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We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree
(PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as
such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide
a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and
random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the
DHEA solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity
algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution.
Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality
under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in
some limit cases.
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I. INTRODUCTION

The cavity method developed for the study of disordered
systems in statistical physics has led in recent years to the
design of a family of algorithmic techniques for the combi-
natorial optimization known as message-passing algorithms
(MPA) [1]. In spite of the numerical evidence of the large
potentiality of these techniques in terms of efficiency and
quality of results for many optimization problems, their use
in real-world problems has still to be fully expressed. The
main reasons for this reside in the fact that the derivation of
the equations underlying the algorithms are in many cases
nontrivial and that the rigorous and numerical analyses of the
cavity equations are still largely incomplete. Both rigorous
results and benchmarking would play an important role in
helping the process of integrating MPAs with the existing
techniques.

In what follows we focus on a very well known NP-
hard optimization problem over networks, the so-called prize
collecting steiner tree (PCST) problem on graphs. The PCST
problem can be stated in general terms as the problem of
finding a connected subgraph of minimum cost. It has applica-
tions in many areas ranging from biology (e.g., finding protein
associations in cell signaling [2–4]) to network technologies
(e.g., finding optimal ways to deploy fiber optic and heating
networks for households and industries [5]).

Though the cavity equations have been developed for the
study of mean-field models for disordered systems, the range
of their applicability is known to go beyond these problems.

In this paper we show how MSGSTEINER, an algorithm
derived from the zero temperature cavity equations for the

*indaco.biazzo@polito.it
†alfredo.braunstein@polito.it
‡riccardo.zecchina@polito.it

problem of inferring protein associations in cell signaling [3,4],
compares with state-of-the-art techniques on benchmarks
problem instances. Specifically, we provide comparison results
with an enhanced derivative of the Goemans-Williamson
heuristics (MGW) [6,7] and with the DHEA solver [8], a branch
and cut linear-integer programming based approach. We made
the comparison both on random networks and in known
benchmarks. We show that MSGSTEINER typically outperforms
the state-of-the-art algorithms in the largest instances of the
PCST problem both in the values of the optimum and in
running time.

Finally, we show how some aspects of the solutions can be
provably characterized. Specifically, we show some optimality
properties of the fixed points of the cavity equations, including
optimality under the two postprocessing procedures defined in
MGW (namely strong pruning and minimum spanning rree)
and global optimality of the MPA solution in some limited
cases.

A. Related work

The method and the algorithm described here are a
generalization of the technique presented in Ref. [9]. In Ref. [9]
the algorithm was tested on different families of random graphs
for the more specific case of the bounded depth (D) Steiner
tree problem, which can be recovered from the PCST problem
by sending to infinity the weights of the so-called terminal
nodes. In the cases of Erdos-Renyi random graphs and for
scale-free graphs the numerical performance of the algorithm
have been shown to be extremely good, though there exit no
rigorous results with which to compare. Interestingly enough,
the case of complete graphs with random weights allows for
a comparison with rigorous asymptotic results. The scaling
coefficients of the power law for the average minimum cost
and number of Steiner nodes as a function of the size N of
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the graph was calculated exactly by the authors of Ref. [10],
where it was also rigorously established that the critical depth
for the bounded-depth minimum spanning tree and Steiner
tree on random complete graphs is D = log2 log N . Extensive
numerical studies up to N = 105, which for brevity we do
not report in detail, show that the cavity approach provides
solutions which have a minimum cost that is below that of
the greedy algorithm analyzed in Ref. [10] and that there is
slow convergence to the exact scaling parameters. This fact
corroborates the conjecture that the cavity approach could be
asymptotically exact and reproduce the results of the authors
of Ref. [10]. While this is not totally unexpected for statistical
physics of random systems (the cavity approach is known to be
very accurate on mean-field problems defined over complete
graphs), it is important for the rigorous foundation of the
cavity method itself. There exist, in fact, very few model
problems on which the zero temperature cavity approach can
be proven to be exact, one famous example being the matching
problem [11]. NP-complete problems (considered in their
typical realizations) are particularly elusive in this respect,
possibly due to the local nature of the cavity algorithms.
Therefore, having at hand a nontrivial problem which can be
analyzed rigorously as in Ref. [10] constitutes an interesting
case also for the rigorous understanding of the cavity method.

II. PROBLEM: PRIZE COLLECTING-STEINER TREES

In the following we will describe the prize-collecting
Steiner tree problem on graphs (see, e.g., Refs. [7,12]).

Definition 1. Given a network G = (V,E) with positive
(real) weights {ce : e ∈ E} on edges and {bi : i ∈ V } on
vertices, consider the problem of finding the connected
subgraph G′ = (V ′,E′) that minimizes the cost or energy
function H (V ′,E′) = ∑

e∈E′ ce − λ
∑

i∈V ′ bi (i.e., to compute
the minimum)

min
E′ ⊆ E,V ′ ⊆ V

(V ′,E′) connected

∑
e∈E′

ce − λ
∑
i∈V ′

bi. (1)

It can be easily seen that a minimizing subgraph must be a
tree (links closing cycles can be removed, lowering H ). The
parameter λ regulates the tradeoff between the edge costs and
vertices prizes, and its value has the effect to determine the size
of the subgraph G′: for λ = 0 the empty subgraph is optimal,
whereas for λ large enough the optimal subgraph includes all
nodes.

