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Shell finite elements with different through-the-thickness
kinematics for the linear analysis of cylindrical

multilayered structures

M. Cinefra*,† and E. Carrera

Aerospace Department, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy

SUMMARY

The present paper considers the linear static analysis of composite cylindrical structures by means of a
shell finite element with variable through-the-thickness kinematic. The refined models used are grouped
in the Unified Formulation by Carrera (CUF), and they permit to accurately describe the distribution of
displacements and stresses along the thickness of the multilayered shell. The shell element has nine nodes,
and the mixed interpolation of tensorial components method is employed to contrast the membrane and
shear locking phenomenon. Different composite cylindrical shells are analyzed, with various laminations
and thickness ratios. The governing equations are derived from the principle of virtual displacement in order
to apply the finite element method. The results, obtained with different theories contained in the CUF, are
compared with both the elasticity solutions given in the literature and the analytical solutions obtained using
Navier’s method. From the analysis, one can conclude that the shell element based on the CUF is very
efficient, and its use is mandatory with respect to the classical models in the study of composite structures.
Copyright © 2012 John Wiley & Sons, Ltd.

1. INTRODUCTION

Layered structures are increasingly used in aerospace, automotive, and ship vehicles. The so-called

advanced composite materials were developed as part of aerospace vehicles during the second part

of the last century. Nowadays, there are examples of fighter and commercial aircrafts, helicopters,

and gliders whose structures are entirely made of composite materials. A more recent example of

layered structures is that of intelligent structures that embed piezo-layers and which are used as

sensors and/or actuators to build a closed-loop controlled ‘smart’ structure.

Anisotropy, nonlinear analysis as well as complicating effects such as the C 0
´ -Requirements

(zigzag effects in the displacements and interlaminar continuity for the stresses), and the couplings

between in-plane and out-of-plane strains make the analysis of layered composite structures

complicated in practice. Analytical, closed-form solutions are available in very few cases. In most of

the practical problems, the solutions demand applications of approximated computational methods.

Many computational techniques have been developed and applied to layered constructions. A

full mixed 3D finite difference technique was developed by Noor and Rarig [1]. More recently,

a differential quadrature technique has been proposed by Malik [2] and Malik and Bert [3] and

applied by Liew et al. [4]. A boundary element formulation has been employed by Davì in [5].

*Correspondence to: M. Cinefra, Aerospace Department, Politecnico di Torino, Corso Duca degli Abruzzi, 24,
10129 Turin, Italy.
†E-mail: maria.cinefra@polito.it
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VARIABLE KINEMATIC MULTILAYERED SHELL ELEMENTS

Ferreira et al. [6–8] adopt a meshless collocation method based on the use of radial basis functions

for the analysis of laminated plates and shells. Exhaustive overviews on several computational

techniques and their applications to laminated structures can be read in the review articles [9–11].

Among the computational techniques implemented for the analysis of layered structures, a

predominant role has been played by finite element method (FEM). The most of finite elements

available in the literature are formulated on the bases of axiomatic-type theories, in which the

unknown variables are postulated along the thickness. According to MacNeal [12], the first FEM

analysis was published in 1961. The majority of early FEM calculations were performed with the

classical Kirchhoff–Love theory, and some examples are given in [13–17]. But it was difficult to

satisfy the requirements of compatibility in thin shell analysis because the rotations were derived

from the transversal displacement. For this reason, plate/shell elements based on the first-order shear

deformation theory (FSDT) were developed by Pryor and Barker [18], Noor [19], Hughes [20],

Panda and Natarayan [21], Parisch [22], Ferreira et al. [23], and many others. However, early FSDT-

type elements showed severe stiffening in thin plate/shell limits. Such a numerical mechanism,

known as shear or membrane locking, was first contrasted by implementation of numerical tricks,

such as reduced/selective integration schemes [24–28]. But spurious zero energy modes are intro-

duced by these sub-integration techniques. Chinosi et al. [29, 30] developed a hierarchic finite

element for thin Naghdi shell model [31] that was able to contrast locking for the shell problem

in its displacement formulation. However, in the case of very small thickness and when the element

is not of degree as high as needed, the numerical solution exhibits a loss in the rate of convergence

because of the locking. The so-called mixed interpolation of tensorial components (MITC) was

implemented to overcome both these problems. Many articles by Bathe and others are available on

that topic: examples are the papers [32–37]. Arnold and Brezzi [38] dealt with a mixed formulation

of the Nagdi model, giving a family of locking-free elements and proving the convergence of their

numerical approach. Similarly, Ramm and Bischoff [39–43] developed a shell finite element based

on a seven-parameter theory, in which the extra strain term is incorporated via the enhanced assumed

strain concept proposed by Simo and Rafai [44].

Also, a large variety of plate/shell finite element implementations of higher-order theories (HOT)

have been proposed in the last 20 years’ literature. HOT-basedC 0 finite elements (C 0 means that the

continuity is required only for the unknown variables and not for their derivatives) were discussed

by Kant and co-authors [45,46]. Polit et al. [47–51] proposed a C1 six-node triangular finite element

in which the transverse shear strains are represented by cosine functions. This element is able

to ensure both the continuity conditions for displacements and transverse shear stresses at the inter-

faces between layers of laminated structures. A comprehensive discussion of HOT-type theories and

related finite element suitability has been provided by Tessler [52]. Many other papers are available

in which HOTs have been implemented for plates and shells; details can be found in the books by

Reddy [53] and Palazotto and Dennis [54].

Dozens of finite elements have been proposed based on zigzag theories [55,56]. An application of

Reissner mixed variational theorem (RMVT) [57] to develop standard finite elements was proposed

by Rao and Meyer-Piening [58]. A generalization of RMVT as a tool to develop approximate

solutions was given by Carrera [59]. The obtained finite elements represent the finite element imple-

mentation of the Murakami theory [60] and were denoted by the acronym RMZC (Reissner Mindlin

zigzag interlaminar continuity). Full extensions of RMZC to shell geometries have been done by

Brank and Carrera [61]. Finally, finite element implementations of layer-wise theories in the frame-

work of axiomatic-type theories have been proposed by many authors, among whom are Noor

and Burton [62], Reddy [63], Mawenya and Davies [64], Pinsky and Kim [65], Chaudhuri and

Seide [66], and Rammerstorfer et al. [67].

