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Sommario

La simulazione delle interconnessioni elettriche costituisce un passo molto im-
portante per l’analisi ed il progetto di sistemi elettronici. Infatti, effetti parassiti
quali diafonia ed accoppiamenti elettromagnetici non possono essere trascurati
poichè influiscono sensibilmente sul funzionamento del sistema. L’uso di segnali
a frequenza sempre più elevata da un lato accentua questi fenomeni, e dall’altro
rende necessario l’utilizzo di modelli circuitali a parametri distribuiti.

Il modello delle linee multiconduttore (MTL) è utilizzato comunemente per
la simulazione delle interconnessioni elettriche. Il modello si basa sull’ipotesi che
la sezione trasversale della struttura sia piccola rispetto alla lunghezza d’onda
del campo elettromagnetico circostante ed invariante per traslazioni nella dire-
zione di propagazione dei segnali. In queste condizioni il modo di propagazione
fondamentale della struttura è il modo quasi-TEM.

Molte interconnessioni di interesse pratico sono caratterizzate da una sezio-
ne non uniforme. Tipici esempi sono le linee per adattamento d’impedenza o
i fasci di cavi in strutture complesse quali automobili o aeroplani. In questi
casi il modello MTL non può essere applicato direttamente. Quando però la
sezione è elettricamente piccola, i campi elettrici e magnetici hanno una com-
ponente dominante nel piano trasversale, e quindi soddisfano le ipotesi di modo
quasi-TEM. Per questo motivo, è possibile utilizzare il modello delle linee di
trasmissione multiconduttore non uniformi (NMTL) per simulare il comporta-
mento elettrico della struttura. Questo modello introduce una variazione lon-
gitudinale nei parametri per unità di lunghezza, preservando la struttura delle
equazioni. Non è quindi necessario ricorrere a simulazioni di tipo full-wave, che
richiedono potenzialità di calcolo molto elevate.

Un certo numero di tecniche per la soluzione delle equazioni NMTL nel domi-
nio del tempo o della frequenza è stato presentato nella letteratura scientifica.
Tecniche nel dominio della frequenza portano a soluzioni analitiche in alcuni
casi molto semplici, ma possono anche essere utilizzate per risolvere strutture
arbitrarie mediante approssimazioni uniformi a tratti. La risposta nel tempo è
calcolabile in un secondo tempo mediante FFT inversa. In ogni caso, ciò che si
ottiene è una risposta periodicizzata e non una vera risposta in transitorio. È
pertanto necessario utilizzare un numero molto elevato di frequenze per otte-
nere una soluzione nel tempo in cui tutti i fenomeni transitori, quali riflessioni
multiple alle terminazioni, siano estinti. Questo numero può diventare mol-
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iv Sommario

to elevato quando le terminazioni non sono adattate. Per questo motivo sono
stati proposti metodi basati su simulazione nel dominio del tempo. Fra questi
possiamo citare metodi basati sulla rappresentazione scattering, il metodo delle
caratteristiche, e l’analisi per rilassamento.

Questo lavoro presenta un nuovo metodo, denominato TDSE (Time-Domain
Space Expansion), per la soluzione numerica delle equazioni NMTL. Il metodo
è basato su una formulazione debole delle equazioni e porta ad una classe di
schemi aventi diverse caratteristiche di approssimazione in funzione della parti-
colare scelta per le funzioni di espansione e di test utilizzate. Il nucleo di questo
lavoro consiste nella definizione di particolari funzioni di base che possano es-
sere utilizzate nel metodo TDSE per ottenere rappresentazioni accurate della
soluzione a basso costo computazionale. Queste particolari funzioni sono ondine
biortogonali definite su domini limitati.

La teoria matematica delle ondine (wavelets) è relativamente recente. Do-
po il primo lavoro di Haar (1910) è trascorso un lungo periodo prima che la
comunità matematica rivolgesse il suo interesse alle cosiddette decomposizio-
ni multilivello in basi di ondine. Verso la metà degli anni ottanta il geofisico
J. Morlet scopr̀ı insieme ai suoi collaboratori che rappresentazioni molto efficien-
ti di segnali di origine sismica potevano essere ottenute utilizzando espansioni
in funzioni di base definite mediante riscalamento e traslazione di una singola
ondina. Da allora è stato sviluppato un quadro teorico completo, e molti libri
di testo aventi orientamenti sia teorici che applicativi sono già disponibili in
letteratura.

Allo stesso tempo, l’applicazione delle ondine per la soluzione numerica di
equazioni differenziali ed integrali ha trovato grande interesse nella comunità
scientifica. Il motivo principale risiede nel fatto che le ondine offrono possibilità
nuove rispetto a metodi più consolidati. Le ondine generano spazi di funzioni
aventi ordine di approssimazione e regolarità arbitrario. In aggiunta, la strut-
tura gerarchica degli spazi di ondine può essere utilizzata per rappresentare in
modo adattativo funzioni anche singolari mediante un numero molto ristretto
di coefficienti. Questa proprietà può essere utilizzata per costruire schemi nu-
merici adattativi caratterizzati da un ottimo controllo degli errori e basso costo
computazionale. Il lavoro qui presentato mostra che le equazioni NMTL costi-
tuiscono un caso a cui questi schemi possono essere applicati con successo. I
paragrafi seguenti descrivono brevemente il contenuto dei sei capitoli in cui è
suddivisa questa tesi, mettendo in evidenza i risultati raggiunti e le metodologie
utilizzate.

Il capitolo 1 introduce il metodo TDSE mediante una formulazione generale.
Viene illustrata la procedura di espansione della soluzione e dei parametri in
termini di opportune funzioni di base e la proiezione delle equazioni mediante
funzioni di test. L’inclusione delle equazioni delle terminazioni, di tipo lineare e
resistivo, porta ad un sistema di equazioni differenziali ordinarie che può essere
risolto con un opportuno schema di integrazione nel tempo. Viene descritto in
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dettaglio il caso di funzioni locali lineari a tratti. Il metodo è successivamente
validato risolvendo alcuni problemi di cui si conosce una soluzione analitica
oppure una soluzione approssimata.

Il capitolo 2 introduce le ondine mediante due approcci differenti. Da un lato
le proprietà più importanti delle ondine vengono illustrate mediante il semplice
esempio della decomposizione di Haar. Dall’altro viene descritto un quadro
astratto molto più generale di cui la decomposizione di Haar costituisce un caso
particolare. In questo quadro astratto si collocano anche le particolarizzazioni
dei due capitoli successivi.

Il capitolo 3 riassume le proprietà fondamentali delle ondine biortogonali
definite sulla retta reale. Esse permettono di caratterizzare approssimazioni
di ordine arbitrario tramite espansioni in termini di funzioni di base (funzio-
ni di scala) ottenute mediante semplice traslazione di una singola funzione di
partenza. Vengono poi definiti gli spazi di ondine, che permettono di raffinare
una data approssimazione aggiungendo dettagli via via più fini. Anche questi
dettagli possono essere caratterizzati mediante sovrapposizione di funzioni di
base (ondine) ottenute per traslazione di una funzione di partenza. Vengono
mostrati alcuni esempi di funzioni di scala ed ondine biortogonali, fra cui le
cosiddette B-splines biortogonali.

Le proprietà elencate nel capitolo 3 costituiscono il punto di partenza per la
costruzione di basi di ondine definite sull’intervallo unitario. Non è infatti pos-
sibile utilizzare funzioni di base invarianti per traslazioni nell’approssimazione
di funzioni aventi dominio su intervalli limitati, quali la soluzione delle equazio-
ni NMTL. È quindi necessario ridefinire spazi di approssimazioni e di dettagli
mediante funzioni di base modificate e definite su domini limitati. Questo è
l’argomento principale del capitolo 4.

Nel capitolo 4 viene dettagliata la procedura che porta alla definizione di
ondine biortogonali su domini limitati ottenute dalle funzioni B-splines. Questo
capitolo ha una natura tecnica nella prima parte, in quanto è necessaria una
definizione matematica rigorosa delle funzioni di scala e delle ondine modificate
per garantire l’ordine di approssimazione voluto e per preservare la struttura
degli spazi funzionali corrispondenti. Un esempio viene illustrato nel dettaglio
per riassumere le caratteristiche delle funzioni di base costruite. Successiva-
mente le basi di funzioni di scala e di ondine vengono utilizzate per definire
approssimazioni adattate. Viene introdotto un criterio automatico per definire
il minimo numero di coefficienti necessari per rappresentare in modo adattato
una funzione anche singolare, garantendo il controllo dell’errore di approssima-
zione. Questo criterio si basa sull’eliminazione selettiva del contributo di alcune
funzioni di base quando i loro coefficienti sono piccoli. La struttura delle fun-
zioni di base definite nella prima parte del capitolo garantisce, da un punto di
vista teorico, l’efficienza di queste rappresentazioni.

Il capitolo 5 affronta il problema del calcolo di integrali con funzioni di scala
ed ondine. Questo è un passo necessario per poter utilizzare queste funzioni per
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la soluzione delle equazioni NMTL mediante il medoto TDSE. Viene illustrata la
procedura che permette il calcolo degli integrali senza dover ricorrere a formule
di quadratura numerica. Questo calcolo è ridotto alla determinazione di un
autovettore di una matrice costruita a partire dai filtri che caratterizzano le
funzioni di scala e le ondine prescelte. Viene anche illustrata una procedura per
il calcolo di prodotti interni fra una generica funzione e una funzione di scala.

Il capitolo 6 utilizza le basi di ondine B-splines biortogonali insieme al me-
todo TDSE per la soluzione delle equazioni NMTL. Viene definito un metodo
adattativo che permette di determinare la soluzione utilizzando il minimo nu-
mero di coefficienti strettamente necessari per controllare l’errore di approssi-
mazione. Ciò porta alla definizione di algoritmi ottimizzati in grado di gestire
automaticamente la presenza di eventuali singolarità nella soluzione. Viene
mostrato mediante alcuni esempi che è possibile risolvere le equazioni utiliz-
zando un sottoinsieme molto piccolo dei coefficienti delle ondine senza perdere
precisione nella rappresentazione della soluzione.

In conclusione, in questo lavoro si affrontano due problematiche distinte. Da
un lato viene introdotta una classe di metodi numerici denominati TDSE per
la soluzione delle equazioni delle linee di trasmissione multiconduttore non uni-
formi. Dall’altro viene definita una classe di spazi di ondine su domini limitati.
L’uso di queste ondine come funzioni di espansione e di test nel metodo TDSE
porta alla definizione di algoritmi ad alta adattatività che permettono il calcolo
della soluzione ad un basso costo computazionale e senza perdita di precisione.



Introduction

The simulation of electrical interconnects has become an extremely important
step for the analysis and design of electronic systems. In fact, as the clock
frequencies of digital systems increase, structures usually modeled with lumped
elements are no longer electrically small, and must be treated as distributed
circuits. Parasitic effects like crosstalk and electromagnetic coupling cannot be
disregarded anymore, because they can seriously affect the overall performance
of the system. This is especially relevant for electrical interconnects, which
provide the basic link between different devices and parts of a system, or even
different systems.