This problem is known to be NP hard, implying that no
polynomial algorithm exists that can solve any instance of the
problem unless NP = P. To solve it we will use a variation of a
very efficient heuristics based on belief propagation developed
in Refs. [3,4,9] that is known to be exact on some limit cases
[9,13]. We will partially extend the results of the authors of
Ref. [13] to a more general PCST setting.

A. Rooted, depth bounded PCST and forests

We will deal with a variant of the PCST called D-bounded
rooted PCST (D-PCST). This problem is defined by a graph
G, an edge cost matrix c, and prize vector b along with a
selected “root” node r . The goal is to find the r-rooted tree
with maximum depth D of minimum cost, where the cost

is defined as in Eq. (1). A general PCST can be reduced to
D-bounded rooted PCST by setting D = |V | and probing with
all possible rootings, slowing the computation by a factor |V |
(we will see later a more efficient way of doing it). A second
variant which we will consider is the so-called R multirooted
D-bounded prize collecting Steiner forest [(R,D)-PCSF]. It
consists of is a natural generalization of the previous problem:
A subset R of “root” vertices is selected, and the scope is to
find a forest of trees of minimum cost, each one rooted in one
of the preselected root nodes in R.

B. Local constraints

The cavity formalism can be adopted and made efficient if
the global constraints which may be present in the problem
can be written in terms of local constraints. In the PCST case
the global constraint is connectivity which can be made local
as follows.

We start with the graph G = (V,E) and a selected root
node r ∈ V . To each vertex i ∈ V there is an associated couple
of variables (pi,di) where pi ∈ ∂i ∪ {∗}, ∂i = {j : (ij ) ∈ E}
denotes the set of neighbors of i in G and di ∈ {1, . . . ,D}.
Variable pi has the meaning of the parent of i in the tree
(the special value pi = ∗ means that i /∈ V ′), and di is the
auxiliary variable describing its distance to the root node
(i.e., the depth of i). To correctly describe a tree, variables
pi and di should satisfy a number of constrains, ensuring
that depth decreases along the tree in direction to the root
(the root node must be treated separately), that is, pi = j ⇒
di = dj + 1. Additionally, nodes that do not participate to the
tree (pi = ∗) should not be the parent of some other node
(i.e., pi = j ⇒ pj �= ∗). Note that even though di variables
are redundant (in the sense that they can be easily computed
from pj ones), they are crucial to maintain the locality
of the constraints. For every ordered couple i,j such that
(ij ) ∈ E, we define fij (pi,di,pj ,dj ) = 1pi=j⇒di=dj +1∧pj �=∗ =

FIG. 1. (Color online) A schematic representation of the prize
collecting Steiner tree problem and its local representation. Numbers
next to the nodes are the distances (depths) from the root node (square
node). The prize value is proportional to the darkness of the nodes.
Arrows are the pointers from node to node. Distances and pointers
are used to define the connectivity constraints which appear in the
message-passing equations.
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1 − δpi ,j [1 − δdi ,dj +1(1 − δpj ,∗)] (here δ is the Kroenecker
delta). The condition of the subgraph to be a tree can be
ensured by imposing that gij = fijfji has to be equal to 1
for each edge (ij ) ∈ E (see Fig. 1). If we extend the definition
of cij by ci∗ = λbi , then (except for an irrelevant constant
additive term), the minimum in Eq. (1) is equal to

min {H(p) : (d,p) ∈ T }, (2)

where d = {di}i∈V , p = {pi}i∈V , T = {(d,p) :
gij (pi,di,pj ,dj ) = 1 ∀(ij ) ∈ E}, and

H(p) ≡
∑
i∈V

cipi
. (3)

This new expression for the energy accounts for the sum
of the taken edge costs plus the sum of uncollected prizes and
has the advantage of being nonnegative.

III. DERIVATION OF THE MESSAGE-PASSING CAVITY
EQUATIONS

The algorithmic scheme we propose originates from the
cavity method of statistical physics, a technique which is
known in other fields under different names, namely cavity
equations, belief propagation (BP), max-sum or sum-product
equations (MS). From a numerical point of view, message-
passing algorithms are distributed algorithms which allow
for a very fast resolution of inference and optimization
problems [14], even for large networks. A recent review can
be found in Ref. [1]. The starting point for the equations is the
Boltzmann-Gibbs distribution

P (d,p) = exp (−βH(p))
Zβ

, (4)

where (d,p) ∈ T , β is a positive parameter (called inverse
temperature), and Zβ is a normalization constant (called
the partition function). In the limit β → ∞ this probability
concentrates on the configurations which minimize H. The
BP approximation consists in a weak correlation assumption
between certain probability distributions of single (pi,di)
pairs called “cavity marginals.” Given i,j ∈ V , the cavity
marginal Pji(dj ,pj ) is defined as the marginal distribution∑

(dk,pk )k∈V \{j,i} PG(i) (d,p) on a graph G(i), which equals graph
G minus node i and all its edges. The BP equations are derived
by assuming that the cavity marginals are uncorrelated and as
such satisfy the following closed set of equations (see, e.g.,
Ref. [1] for a general discussion):

