233 µs
2) NetMon (ICMP) 226 µs 146 µs 237 µs

3) NetMon, GSafe, DNSFilter
(ICMP) 210 µs 131 µs 229 µs

4) NetMon, GSafe, DNSFilter
(HTTP GET) 150 µs 143 µs 190 µs

5) NetMon, GSafe, DNSFilter
(HTTP GET, loaded network) 221 µs 154 µs 223 µs

Table III
MEMORY OCCUPANCY WITH LOADED NETWORK (TEST N.5)

Component Memory occupancy
Controller user 1 / user 2 165 MB / 165 MB

Controller edge router 60 MB
Default controller 46 MB

NSP controller 48 MB
FlowVisor 150 MB

Open vSwitch 8 MB
Tomcat web server 156 MB
Operating system 274 MB

Total 1072 MB

Table IV
CPU CONSUMPTION WITH LOADED NETWORK (TEST N. 5)

Component CPU consumption
(over a single core)

Controller user 1 / user 2 35% / 35%
Controller edge router 0%

Default controller 0%
NSP controller 11%

FlowVisor 81%
Open vSwitch 100%

Operating system 2%
Total (over four cores) 66%

sites that, by itself, accounts for 77MB). The other three
controllers host simpler applications and weigh in the range
of 40-60 MB. The memory consumption of Open vSwitch
is negligible, about 8 MB; FlowVisor instead uses about
150MB.

Table IV reports the CPU consumption of the different
components; the bottleneck is represented by OpenvSwitch
that saturates its CPU core; the CPU occupancy of FlowVi-
sor is not negligible at all, reaching 81% of its CPU core.
Controllers appears lighter, reaching no more than 35% of
their CPU core. The total CPU consumption in this test
appears to be 66%, which results by computing the average
load over the four cores present in our CPU.

V. CONCLUSIONS

This paper presents the first implementation of an edge
router that enables the customization of its data plane pro-
cessing. Currently, data-plane applications are very common
at the edge of the network, but are under the control of
manufacturers (which build boxes and software) and NSPs,

which takes care of their deployment. In our proposal,
multiple actors (content providers, NSPs, end users) can
install and manage their own data plane applications that
operate on the portion of the network traffic associated to the
entity itself, on the same edge router. Isolation is guaranteed
in terms of network traffic (each application operates only
on its network slice) and (reasonably) in terms of computing
and memory (a malfunctioning application does not affect
the processing on other slices). User permissions and groups
are supported; administrators can manage the data plane
processing of their users. Finally, network slices can overlap,
offering the possibility to have multiple actors operating on
the same data for different purposes (e.g., end-users handling
their traffic, content providers, etc.).

The numbers that come out of this first incarnation of
our prototype are satisfying, particularly considering that
the bottleneck does not appear to be our software; in fact,
other components (Open vSwitch, FlowVisor) seems to be
the most critical blocks. This provides an insight to our claim
that OpenFlow, at least in its current incarnation, is not the
technology that can guarantee an efficient implementation
of our ideas, and that a more accurate implementation could
obtain acceptable performance also on much less powerful
hardware. However, our choice of OpenFlow allowed us
to create the prototype in a very short time by reusing
many existing components (with some modifications) and
to demonstrate our solution also on real hardware.

The prototype running in our lab is still a proof-of-concept
and many items have to be investigated in order to transform
this idea into a mainstream technology. In our opinion, the
biggest problem is the necessity to evolve the OpenFlow
specifications in order to support data plane functions as
well, as the current Openflow model targets the control plane
of the router. This would enable the creation of data plane
applications that will be portable across different devices
(and vendors) and that will be able to exploit efficiently the
hardware resources present in each router.

ACKNOWLEDGMENT

The authors would like to thank M. Cita and M. Pramot-
ton, who take care of the implementation of the prototype,
M. Ullio, V. Vercellone, F. Invernizzi, R. Milito, M. Ne-
mirovsky, P. Monclus, M. De Benedetto, G. Borgione, M.
Leogrande and the many friends who contributed to the
definition of the idea.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
flow: enabling innovation in campus networks,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008.

[2] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” in Proceedings of the seventeenth ACM
symposium on Operating systems principles, ser. SOSP ’99,
1999, pp. 217–231.

[3] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and
R. Ju, “Shangri-la: achieving high performance from com-
piled network applications while enabling ease of program-
ming,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, ser.
PLDI ’05, 2005, pp. 224–236.

[4] O. Morandi, F. Risso, P. Rolando, S. Valenti, and P. Veglia,
“Creating portable and efficient packet processing applica-
tions,” Design Automation for Embedded Systems, vol. 15,
no. 1, pp. 51–85, Mar. 2011.

[5] J. Networks. (2012) Junos software
development kit. [Online]. Available:
https://developer.juniper.net/content/jdn/en/develop-
overview/junos-sdk/getting-started.html

[6] Cisco. (2012) Application exten-
sion platform. [Online]. Available:
http://www.cisco.com/en/US/products/ps9701/index.html

[7] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang,
L. Dong, R. Gopal, and J. Halpern, “Rfc 5810: Forwarding
and control element separation (forces) protocol specifica-
tion,” Internet Engineering Task Force, Mar 2010, status:
Standards track.

[8] M. Cieslak, D. Forster, G. Tiwana, and R. Wilson, “Internet
draft: Web cache communication protocol v2.0,” Internet
Engineering Task Force, Apr 2001, status: Internet Draft.

[9] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar, “Can the pro-
duction network be the testbed?” in Proceedings of the
9th USENIX conference on Operating systems design and
implementation, ser. OSDI’10, 2010, pp. 1–6.

[10] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McK-
eown, “Slicing home networks,” in Proceedings of the 2nd
ACM SIGCOMM workshop on Home networks, ser. Home-
Nets ’11, 2011, pp. 1–6.

[11] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark,
“Resonance: dynamic access control for enterprise networks,”
in Proceedings of the 1st ACM workshop on Research on
enterprise networking, ser. WREN ’09, 2009, pp. 11–18.

[12] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid
isolation: A slice abstraction for software-defined networks,”
in Proceedings of the ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN), 2012.

[13] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou,
M. Handley, and L. Mathy, “Flow processing and the rise
of commodity network hardware,” SIGCOMM Comput. Com-
mun. Rev., vol. 39, no. 2, pp. 20–26, Mar. 2009.

[14] D. Erickson. (2012, Apr) The beacon openflow controller.
[Online]. Available: http://www.beaconcontroller.net

[15] G. Berger. (2012, Jan) The nodeflow openflow controller.
[Online]. Available: http://garyberger.net/?p=537