The Multiconductor Transmission Lines (MTL) model [7] is commonly used
for the simulation of practical interconnects. This model assumes a small cross-
section with respect to the largest wavelength in the system and quasi-TEM
fields in the surrounding of the structure. This is true when the cross-section is
translation-invariant in the direction of propagation of the signals.

Many interconnections of practical interest are characterized by cross-sections
which are not translation-invariant. Examples can be impedance matching net-
works or cables in complex structures, like automobiles or aeroplanes. In these
cases the MTL model is not appropriate. However, as long as the cross-section
remains electrically small, the electric and magnetic fields can be assumed to
have a dominant transversal component, i.e., satisfy the quasi-TEM mode of
propagation. In this cases, the Nonuniform Multiconductor Transmission Lines
(NMTL) model can be used to predict the electrical behavior of the inter-
connect. This model introduces a longitudinal variation in the per-unit-length
parameters, by leaving the structure of the equations unchanged. Consequently,
the simulation of NMTL equations does not require a full-wave transient sim-
ulation through complex three-dimensional electromagnetic solvers, which are
extremely heavy under a computational standpoint.

Several techniques have been presented for the simulation of the NMTLs.
These techniques can be subdivided in two main classes, performing simulation
in the frequency domain or in the time domain, respectively. The former can
obtain closed-form solutions [1] in some cases, but can be used also to ana-
lyze more general structures through a piecewise constant discretization of the
line [2]. If the transient response is wanted, inverse FFT can be used. How-
ever, this technique does not allow a true transient simulation, because FFT
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can only be used to obtain the steady state solution. The total simulation time
must be long enough for the transients to be extinguished. Therefore, when
signals with complex waveforms are applied to unmatched lines and long tran-
sients are generated, the number of points for the evaluation of the FFT can
be very large. This is the reason why numerical schemes performing the simu-
lation directly in the time domain have been recently proposed. Among these
we can cite the methods based on the scattering representation [5], the method
of characteristics [8], and the waveform relaxation analysis [4].

This work presents a new Time-Domain Space Expansion (TDSE) method
for the numerical solution of the NMTL’s . This method is based on a weak
formulation of the NMTL equations, which leads to a class of numerical schemes
of different approximation order according to the particular choice of some trial
and test functions. The core of this work is devoted to the definition of trial
and test functions that can be used to produce accurate representations of the
solution by keeping the computational effort as small as possible. We will see
that bases of wavelets are a good choice.

The mathematical theory of wavelets is relatively recent. After the pio-
neering work of Haar [26], dated back to 1910, a long time has passed be-
fore mathematicians renewed their interest in this subject. In the mid-eighties
Morlet and his collaborators [29, 24] discovered that efficient representation
of seismic signals could be obtained with functions obtained through dilation
and translation of a single wavelet. Since then, a theoretical background has
been developed, and many books are already available in the literature (see
e.g. [22, 19, 28, 55, 56, 30, 52, 57]).

In the mean time, the application of wavelets to the numerical solution of
differential and integral equations has been pursued with high activity. A far
from complete list of publications in this field can be found in Refs. [39]-[51].
The main reason for this interest is due to the new possibilities that wavelets
offer with respect to more standard representations. Wavelets generate spaces
of functions with any fixed approximation order. In addition, the hierarchical
structure of wavelet spaces can be used to adaptively represent even singular
functions with a small number of coefficients. This leads to the possibility of
constructing numerical schemes for the solution of a given problem with a high
accuracy and a small computational time. We will see that the application of
wavelets proves quite efficient for the transient solution of the NMTL equations
through the TDSE method.

This work is divided into six chapters. Chapter 1 introduces the TDSE
method in a general setting, without reference to any specific choice of trial and
test functions. The method is then validated through a few simple examples by
using piecewise linear functions. The next three chapters are dedicated to the
description and definition of the wavelet functions that will be applied to im-
prove the approximation features of the TDSE method. In particular, Chapter 2
introduces the multilevel decompositions of functional spaces through the Haar
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system, and summarizes under an abstract standpoint the main concepts under-
lying general multilevel decompositions. Chapter 3 describes the biorthogonal
decompositions of L2(IR) and introduces scaling function and wavelet spaces
on the real line. These are the building blocks for the construction of scaling
function and wavelet spaces on the unit interval, developed in Chapter 4. This
is a crucial point, because the intrinsic translation-invariance of wavelets is de-
stroyed when working on bounded domains. However, the use of spaces of func-
tions defined on bounded domains is necessary for the solution of the NMTL
equations, because the length of any transmission line is finite. This chap-
ter also introduces the concept of nonlinear approximations based on wavelet
thresholding, which is used in this work to obtain adapted representations of
voltage and current along the transmission line with a small approximation er-
ror and a small number of expansion coefficients. Chapter 5 is dedicated to the
evaluation of integrals of products of scaling functions and wavelets and their
derivatives. Indeed, the TDSE discretization of the NMTL equations requires
the evaluation of inner products of trial and test functions. Finally, Chapter 6
merges the partial results of the foregoing chapters into an improved form of the
TDSE method, based on the use of wavelets as trial and test functions. We will
see that this method is capable of solving the NMTL equations with any fixed
approximation order when the voltage generators produce regular waveforms,
and with high adaptivity when the waveforms are singular. In both cases, the
approximation error and the computational effort remain small.
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Mathematical notations

This section is devoted to the description of the mathematical notations that
will be used throughout this work. Let us recall the definition of the Lebesgue
spaces Lp(IR), with 1 < p <∞ [15]. A function f : IR → IR belongs to Lp(IR)
if

||f ||p =
(∫

IR
|f(x)|pdx

)1/p

<∞. (1)

The quantity ||f ||p can be interpreted as a seminorm, and becomes a norm when
the set of null functions (i.e. all the functions that vanish almost everywhere)
is removed and replaced with a single element, the null function f = 0. The
spaces Lp(IR) are Banach spaces. In particular, for p = 2 we have a Hilbert
space, equipped with the inner product

〈f, g〉 =
∫

IR
f(x)g∗(x)dx. (2)

In the following, we will drop the suffix p when it is clear from the context in
which space we are working. When the domain of interest is not IR but Ω ⊆ IRn,
we will use the notation Lp(Ω) and the definitions modify in an obvious way.

The discrete space corresponding to L2(IR) will be denoted as `2, and consists
of all square summable sequences,

{αk} ∈ `2 ⇐⇒ ||{αk}|| =

∑

k∈ZZ
|αk|2




1/2

<∞. (3)

We will indicate with `2(IN) the subspace of `2 of sequences {{αk} ∈ `2 | αk =
0 , ∀k < 0}.

Let us now recall the definition of the Fourier transform. A function will be
denoted f in the natural domain and f̂ in the Fourier domain. The direct and
inverse Fourier transforms are respectively defined as

f̂(ω) = K1

∫ ∞

−∞
f(t)e−jωtdt (4)

f(t) = K2

∫ ∞

−∞
f̂(ω)ejωtdt, (5)

where the two constants K1 and K2 must satisfy

K1K2 =
1

2π
. (6)

xi



xii Mathematical notations

Two different conventions will be used in the following. The first, quite common
in the electrical engineering literature, is

K1 = 1 , K2 =
1

2π
. (7)

In this case, the Parseval and Plancherel identities read

〈f̂ , ĝ〉 = 2π〈f, g〉
||f̂ ||2 = 2π||f ||2.

The other choice for the normalization constants, which is popular in the math-
ematics literature, is

K1 =
1√
2π

, K2 =
1√
2π

. (8)

This convention leads to the unitarity of the Fourier operator, which is then
norm-preserving according to

〈f̂ , ĝ〉 = 〈f, g〉
||f̂ ||2 = ||f ||2.

We do not list here standard properties of the Fourier operator, like linearity,
translation, dilation, etc..

We will need to use spaces of functions with a certain degree of regularity.
It is natural then to use the Sobolev spaces Hs(IR) [12]. We recall that a
function f : IR → IR is in Hs(IR) if it has all the weak derivatives of order
at most s for s ≥ 1 and integer. We will set H0(IR) = L2(IR); for s > 0
the corresponding spaces can be obtained through interpolation. The Sobolev
spaces can be characterized in terms of weighted summability in the Fourier
domain. More precisely,

f ∈ Hs(IR) ⇐⇒ ||f ||s =
(∫

IR
|f̂(ξ)|2(1 + ξ2)sdξ

)1/2

<∞. (9)

Finally, we list other notations that will be commonly used.

• With f(·) we indicate the function f specifying its argument. For example,
the writing f(· − y) means the function that assumes the value f(x− y)
for almost all x.

• With C we will denote a positive constant without specifying its value,
which may change from time to time.

• Given two functions Ni : V → IR+ (i = 1, 2) defined on a set V , we
will use the notation N1(v) <∼ N2(v) when there is a constant C > 0
such that N1(v) ≤ CN2(v), for each v ∈ V . In addition, we will write
N1(v) ³ N2(v), if N1(v) <∼ N2(v) and N2(v) <∼ N1(v).
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• A set of basis functions {fk} of L2(IR) will be said 2-stable when the norm
of any function v ∈ L2(IR) is equivalent to the discrete norm in `2 of its
coefficients. Using the notation in the item above, we can express the
2-stability as

||{αk}||`2 ³ ||
∑

k

αkfk||L2 , ∀{αk} ∈ `2.

• For any x ∈ IR we will indicate with dxe (or bxc) the smallest (largest)
integer larger (smaller) than x.

A summary of the symbols that are recurrently used throughout this work can
be found in Appendix A.
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Chapter 1

The Time Domain Space
Expansion method

This chapter presents the Time-Domain Space Expansion (TDSE) method for
the transient simulation of the Nonuniform Multiconductor Transmission Lines
(NMTL) equations. The aim is the development of accurate numerical schemes
for the electrical simulation of interconnects that are characterized by non-
translation invariant cross-sectional parameters. Many structures fall into this
class, e.g. high speed packaging interconnects, impedance matching networks
or cables in complex structures, like automobiles or airplanes. It is therefore
of crucial importance to be able to simulate the electrical behavior of such
structures including the effects of longitudinal nonuniformities, in order to pre-
dict crosstalk noise, spurious electromagnetic couplings, and derive appropriate
design rules.

The presented method is based on the spatial expansion of solution and
per-unit-length parameters into two sets of approximating functions, and on
testing of the NMTL equations with a third set of functions. The mathematical
formulation of the TDSE method is presented in Section 1.1 in a general setting.
This formulation is then particularized in Section 1.2 to piecewise linear basis
functions (linear finite elements bases). Section 1.3 presents some numerical
examples with validations of the TDSE method and applications to the transient
solution for some structures of practical interest. The results will show that
quite accurate solutions can be obtained with linear approximating functions,
provided that the dimension of the approximation space is large enough. Some
of the structures analyzed in this chapter will be solved again in Chapter 6 by
using basis functions (developed throughout this work) with higher regularity
and better approximation properties. This will lead to much higher accuracy
in the numerical solutions given the dimension of the approximation space, or
equivalently to a smaller number of unknowns needed to obtain a solution at
a fixed accuracy. It should be noted that the formulation in Section 1.1 is
independent of the particular choice of the basis functions.