Pji(dj ,pj ) ∝ e
−βcjpj

∏
k∈∂j\i

Qkj (dj ,pj ), (5)

Qkj (dj ,pj ) ∝
∑
dk

∑
pk

Pkj (dk,pk)gjk(dk,pk,dj ,pj ). (6)

This assumption is correct if G is a tree, in which case
Eqs. (5) and (6) are exact and have a unique solution (see,
e.g., Chap. 14.2 of Ref. [1]). Equations (5) and (6) can be seen
as fixed point equations, and solutions are normally searched
through iteration: substituting Eq. (6) into Eq. (5) and giving a
time index t + 1 and t to the cavity marginals in, respectively,
the left- and right-hand sides of the resulting equation, this
system is iterated until numerical convergence is reached.

Cavity marginals are often called “messages” because they
can be thought of as bits of information that flow between the
edges of the graph during time in this iteration. On a fixed
point, the BP approximation to the marginal is computed as

Pj (dj ,pj ) ∝ e
−βcjpj

∏
k∈∂j

Qkj (dj ,pj ). (7)

A. Max-sum: β → ∞ limit

To take the β → ∞ limit, Eq. (6) can be rewritten in terms
of “cavity fields”

ψji(dj ,pj ) = β−1 log Pji(dj ,pj ), (8)

φkj (dj ,pj ) = β−1 log Qkj (dj ,pj ). (9)

The BP equations take the so-called MS form

ψji(dj ,pj ) = −cjpj
+

∑
k∈∂j\i

φkj (dj ,pj ) + Cji, (10)

φkj (dj ,pj ) = max
pk,dk :gjk (dk,pk,dj ,pj )=1

ψkj (dk,pk), (11)

where Cji is an additive constant chosen to ensure
maxdj ,pj

ψji(dj ,pj ) = 0.
Computing the right side of Eq. (11) is in general too costly

in computational terms. Fortunately, the computation can be
carried out efficiently by breaking up the set over which the
max is computed into smaller (possibly overlapping) subsets.
We define

Ad
kj = max

pk �=j,∗
ψkj (d,pk), (12)

Bd
kj = ψkj (d,∗), (13)

Cd
kj = ψkj (d,j ). (14)

Equation (11) can now be rewritten as

Ad
ji =

∑
k∈∂j\i

Ed
kj + max

k∈∂i\j
{−cjk − Ed

kj + Ad−1
kj

}
, (15)

Bji = −cj∗ +
∑

k∈∂j\i
Dkj , (16)

Cd
ji = −cji +

∑
k∈∂j\i

Ed
kj , (17)

Dji = max
(
maxdA

d
ji,Bji

)
, (18)

Ed
ji = max

(
Cd+1

ji ,Dji

)
. (19)

Using some simple efficiency tricks including computing∑
k∈∂j\i E

d
kj as

∑
k∈∂j Ed

kj − Ed
ki , the computation of the right

side of Eqs. (15) to (19) for all i ∈ ∂j can be done in a time
proportional to D|∂j |, where D is the depth bound. The overall
computation time is then O(|E|D) per iteration.

B. Total fields

To identify the minimum cost configurations, we need to
compute the total marginals (i.e., the marginals in the case in
which no node has been removed from the graph). Given cavity
fields, the total fields ψj (dj ,pj ) = limβ→∞ β−1 log Pj (dj ,pj )
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can be written as

ψj (dj ,pj ) = −cjpj
+

∑
k∈∂j

φkj (dj ,pj ) + Cj , (20)

where Cj is again an additive constant that ensures
maxdj ,pj

ψj (dj ,pj ) = 0. In terms of the above quantities

we find ψj (dj ,i) = Fd
ji

def= ∑
k∈∂j Ed

kj + (−cij − Ed
ji + Ad−1

ji )

if i ∈ ∂j and ψj (dj ,∗) = Gj
def= −cj∗ + ∑

k∈∂j Dkj . The to-
tal fields can be interpreted as (the max-sum approxima-
tion to) the relative negative energy loss of choosing a
given configuration for variables pj ,dj instead of their
optimal choice [i.e., ψj (dj ,pj ) = min {H(p′) : (d′,p′) ∈ T } −
min {H(p′) : (d′,p′) ∈ T ,dj = d ′

j ,pj = p′
j }]. In particular, in

the absence of degeneracy, the maximum of the field is attained
for values of pj ,dj corresponding to the optimal energy. In our
simulations, the energies computed always correspond to the
tree obtained by maximizing the total fields in this way.

C. Iterative dynamics and reinforcement

Equations (15) to (19) can be thought of as a fixed point
equation in a high-dimensional Euclidean space. This equation
could be solved by repeated iteration of the quantities A, B,
and C starting from an arbitrary initial condition, simply by
adding an index (t + 1) to A,B,C in the left-hand side of
Eq. (11) and index (t) to all other instances of A,B,C,D,E.