An improved shell finite element is here presented for the analysis of composite structures. It is

based on Carrera’s Unified Formulation (CUF), which was developed by Carrera for multilayered

structures [68, 69]. Both equivalent single layer (ESL) and layer-wise (LW) theories contained in

the CUF have been implemented in the shell finite element. The cylindrical geometry is considered,

and the MITC method [70–73] is used to contrast the membrane and shear locking. The governing

equations for the static analysis of composite structures are derived from the principle of virtual

displacement (PVD) in order to apply the FEM. Some composite cylindrical shells are analyzed,
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and the results obtained with the different models contained in the CUF are compared with the exact

solution given in the literature.

2. UNIFIED FORMULATION

The main feature of the CUF [59] is the unified manner in which the displacement variables

are handled. According to the CUF, the displacement field is written by means of approximating

functions in the thickness direction as follows:

ıuk .�1, �2, �3/D F� .�3/ ıuk
� .�1, �2/ I uk .�1, �2, �3/D Fs .�3/ uk

s .�1, �2/ � , s D 0, 1, : : : ,N

(1)

where .�1, �2, �3/ is a curvilinear reference system, defined in the next section, and the displacement

u D ¹u, v,wº is referred to such system. ıu indicates the virtual displacement associate with the

virtual work, and k identifies the layer. F� and Fs are the so-called thickness functions depending

only on �3. us are the unknown variables depending on the coordinates �1 and �2. � and s are sum

indexes, and N is the order of expansion in the thickness direction assumed for the displacements.

In the case of ESL models, a Taylor expansion is employed as thickness functions:

uD F0 u0 CF1 u1 C : : :CFN uN D Fs us , s D 0, 1, : : : ,N . (2)

F0 D �0
3 D 1, F1 D �1

3 D �3, : : : ,FN D �N
3 . (3)

Classical models, such as those based on the FSDT [31], can be obtained from an ESL theory

with N D 1 by imposing a constant transverse displacement through the thickness via penalty

techniques. Also, a model based on the hypotheses of classical lamination theory (CLT) [74,75] can

be expressed by means of the CUF by applying a penalty technique to the constitutive equations

(Section 4). This permits to impose that the transverse shear strains are null in the shell.

In the case of LW models, the displacement is defined at k-layer level:

uk D Ft uk
t CFb uk

b CFr uk
r D Fs uk

s , s D t , b, r , r D 2, : : : ,N . (4)

Ft D
P0 CP1

2
, Fb D

P0  P1

2
, Fr D Pr  Pr�2, (5)

in which Pj D Pj .�k/ is the Legendre polynomial of j -order defined in the �k-domain:

 1 6 �k 6 1. The top (t ) and bottom (b) values of the displacements are used as unknown

variables, and one can impose the following compatibility conditions:

uk
t D ukC1

b
, k D 1,Nl  1. (6)

The LW models, in respect to the ESLs, allow the zigzag form of the displacement distribution in

layered structures to be modeled. It is possible to reproduce the zigzag effects also in the framework

of the ESL description by employing the Murakami theory. According to reference [60], a zigzag

term can be introduced into Equation (7) as follows:

uk D F0 uk
0 C : : :CFN uk

N C . 1/k�kuk
Z . (7)

Subscript Z refers to the introduced term. Such theories are called zigzag (ZZ) theories.

3. MITC9 SHELL ELEMENT

In this section, the derivation of a shell finite element for the analysis of multilayered structures is

presented. The element is based on the ESL, ZZ, and LW theories contained in the CUF. A nine-

node element with cylindrical geometry is considered. After an overview in the scientific literature

about the methods that permit to withstand the membrane and shear locking, the MITC technique

has been adopted for this element.
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Figure 1. Geometry of the shell.

3.1. Cylindrical geometry

Let us consider a cylindrical shell. In a system of Cartesian coordinates .O , x,y, ´/, the region

occupied by the midsurface of the shell is as follows:

S D
®

.x,y, ´/ 2R3 W  L=2 < x < L=2, y2 C ´2 DR2
¯

(8)

where L and R are the length and the curvature radius of the cylindrical shell, respectively. Let

us take a curvilinear coordinate system .�1, �2, �3/ placed at the center of the upper part of the

midsurface (Figure 1). The 3D medium corresponding to the shell is defined by the 3D chart given

by the following:

ˆ .�1, �2, �3/D � .�1, �2/C �3a3 .�1, �2/ (9)

where a3 is the unit vector normal to the tangent plane to the midsurface of the shell. � is the 2D

chart that describes the midsurface S of the shell, and, in the case of cylindrical geometry, it reads

as follows:

8

ˆ

<

ˆ

:

x D �1 .�1, �2/D �1

y D �2 .�1, �2/DR sin .�2=R/

´D �3 .�1, �2/DR cos .�2=R/

(10)

With such choices, the region��R2 corresponding to the midsurface S is the following rectangle:

�D ¹.�1, �2/ W  L=2 < �1 < L=2,  R� < �2 < R�º (11)

Using the definition of the 3D chart given in (9), one can derive the 3D base vectors:

g˛ D
@ˆ

@�˛

, ˛ D 1, 2, 3. (12)

In order to derive the geometrical relations, one can use the linear part of the Green–Lagrange

strain tensor, which for a general displacement u.�1, �2, �3/ is as follows:

"ij D
1

2

 

gi � u,j Cgj � u,i
�

, i , j D 1, 2, 3. (13)
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where the comma indicates a partial differentiation. According to Equation (12) and the CUF (1),

one can write the following strain–displacement relations:

"11 D F�u� ,1

"22 D F�

��

1C
�3

R

�

w�

R
C

�

1C
�3

R

�

v� ,2

�

"12 D F�

�

u� ,2 C

�

1C
�3

R

�

v� ,1

�

"13 D w� ,1F� C u�F� ,3

"23 D F�

h

w� ,2  
v�

R

i

CF� ,3

��

1C
�3

R

�

v�

�

"33 D w�F� ,3

(14)

For more details about mathematical passages, the readers can refer to [76]. These geometrical

relations can be expressed in matrix form as follows:

"p D
 

Dp CAp

�

u

"n D .Dn� CDn´  An/ u
(15)

where "p D ."11, "22, "12/ and "n D ."13, "23, "33/. The differential operators are defined

as follows:

Dp D

2

4

@1 0 0

0 H@2 0

@2 H@1 0

3

5 , Dn� D

2

4

0 0 @1

0 0 @2

0 0 0

3

5 , Dn´ D @3 �An´ D @3

2

4

1 0 0

0 H 0

0 0 1

3

5 , (16)

Ap D

2

4

0 0 0

0 0 1
R

H

0 0 0

3

5 ,An D

2

4

0 0 0

0 1
R

0

0 0 0

3

5 . (17)

andH D
�

1C �3

R

�

.