1



2 The Time Domain Space Expansion method

1.1 Mathematical formulation

Let us consider the Nonuniform Multiconductor Transmission Lines (NMTL)
equations,

∂

∂z
V(z, t) = −L(z) ∂

∂t
I(z, t)−R(z)I(z, t), (1.1)

∂

∂z
I(z, t) = −C(z) ∂

∂t
V(z, t)−G(z)V(z, t), (1.2)

with V(z, t) and I(z, t) indicating the voltage and current vectors at location
z and time t. The line is assumed to have P + 1 conductors, labelled with
i = 0, . . . , P , with the zeroth taken as the reference for voltages and the return
for currents. The per-unit-length parameters L(z), C(z), R(z), and G(z) are
P × P matrices whose entries are arbitrary functions of the space variable z.
We will consider the length of the line to be normalized. The change of variable
z = Lς can be used for lines of length L, with ς ∈ [0, 1]. However, hereafter
we procede using z without loss of generality. The line will be terminated by
Thévénin loads, i.e.

V(0, t) = VS(t)−RSI(0, t), (1.3)

V(1, t) = VL(t) +RLI(1, t), (1.4)

where RS and RL are arbitrary P × P real matrices and VS(t), VL(t) are
voltage source vectors. The whole derivation can be easily modified to account
for Norton or mixed terminations, therefore only the Thévénin case will be
described in detail.

The true solution of equations (1.1)-(1.2) loaded with (1.3)-(1.4) lies in some
functional space S. The basic hypothesis underlying the method is that a
sequence of approximation spaces Sh ⊂ S can be constructed such that

Sh → S , h→ 0. (1.5)

This condition insures the consistence of the discretization as the parameter h
vanishes. As for the solution vectors, also the per unit length parameters will
be assumed to belong to some functional space P , which can be approximated
by some spaces Ph ⊂ P with the same convergence properties,

Ph → P , h→ 0. (1.6)

An approximate solution for the NMTL equations will be sought for in the
spaces Sh. It is clear that different choices for the approximation spaces Sh and
Ph will lead to different numerical schemes with different convergence properties.
A careful choice of these spaces upon knowledge of the forcing waveforms VS(t)
and VL(t) will be essential for a good behavior of the method.
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We introduce now two sets of basis functions for the approximation spaces,

Sh = span {ζn, n = 1, . . . , Nζ}, (1.7)

Ph = span {φk, k = 1, . . . , Nφ}, (1.8)

where Nζ and Nφ must be finite and are dependent on the discretization pa-
rameter h. The voltage and current vectors can be expanded into these basis
functions,

V(z, t) =
Nζ∑

n=1

ζn(z)Vn(t), (1.9)

I(z, t) =
Nζ∑

n=1

ζn(z)In(t), (1.10)

as well as the per unit length parameters,

L =
Nφ∑

k=1

φk(z)Lk,

C =
Nφ∑

k=1

φk(z)Ck,

R =
Nφ∑

k=1

φk(z)Rk, (1.11)

G =
Nφ∑

k=1

φk(z)Gk.

The voltage and current coefficientsVn(t) and In(t) are real vectors of dimension
P , while the coefficients Lk, Ck, Rk, and Gk are P × P real matrices. If we
substitute the above expansions in the NMTL equations (1.1) and (1.2), we get

Nζ∑

n=1

∂

∂z
ζn(z)Vn(t) +

Nφ∑

k=1

φk(z)Lk

Nζ∑

n=1

ζn(z)
d

dt
In(t)+

Nφ∑

k=1

φk(z)Rk

Nζ∑

n=1

ζn(z)In(t) = 0, (1.12)

Nζ∑

n=1

∂

∂z
ζn(z)In(t) +

Nφ∑

k=1

φk(z)Ck

Nζ∑

n=1

ζn(z)
d

dt
Vn(t)+

Nφ∑

k=1

φk(z)Gk

Nζ∑

n=1

ζn(z)Vn(t) = 0. (1.13)

We introduce now a third set of functions, which will be taken as test func-
tions for the derivation of a weak form of the NMTL equations. The only
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restriction on these functions, denoted as {ηm, m = 1, . . . , Nζ}, is that they are
linearly independent. Taking the inner product of (1.12) and (1.13) with each
ηm, we get

Nζ∑

n=1

ΛmnVn(t) +
Nζ∑

n=1

L̂mn
d

dt
In(t) +

Nζ∑

n=1

R̂mnIn(t) = 0, (1.14)

Nζ∑

n=1

ΛmnIn(t) +
Nζ∑

n=1

Ĉmn
d

dt
Vn(t) +

Nζ∑

n=1

ĜmnVn(t) = 0, (1.15)

valid ∀m = 1, . . . , Nζ . The matrices used in the above expressions are

Λmn = 〈 d
dz
ζn, ηm〉 IP , (1.16)

where IP is the P × P identity matrix, and

L̂mn =
Nφ∑

k=1

LkB
(k)
mn,

Ĉmn =
Nφ∑

k=1

CkB
(k)
mn,

R̂mn =
Nφ∑

k=1

RkB
(k)
mn, (1.17)

Ĝmn =
Nφ∑

k=1

GkB
(k)
mn,

where
B(k)
mn = 〈ζn φk, ηm〉. (1.18)

The two sets of equations (1.14) and (1.15) describe the behavior of the non
terminated line. We consider now the inclusion of the loads (1.3) and (1.4). For
the subsequent derivation, it is convenient to choose the trial and test functions
such that only one is nonzero at the boundaries, i.e.,

ζn(0) = 0, ∀n = 2, . . . , Nζ ,

ζn(1) = 0, ∀n = 1, . . . , Nζ − 1,

ηm(0) = 0, ∀m = 2, . . . , Nζ , (1.19)

ηm(1) = 0, ∀m = 1, . . . , Nζ − 1.

This is not a real restriction because whatever be the initial choice of basis
functions, a change of basis can always be performed to obtain only one nonzero
function at both edges. The two edge trial functions will also be normalized so
that

ζ1(0) = ζN(1) = 1.
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In addition, we will consider the case of non-overlapping border functions, i.e.,

supp ζ1 ∩ supp ζNζ = ∅,
supp η1 ∩ supp ηNζ = ∅. (1.20)

This will simplify the form of the border equations in the final system, because
the terms referring to the two edges will not interact with each other. No similar
restrictions need to be enforced on the per unit length coefficients expansion
functions φk. Substituting now the expansions (1.9) and (1.10) into the load
equations (1.3) and (1.4) and using the conditions (1.19), we get

V1(t) = VS(t)−RSI1(t) (1.21)

VNζ (t) = VL(t) +RLINζ(t) (1.22)

These expressions for the loads can be used to eliminate the two unknowns
V1(t) and VNζ(t) from the system (1.14)-(1.15). It should be noted, however,
that the number of scalar unknowns in the system is 2NP , which matches the
number of scalar equations. If we eliminate the voltages at the two edges, i.e.
2P scalar unknowns, also 2P equations must be suppressed in order to keep the
balance even. These equations are obviously the ones involving the projection
onto the border test functions η1 and ηNζ . The following derivation shows how
the final system of ODE’s can be derived.

We begin with the equations (1.14)-(1.15) with m = 2, . . . , Nζ − 1. These
are the projections onto the “internal” test functions, and can be rewritten by
substituting the load equations (1.21) and (1.22), obtaining

Nζ−1∑

n=2

ΛmnVn(t) +
Nζ∑

n=1

L̂mn
d

dt
In(t) +

Nζ∑

n=1

R̂mnIn(t)

−Λm1RSI1(t) +ΛmNζRLINζ(t)

= −Λm1VS(t)−ΛmNζVL(t), (1.23)
Nζ∑

n=1

ΛmnIn(t) +
Nζ−1∑

n=2

Ĉmn
d

dt
Vn(t) +

Nζ−1∑

n=2

ĜmnVn(t)

−Ĉm1RS

d

dt
I1(t) + ĈmNζRL

d

dt
INζ(t)− Ĝm1RSI1(t) + ĜmNζRLINζ(t)

= −Ĝm1VS(t)− ĜmNζVL(t)− Ĉm1
d

dt
VS(t)− ĈmNζ

d

dt
VL(t). (1.24)

Instead of suppressing two of the remaining border equations, we take the
linear combination with coefficients αm and βm,

αm(1.14) + βm(1.15) = 0, m ∈ {1, Nζ}. (1.25)

After few straightforward steps, the resulting two border equations read

Nζ∑

n=1

α1L̂1n
d

dt
In(t)− β1Ĉ11RS

d

dt
I1(t) +

Nζ−1∑

n=2

β1Ĉ1n
d

dt
Vn(t)+
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Nζ∑

n=1

[β1Λ1n + α1R̂1n]In(t)− [α1Λ11 + β1Ĝ11]RSI1(t) +

Nζ−1∑

n=2

[α1Λ1n + β1Ĝ1n]Vn(t)

= −[α1Λ11 + β1Ĝ11]VS(t)− β1Ĉ11
d

dt
VS(t) (1.26)

Nζ∑

n=1

αNζ L̂Nζn
d

dt
In(t) + βNζĈNζNζRL

d

dt
INζ(t) +

Nζ−1∑

n=2

βNζĈNζn
d

dt
Vn(t)+

Nζ∑

n=1

[βNζΛNζn + αNζR̂Nζn]In(t) + [αNζΛNζNζ + βNζĜNζNζ ]RLINζ(t) +

Nζ−1∑

n=2

[αNζΛNζn + βNζĜNζn]Vn(t)

= −[αNζΛNζNζ + βNζĜNζNζ ]VL(t)− βNζĈNζNζ

d

dt
VL(t). (1.27)

Putting all the equations together we get a system of P (2Nζ − 2) ODE’s,
which can be solved with a suitable integration method such as Runge-Kutta or
Adams-Moulton [11]. All the simulations produced in this work were obtained
with a 5th − 6th order Runge-Kutta scheme [10]. This system can be formally
written as

Ψ
d

dt
x(t)+Φx(t) =∆SVS(t)+∆SD

d

dt
VS(t)+∆LVL(t)+∆LD

d

dt
VL(t), (1.28)

where Ψ is nonsingular if the trial and test functions are linearly independent
and ∆S, ∆SD, ∆L, ∆LD are P (2Nζ − 2) × P real matrices. The vector of
unknowns x collects the voltage and current coefficients vectors,

x =
[
IT1 , · · · , ITNζ , V

T
2 , · · · , VT

Nζ−1
]T
. (1.29)

It should be noted that due to the weak formulation, the forcing terms in the
system (1.28) include also the time derivatives of the source vectors VS(t) and
VL(t). Therefore, singular waveforms like delta functions or step functions
cannot be handled by this method.