This system converges in many cases. When it does not
converge, a technique called reinforcement is of help [15].
The idea is to perturbate the right side of Eqs. (10) and (20)
by adding the term γtψ

t
j (dj ,pj ) for a (generally small) scalar

factor γt . The resulting equations become

Ad
ji(t + 1) =

∑
k∈∂j\i

Ed
kj (t) (21)

+ max
k∈∂j\i

{−cjk − Ed
kj (t) + Ad−1

kj (t) + γtF
d
jk(t)

}
,

(22)

Bji(t + 1) = −cj∗ +
∑

k∈∂j\i
Dkj (t) + γtGj (t), (23)

Cd
ji(t + 1) = −cji +

∑
k∈∂j\i

Ed
kj (t) + γtF

d
ji(t), (24)

Dji(t) = max
{

max
d

Ad
ji(t),Bji(t)

}
, (25)

Ed
ji(t) = max

{
Cd+1

ji (t),Dji(t)
}
, (26)

Gj (t + 1) = −cj∗ +
∑
k∈∂j

Dkj (t) + γtGj (t), (27)

Fd
ji(t + 1) =

∑
k∈∂j

Ed
kj (t) + (−cji − Ed

ij (t) + Ad−1
ij (t)

)
(28)

+ γtF
d
ji(t). (29)

In our experiments, the equations converge for a sufficiently
large γt . The strategy we adopted is, when the equations do
not converge, to start with γt = 0 and slowly increase it until
convergence in a linear regime γt = tρ (although other regimes
are possible). The number of iterations is then found to be
inversely dependent on the parameter ρ. This strategy could
be interpreted as using time averages of the MS marginals

when the equations do not converge to gradually bootstrap
the system into an (easier to solve) system with sufficiently
large external fields. A C++ implementation of these equations
can be found (in source form) in Ref. [16]. Note that the cost
matrix (cij ) need not be symmetric, and the same scheme could
be used for directed graphs [using cji = ∞ if (i,j ) ∈ E but
(j,i) /∈ E].

D. Root choice

The PCST formulation given in the Introduction is un-
rooted. The MS equations, on the other hand, need a predefined
root. One way of reducing the unrooted problem to a rooted
problem is to solve N = |V | different problems with all possi-
ble different rooting and choose the one of minimum cost. This
unfortunately adds a factor N to the time complexity. Note that
in the particular case in which some vertex has a large enough
prize to be necessarily included in an optimal solution (e.g.,
λbi >

∑
e∈E ce), this node can simply be chosen as as root.

We have devised a more efficient method for choosing the
root in the general case, which we will now describe. Add an
extra new node r to the graph, connected to every other node
with identical edge cost μ. If μ is sufficiently large, the best
energy solution is the (trivial) tree consisting in just the node
r . Fortunately, a solution of the MS equations on this graph
gives additional information: For each node j in the original
graph, the marginal field ψj gives the relative energy shift of
selecting a given parent (and then adjusting all other variables
in the best possible configuration). Now for each j , consider
the positive real value αj = −ψj (1,r), that corresponds to the
best attainable energy, constrained to the condition that r is the
parent of j . If μ is large enough, this energy is the energy of a
tree in which only j (and no other node) is connected to r (as
each of these connections costs μ). But these trees are in one
to one correspondence with trees rooted at j in the original
graph. The smallest αj will thus identify an optimal rooting.

Unfortunately the information carried by these fields is not
sufficient to build the optimal tree. Therefore one needs to
select the best root j and run the MS equations a second time
on the original graph using this choice.

E. Comparison with other techniques

We compared the performance of MSGSTEINER with three
different algorithms: two that employ an integer linear pro-
gramming strategy to find an optimal subtree, namely the
Lagrangian nondelayed relax and cut (LNDRC) [17] and
branch and cut (DHEA) [8], and a modified version of the
Goemans-Williamson algorithm (MGW) [7].

1. Integer linear programming

The goal of integer linear programming (ILP) is to find an
integer vector solution x∗ ∈ Zn such that

cT x∗ = min{cT x∗ | Ax � b, x ∈ Zn}, (30)

where a matrix A ∈ Rm∗n and vectors b ∈ Rm and c ∈ Rn

are given. Many graph problems can be formulated as an
integer linear programming problem [18]. In general, solving
Eq. (30) with x∗ ∈ Z is NP complete. The standard approach
consists in solving Eq. (30) for x∗ ∈ R (a relaxation of the
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original problem) and using the solution as a guide for some
heuristics or complete algorithm for the integer case. The
relaxed problem can be solved by many classical algorithms,
like the simplex method or interior point methods [19]. To map
the PCST problem in an ILP problem we introduce a variable
vector z ∈ {0, 1}E and y ∈ {0, 1}V where the component for
an edge in E or for a vertex in V is 1 if it is included in the
solution and zero otherwise. Now Eq. (1) can be written as

H =
∑
e∈E

ceze −
∑
i∈V

biyi, (31)

and the constraints Ax � b in Eq. (30) that are used to enforce
that induced subgraph is a tree generally involve all or most of
the variables z and y. Roughly speaking, Ax � b in Eq. (30)
defines a bounded volume in the space of parameters (i.e.,
a polytope). The equation to minimize is linear (30) so the
minimum is on a vertex of this polytope. In general for hard
problems, to ensure that each vertex of the polytope (or more
in particular just the optimal vertex) is an integer, a number
of extra constraints that grows exponentially with the problem
size may be needed [18].