3.2. Mixed interpolation of tensorial components method

According to the FEM, the displacement components are interpolated on the nodes of the element

by means of the Lagrangian shape functions Ni :

ıu� DNi ıq�i
us DNj qsj

with i , j D 1, : : : , 9 (18)

where qsj
and ıq�i

are the nodal displacements and their virtual variations. Substituting in the

geometrical relations (15), one has the following:

"p DF�

 

Dp CAp

�

.NiI/ q�i

"n DF� .Dn�  An/ .NiI/ q�i
CF�,3An´ .NiI/ q�i

(19)

where I is the identity matrix.

Considering the local coordinate system (� , �), the MITC shell elements ([77, 78]) are

formulated by using, instead of the strain components directly computed from the displacements,

an interpolation of these within each element using a specific interpolation strategy for each

component. The corresponding interpolation points, called tying points, are shown in Figure 2 for a

nine-node element. Note that the transverse normal strain "33 is excluded from this procedure, and

it is directly calculated from the displacements.

5



VARIABLE KINEMATIC MULTILAYERED SHELL ELEMENTS

A1

C1

E1 F1

D1

B1

11 and 13

A2

B2

C2

D2 F2

E2 P

R S

Q

22 23and 12

Figure 2. Tying points for the MITC9 shell finite element.

The interpolating functions are calculated by imposing that the function assumes the value 1 in

the corresponding tying point and 0 in the others. These are arranged in the following arrays:

Nm1 D ŒNA1,NB1,NC1,ND1,NE1,NF 1�

Nm2 D ŒNA2,NB2,NC 2,ND2,NE2,NF 2�

Nm3 D
�

NP ,NQ,NR,NS

�

(20)

From this point on, the subscripts m1, m2, and m3 indicate quantities calculated in the points

(A1,B1,C1,D1,E1,F1), (A2,B2,C 2,D2,E2,F 2), and (P ,Q,R,S ), respectively. Therefore,

the strain components are interpolated as follows:

"p D

2

4

"11

"22

"12

3

5D

2

4

Nm1I 0 0

0 Nm2I 0

0 0 Nm3I

3

5

2

4

"11m1

"22m2

"12m3

3

5

"n D

2

4

"13

"23

"33

3

5D

2

4

Nm1I 0 0

0 Nm2I 0

0 0 1

3

5

2

4

"13m1

"23m2

"33

3

5

(21)

where the strains "11m1
, "22m2

, "12m3
, "13m1

, and "23m2
are expressed by means of Equation (19) in

which the shape functions Ni are calculated in the tying points.

4. CONSTITUTIVE EQUATIONS

The second step towards the governing equations is the definition of the 3D constitutive equations

that permit to express the stresses by means of the strains. The generalized Hooke’s law is con-

sidered by employing a linear constitutive model for infinitesimal deformations. In a composite

material, these equations are obtained in material coordinates .1, 2, 3/ for each orthotropic layer k

and then rotated in the general curvilinear reference system .�1, �2, �3/.

Therefore, the stress–strain relations after the rotation are as follows:

� k
p D C k

pp "k
p CC k

pn "k
n

� k
n D C k

np "k
p CC k

nn "k
n

(22)
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where

C k
pp D

2

6

4

C k
11 C k

12 C k
16

C k
12 C k

22 C k
26

C k
16 C k

26 C k
66

3

7

5
C k

pn D

2

6

4

0 0 C k
13

0 0 C k
23

0 0 C k
36

3

7

5

C k
np D

2

4

0 0 0

0 0 0

C k
13 C k

23 C k
36

3

5 C k
nn D

2

6

4

C k
55 C k

45 0

C k
45 C k

44 0

0 0 C k
33

3

7

5

(23)

The material coefficients Cij depend on Young’s moduli E1, E2, and E3, the shear moduli G12,

G13, and G23, and Poisson moduli �12, �13, �23, �21, �31, and �32 that characterize the layer

material. The mapping of the material tensor from the midsurface onto an arbitrary point in the

shell body is here omitted.

5. GOVERNING EQUATIONS

This section presents the derivation of the governing finite element stiffness matrix based on the

PVD in the case of multilayered cylindrical shells subjected to mechanical loads.

The PVD for a multilayered structure reads as follows:
Z

�k

Z

Ak

°

ı"k
p

T
� k

p C ı"k
n

T
� k

n

±

d�kd´D

Z

�k

Z

Ak

ıukpk
d�kd´ (24)

where �k and Ak are the integration domains in the plane and in the thickness direction. The first

member of the equation represents the variation of the internal work, whereas the second member is

the external work. pk D pk.�1, �2, �3/ is the mechanical load applied to the structure at layer level.