1.1.1 Frequency domain analysis

The analysis of the foregoing section has been conducted in the time domain
since we aim at the derivation of accurate numerical schemes for the transient
simulation of the NMTL equations. However, the spatial discretization method
described in Section 1.1 can also be applied to derive the sinusoidal steady state
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voltage and current distributions along the conductors of the line. The trans-
formation of the system (1.28) into the frequency domain is straightforward,
i.e.,

(jωΨ+Φ)X(ω) = (∆S + jω∆SD)V̂S(ω) + (∆L + jω∆LD)V̂L(ω). (1.30)

The vector X(ω) includes the phasors of the unknown voltage and current ex-
pansion coefficients according to (1.29), and the terms V̂S(ω), V̂L(ω) are the
phasors associated to the sinusoidal voltage sources VS(t) and VL(t), respec-
tively. It should be noted that the matrix (jωΨ + Φ), in the case of locally
supported trial and test functions, has a sparse structure. Therefore, the use of
an efficient solver for sparse complex matrices could reduce to O(N) the number
of operations involved in the solution of (1.30).

1.1.2 Incident field excitation

The voltage and current distributions excited along the line by external fields
can also be handled by this method. The NMTL equations (1.1)-(1.2) are
modified to account for incident fields by simply adding equivalent distributed
voltage and current sources [7],

∂

∂z
V(z, t) = −L(z) ∂

∂t
I(z, t)−R(z)I(z, t) +VF(z, t), (1.31)

∂

∂z
I(z, t) = −C(z) ∂

∂t
V(z, t)−G(z)V(z, t) + IF(z, t). (1.32)

The particular form of the incident fields, e.g. plane waves, determines the
dependence of the equivalent sources on z and t. In the following we will not
assume a particular incident field distribution, but we will suppose that VF and
IF are known explicitely at any point (z, t).

The source terms can be expanded in terms of the trial functions, obtaining

VF(z, t) =
Nζ∑

n=1

ζn(z)VFn(t),

IF(z, t) =
Nζ∑

n=1

ζn(z)IFn(t).

Projecting now onto the test functions ηm(z) we get

〈VF(z, t), ηm(z)〉 =
Nζ∑

n=1

EmnVFn(t), (1.33)

〈IF(z, t), ηm(z)〉 =
Nζ∑

n=1

EmnIFn(t), (1.34)
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Figure 1.1: Piecewise linear basis functions in the case N = 11.

where the matrix E is defined as

Emn = 〈ζn, ηm〉IP .

If we replace now the right end sides of Eqs. (1.14) and (1.15) with the ex-
pressions (1.33) and (1.34), respectively, the external field contribution will be
automatically accounted for. The treatment of the boundary conditions is ob-
viously not affected by these additional source terms. We skip here the details
because the system of ODE’s is simply obtained by adding the appropriate
source terms to Eq. (1.28).

1.2 Piecewise linear approximation

This section will particularize the derivation of section 1.1 to the case of piece-
wise linear approximations of both solution and per unit length parameters. We
will show the details for the simplest case of coinciding approximation spaces
Sh = Ph, with the same dimension N = Nζ = Nφ and basis sets ζn = φn = ηn.
We subdivide the unit interval into N−1 equal intervals of length h = 1/(N−1),
and define the basis functions for n = 1, . . . , N as

ζn(z) =





[z − (n− 2)h] /h, z ∈ [(n− 2)h, (n− 1)h] ∩ [0, 1],
[−z + nh] /h, z ∈ [(n− 1)h, nh] ∩ [0, 1],
0 otherwise.

These functions are depicted in Fig. 1.1. Note that these are interpolating func-
tions, therefore the computation of the expansion coefficients of any function
reduces to its evaluation at the points (n−1)h. For this choice of basis functions
the approximation error is expected to behave as O(h2) when h approaches zero.
Of course, this holds only when the solution has a continuous first derivative in
the integration domain.

The entries in the matrices forming the building blocks of the system of
ODE’s (1.28) can be evaluated in closed form with straightforward integrations.
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We have
Λ11 = −(1/2)IP ,
Λmm = 0, m = 2, . . . , N − 1,
ΛNN = (1/2)IP ,
Λm,m+1 = (1/2)IP , m = 1, . . . , N − 1,
Λm,m−1 = −(1/2)IP , m = 2, . . . , N,

and
B(m)
mm = B(m)

mm = h/4 m ∈ {1, N},
B(m)
mm = h/2, m = 2, . . . , N − 1,

B(m+1)
mm = B(m−1)

mm = h/12, m = 2, . . . , N − 1,

B
(m)
m,m+1 = B

(m+1)
m,m+1 = h/12, m = 1, . . . , N − 1,

B
(m)
m,m−1 = B

(m−1)
m,m−1 = h/12, m = 2, . . . , N,

B(k)
mn = 0 otherwise.

These coefficients are such that the matrices Λ, L̂, Ĉ, R̂, Ĝ have a banded
structure, with only one upper and lower codiagonal made of blocks of size P .
For example, the matrix L̂ results

L̂ =
h

12




3L1 + L2 L1 + L2

Lm−1 + Lm Lm−1 + 6Lm + Lm+1 Lm + Lm+1

LN−1 + LN LN−1 + 3LN




.

Note that the main diagonal, apart from the first and last rows, can also
be obtained by convolving the coefficients Lk with a FIR filter with mask
{h/12, h/2, h/12}, and the codiagonals with another FIR filter with mask
{h/12, h/12}. Therefore, the dependence of the per unit length parameters
on the space variable z is reproduced along the diagonals. Similar results hold
for the other matrices Ĉ, R̂, Ĝ. As a consequence, also the system matrices Ψ
and Φ have a block-banded structure. If the unknowns are arranged according
to Eq. (1.29) both Ψ and Φ have a block-tridiagonal structure, as shown in the
top panels of Figure 1.2. However, when the basis sets are formed by functions
with local support, such as in the present case, it is convenient to rearrange the
unknowns as

x̂ =
[
IT1 , I

T
2 , V

T
2 , · · · , ITn , VT

n , · · · , VT
N−1, I

T
N

]T
. (1.35)

This can be accomplished by applying a permutation matrix T such that TT =
T−1, obtaining the new system

Ψ̂
d

dt
x̂(t)+Φ̂ x̂(t) = ∆̂SVS(t)+∆̂SD

d

dt
VS(t)+∆̂LVL(t)+∆̂LD

d

dt
VL(t), (1.36)



10 The Time Domain Space Expansion method

Ψ Φ

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

Ψ̂ Φ̂

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

Figure 1.2: Structure of the system matrices of Eqs. (1.28) and (1.36) in the piece-

wise linear case with N = 11. Each dot represents a nonzero P × P block.

where
Ψ̂ = TTΨT, ∆̂S = TT∆S,

and similarly for the other matrices. This results in a banded structure for
both Ψ̂ and Φ̂, as shown in the bottom panels of Fig. 1.2. This is convenient
because the numerical schemes for the solution of systems of ODE’s require to
explicit the time derivative of the state vector. Therefore, the matrixΨ must be
inverted and a full matrix Ψ−1Φ is obtained. This results in O(N 2) operations
to evaluate the matrix-vector product Ψ−1Φx. However, if the inversion is
accomplished through LU decomposition, both the lower and upper triangular
matrices in the decomposition are still banded. Therefore, the total number of
operations involved in the computation of Ψ̂−1Φ̂x̂ is only O(N). This allows to
increase the accuracy of the method at a low computational cost.
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1.3 Numerical examples

This section will apply the method outlined in Sections 1.1 and 1.2 to some
practical examples. The lossless scalar exponential line will be analyzed in
Section 1.3.1. The crosstalk on a three-conductor printed circuit board will be
studied in Section 1.3.2. Finally, the crosstalk on a nonuniform MTL made of
two nonparallel wires above a ground plane will be determined in Section 1.3.3.

1.3.1 The exponential line

We chose the scalar exponential line as a test case for our numerical scheme
because the analytical solution in the frequency domain is well known and
understood. We will report here the main results. The details can be found
in [3].

Let us consider a scalar nonuniform line (P = 1) of unitary length charac-
terized by

L(z) = L0eδz, R(z) = 0,
C(z) = C0e−δz, G(z) = 0,

where the parameter δ controls the rate of taper and L0, C0 are the nominal
per unit length inductance and capacitance at the edge z = 0. The nominal
characteristic impedance of the line is therefore

Z(z) =

√√√√L(z)

C(z)
= Z0e

δz,

where Z0 is the nominal characteristic impedance at the edge z = 0. At a fixed
frequency ω we can define the propagation constant γ and the transfer constant
Γ of the line as

γ = jω
√
L(z)C(z) = jω

√
L0C0 ; Γ =

√
γ2 + δ2/4 = α+ jβ, α, β ≥ 0.

The voltage and current along the line are expressed by

V (z, ω) = A(ω)e−(Γ−δ/2)z +B(ω)e(Γ+δ/2)z

I(z, ω) =
A(ω)

Z0

Γ− δ/2

γ
e−(Γ+δ/2)z − B(ω)

Z0

Γ + δ/2

γ
e(Γ−δ/2)z,

where A(ω) and B(ω) are frequency-dependent constants that are determined
by imposing the load equations, in this case

V (0, ω) = VS(ω)−RSI(0, ω),

V (1, ω) = RLI(1, ω).

This solution can be interpreted as usual as a superposition of travelling voltage
and current waves with positive and negative velocity. As the impedance level
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increases at rate δ with z, the positive voltage wave increases in magnitude and
the corresponding current wave decreases at rate δ/2. The converse holds for
negative voltage and current waves.

The parameters of the line that will be investigated here are normalized.
More precisely,

L0 = 1H/m, C0 = 1F/m, δ = log 4.

This corresponds to a 1:4 impedance stepping line. The waveform of the voltage
source is set here to a gaussian pulse,

vs(t) = V0e
− (t−Ts)

2

2∆2s , (1.37)

with amplitude V0 = 1V, center Ts = 2 s and width ∆s = 0.2 s. The source
resistance will always be set in our simulations to be

RS = Z0 = 1Ω,

while different values of the load resistance RL will be investigated.
A reference solution in the time domain is obtained from the frequency

domain analytical solution reported above through inverse FFT. The total sim-
ulation time is set here to Tmax = 8s, which means that the input signal is
considered as a periodic pulse train with period Tmax. As the one-way delay is
1 s, there are no interactions between two adjacent pulses, because the transient
associated to one pulse due to the nonumiformity of the line is already extin-
guished when the next pulse comes through. Of course, this holds only when
at least one of the two ends of the line is matched.

The solution obtained with the weak formulation is plotted and compared
to the reference solution in Figures 1.3, 1.4, and 1.5 for matched load, low
impedance load and high impedance load, respectively. All these figures have
been obtained with N = 65. The four panels report the voltages and currents
at the two terminations. The figures show clearly that the weak solution is
undistinguishable from the reference solution.

The numerical method was also tested for the matched exponential line with
a trapezoidal pulse voltage source with amplitude 1V, time offset 1 s, rise and
fall times 0.4 s and a duration at the 1V level of 3 s. The voltage and current at
the two terminations of the matched 1:4 exponential line are depicted in Fig. 1.6
for both our method and the FFT reference solution. Also in this case the two
curves are barely distinguishable.