DHEA and LNRDC use different techniques to tackle the
problems of the enormous number of resulting constraints.
Both programs are able in principle to prove the optimality of
the solution (if given sufficient or exponential time), and when
it is not the case they are able to give a lower bound for the
value of the optimum given by the the optimum of the relaxed
problem.

2. Goemans-Williamson

The MGW algorithm is based on the primal-dual method
for approximation algorithms [6]. The starting point is still
the ILP formulation of the problem (30), but it employs a
controlled approximation scheme that enforces the cost of any
solution to be at most twice as large as the optimum one.
In addition, MGW implements two different postprocessing
strategies, namely a pruning scheme that is able to eliminate
some nodes while lowering the cost, and the computation of
the minimum spanning tree to find an optimal rewiring of the
same set of nodes. The overall running time is O(n2 log n). A
complete description is available in Ref. [6].

IV. COMPUTATIONAL EXPERIMENTS

A. Instances

Experiments were performed on several classes of in-
stances.

(1) C, D, and E are available in Ref. [20] and derived
from the Steiner problem instances of the Operations Research
(OR)-Library [21]. This set of 120 instances was previously
used as a benchmark for algorithms for the PCST [21]. The
solutions of these instances were obtained with the algorithms
[8,17]. The classes C, D, and E have, respectively, 500, 1000,
and 2000 nodes and are generated at random, with an average
vertex degree of 2.5, 4, 10, or 50. Every edge cost is a random
integer in the interval [1,10]. There are either 5, 10, n/6, n/4,
or n/2 vertices with prizes different from zero and random
integers in the interval [1, maxprize] where maxprize is either

10 or 100. Thus, each of the classes C, D, and E consists of
40 graphs.

(2) K and P are available in Ref. [20]. These instances
are provided in Ref. [7]. In the first group instances are
unstructured. The second group includes random geometric
instances designed to have a structure somewhat similar to
street maps. Also the solution of these instances were found
with the algorithms [8,17].

(3) H are the so-called hypercubes instances proposed
by the authors of Ref. [22]. These instances are artificially
generated and they are very difficult instances for the Steiner
tree problem. Graphs are d-dimensional hypercubes with
d ∈ 6, . . . ,12. For each value of d, the corresponding graph
has 2d vertices and d · 2d−1 edges. We used the prized version
of these instances defined in Ref. [8]. For almost all instances
in this class the optimum is unknown.

(4) i640 are the so-called incidence instances proposed by
the authors of Ref. [23] for the minimum Steiner tree problem.
These instances have 640 nodes and only the nodes in a
subset K ⊆ V have prizes different from zero (in the original
problem these were terminals). The weight on each edge (i, j )
is defined with a sample r from a normal distribution, rounded
to an integer value with a minimum outcome of 1 and maxi-
mum outcome of 500 [i.e., cij = min{max{1, round(r)}, 500}].
However, to obtain a graph that is much harder to reduce by
preprocessing techniques three distributions with a different
mean value are used. Any edge (i,j ) is incident to none, to
one, or to two vertices in subset K . The mean of r is 100
for edges (i,j ) with i, j /∈ K , 200 on edges with one end
vertex in K and 300 on edges with both ends in K . The
standard deviation for each of the three normal distributions
is 5. To have prizes also on vertices we extracted uniformly
from all integers in the interval between 0 and 4 ∗ maxedge

where maxedge is the maximum value of edges in the samples
considered. There are 20 variants combining four different
number of vertices in K (rounding to the integer value [.]):
|k| = [log2 |V |], [

√|V |], [2
√|V |], and [|V |/4] with five edge

numbers: |E| = [3|V |/2], 2|V |, [|V | log |V |], [2|V | log |V |],
and [|V |(|V | − 1)/4]. Each variant is drawn five times, giving
100 instances.

(5) Class R. The last class of samples are G(n,p) random
graphs with n vertices and independent edge probability p =
(2ν)/(n − 1). The parameter ν is the average node degree that
was chosen as ν = 8. The weight on each edge (i, j ) can take
three different values 1, 2, and 4, with equal probability 1/3.
Node prizes were extracted uniformly in the interval [0, 1].
We generated different graphs with four different values of λ

(λ = 1.2, 1.5, 2, or 3), see Eq. (1), to explore different regimes
of solution sizes. We find that the average number of nodes
that belong to the solutions for λ = 1.2, 1.5, 2, and 3 are,
respectively, about 14%, 33%, 51%,and 67% of the total nodes
in the graph. We have created 12 instances of different sizes
for the four class of random graph, from n = 200 up to n =
4000 nodes. For each parameter set we generated ten different
realizations. The total number of samples is 480.

The MSGSTEINER algorithm was implemented in C++ and
run on a single core of an AMD Opteron Processor 6172,
2.1GHz, 8 Gb of RAM, with Linux, G++ compiler, −O3
flag activated. A C++ implementation of these equations can
be found in source form oin Ref. [16]. The executable of

026706-5



BIAZZO, BRAUNSTEIN, AND ZECCHINA PHYSICAL REVIEW E 86, 026706 (2012)

TABLE I. Results class KPCDE.