In order to refer the integration domains to the midsurface of each layer in the curvilinear coordinate

system, one has to introduce the parameterH as follows:
Z

�k

Z

Ak

°

ı"k
p

T
� k

p C ı"k
n

T
� k

n

±

H d�kd�k
3 D

Z

�k

Z

Ak

ıukpkH d�kd�k
3 (25)

whereH D

�

1C
�k

3

Rk

�

. Rk is the curvature radius of the midsurface of the layer k and  hk

2
< �k

3 <

hk

2
, where hk is the thickness of the kth layer.

s=0 s=1 s=2

τ
=

0
τ
=

2
τ
=

1

s=0 s=1 s=2

s=0 s=1 s=2

τ
=

0
τ
=

1
τ
=

2 τ
=

0
τ
=

1
τ
=

2

τ
=

2
τ
=

1
τ
=

0

τ
=

0
τ
=

1
τ
=

2

τ
=

0
τ
=

1
τ
=

2

s=0 s=1 s=2

s=0 s=1 s=2

s=0 s=1 s=2

Figure 3. Assembling procedure of fundamental nucleus.
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Substituting the constitutive Equation (22) and the geometrical relations written via the MITC

method (21) and applying the CUF (1) and the FEM approximation (18), one obtains the following

governing equation:

ıqk
�i
W K k�sij qk

sj
DPk

�i
(26)

where K k�sij is a 3 � 3 matrix, called fundamental nucleus, and its explicit expression is given

in the Appendix. This is the basic element from which the stiffness matrix of the whole structure

is computed. The fundamental nucleus is expanded on the indexes � and s in order to obtain the

stiffness matrix of each layer. Then, the matrixes of each layer are assembled at multilayer level

depending on the approach considered, ESL or LW. The assembling procedure is shown in Figure 3.

Pk
�i is the fundamental nucleus for the external mechanical load. For more details, the reader can

refer to [68].

6. ACRONYMS

Several refined and advanced 2D models are contained in the CUF. Depending on the variables

description (LW, ESL, or ZZ) and the order of expansion N of the displacements in �3, a large

variety of kinematics shell theories can be obtained. A system of acronyms is given in order to

denote these models. The first letter indicates the multilayer approach which can be ESL (E) or LW

(L). The number N indicates the order of expansion used in the thickness direction (from 1 to 4).

In the case of LW approach, the same order of expansion is used for each layer. In the case of ESL

approach, a letter Z can be added if the zigzag effects of displacements is considered by means of

Murakami’s zigzag function. Summarizing, E1–E4 are ESL models. If Murakami zigzag function

is used, these ESL models are indicated as EZ1–EZ3. In the case of LW approaches, the letter L is

considered in place of E, so the acronyms are L1–L4. Classical theories, such as CLT and FSDT,

can be obtained as particular cases of E1 theory simply imposing constant value of w through the

thickness direction. An appropriate application of penalty technique to shear moduli of the material

leads to CLT.

7. NUMERICAL RESULTS AND DISCUSSION

The model introduced, unlike 3D degenerate approach, does not involve an approximation of the

geometry of the shell, and it describes accurately the curvature of the shell. However, the locking

phenomenon is still present, and the MITC technique is employed to contrast it. In this work, such

a model is combined with a simple displacement formulation for the analysis of composite struc-

tures. The refined theories contained in the CUF, coupled with the MITC method, permit to increase

the degree of approximation by increasing the order of expansion of displacements in the thick-

ness direction and the number of used elements. The efficiency of the different models (ESL, LW,

ZZ, and classical) is tested together with the finite element scheme, and the numerical results are

compared with the ones obtained with the 3D elasticity approach. In this direction, two classical

reference problems are considered: the composite cylindrical shell in cylindrical bending analyzed

by Ren [79] and the composite cylinder in bending studied by Varadan and Bhaskar [80]. The two

problems are briefly described in the following sections. Note that the problem considered in [79] is

denoted as cylindrical bending, although it also exhibits a substantial amount of membrane action.

7.1. Cylindrical shell in cylindrical bending

The structure analyzed by Ren [79] (Figure 4) is a composite cylindrical shell made of three

orthotropic layers with lamination (90°=0°=90°), where the lamination angle is measured with

respect to the �1 axis. The layers have equal thickness, and the physical properties of the shell

are given in Table I (L is the direction parallel to the fibers, and T is the transverse direction).

8
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90°
0°

90°

R

/3

b

h

Figure 4. Ren cylindrical shell.

Table I. Physical data for Ren cylindrical shell.

Ren cylindrical shell

Young’s modulus EL=ET 25
Shear modulus GLT =ET 0.5
Shear modulus GT T =ET 0.2
Poisson’s ratio �LT D �T T 0.25
Radius R 10
Angle span ' �=3

A sinusoidal distribution of transverse pressure applied at the top shell surface is considered

(cylindrical bending problem):

pC3 D OpC3 sin

�

n � �2

b

�

(27)

with amplitude OpC3 D 1 and wave number nD 1.

In order to reproduce the property of infinite length in the finite element scheme, the following

plane-strain conditions (with respect to the plane �2, �3) are imposed on each point of the cylinder:

us .�1, �2/D 0

.us , vs ,ws/,1 .�1, �2/D 0
(28)

that is, any variation along the axis of the cylinder is equal to zero.

Because of the symmetry of both the geometry and the load, a half cylinder is taken in the

circumferential direction, and the following symmetry and boundary conditions (simply supported)

are applied:

vs .�1, 0/D 0

ws .L=2, �2/D 0
(29)

with s D 0, 1, : : : ,N .

The results are presented for different thickness ratios R=h in terms of non-dimensional

transversal displacement:

Nw D
w10ELh3

OpC3 R4
(30)

measured in the middle of the shell surface, where the load has its maximum amplitude.

Figure 5 shows the convergence of the parameter Nw by varying the number of the elements n in

the circumferential direction (only one element is taken in the axial direction) for the theory L4,

9
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and the thickness ratio R=h D 100: (MITC) is the FEM solution obtained by applying the MITC

method; (FEMs) is the FEM solution with the correction of the shear locking only; and (FEM) is

the FEM solution without any correction. One can see that the first curve converges very fast to

the 3D solution, as confirmed in Table II, where the percentage error
�

errD j3D MITCj
3D

� 100
�

is

0.0745

0.075

0.0755

0.076

0.0765

0.077

0.0775

0.078

0.0785

0.079

4 4.5 5 5.5 6 6.5 7 7.5 8

w

n

3D
MITC
FEMs
FEM

Figure 5. Ren shell. Convergence of the displacement Nw by varying n. Thickness ratio R=h D 100.
Theory: L4.