The convergence properties of the method as the dimension N of the ap-
proximation spaces increases is now investigated. We fix the load resistance to
RL = 4Ω, i.e. the line is matched at both edges. The approximation error on
voltage and current is computed for each N according to

Ev(N) = max
t

max
z
|vN(z, t)− vref (z, t)|,

Ei(N) = max
t

max
z
|iN(z, t)− iref (z, t)|, (1.38)
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Figure 1.3: Comparison between the weak solution (thin continuous line) and FFT

reference solution (thick dashed line) for the 1:4 exponential line with matched load

(RL = 4Ω) and N = 65.

where vref (z, t), iref (z, t) represent the reference voltage and current while
vN(z, t), iN(z, t) are the voltage and current obtained with our method. The
approximation errors are reported in Figure 1.7 as functions of N for the gaus-
sian pulse (left panel) and the trapezoidal pulse (right panel). As expected, the
error decreases as O(N−2) as N increases for the gaussian pulse. The behavior
of the error is instead of the type O(N−1) for the trapezoidal pulse due to the
singularity in the first derivative of the source waveform.
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Figure 1.4: As in Figure 1.3, but with RL = 1Ω (low impedance load).

1.3.2 Three-conductor PCB

We will analyze in this section the coupled microstrip described in [7] and whose
cross-section is shown below.

This structure consists of three rectangular conductors (of width 15 mils, height
1.38 mils, and separation 45 mils) placed above a glass epoxy (εr = 4.7) sub-
strate 47 mils high. The length of the line is L = 10 inches. This structure is
characterized by the per-unit-length matrices

L =

[
1.10418 0.690094
0.690094 1.38019

]
µH/m, C =

[
40.6280 −20.3140
−20.3140 29.7632

]
pF/m.
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Figure 1.5: As in Figure 1.3, but with RL = 16Ω (high impedance load).

A Thévénin voltage source is applied between the two side conductors, one of
which is the reference, and the near-end crosstalk is determined on the middle
conductor. The load matrices are

RS =

[
50 0
0 50

]
Ω, RL =

[
50 0
0 50

]
Ω,

and the source waveform is a 1 MHz , 50% duty cycle trapezoidal pulse train
with raise and fall times equal to 6.25 ns.

A reference solution is obtained in this case through inverse FFT from the
exact solution in the frequency domain [7]. Figure 1.8 shows the magnitude
of the voltage on the middle conductor obtained with our method (with N =
65) compared with the reference solution (obtained using 2048 points in the
evaluation of the inverse FFT). The two curves are almost undistinguishable.
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Figure 1.6: As in Figure 1.3, but with a trapezoidal pulse voltage source. The

dimension of the approximation space is N = 65.

1.3.3 Nonparallel wires above a ground plane

This section will examine the crosstalk on a nonuniform line made of two wires
above a ground plane, sketched below.

The two wires are supposed to be parallel to the ground plane, but their distance
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Figure 1.7: Approximation error on voltage Ev(N) (circles) and current Ei(N)

(stars) as functions of N for the 1:4 exponential line with matched loads. The left

and right panels refer to the gaussian and the trapezoidal pulse source, respectively.

The dashed line corresponds to a slope N−2, while the dash-dotted line corresponds
to a slope N−1.
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Figure 1.8: Near end crosstalk for the PCB of Section 1.3.2. The continuous line

represents the weak solution with N = 65, and the thick dashed line is the solution

obtained through inverse FFT with 2048 points.

increases linearly along the length of the line. Lines of this type have been
studied in [6, 2].

Let us consider two wires with radius r = 1 mm placed at h = 3 cm above a
ground plane. Their separation is D0 = 5 mm at z = 0 and D1 = 15 mm at z =
1. The medium is supposed to be free space. Due to these particular conditions,
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Figure 1.9: Near end crosstalk for the structure described in Section 1.3.3. The

continuous line represents the weak solution with N = 65. The thick dashed line is

the solution obtained for the piecewise uniform line with 32 sections through inverse

FFT (using 1024 points).

the expressions for the per-unit-length inductance and capacitance matrices can
be obtained with the wide-separation approximation [7]. Taking the ground
plane as the reference conductor, we have the approximate expressions

L11 = L22 =
µ0
2π

log

(
2h

r

)

L12(z) = L21(z) =
µ0
4π

log

(
1 +

4h2

D2(z)

)
,

where µ0 indicates the permeability of free space and the distance along the line
is

D(z) = D0 +
z

L(D1 −D0),

with L = 1 m. As the surrounding medium is homogeneous we can easily derive
the per-unit-length capacitance matrix,

C(z) = ε0µ0L
−1(z),

where ε0 is the permettivity of free space.
We will apply a voltage source consisting of a 1 MHz , 50% duty cycle

trapezoidal pulse train with raise and fall times equal to 20 ns to one of the two
wires at the edge z = 0, and calculate the near end crosstalk on the other wire.
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The load matrices will be the same already used in Section 1.3.2, i.e. diagonal
loads with 50 Ω resistances.

As there is no closed form solution for lines of this type, we will have to
use an approximate method to obtain a reference solution for this problem.
The standard approach is to divide the line into Nz uniform subsections and
to perform the analysis in the frequency domain [7, 2]. Each subsection is
analyzed separately by deriving its chain matrix, which can be evaluated in
closed form. The chain matrix of the overall structure is then obtained by
multiplying the chain matrices of each subsection of the line, and the solution
for the voltages and currents at the line ends is found by incorporating the
terminal conditions. Finally, inverse FFT is applied to get the time domain
waveform. This method converges to the exact solution when Nz increases.
Some numerical tests on the convergence have been conducted to obtain the
minimum number of subdivisions that insures a good approximation for the
nonuniformity of the line. A number of Nz = 32 subdivisions resulted beyond
this limit and will be used in the following.

Figure 1.9 shows the results of the simulations with our method (N = 65)
and with the approximate piecewise uniform solution. The number of points for
the evaluation of the inverse FFT in the latter was set to 1024. We notice that
both methods give practically the same results.
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Chapter 2

An introduction to multilevel
decompositions

The TDSE method for the solution of the NMTL equations introduced in Chap-
ter 1 is based on three sets of functions {ζn}, {φk}, and {ηm}. However, only
piecewise linear functions have been used to solve the examples presented in
Sec. 1.3. On the other hand, the accuracy of any discretization method for
PDEs is dependent on the particular choice of approximation spaces for the
solution and the parameters, and consequently on their basis functions. The
example in Section 1.3.1 showed that the decay of the approximation error with
the number N of basis functions when piecewise linear functions are employed
is at most O(N−2). The rest of this work is devoted to the improvement of the
TDSE method by using different approximation spaces, which allow a faster
decay of the approximation errors with N , or equivalently a smaller error when
N is fixed.

The key point in the choice of new basis sets is the determination of the
characteristics of the solution to be represented. This solution must be repre-
sented with a small approximation error in an efficient way, i.e., with as few
as possible basis functions. In the following we will show that the features of
signals that are commonly found on transmission lines are well captured by the
so-called multilevel approximation spaces. These spaces are obtained through
multilevel decompositions of functional spaces like L2(IR).

The purpose of this chapter is to introduce the multilevel decomposition of
functional spaces. Section 2.1 will introduce qualitatively the properties of the
simplest multilevel decomposition, the Haar system. An example will illustrate
the representation of a function in terms of the canonical and hierarchical bases.
We will derive empirically the two-scale relations, which are the milestone of
any multilevel decomposition. In Section 2.2 the same aspect will be considered
from an abstract point of view, by introducing projection operators that fully
characterize multiresolution decompositions of a general space of functions V .
The following two chapters will describe general biorthogonal multilevel decom-

21
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positions of L2(IR) (Chap. 3) and of L2(Ω), where Ω is a bounded domain like
the unit interval (0, 1) (Chap. 4). This last construction is exactely what we
need for the improvement of the TDSE method, as we will show in Chapter 6.

2.1 Multilevel representation of functions:

a primer

In this section we consider the qualitative aspects of multilevel decompositions
of functional spaces. Due to its simplicity, we will use the Haar decomposition of
L2(0, 1). The aim is to illustrate through simple examples the basic properties
of nested approximation spaces and the improvement that can be obtained by
using hierarchical bases instead of canonical bases to represent a given function.

The Haar decomposition, dated back to 1910 [26], is based on piecewise
constant approximations of a function f with domain in the unit interval. Let
us suppose that the unit interval is subdivided in 2j intervals of length 2−j each.
This corresponds to a collocation of separation points {xjk = k2−j, k = 0, .., 2j}.
We will work with approximation spaces Vj defined as the spaces of piecewise
constant functions in any interval Ijk = [k2−j, (k + 1)2−j), k = 0, . . . , 2j − 1.

0 2−j · · · k2−j (k + 1)2−j · · · 1− 2−j 1

Ijk

We define now a function fj ∈ Vj, ∀j ≥ 0, as the “closest” to the function
f among all the functions in Vj. It is natural to define it as that particular
function that minimizes the L2 norm,

||f − fj|| = min
gj∈Vj

||f − gj||. (2.1)

It is not difficult to prove that the approximation error tends to zero in L2 when
the approximation level approaches to infinity,

||f − fj|| → 0, j → +∞. (2.2)

Intuitively, even if the function f has fast variations, we can make the intervals
Ijk small enough by increasing j, to reduce the approximation error below any
fixed threshold ε. Figure 2.1 shows a function f with its approximations fj for
some j. The figure clearly illustrates the fact that the approximation spaces are
nested,

V0 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2.
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Figure 2.1: The top left panel shows a function f on the unit inteval. The other

panels show some piecewise constant approximations fj .

We can interpret now the definition of the approximations fj in an alterna-
tive way, through projection operators Pj : L

2 → Vj such that

fj = Pjf.

How do these operators act? As the functions fj are constants on any subin-
terval Ijk, it is easy to see that the value that minimizes the norm in Eq. (2.1)
is the average of f on Ijk,

(Pjf)(x)|Ijk = fj(x)|Ijk =
1

2−j

∫

Ijk

f(x)dx = cjk. (2.3)

The following interpretation of Eq. (2.3) is the basis for the definition of what
we will call scaling function spaces in the next sections. Let us define the box
function

ϕ(x) =

{
1 x ∈ [0, 1]
0 otherwise,

(2.4)
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which is the indicator function of the unit interval. The L2 norm of ϕ is clearly
equal to one. Let us now define a rescaled and dilated box function as

ϕjk(x) = 2j/2ϕ(2jx− k).

This function has still unitary L2 norm, and assumes the value 2j/2 on any
interval Ijk, being identically zero elsewhere. Any function fj ∈ Vj can then be
expressed as a finite superposition of these rescaled box functions, henceforth
denoted as scaling functions, according to

fj(x) =
2j−1∑

k=0

fjkϕjk(x), ∀x ∈ [0, 1). (2.5)

The expansion coefficients (the scaling function coefficients) are such that

fjk = 2−j/2cjk (2.6)

on each subinterval Ijk. If we evaluate now the inner product between f and
ϕjk we get

〈f, ϕjk〉 =
∫

Ijk

f(x)2j/2dx = 2−j/2cjk = fjk.