Group MS gap MS time (s) DHEA gap DHEA time (s) Size Sol

K 2.62% 6.51 0.0% 127.97 4.4%
P 0.46% 2.31 0.0% 0.18 31.4%
C 0.006% 16.24 0.0% 2.30 20.2%
D 0.005% 35.06 0.0% 16.12 20.2%
E 0.024% 305.49 0.0% 1296.11 26.4%

DHEA is available in Ref. [20], and to compare the running
time we ran DHEA and MSGSTEINER on the same workstation.
The executable of LNDRC and MGW programs was not available.
We implemented the nonrooted version of MGW to compare
only the optimum on the random graph instances.

B. Results

We analyzed two numeric quantities: the time to find the so-
lution, and the gap between the cost of the solution and the best
known lower bound (or the optimum solution when available)
typically found with programs based on linear programming.
The gap is definedas gap = 100 · Cost−Lower Bound

Lower Bound .
In Table I we show the comparison between MSGSTEINER

and the DHEA programs. DHEA is able to solve exactly K , P

and C, D, E instances. The worst performance of MSGSTEINER

is on the K class, where the average gap is about 2.5%. In this
class the average solution is very small as it comprises only
about 4.4% of the total nodes of the graph. MSGSTEINER seems
to have the most difficulty with small subgraphs. MSGSTEINER

is able to find solutions very close to the optimum for the P

class that should be a model of a street network. MSGSTEINER

is also able to find solutions very close to the optimum, with a
gap inferior to 0.025% on the C, D, and E classes.

In Fig. 2 we show the gap of MSGSTEINER and MGW from
the optimum values found by the DHEA program in the class R.
MSGSTEINER gaps are almost negligible (always under 0.05%)
and tend to zero when the size grows. MGW gaps instead are
always over 1%. For the intermediate size of the solutions trees
the gaps of MGW are over 3%.

In Fig. 3 we show the running time for the class R, with
increasing solution tree size. In general we observe that the
running time of MSGSTEINER grows much slower than the
one of DHEA for an increasing number of nodes in the graph
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FIG. 2. (Color online) Gap from the optimum found by DHEA

program of, respectively, (a) MGW and (b) MSGSTEINER as a function
of the number of nodes. MSGSTEINER gaps are always under 0.05%.
MGW gaps are always over 1% and for intermediate sizes of the
solution tree the gaps of MGW are over 3%.

and MSGSTEINER largely outperforms DHEA in computation
time for large instances; furthermore the differences between
the algorithms become especially large for a large expected
tree solution. In at least one case DHEA could not find the
optimum solution within the required maximum time and the
MSGSTEINER solution was slightly better.

The class i640 consists of graphs with varying numbers
of edges and nodes, and a varying number of nodes with
a nonzero prize. We define K as the subset of nodes with
nonzero prize. Table II shows, for each type of graph, the
average time and the average gap on five different realizations
of the graphs for MSGSTEINER and DHEA algorithms. We set
the time limit to find a solution of DHEA to 2000 seconds. We
observe that DHEA obtains good performance in terms of the
optimality of the solution when the size of subset K is small.
MSGSTEINER finds a better result than DHEA when the size of
K is sufficiently large, within a time of one or two orders of
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FIG. 3. (Color online) Result on the random graphs class R.
Points correspond to the running time of MSGSTEINER and DHEA

versus graph size. The four cases show how running time behavior
depends on the size of the expected solution tree. The plots (a), (b),
(c), (d) have, respectively, λ = 1.2, 1.5,2, 3 and an average value
of the fraction of nodes that belongs to the solution, respectively,
|V (T )|/|V (G)| = 0.14, 0.33, 0.51, 0.67. The quantities shown in the
figure are averaged over ten different realizations. Data are fitted with
function y = axb. The b values found for DHEA are for (a), (b), (c),
(d), respectively: 2.4, 2.8, 2.8, 2.8. BP performance is as expected
roughly linear in the number of vertices. The fitted b parameters are
for (a), (b), (c), (d), respectively: 1.5, 1.3, 1, 1. For instances that
are large enough, the running time of MSGSTEINER is smaller than the
one of DHEA and the difference increases with the expected solution
tree.
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TABLE II. Results i640 class.

Name time MS time DHEA gap MS (%) gap DHEA (%)

0-0 0.8 0.2 1.3 0
0-1 2.5 4.2 1.0 0
0-2 100.8 226.6 1.4 0
0-3 1.2 0.3 0.05 0
0-4 37.3 72.8 1.8 0
1-0 1.0 0.85 0.3 0
1-1 2.6 1060.1 1.2 1.5
1-2 90.6 1133.8 0.7 0.2
1-3 1.5 3.8 0.8 0
1-4 33.7 2000.0 1.8 7.8
2-0 0.8 0.7 0.1 0
2-1 4.3 2000.0 2.2 11.6
2-2 149.7 2011.1 0.8 14.8
2-3 1.2 12.0 0.2 0
2-4 39.2 2001.0 1.9 11.2
3-0 1.1 2.4 0.3 0
3-1 3.9 2001.0 1.7 5.6
3-2 112.6 2015.1 0.8 4.9
3-3 1.6 145.3 0.2 0
3-4 33.1 2000.5 1.2 59.9
mean 31.0 834.6 1.0 5.9

magnitude smaller. Moreover DHEA seems to have difficulty
in finding a reasonablly good solution when the graphs have
high connectivity.