Table II. Ren cylindrical shell.

n 2 4 6 8

E4 0.07843 0.07849 0.07850 0.07850

err (%) 0.34 0.27 0.25 0.25

L4 0.07852 0.07857 0.07858 0.07858

err (%) 0.23 0.16 0.15 0.15

Convergence of the transversal displacement Nw.�3 D 0/ by increasing the
number of elements. Lamination .90°=0°=90°/. Thickness ratio R=h D
100. Exact solution [79]: 0.0787.
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Figure 6. Ren shell. Convergence of the displacement Nw by varying R=h. Theory: L4. Mesh: 1� 6.
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calculated. One can see that the error becomes steady for n D 6, and this fact is true for both ESL

(E4) and LW (L4) models. In Figure 5, the other curves are more slow, even when the shear lock-

ing is corrected. This demonstrates that the membrane locking is a very important phenomenon

in the shell elements, and the MITC technique is very efficient in contrasting both the membrane

and shear locking. After this analysis, six elements are taken to perform the following analysis.

Finally, Figure 6 shows the convergence of the parameter Nw by varying the thickness ratio R=h

for the theory L4. In this figure, the analytical solution (anal), obtained by solving the governing

equations with the Navier’s method, is also presented for comparison reasons. Navier’s method is

based on harmonic assumptions for the displacements in the �1 and �2 directions, and it permits to

calculate the exact solution in the domain� under particular conditions. For more details about this

method, one can refer to Reddy’s book [53]. One can note that the MITC solution coincides with

the analytical one for the different thickness ratios. Therefore, the error of the MITC solution in

respect to the exact solution is due only to the bi-dimensional approximation and not to the FEM

approximation. This confirms also the efficiency of the MITC method in contrasting the locking,

whereas the FEMs and FEM solutions lock noticeably for very thin shells (R=hD 100, 500).

Table III compares the results obtained using the different theories contained in the CUF with

the 3D elasticity solution and the classical shell theory (CST) solution given by Ren [79]. For some

models (FSDT, E4, E2, L4, L1, EZ2), the analytical solution .a/, calculated using Navier’s method

[81], is also reported. In general, the results approach the exact solution by increasing the order of

Table III. Ren cylindrical shell.

R=h 2 4 50 500

3D [79] 1.436 0.457 0.0808 0.773
CST [79] 0.0799 0.0781 0.0776 0.0776

CLT 0.09625 0.08712 0.07834 0.07766

FSDT 1.169 0.3329 0.07976 0.07766
FSDTa 1.210 0.3354 0.07977 0.07766

E4 1.368 0.4271 0.08051 0.07767
E4a 1.383 0.4284 0.08051 0.07767

E3 1.369 0.4272 0.08051 0.07767

E2 1.104 0.3305 0.07982 0.07766
E2a 1.111 0.3310 0.07982 0.07766

E1 1.129 0.3324 0.07982 0.07766

L4 1.460 0.4614 0.08084 0.07767
L4a 1.435 0.4581 0.08083 0.07767

L3 1.459 0.4614 0.08084 0.07767
L2 1.411 0.4576 0.08083 0.07767

L1 1.381 0.4435 0.08068 0.07764
L1a 1.363 0.4407 0.08067 0.07764

EZ3 1.412 0.4583 0.08084 0.07767

EZ2 1.378 0.4430 0.08071 0.07767
EZ2a 1.496 0.4420 0.08071 0.07767

EZ1 1.400 0.4443 0.08038 0.07734

Lamination .90°=0°=90°/. Transversal displacement Nw.�3 D 0/.
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expansion N for the various thickness ratios. For both moderately thick and very thin shells, the

solution coincides with the analytical one, and this demonstrates that the element does not suffer the

locking or other numerical phenomena. For very low thickness ratio (R=h D 2, 4), there are some

discrepancies between the two solutions because the 2D approximation is erroneously applied to

very thick shells, and the aspect ratio of each element becomes very high. One can note that higher-

order zigzag models give a better solution in respect to ESL models, but only the L4 model is able to

exactly reproduce the 3D solution in the case of thick shell. This is due to the better approximation

of transverse stresses obtained with the LW models, as it will be demonstrated in the following sec-

tion. Finally, one can conclude that the classical models (FSDT and CLT) give good results only

when the shell is very thin (R=h D 100, 500). For thick shells, the CLT solution obtained with

the CUF shell element is slightly higher than the CST one because the CST model contains more

assumptions along the thickness, such as the parameterH (introduced in Equation 25) is equal to 1.

7.2. Composite cylinder in bending

The cylinder analyzed by Varadan and Bhaskar [80] (Figure 7) is a composite cylinder in which each

layer is made of square symmetric unidirectional fibrous orthotropic material with the properties

given in Table IV. L is the direction parallel to the fibers, and T is the transverse direction.

The following problems are solved:

1. A two-layered (90°=0°) shell (90° for the outer layer and 0° for the inner layer, measured with

respect to the �1 axis);

2. A three-layered (90°=0°=90°) shell.

In all these cases, the layers are of equal thickness, and the loading is internal sinusoidal pressure,

applied normal to the inner shell surface, and is given by the following:

pC3 D OpC3 sin

�

m � �1

L

�

sin

�

n � �2

b

�

(31)

with amplitude OpC3 D 1 and wave numbers mD 1 and nD 8.

R
L=4R

h b=2 R

simply supported

simply supported

A

B

C

D

Figure 7. Varadan and Bhaskar cylinder.

Table IV. Physical data for Varadan and Bhaskar cylinder.

Varadan and Bhaskar cylinder

Young’s modulus EL=ET 25
Shear modulus GLT =ET 0.5
Shear modulus GT T =ET 0.2
Poisson’s ratio �LT D �T T 0.25
Length LD 4R 40
Radius R 10

12
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Because of the symmetry of both the geometry and the load, an octave of the cylinder is studied

(1=2 in the axial direction and 1=4 in the hoop direction). The following symmetry conditions

are applied:

vs .�1, 0/D 0

us .0, �2/D 0

vs .�1,R�=2/D 0

(32)

and the following boundary conditions are prescribed:

vs .L=2, �2/D ws .L=2, �2/D 0 (33)

with s D 0, 1, : : : ,N .
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Figure 8. Varadan and Bhaskar cylinder. Convergence of the displacement Nw by varying n. Lamination
.90°=0°/. Thickness ratio R=hD 100. Theory: L4.
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Figure 9. Varadan and Bhaskar cylinder. Convergence of the shear stress N�13 by varying n. Lamination
.90°=0°/. Thickness ratio R=hD 100. Theory: L4.
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The results are presented for these cases for different thickness ratios R=h in terms of the

following non-dimensional parameters:

Nw D
w10ELh3

OpC3 R4

. N�11, N�22, N�12/D
.�11, �22, �12/ 10h2

OpC3 R2

. N�13, N�23/D
.�13, �23/ 10h

OpC3 R

N�33 D
�33

OpC3

(34)

The displacement and the stresses are evaluated in the points of the surface where they assume

the maximum value. Referring to Figure 7, the quantities w, �11, �22, and �33 are calculated in B,

the shear stress �12 in D, and the transverse shear stresses �13 and �23 in A and C, respectively.