Therefore, the series expansion can be expressed in a more abstract way as

fj(x) =
2j−1∑

k=0

〈f, ϕjk〉ϕjk(x), ∀x ∈ [0, 1), (2.7)

where the functions ϕjk are orthonormal by construction,

〈ϕjk, ϕjl〉 = δkl, ∀j ≥ 0.

In summary, we have characterized the projection operators Pj through an
orthonormal basis {ϕjk, k = 0, . . . , 2j − 1} of the approximation spaces Vj.

We address now the question on how we can obtain a coarse approximation
fj starting from the one at the immediately finer level j + 1. Recalling from
Eq. (2.3) that the approximations are based on averages, and noting that any
interval Ijk can be decomposed in the union of two intervals at a finer level
according to

Ijk = Ij+1,2k ∪ Ij+1,2k+1,

we can easily see that

cjk =
1

2−j

∫

Ijk

f(x)dx

=
1

2

[
1

2−j−1

∫

Ij+1,2k

f(x)dx+
1

2−j−1

∫

Ij+1,2k+1

f(x)dx

]

=
1

2
(cj+1,2k + cj+1,2k+1) .
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This means that a two-point average produces a coarser approximation of one
level. Recalling the relation (2.6), we obtain a recurrence relation between the
expansion coefficients at different levels,

fjk =
1√
2
(fj+1,2k + fj+1,2k+1) , (2.8)

which can be also written as

fjk =
∑

n

hnfj+1,2k+n, (2.9)

where

hn =

{
1/
√
2 for n = 0, 1

0 otherwise
(2.10)

Eq. (2.9) can also be obtained directly from the basis functions ϕjk, by noting
that they satisfy the so-called two-scale relation,

ϕjk =
∑

n

hnϕj+1,2k+n, (2.11)

which stems from
ϕ(x) = ϕ(2x) + ϕ(2x− 1).

This is illustrated graphically in the picture below.

-

6

-

6

-

6

= +

ϕ(x) ϕ(2x) ϕ(2x− 1)

1 1
2

1
2 10 0 0

1 1 1

In the following sections Eq. (2.11) will be denoted as refinement equation, while
the coefficients hn will be denoted filters.

We want now to obtain the approximation fj+1 from the approximation at
the coarser level fj. An idea is to define what is the detail dj we need to add to
fj in order to get a better approximation. This leads to another set of projection
operators Qj, obtained as

dj = fj+1 − fj = (Pj+1 − Pj)f = Qjf.

Clearly the function dj belongs to the space Vj+1. We can also see that, having
removed its component in Vj, the detail belongs to a complement spaceWj such
that

Vj+1 = Vj ⊕Wj
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Figure 2.2: Detail functions dj = fj+1−fj for the example in Fig. 2.1. The function
f is reported in the top left panel, and the coarsest approximation f0 is shown in the

top middle panel.

The functions dj for the example of Fig. 2.1 are reported in Fig. 2.2. Note that
each function fj can be recovered from an initial coarser approximation f0 by
adding all the details at different levels

fj = f0 +
j−1∑

i=0

di.

Recalling the convergence relation (2.2), we can then write the multilevel de-
composition of a function f as

f = f0 +
∞∑

i=0

di.

The above representation becomes useful when we are able to character-
ize the detail spaces Wj and the corresponding projection operators Qj with a
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suitable basis set. This can be easily accomplished if we recall that the approx-
imations at any level j are obtained through averages. The detail function dj
on an interval Ijk can then be obtained from the approximation fj+1 by remov-
ing its average on Ijk. This average is exactly the approximation at level j, as
shown in the picture below.

= +

fj+1

fj

dj

Ijk

As a result, we see that the detail dj can be represented on any subinterval
Ijk as a zero-mean function that is constant in the two halves of the interval. It
is then easy to express dj as a superposition of zero-mean basis functions that
we will call wavelets. These are obtained through dilations and translations
of a single function ψ, the mother wavelet. In our case, the mother wavelet is
defined as

ψ(x) = ϕ(2x)− ϕ(2x− 1). (2.12)

-

6

-

6

-

6

= −

ψ(x) ϕ(2x) ϕ(2x− 1)

11
2

1
2

1
2 10 0 0

1

−1

1 1

The wavelets at any level j and location k are obtained as

ψjk = 2j/2ψ(2jx− k). (2.13)

In addition, the wavelet at any j and k can then be expressed in terms of the
scaling functions at level j + 1 as

ψjk =
1√
2
(ϕj+1,2k − ϕj+1,2k+1),

which is analogous to the refinement equation (2.11) for the scaling function.
The detail function at level j will then be expressed as

dj(x) =
2j−1∑

k=0

wjkψjk(x), (2.14)



28 An introduction to multilevel decompositions

where wjk are the wavelet coefficients. It is easy to show that also the wavelets
are orthonormal,

〈ψjkψj′l〉 = δjj′δkl, ∀j, j ′, k, l,
so that the series above can be expressed in a formal way as

dj(x) =
2j−1∑

k=0

〈fj+1, ψjk〉ψjk(x),

In addition, the wavelets are orthogonal to any scaling function at coarser levels,

〈ψjk, ϕj′l〉 = 0, ∀j ′ ≤ j.

In summary, we have constructed two different representations of the func-
tion fj+1,

fj+1(x) =
2j+1−1∑

k=0

fj+1,kϕj+1,k(x) (2.15)

fj+1(x) =
2j−1∑

k=0

fj,kϕj,k(x) +
2j−1∑

k=0

wj,kψj,k(x) (2.16)

The first is the expansion in the canonical basis {ϕj+1,k}, while the second uses
the hierarchical basis {{ϕj,k} ∪ {ψj,k}}. The advantage in using the hierarchi-
cal basis is that the information already included in the approximation of the
function at level j is reused at level j + 1. The multilevel decomposition of
the original L2 function f is then expressed in terms of the hierarchical basis
functions as

f(x) =
2j0−1∑

k=0

fj0,kϕj0,k +
∑

j≥j0

2j−1∑

k=0

wjkψjk,

where j0 is an initial level.
The last step will be to show that also the coefficients wjk can be evalu-

ated in a recursive way through the approximation levels. If we combine the
Equations (2.5), (2.8) and (2.14), we can derive the expression of the wavelet
coefficients in terms of the scaling function coefficients at the next level,

wjk =
1√
2
(fj+1,2k − fj+1,2k+1). (2.17)

This equation, together with Eq. (2.8), constitutes the so-called wavelet analysis,
i.e., the determination of wavelet coefficients starting from the approximation of
the finest level j1 down to the coarsest level j0. This operation can be visualized
by the block diagram below, where the horizontal arrows use Eq. (2.8) and the
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oblique arrows use Eq. (2.17).

fj1,k · · · fj+1,k fj,k · · · fj0,k

wj1−1,k · · · wj,k · · · wj0,k

- - - - -

@
@

@R

@
@

@R

@
@

@R

@
@

@R

@
@

@R

It is important to note that the operations involved in the wavelet analysis are
nothing else than convolutions with two filters (this will be made more precise
in the following two chapters), together with a downsampling of a factor of
two. Indeed, the number of scaling functions and wavelet coefficients at any
step of the analysis is reduced by half. These operations can then be performed
in O(N) operations, where N is the total number of initial data, and can be
implemented as fast recursive algorithms. The wavelet analysis is then faster
than the standard FFT, which requires O(N logN) operations.

The inverse operation of the wavelet analysis is called wavelet synthesis,
and corresponds to the summation of finer and finer details to the coarsest
approximation at level j0 to get the approximation at the finest level j1. It is
easy to show that in the Haar case the coefficients fj+1,k can be expressed in
terms of the coefficients fjk and wjk as

fj+1,k =
1√
2

{
fjl + wjl if k = 2l
fjl − wjl if k = 2l + 1.

(2.18)

The proof of these relations is straightforward when we consider the expressions

ϕ(2x) =
1

2
(ϕ(x) + ψ(x)),

ϕ(2x− 1) =
1

2
(ϕ(x)− ψ(x)),

which are graphically illustrated in the pictures below.
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Note that the wavelet synthesis in Eq. (2.18) corresponds to merging at each
level the scaling function and wavelet coefficients by placing their sum at even
locations and their difference at odd locations in the finer level approximation.
The diagram depicted above for the analysis is then valid also for the synthesis
once the arrows are reversed.

In the next section we will generalize the foregoing example by constructing
abstract multilevel decompositions. This generalization will be further detailed
in Chapters 3 and 4, where multilevel decompositions with better approximation
properties will be introduced. Basically, the generalization is due to a different
choice for the filter hn. All the properties of a given multilevel decomposition,
like regularity and polynomials reproduction, will be determined only by the
filter, provided it satisfies certain assumptions (see Sec. 3.1).

We conclude this section by showing with an example that the use of hi-
erarchical bases with respect to canonical bases constitutes a very powerful
technique for adaptive representation of functions and for data compression.
This will be the feature used in the construction of numerical schemes for the
solution of the NMTL equations (1.1)-(1.2), and is the main justification for the
use of wavelets in this work.

Let us first begin to note that due to the L2 normalization of the basis
functions, the wavelet coefficients wjk can be related to the values assumed by
the details dj in the subintervals Ijk through multiplication by a factor of 2j/2.
More precisely, if we indicate with |djk| the (constant) value assumed by the
modulus of dj in Ijk, we can see that

|wjk| = 2−j/2|djk|.

This expression is exactely the same as Eq. 2.6, which links scaling function
coefficients and approximations fj with the same level-dependent normalization
constant. This shows that, apart from this normalization, which is the same
for both cjk and |djk|, we can interpret the plots in Figs. 2.1 and 2.2 as the
expansion coefficients fjk and wjk.

In the mentioned example, dealing with a smooth function f , we can note
that the absolute values of the wavelet coefficients have a faster decay than
the scaling function coefficients when the level j increases. We will see in the
following how this rate can be increased when more regular wavelets are used.
This is due to Jackson-type inequalities, which are able to predict the rate of
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Figure 2.3: The top left panel shows a function f with a sharp discontinuity. The

other panels show some piecewise constant approximations fj .

decay of the wavelet coefficients as a function of the regularity of the function
being analyzed.

We turn now to the representation of a function that presents a sharp dis-
continuity. Let us consider the function in the top left panel of Fig. 2.3. The
approximations fj and details dj of this function at different levels are shown
in Figs. 2.3 and 2.4, respectively.

These plots illustrate clearly that while all the scaling function coefficients
must always be included to get a correct representation of f , only few wavelet
coefficients need to be considered, especially for increasing j. The wavelet
coefficients peak in the point where the discontinuity is located, and can be
neglected elsewhere. Therefore, the total information needed to represent the
function can be significantly reduced when using hierarchical representations by
simply cutting away all coefficients wjk below a certain threshold. This is obvi-
ously not possible using canonical representations. Examples will be provided
in Sec. 4.5.2.
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Figure 2.4: The top left panel shows the function f of Fig. 2.3. The top middle

panel shows its coarsest approximation f0, and the other panels show the details dj .