We show in Table III a comparison between MSGSTEINER,
LNDRC [17], and DHEA. The results and running time of LNDRC

are taken from Ref. [17]. The computer reportedly used for
the optimization is comparable with ours. We have imposed to
DHEA a time limit of 6000 seconds and we show two results
of MSGSTEINER with different values of the reinforcement
parameter. The lower bound is taken from Ref. [17]. In almost
all instance MSGSTEINER obtains better results, both in time
and in quality of solution. The difference is accentuated for
large instances. As expected, decreasing the reinforcement

parameter allows to find lower costs at the expense of larger
computation times.

V. POSTPROCESSING AND OPTIMALITY

For this section we will assume unbounded depth D. Results
are not easily generalizable to the bounded-D case. Results in
this section apply to the nonreinforced MS equations (γt = 0).
The results here are based in the construction of certain trees
associated with the original graph and in the fact that MS-BP
equations are always exact and have a unique solution on
trees [1].

Definition 2. Let {ψij } be an MS fixed point (10) to (11),
and let d,p be the decisional variables associated with this
fixed point [i.e., (d∗

i ,p∗
i ) = arg max ψi(di,pi) for the physical

field ψi from Eq. (20)]. We will assume this maximum to be
nondegenerate. We will employ the inducedsubgraph S∗ =
(V ∗,E∗) defined by V ∗ = {i ∈ V : p∗

i �= ∗} ∪ {r} and E∗ =
{(i,p∗

i ) : i ∈ V,p∗
i ∈ V }. The cost of this subgraph is H(S∗) =

H(p) = ∑
i∈V cip∗

i
.

The following local optimality property of the MS-induced
solution will be proven in the Appendix. It states that an MS
solution is no worse than any subgraph containing a subset of
the nodes.

Theorem 3. Given an MS fixed point {ψij } on G (unbounded
D) with induced subgraph S∗ = (V ∗,E∗) and any subtree S ′ =
(V ′,E′) ⊆ G with V ′ ⊆ V ∗, then H(S∗) � H(S ′) This result
has an easy generalization to loopy subraphs.

Corollary 4. With S∗ as in Theorem 3, given any connected
subgraph S ′ = (V ′,E′) ⊆ G with V ′ ⊆ V ∗, then H(S∗) �
H(S ′).

Proof. Apply Theorem 3 to a spanning tree of S ′. �
This trivially implies the following result of global optimal-

ity of the MS solution in a particular case.
Corollary 5. With S∗ = (V ∗,E∗) as in Theorem 3, if V ∗ =

V then H(S∗) = PCST(G).
In Ref. [7], the MGW algorithm includes two additional

methods to obtain a better PCST solution: STRONGPRUNE

and minimum spanning tree (MST) maintaining the same

TABLE III. Results H class.

MS (−5) MS (−3) LNDRC DHEA

Name gap (%) time (s) gap (%) time (s) gap (%) time (s) gap (%) time (s)

6p 2.2 3.5 2.6 0.6 4.2 0.5 2.2 21.3
6u 1.5 6.4 4.3 0.7 4.3 0.5 1.5 0.4
7p 2.3 90.2 3.9 1.7 7.7 1.5 2.3 6000.3
7u 2.2 134.1 2.2 1.8 3.6 1.2 2.2 596.4
8p 2.4 255.5 3.4 3.8 7.1 5.2 2.3 6004.2
8u 1.8 351.1 3.3 4.9 7.5 4.1 3.3 6000.9
9p 1.8 555.6 2.3 10.8 8.6 16.1 22.1 6000.0
9u 1.9 775.8 3.3 11.1 6.2 13.1 Not Found 6000.4
10p 1.7 1761.9 1.7 28.0 10.4 114.4 31.3 6000.5
10u 2.7 2468.4 2.7 32.2 7.7 59.8 Not Found 6000.6
11p 1.5 972.3 1.6 49.3 11.6 630.0 Not Found 6003.1
11u 2.2 5632.8 2.6 71.9 9.0 360.6 Not Found 6001.5
12p 1.5 4970.8 1.6 121.4 11.3 3507.7 Not Found 6009.8
12u 2.0 4766.7 2.4 174.1 10.0 1915.7 Not Found 6002.3
mean 2.0 1624.7 2.7 36.6 7.8 473.6 – 4760.1
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vertex set. Both methods give a substantial improvement
boost to the MGW candidate computed in the first phase.
A natural question may arise, do any of these two meth-
ods help to improve the solution of MS? The answer is
negative in both cases, and it is a trivial consequence of
Theorem 3.