Table V. Varadan and Bhaskar cylinder, transversal
displacement.

R=h 2 4 50 500

Nw.�3 D 0/ [80] 14.034 6.100 2.242 0.1005

CLT 2.781 2.802 2.227 0.1007
FSDT 12.41 5.578 2.240 0.1007
E4 14.08 6.075 2.242 0.1007
E2 13.07 5.717 2.240 0.1007
L4 14.33 6.164 2.242 0.1007
L2 13.80 5.921 2.241 0.1007
EZ3 14.20 6.009 2.241 0.1007
EZ1 13.67 5.759 2.232 0.1007

Lamination .90°=0°/.

Table VI. Varadan and Bhaskar cylinder, in-plane stress.

R=h 2 4 50 500

N�11

�

�3 D�
h
2

�

[80]  2.660  0.9610 1.610 0.9436

0.2511 0.2120 0.2189 0.0449

CLT  0.5690  0.4752 1.594 0.9484
0.1464 0.1661 0.2230 0.04535

FSDT  1.216  0.6911 1.603 0.9484
0.2256 0.2018 0.2236 0.04535

E4  2.649  0.9580 1.605 0.9486
0.2302 0.2181 0.2216 0.04516

E2  2.172  0.8725 1.606 0.9483
0.1049 0.1156 0.2226 0.04567

L4  2.678  0.9557 1.606 0.9484
0.2578 0.2210 0.2241 0.04536

L2  2.610  0.9386 1.605 0.9484
0.1986 0.1732 0.2204 0.04534

EZ3  2.703  0.9539 1.605 0.9484
0.2465 0.1970 0.2206 0.04531

EZ1  1.950  0.8734 1.567 0.9468
0.01369 0.1234 0.2483 0.04670

Lamination .90°=0°/.
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Also in this case, a convergence analysis is performed for the lamination case .90°=0°/. Figures 8

and 9 show the convergence of the parameters Nw and N�13 by varying the number of the elements n

(a square mesh n�n is used) for the theory L4 and the thickness ratio R=hD 100. The conclusions

drawn for the Ren shell are here confirmed: the membrane locking is very important for both the

displacements and the stresses, and the MITC technique is very efficient in contrasting it. After this

analysis, a mesh 8� 8 is taken to perform the following analysis.

Tables V–VIII and IX–X show the results for problems 1 and 2, respectively. The different

theories contained in the CUF are used, and the results are compared with the 3D solution given in

Table VII. Varadan and Bhaskar cylinder, in-plane shear stress.

R=h 2 4 50 500

N�12

�

�3 D�
h
2

�

[80]  0.5016  0.2812  0.3449  0.1045

0.2685 0.2007  0.0784  0.0925

CLT  0.1534  0.1761  0.3588  0.1099
0.1504 0.1516  0.08235  0.09736

FSDT  0.2994  0.2431  0.3604  0.1099
0.2532 0.1946  0.08313  0.09736

E4  0.4812  0.2831  0.3605  0.1099
0.3032 0.2199  0.08280  0.09736

E2  0.3677  0.2521  0.3602  0.1099
0.2541 0.2025  0.08275  0.09736

L4  0.4910  0.2859  0.3606  0.1099
0.3067 0.2216  0.08282  0.09736

L2  0.4631  0.2732  0.3603  0.1099
0.2861 0.2103  0.08276  0.09736

EZ3  0.4852  0.2808  0.3604  0.1099
0.2990 0.2147  0.08278  0.09736

EZ1  0.3636  0.2553  0.3589  0.1099
0.2715 0.2048  0.08242  0.09735

Lamination .90°=0°/.

Table VIII. Varadan and Bhaskar cylinder, transverse stresses.

R=h 2 4 50 500

N�23

�

�3 D
h
4

�

[80]  2.931  4.440  4.785  0.227

CLT – – – –
FSDT  2.664  3.216  2.065 0.3343
E4  2.928  4.274  3.395 0.2764
E2  2.477  3.392  2.386 0.3219
L4  3.216  4.791  5.024  0.2441
L2  2.675  3.671  3.598  0.1769
EZ3  2.971  3.896  2.784 0.3019
EZ1  2.666  3.494  2.486 0.3175

N�33

�

�3 D
h
4

�

[80]  0.31  0.70  6.29  3.09

CLT – – – –
FSDT – – – –
E4  0.3358  0.7126  5.072 4.793
E2  0.3352  0.6336  5.197  12.78
L4  0.3408  0.7358  6.549  3.082
L2  0.3440  0.6612  4.823  2.281
EZ3  0.3353  0.6899  4.623  0.4819
EZ1  0.3489  0.6867  4.927  2.315

Lamination .90°=0°/.
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Table IX. Varadan and Bhaskar cylinder, transversal
displacement and in-plane stresses.

R=h 2 4 50 500

Nw.�3 D 0/ [80] 10.1 4.009 0.5495 0.1027

E4 9.682 3.782 0.5456 0.1029
E4a 9.1582 3.7197 0.5458 0.1027

L4 10.27 4.032 0.5493 0.1029
L4a 10.10 4.009 0.5495 0.1027

N�11

�

�3 D�
h
2

�

[80]  0.8428  0.2701  0.0225 0.0379

0.1761 0.1270 0.0712 0.0559

E4  0.9447  0.3011  0.0240 0.0381
0.1433 0.1167 0.0730 0.0568

L4  0.8604  0.2733  0.0241 0.0377
0.1841 0.1330 0.0734 0.0565

N�12

�

�3 D�
h
2

�

[80]  0.2922  0.1609  0.0760  0.0889

0.1797 0.1081  0.0118  0.0766

E4  0.2770  0.1568  0.0791  0.0935
0.1957 0.1127  0.0123  0.0806

L4  0.2918  0.1642  0.0795  0.0935
0.2015 0.1175  0.0124  0.0806

Lamination .90°=0°=90°/.