2.2 Multilevel decompositions:

the abstract setting

This section describes the abstract setting that underlies any construction of
multilevel decompositions. This abstract setting can be applied to fairly general
Banach or quasi-Banach spaces [16]. However, this work focuses on decomposi-
tions of Hilbert spaces, and the following sections will only deal with L2 spaces,
or with Sobolev spaces Hs when regularity is needed. In any case, we will keep
the working space unspecified in this section, and we will name it V . This will
allow us to use the concepts described below to the multilevel decompositions
of both L2(IR) and L2([0, 1]).

We introduce a family of closed subspaces {Vj}j∈J , with J = ZZ or IN such
that

Vj ⊂ Vj+1 , ∀j ∈ J . (2.19)
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These spaces will be the approximation spaces in the multilevel decomposition,
with the index j indicating the level of approximation. The approximation of
a function v ∈ V can be defined through suitable linear projection operators
Pj : V → Vj, which must be bounded and satisfy the following two conditions

Pjv = v , ∀v ∈ Vj , (2.20)

Pj ◦ Pj+1 = Pj , ∀j ∈ J . (2.21)

These conditions insure that Pjv is the best approximation of v in the space Vj,
in the sense that the norm of the approximation error is minimized.

Let us define now another projection operator

Qjv := Pj+1v − Pjv , ∀v ∈ V . (2.22)

This operator, which is linear and continuous, extracts from the function v
the “details” to be added to its approximation at level j in order to get its
approximation at level j + 1. Indeed, it can be shown that, indicating with Wj

the closure of the range of this operator in V , we have

Vj+1 = Vj ⊕Wj . (2.23)

In other words, the approximation of a function at level j + 1 can be obtained
in two different ways. We can use the operator Pj+1, or we can refine the
approximation at level j by using the correction obtained through the operator
Qj.

This procedure can be iterated: for any two indices j0 < j1, we can write

Vj1 = Vj0 ⊕
⊕

j0≤j<j1
Wj . (2.24)

In addition, if convergence holds according to

Pjv → v for j → +∞ ; (2.25)

{
Pjv → 0 if J = ZZ for j → −∞,
P0v = 0 if J = IN

(2.26)

we get the multilevel decomposition of V ,

V =
⊕

j∈J
Wj , with v =

∑

j∈J
Qjv , ∀v ∈ V. (2.27)

Let us now introduce basis sets {ϕjk | k ∈ K̆j} and {ψjk | k ∈ K̂j} for Vj and
Wj respectively, where K̆j, K̂j are suitable sets of indices. From Eq. (2.23), we
have two different basis sets for Vj+1. The first, called canonical, is {ϕj+1,k | k ∈
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K̆j+1}. The second, called hierarchical, is {ϕjk | k ∈ K̆j}∪{ψjk | k ∈ K̂j}. Each
v ∈ Vj+1 can then be represented in two ways,

v =
∑

k∈K̆j+1

v̆j+1,kϕj+1,k =
∑

k∈K̆j

v̆jkϕjk +
∑

k∈K̂j

v̂jkψjk. (2.28)

The evaluation of the expansion coefficients into one basis from the expansion
coefficients into the other basis is the so-called two-scale analysis/synthesis, and
corresponds to the transformation

{v̆j+1,k}k∈K̆j+1 ↔ {{v̆jk}k∈K̆j , {v̂jk}k∈K̂j}. (2.29)

According to Eq. (2.23), there are coefficients h
(j)
km (k ∈ K̆j+1, m ∈ K̆j) and g

(j)
km

(k ∈ K̆j+1, m ∈ K̂j) such that

ϕjm =
∑

k∈K̆j+1

h
(j)
kmϕj+1,k , ∀m ∈ K̆j , (2.30)

ψjm =
∑

k∈K̆j+1

g
(j)
kmϕj+1,k , ∀m ∈ K̂j . (2.31)

On the other hand, there are also coefficients χ
(j)
mk (m ∈ K̆j, k ∈ K̆j+1) and γ

(j)
mk

(m ∈ K̂j, k ∈ K̆j+1) such that

ϕj+1,k =
∑

m∈K̆j

χ
(j)
mkϕjm +

∑

m∈K̂j

γ
(j)
mkψjm , ∀k ∈ K̆j+1 . (2.32)

The same coefficients can then be used to evaluate the transformation (2.29),

v̆jm =
∑

k∈K̆j+1

χ
(j)
mkv̆j+1,k , ∀m ∈ K̆j , (2.33)

v̂jm =
∑

k∈K̆j+1

γ
(j)
mkv̆j+1,k , ∀m ∈ K̂j , (2.34)

v̆j+1,k =
∑

m∈K̆j

h
(j)
kmv̆jm +

∑

m∈K̂j

g
(j)
kmv̂jm , ∀k ∈ K̆j+1 , (2.35)

Note that this transformation implies that the approximation at level j can
be obtained by coarsening (or filtering) the approximation at level j + 1. On
the other hand, the approximation at level j can be refined using the same
approximation plus some details. Finally, the multilevel decomposition of any
function v ∈ V can be expressed in the hierarchical basis as

v =
∑

j∈J

∑

k∈K̂j

v̂jkψjk . (2.36)

The following two chapters will determine the conditions under which the
abstract setting can be applied to insure convergence and stability of the canon-
ical and hierarchical bases, and will give explicit rules for the determination of
the coefficients of the above expressions.



Chapter 3

Biorthogonal decomposition of
L2(IR)

This chapter introduces the biorthogonal multilevel decomposition of the space
L2(IR). This is essential for the construction of a multilevel decomposition of
spaces of functions defined on bounded domains, like the solutions to the NMTL
equations. This will be covered extensively in Chapter 4.

The construction of the scaling function and wavelet spaces is derived here
from a restricted set of hypotheses. We will see that the properties of the
decomposition are hidden in two sequences of real numbers which are denoted
filters in the wavelet literature. If these filters satisfy certain conditions, then
the multilevel decomposition, the approximation spaces, the canonical and the
hierarchical bases are uniquely determined. In the following, we will detail only
the main results, together with practical examples, and we will omit the proofs.
Additional details and proofs can be found e.g. in Refs. [20, 17].

3.1 The basic axioms

Let us consider two sequences of real numbers {hn} and {h̃n}, with n ∈ ZZ.
The four axioms from which the whole construction starts are the following:

M1. The two functions

m0(ξ) =
1√
2

∞∑

n=−∞
hne

−inξ, m̃0(ξ) =
1√
2

∞∑

n=−∞
h̃ne

−inξ, (3.1)

are 2π-periodic and belong to Cr with r ≥ 1;

M2. m0, m̃0 satisfy

m0(ξ)m̃0(ξ) +m0(ξ + π)m̃0(ξ + π) = 1, ∀ξ ∈ IR, (3.2)

35
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and
m0(0) = m̃0(0) = 1, m0(π) = m̃0(π) = 0. (3.3)

M3. m0, m̃0 have in ξ = π zeros of order L− 1 and L̃− 1 (≤ r), respectively,
i.e.

dlm0

dξl
(π) = 0 for each l ∈ IN with 0 ≤ l ≤ L− 1

(3.4)

dlm̃0

dξl
(π) = 0 for each l ∈ IN with 0 ≤ l ≤ L̃− 1.

Note that m0 e m̃0 can be factorized as

m0(ξ) =

(
1 + e−iξ

2

)L
F(ξ) e m̃0(ξ) =

(
1 + e−iξ

2

)L̃
F̃(ξ) (3.5)

where F , F̃ are 2π-periodic.

M4. there are two integers `, ˜̀> 0 such that, setting

max
ξ
|F(ξ) · ... · F(2`−1ξ)| = 2`τ max

ξ
|F̃(ξ) · ... · F̃(2

˜̀−1ξ)| = 2
˜̀̃τ (3.6)

we have 0 ≤ τ < L− 1
2
, 0 ≤ τ̃ < L̃− 1

2
. In the following we will set

σ = L− 1

2
− τ > 0 e σ̃ = L̃− 1

2
− τ̃ > 0 . (3.7)

The condition M1 simply states that the filters are the Fourier coefficients of
the functions m0 and m̃0. The condition M2 translates into the biorthogonality
of the multiresolution spaces that we are going to build. The condition M3 will
determine the properties of the approximation spaces, like the local reproduction
of algebraic polynomials. The condition M4 determines the regularity of the
basis functions for the approximation spaces, and determines consequently the
spaces of functions that can be characterized. The necessity for these conditions
will be cleared in the following sections. It should be noted that the orthogonal
case can be easily derived from this more general setting by choosing h̃m =
hm, ∀m. In this case, all the quantities with a tilde ˜ coincide with the same
quantities without tilde.

Some properties of the filters can be immediately derived from M2. We have
the following identities

∑

n

hnh̃n−2k = δk0 , ∀k ∈ ZZ, (3.8)

∑

n

hn =
∑

n

h̃n =
√
2 , (3.9)

∑

n

(−1)nhn =
∑

n

(−1)nh̃n = 0 . (3.10)
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3.2 Scaling function spaces in IR

The functions m0 and m̃0 defined in the foregoing section allow to introduce
the scaling functions ϕ and ϕ̃ in the Fourier domain,

ϕ̂(ξ) =
1√
2π

∞∏

j=1

m0(2
−jξ), ̂̃ϕ(ξ) =

1√
2π

∞∏

j=1

m̃0(2
−jξ). (3.11)

From these definitions we can immediately derive the basic relations





ϕ̂(2ξ) = ϕ̂(ξ)m0(ξ)

ϕ̂(0) = 1√
2π

and





̂̃ϕ(2ξ) = ̂̃ϕ(ξ)m̃0(ξ)

̂̃ϕ(0) = 1√
2π

(3.12)

that, when transformed back to the natural domain, lead to the well known
refinement equations for the scaling functions,





ϕ(x) =
√
2
∑

n∈ZZ
hnϕ(2x− n)

ϕ̃(x) =
√
2
∑

n∈ZZ
h̃nϕ̃(2x− n)

(3.13)

together with the normalization conditions
∫

IR
ϕ(x)dx = 1 e

∫

IR
ϕ̃(x)dx = 1. (3.14)

It can be shown that the Fourier transforms of the two scaling functions are of
class Cr on IR, and decay at infinity according to

|ϕ̂(ξ)| ≤ C(1 + |ξ|)−1/2−σ (3.15)

| ̂̃ϕ(ξ)| ≤ C(1 + |ξ|)−1/2−σ̃, (3.16)

where σ, σ̃ are the same as in M4. Therefore, recalling the characterization of
the Sobolev spaces in Eq. (9), we can immediately link the axiom M4 to the
regularity of the scaling functions through these two exponents. We obtain
ϕ ∈ Hs,∀s < σ and ϕ̃ ∈ Hs,∀s < σ̃. In addition, this fact insures that ϕ and
ϕ̃ belong to the Hilbert space L2(IR).