Corollary 6. MST [V ∗,E ∩ (V ∗ × V ∗)] = H(S∗).
Proof. The minimum spanning tree of [V ∗,E ∩ (V ∗ ×

V ∗)] satisfies the hypothesis of Theorem 3, so H(S∗) �
MST[V ∗,E ∩ (V ∗ × V ∗)]. The converse inequality is trivially
true due to the optimality of the MST. �

Corollary 7. H[STRONGPRUNE(S∗)] = H(S∗).
Proof. This is a consequence of the fact that

V [STRONGPRUNE(S∗)] ⊆ V (S∗) = V ∗ and thus Theorem 3 ap-
plies, implying H(S∗) � H[STRONGPRUNE(S∗)]. The opposite
inequality H[STRONGPRUNE(F )] � H(F ) was proved by the
authors of Ref. [7]. �

VI. DISCUSSION

In this work we compared MSGSTEINER, an algorithm
inspired in the cavity theory of statistical physics, with two
state-of-the art algorithms for the prize-collecting Steiner
problem. The cavity theory is expected to give asymptotically
exact results on many ensembles of random graphs, so we
expected it to give a better performance for large instances. The
comparison was performed both on randomly generated graphs
and existing benchmarks. We observed that MSGSTEINER finds
better costs in significantly smaller times for many of the
instances analyzed, and that this difference in time and quality
grew with the size of the instances and their solution. We
find these results encouraging in view of future applications to
problems in biology in which optimization of networks with
millions of nodes may be necessary, in particular given the
conceptual simplicity of the scheme behind MSGSTEINER (a
simple fixed point iteration). Additionally, we showed some
optimality properties of the max-sum (the equations behind
MSGSTEINER) fixed points for the unbounded depth case:
Optimality in some limit cases, and optimality in the general
case under the two forms of postprocessing present in the MGW

algorithm.
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APPENDIX: POSTPROCESSING
AND OPTIMALITY PROOFS

Before tackling the proof of the Theorem 3, we will need
the following definitions and a technical result.

Definition 8. (Computation tree) The computation tree is a
cover of the graph G, in the following sense: It is an (infinite)
tree TG along with an application π : TG → G that satisfies (a)
π is suryective and (b) π|i∪∂i : i ∪ ∂i → π (i ∪ ∂i) is a graph
isomorphism for every i ∈ TG. It can be explicitly constructed
as the graph of nonbacktracking paths in G starting on a given
node v0, with two paths being connected if and only if (iff) the

longest one is identical to the other except for an additional
final node (and edge). Up to graph isomorphisms, this tree
does not depend on the choice v0.

The (finite) tree TG(t,v0) is defined by the radius t ball
centered around vo in TG. Alternatively, it can be directly
constructed as the graph of nonbacktracking paths of length
up to t starting on v0, with two paths being connected iff the
longest one is identical to the other except for an additional
final node (and edge). Clearly the finite computation tree
depends strongly on the choice of v0

For both computation trees, edge weights (and node prizes)
will be lifted (transported) naturally as cij = cπ(i)π(j ).

Lifting edge constraints by gij = gπ(i)π(j ) defines a (R,D)-
PCSF problem with R = π−1({r}) on TG. On TG(t,v0) instead,
it gives a slightly relaxed (R,D)-PCSF problem in which leaf
nodes can point to neighbors in G that are not present in TG.
For convenience, let us extend π by setting π (∗) = ∗.

Remark 9. As TG(t,v) is a tree, the MS equations are exact
and have a unique fixed point in TG(t,v) [1].

Lemma 10. Any MS fixed point in a graph G can be naturally
lifted to a MS fixed point in TG. Moreover, any MS fixed point
can be naturally lifted to a MS fixed point over a slightly
modified TG(t,v) with extra cost terms only on leaves.

Proof. As MS equations are local and the two graphs
are locally isomorphic, given a fixed point {ψij }(i,j )∈E , the
messages ij = ψπ(i)π(j ) satisfy the fixed point equations on
TG. On TG(t,v) the MS equations are satisfied everywhere
except possibly on leaf nodes (where the graphs are not
locally isomorphic). Given a leaf i attached with edge (i,j ),
add an energy term −Ei(dipi) = ψπ(i)π(j )[di,π (pi)]. Now MS
equations are satisfied everywhere on for this modified cost
function. �

Now we proceed to prove Theorem 3.

1. Proof of Theorem 3

Proof. Assume S ′ oriented towards the root node r [i.e.,
defining a parenthood vector (p′

i)i∈V ′ , such that E′ = {(i,p′
i) :

i ∈ V ′ \ {r}}]. Consider the subgraph S = (VS,ES) of TG(N +
1,r) induced by S∗ [i.e., defined by VS = {v : π (v) ∈ V ∗},
ES = {(i,j ) : (π (i),π (j )) ∈ E∗}].

It can be easily proven that the connected component in S of
the root node of TG(N + 1,r) is a tree S ′′ isomorfic to S∗ (see
Ref. [13]). Denote by {p∗} the decisional variables induced
by S∗ and by {p′} the ones induced by S ′. The parenthood
assignment

qi =
{

p′
i i ∈ VS ′′

p∗
i i /∈ VS ′′

satisfies qi �= ∗ if qj = i (as V ′ ⊆ V ∗) and so depths
di can be assigned so as to verify all gij con-
straints in TG(N + 1,r). Now the cost associated with
q is H(q) = ∑

i∈VS′′ cip′
i
+ ∑

i /∈VS′′ cip∗
i
�

∑
i∈TG(N+1,r) cip∗

i
=∑

i∈VS′′ cip∗
i
+ ∑

i /∈VS′′ cip∗
i

due to the optimality of the MS
solution p∗ in the computation tree (this is because MS is
always exact on a tree). This implies clearly that H(S∗) �
H(S ′). �
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