Table X. Varadan and Bhaskar cylinder, transverse stresses.

R=h 2 4 50 500

N�23.�3 D 0/ [80]  1.379  2.349  3.491  0.691

E4  1.280  2.025  2.613  0.5195
L4  1.442  2.464  3.659  0.7287

N�33.�3 D 0/ [80]  0.34  0.62  4.85  9.12

E4  0.358  0.684  5.184 12.26
L4  0.343  0.627  5.026  9.468

Lamination .90°=0°=90°/.

[80]. The analytical solution is also reported for the transversal displacement in problem 2 (Table IX)

in order to validate the numerical efficiency of the shell finite element. The results in terms of

displacements (Tables V and IX) lead to the same conclusions made for the Ren shell: the results

converge to the exact solution by increasing the order of expansion N ; the LW models work better

than the ESL and ZZ ones; and the CLT and FSDT models fail in the analysis of thick shells. One

can note that in problem 1, ESL and ZZ models are better than LW models when the shell is very

thick (R=hD 2). This is due to the omission of the mapping of the material tensor (Section 4) that

causes an overestimate of the transversal displacement when the shell layer is thick. Indeed, when

three layers are considered (problem 2), this behavior disappears because each layer is thinner. If

one considers the in-plane stresses (Tables VI, VII, and IX), the behavior is the same: higher-order

LW models are necessary to match the reference solution in the thick shells, but the classical models

are still able to give good results in the thin shell case. Looking at the transverse shear and normal

stresses (Tables VIII and X), one can note that neither the E4 and EZ3 models are able to reproduce

the exact solution in both thick and thin shells (in particular in terms of �33). In this case, the use
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of the L4 model becomes mandatory. This fact is simply explicable if one considers the distribu-

tion of shear and normal stresses along the thickness, given in Figures 10–12. Only the LW model

-0.4
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-60 -50 -40 -30 -20 -10 0 10 20 30 40
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Figure 10. Varadan and Bhaskar cylinder. Distribution of transverse normal stress N�33 along the thickness.
Lamination .90°=0°/. Thickness ratio R=hD 500.
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Figure 11. Varadan and Bhaskar cylinder. Distribution of transverse shear stress N�13 along the thickness.
Lamination .90°=0°=90°/. Thickness ratio R=hD 100.
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Figure 12. Varadan and Bhaskar cylinder. Distribution of transverse normal stress N�33 along the thickness.
Lamination .90°=0°=90°/. Thickness ratio R=hD 100.
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is able to fulfill the continuity conditions of transverse stresses at the interfaces between layers,

whereas the FSDT model gives a completely wrong result (Figure 11), even if the shell is very thin

(R=h D 100). In particular, Figures 10 (R=h D 500) and 12 (R=h D 100) show that the introduc-

tion of Murakami’s zigzag function improves the solution in respect to a simple ESL model, but it

is not enough to correctly describe the distribution of the normal stress in the composite structures

because the interlaminar continuity conditions are not satisfied. For this reason, the results in terms

of displacements are also better when a LW model is used. One can note that in Figure 12, the

normal stress �33 is not equal to the load applied at the inner surface
 

OpC3 D 1
�

. This is due to the

FEM approximation that makes difficult to match the exact value of �33 also in �3 D 0 (Table X).

Anyway, this result can be considered satisfying in respect to the approximated solutions provided

in the literature.

8. CONCLUSION

This paper has presented the static analysis of cylindrical composite structures by means of a shell

finite element based on the CUF by Carrera [81, 82]. The results have been provided in terms of

displacement, in-plane stresses, and transverse stresses for various thickness ratios from very thick

to very thin shells. The performances of the shell element have been tested, and the different theo-

ries (classical and refined) contained in the CUF have been compared. The conclusions that can be

drawn are the following:

1. The shell element is completely locking free, even when the shell is very thin, and the results

converge to the exact solution by increasing the order of expansion of the displacements in the

thickness direction;

2. When the shell is very thick, the LW models work better than ZZ ones, and these last ones

work better than ESL models;

3. The classical models, such as CLT and FSDT, completely fail in the analysis of thick shells;

4. The use of LW models is mandatory for both thick and thin shells if one needs to accurately

describe the distribution of transverse stresses in the thickness and to satisfy the interlaminar

continuity conditions.

Future works could be devoted to consider the dynamic analysis of composite structures. More-

over, an isoparametric shell finite based on the CUF will be implemented in order to study structures

with arbitrary geometry and to perform nonlinear analysis.

APPENDIX A: EXPLICIT FORM OF STIFFNESS FUNDAMENTAL NUCLEUS

The stiffness fundamental nucleus K �sij is as follows:

K �sij D

2

4

K11 K12 K13

K21 K22 K23

K31 K32 K33

3

5 . (A.1)

The subscript k, indicating the layer, is here omitted for brevity reasons. The elements of the nucleus

are the following:

K11 DC55Nim1
C Nm1Nn1 B� Njn1

C HF�,3Fs,3 BA C

C11Ni ,1m1
C Nm1Nn1 B� Nj ,1n1

C HF�Fs BA C

C16Ni ,2m3
C Nm3Nn1 B� Nj ,1n1

C HF�Fs BA C

C16Ni ,1m1
C Nm1Nn3 B� Nj ,2n3

C HF�Fs BA C

C66Ni ,2m3
C Nm3Nn3 B� Nj ,2n3

C HF�Fs BA
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K12 D  C45

1

R
Nim1

C Nm1Nn2 B� Njn2
C HF�,3Fs BA C

C45Nim1
C Nm1Nn2 B� Njn2

C H 2F�,3Fs,3 BA C

C12Ni ,1m1
C Nm1Nn2 B� Nj ,2n2

C H 2F�Fs BA C

C16Ni ,1m1
C Nm1Nn3 B� Nj ,1n3

C H 2F�Fs BA C

C26Ni ,2m3
C Nm3Nn2 B� Nj ,2n2

C H 2F�Fs BA C

C66Ni ,2m3
C Nm3Nn3 B� Nj ,1n3

C H 2F�Fs BA

K13 DC13Ni ,1m1
C Nm1Nj B�C HF�Fs,3 BA C

C36Ni ,2m3
C Nm3Nj B�C HF�Fs,3 BA C

C12

1

R
Ni ,1m1

C Nm1Nn2 B� Njn2
C H 2F�Fs BA C

C26

1

R
Ni ,2m3

C Nm3Nn2 B� Njn2
C H 2F�Fs BA C

C55Nim1
C Nm1Nn1 B� Nj ,1n1

C HF�,3Fs BA C

C45Nim1
C Nm1Nn2 B� Nj ,2n2

C HF�,3Fs BA

K21 D  C45

1

R
Nim2

C Nm2Nn1 B� Njn1
C HF�Fs,3 BA C

C45Nim2
C Nm2Nn1 B� Njn1

C H 2F�,3Fs,3 BA C

C12Ni ,2m2
C Nm2Nn1 B� Nj ,1n1

C H 2F�Fs BA C

C16Ni ,1m3
C Nm3Nn1 B� Nj ,1n1

C H 2F�Fs BA C

C26Ni ,2m2
C Nm2Nn3 B� Nj ,2n3

C H 2F�Fs BA C

C66Ni ,1m3
C Nm3Nn3 B� Nj ,2n3

C H 2F�Fs BA

K22 DC22Ni ,2m2
C Nm2Nn2 B� Nj ,2n2

C H 3F�Fs BA C

C26Ni ,2m2
C Nm2Nn3 B� Nj ,1n3

C H 3F�Fs BA

C26Ni ,1m3
C Nm3Nn2 B� Nj ,2n2

C H 3F�Fs BA C

C66Ni ,1m3
C Nm3Nn3 B� Nj ,1n3

C H 3F�Fs BA C

C44

1

R2
Nim2

C Nm2Nn2 B� Njn2
C HF�Fs BA  

C44

1

R
Nim2

C Nm2Nn2 B� Njn2
C H 2F�Fs,3 BA  

C44

1

R
Nim2

C Nm2Nn2 B� Njn2
C H 2F�,3Fs BA C

C44Nim2
C Nm2Nn2 B� Njn2

C H 3F�,3Fs,3 BA

K23 DC22

1

R
Ni ,2m2

C Nm2Nn2 B� Njn2
C H 3F�Fs BA C

C23Ni ,2m2
C Nm2Nj B�C H 2F�Fs,3 BA C

C26

1

R
Ni ,1m3

C Nm3Nn2 B� Njn2
C H 3F�Fs BA C

C36Ni ,1m3
C Nm3Nj B�C H 2F�Fs,3 BA  

19



VARIABLE KINEMATIC MULTILAYERED SHELL ELEMENTS

C45

1

R
Nim2

C Nm2Nn1 B� Nj ,1n1
C HF�Fs BA  

C44

1

R
Nim2

C Nm2Nn2 B� Nj ,2n2
C HF�Fs BA C

C45Nim2
C Nm2Nn1 B� Nj ,1n1

C H 2F�,3Fs BA C

C44Nim2
C Nm2Nn2 B� Nj ,2n2

C H 2F�,3Fs BA

K31 DC55Ni ,1m1
C Nm1Nn1 B� Njn1

C HF�Fs,3 BA C

C45Ni ,2m2
C Nm2Nn1 B� Njn1

C HF�Fs,3 BA C

C12

1

R
Nim2

C Nm2Nn1 B� Nj ,1n1
C H 2F�Fs BA C

C13 C NiNn1 B� Nj ,1n1
C HF�,3Fs BA C

C26

1

R
Nim2

C Nm2Nn3 B� Nj ,2n3
C H 2F�Fs BA C

C36 C NiNn3 B� Nj ,2n3
C HF�,3Fs BA

K32 DC22

1

R
Nim2

C Nm2Nn2 B� Nj ,2n2
C H 3F�Fs BA C

C23 C NiNn2 B� Nj ,2n2
C H 2F�,3Fs BA C

C26

1

R
Nim2

C Nm2Nn3 B� Nj ,1n3
C H 3F�Fs BA C

C36 C NiNn3 B� Nj ,1n3
C H 2F�,3Fs BA  

C45

1

R
Ni ,1m1

C Nm1Nn2 B� Njn2
C HF�Fs BA  

C44

1

R
Ni ,2m2

C Nm2Nn2 B� Njn2
C HF�Fs BA C

C45Ni ,1m1
C Nm1Nn2 B� Njn2

C H 2F�Fs,3 BA C

C44Ni ,2m2
C Nm2Nn2 B� Njn2

C H 2F�Fs BA

K33 DC22

1

R2
Nim2

C Nm2Nn2 B� Njn2
C H 3F�Fs BA C

C23

1

R
Nim2

C Nm2Nj B�C H 2F�Fs,3 BA C

C23

1

R
C NiNn2 B� Njn2

C H 2F�,3Fs BA C

C33 C NiNj B�C HF�,3Fs,3 BA C

C55Ni ,1m1
C Nm1Nn1 B� Nj ,1n1

C HF�Fs BA C

C45Ni ,2m2
C Nm2Nn1 B� Nj ,1n1

C HF�Fs BA C

C45Ni ,1m1
C Nm1Nn2 B� Nj ,2n2

C HF�Fs BA C

C44Ni ,2m2
C Nm2Nn2 B� Nj ,2n2

C HF�Fs BA

where the following symbols are introduced:

C ....../ B�D

Z

�k

....../d�k and C ....../ BAD

Z

�k
3

....../d�k
3 .

Both the integrals in the domain and along the thickness are numerically solved using the Gaussian

quadrature rule. In particular, the number of Gauss points taken along the thickness is 6, which

ensures the exact solution of the integrals even when an order of expansion N D 4 is considered.
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