A biorthogonality relation can be derived from M2. More precisely, we have

〈ϕ, ϕ̃(· − k)〉 = δ0k. (3.17)

This means that the scaling function ϕ is orthogonal in L2(IR) to the integer
translates of the dual scaling function ϕ̃, except in the case k = 0.

Let us now introduce the translated and dilated versions of the scaling func-
tions, that we will indicate as

ϕjk(x) = 2j/2ϕ(2jx− k) and ϕ̃jk(x) = 2j/2ϕ̃(2jx− k) , (3.18)
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with k, j in ZZ. From Eq. (3.17) we see that the biorthogonality holds also at
any level j,

〈ϕjk, ϕ̃jl〉 = δkl. (3.19)

This implies that the sets {ϕjk | k ∈ ZZ} and {ϕ̃jk | k ∈ ZZ} are constituted
by linearly independent functions, and allows to introduce the approximation
spaces

Vj = spanL2(IR){ϕjk | k ∈ ZZ}, (3.20)

Ṽj = spanL2(IR){ϕ̃jk | k ∈ ZZ}. (3.21)

Note that it is possible to introduce the spaces Vj and Ṽj from V0 and Ṽ0 by
using the isometry Tj : L

2(IR)→ L2(IR) defined as

Tjf(·) = 2j/2f(2j·), ∀f ∈ L2(IR). (3.22)

We have then

Vj = TjV0

Ṽj = TjṼ0.

Moreover, it can be easily proved that the spaces Vj and Ṽj are generated by
linear combinations of the basis functions {ϕjk} and {ϕ̃jk}, with coefficients in
`2, and that these bases are uniformly 2-stable,

Vj =

{∑

k

αkϕjk | {αk} ∈ `2
}

(3.23)

C1‖{αk}‖`2 ≤ ‖
∑

k

αkϕjk‖L2(IR) ≤ C2‖{αk}‖`2 . (3.24)

This allows to show also that

v(x) ∈ Vj ⇐⇒ v(x− 2−jk) ∈ Vj ∀k ∈ ZZ (3.25)

v(x) ∈ Vj ⇐⇒ v(2−jx) ∈ V0 . (3.26)

In summary, using the biorthogonality relation (3.19), we have the represen-
tation of any element of Vj and Ṽj as a superposition of basis functions, with
coefficients obtained through inner products with the corresponding dual func-
tions,

v =
∑

k

〈v, ϕ̃jk〉ϕjk, ∀v ∈ Vj (3.27)

ṽ =
∑

k

〈ṽ, ϕjk〉ϕ̃jk, ∀ṽ ∈ Ṽj. (3.28)

In Section 2.2 we showed that the multilevel decompositions of spaces of
functions are based on sequences of incapsulated spaces, which characterize
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better and better approximations when the level j tends to infinity. The con-
struction of scaling functions and approximation spaces of this section provides
the framework in which a multilevel decomposition can be built. Indeed, the
approximation spaces Vj and Ṽj satisfy the embedding relations

Vj ⊂ Vj+1 , Ṽj ⊂ Ṽj+1

for all j ∈ ZZ. This is evident by restating the refinement equations (3.13) and
interpreting the right sides as functions of V1. At any level j we get

ϕjk =
∑

n

hn ϕj+1,2k+n, ϕ̃jk =
∑

n

h̃n ϕ̃j+1,2k+n. (3.29)

As introduced in the abstract setting, the approximation of any function
v ∈ V = L2(IR) at level j can be obtained through suitable projection operators.
It is natural to define these operators Pj : L2 → Vj and P̃j : L2 → Ṽj as

Pjv =
∑

k

〈v, ϕ̃jk〉ϕjk (3.30)

P̃jv =
∑

k

〈v, ϕjk〉ϕ̃jk. (3.31)

The resulting operators are linear, bounded, and satisfy the conditions (2.20)
and (2.21). Moreover, the projections are biorthogonal in the sense that

〈v − Pjv, ṽ〉 = 0 , ∀ṽ ∈ Ṽj (3.32)

〈ṽ − P̃j ṽ, v〉 = 0 , ∀v ∈ Vj (3.33)

The projection operators Pj and P̃j are the adjoints of each other, because

〈Pjv, ṽ〉 =
∑

k

〈v, ϕ̃jk〉〈ṽ, ϕjk〉 = 〈v, P̃j ṽ〉 . (3.34)

for all v, ṽ ∈ L2(IR). It can also be proved that the convergence for j → −∞
and j → +∞ holds for each v ∈ L2(IR),

{
Pjv → v

P̃jv → v
for j → +∞

{
Pjv → 0

P̃jv → 0
for j → −∞

Moreover, stronger conditions hold when the functions being analyzed are suffi-
ciently regular. As we are dealing with Hilbert spaces in this work, we will
mention here a particular form of a general result, the Jackson inequality,
which holds for more general Banach spaces like Besov spaces [17]. If the scal-
ing function ϕ belongs to a Sobolev space Hs0 , it can be shown that, for all
s < min(s0, L),

‖v − Pjv‖L2(IR) <∼ 2−js|v|Hs . (3.35)
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This means that the rate of convergence for the approximation Pjv as j increases
is of exponential type, and is controlled by the regularity index of the function
being analyzed, as long as the scaling functions are sufficiently regular.

It should be noted that in the orthogonal case the sequence of subspaces
Vj determines a Multiresolution Analysis (MRA) in the sense introduced by
Meyer [28] and Mallat [27], i.e., the following five conditions are veryfied,

1. · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · · ;

2.
⋂
j Vj = {0} ,

⋃
j Vj is dense in L2(IR);

3. for each v ∈ L2(IR) and j ∈ ZZ, v(x) ∈ Vj ⇐⇒ v(2x) ∈ Vj+1;

4. for each v ∈ L2(IR) and k ∈ ZZ, v(x) ∈ V0 ⇐⇒ v(x− k) ∈ V0;

5. there exists ϕ ∈ V0 such that {ϕ(· − k)}k∈ZZ is and orthonormal basis of
V0.

3.3 Wavelet spaces in IR

This section will introduce the wavelet spaces, following the same guidelines
of the abstract setting in Section 2.2. Recalling the definition of the detail
operators Qj (and similarly for the dual system Q̃j), in Eq. (2.22), we can

define the detail subspaces Wj and W̃j as

Wj := ImQj , and W̃j := Im Q̃j .

Using the additional biorthogonality properties listed in Section 3.2, we are led
to the decomposition

Vj+1 = Vj ⊕Wj Wj ⊥ Ṽj (3.36)

Ṽj+1 = Ṽj ⊕ W̃j W̃j ⊥ Vj . (3.37)

In other words, the detail spaces are such that

Wj = {v ∈ Vj+1 | 〈v, ṽ〉 = 0, ∀ṽ ∈ Ṽj} (3.38)

W̃j = {ṽ ∈ Ṽj+1 | 〈ṽ, v〉 = 0, ∀v ∈ Vj} (3.39)

We will now determine a basis for Wj and W̃j. Only the case for j = 0
needs to be explicitely studied, because we can obtain the spaces at any level
j through Wj = TjW0 and W̃j = TjW̃0, where Tj is the isometry defined in
Eq. (3.22). We omit here the proof that leads to the definition of the mother
wavelet and its dual in the Fourier domain,

ψ̂(ξ) = −e−iξ/2m̃0(ξ/2 + π)ϕ̂(ξ/2) (3.40)
̂̃
ψ(ξ) = −e−iξ/2m0(ξ/2 + π) ̂̃ϕ(ξ/2). (3.41)
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Passing to the natural domain through Fourier inversion we obtain

ψ(x) =
√
2
∑

n

gnϕ(2x− n) (3.42)

ψ̃(x) =
√
2
∑

n

g̃nϕ̃(2x− n) , (3.43)

where the filters gn and g̃n are defined as

gn = (−1)nh̃1−n and g̃n = (−1)nh1−n. (3.44)

We have then obtained two 2-stable bases for the detail spaces, which can be
characterized as

W0 =

{∑

k

αkψ(· − k) | {αk} ∈ `2
}

(3.45)

W̃0 =

{∑

k

αkψ̃(· − k) | {αk} ∈ `2
}

(3.46)

The biorthogonality of the approximation spaces V0, Ṽ0 with the detail spaces
W̃0 and W0, respectively, of Eqs. (3.36) and (3.37) can be restated in terms of
the basis functions as

〈ψ(· − k), ϕ̃(· − l)〉 = 0 ∀k, l ∈ ZZ (3.47)

〈ψ̃(· − k), ϕ(· − l)〉 = 0 ∀k, l ∈ ZZ , (3.48)

and in terms of the filters as

∑
n gnh̃n−2k = 0∑
n g̃nhn−2k = 0

∀k ∈ ZZ . (3.49)

We also have the following relation between the filters h, h̃, g, g̃,

∑

m

[hk−2mh̃n−2m + gk−2mg̃n−2m] = δkn, ∀k, n ∈ ZZ. (3.50)

In addition, the wavelet bases are biorthogonal, so that

〈ψ(· − k), ψ̃〉 = δ0k , ∀k ∈ ZZ , (3.51)

or equivalently ∑

n

gng̃n−2k = δ0k, ∀k ∈ ZZ. (3.52)

If we introduce, as usual, the wavelet functions at level j,

ψjk(x) = 2j/2ψ(2jx− k)

ψ̃jk(x) = 2j/2ψ̃(2jx− k) ,
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we obtain the following characterization for the detail spaces,

Wj = {
∑

k

αkψjk | {αk} ∈ `2} (3.53)

W̃j = {
∑

k

αkψ̃jk | {αk} ∈ `2}. (3.54)

The bases {ψjk | k ∈ ZZ} and {ψ̃jk | k ∈ ZZ} are 2-stable, and satisfy the more
general biorthogonality relation

〈ψjk, ψ̃j′l〉 = δjj′δkl , ∀j, j ′, k, k′ ∈ ZZ . (3.55)

As a consequence, we are able to express the detail operators Qj and Q̃j in
terms of the basis functions,

Qjv =
∑

k

〈v, ψ̃jk〉ψjk (3.56)

Q̃jv =
∑

k

〈v, ψjk〉ψ̃jk. (3.57)

The biorthogonal multilevel decomposition of L2(IR) is then simply expressed,
for any v ∈ L2(IR), as

v =
∑

j,k

〈v, ψ̃jk〉ψjk =
∑

j,k

〈v, ψjk〉ψ̃jk , (3.58)

with the stability condition

‖v‖L2(IR) ³

∑

j,k

|〈v, ψ̃jk〉|2


1/2

³

∑

j,k

|〈v, ψjk〉|2


1/2

. (3.59)

If we need to start the decomposition from a fixed level j0, as for multilevel
decompositions of bounded domains, we can use the approximation spaces Vj0
and Ṽj0 and add the wavelets for j ≥ j0, obtaining ∀v ∈ L2(IR)

v = Pj0v +
∑

j≥j0
Qjv =

∑

k

〈v, ϕ̃j0,k〉ϕj0,k +
∑

j≥j0

∑

k

〈v, ψ̃jk〉ψjk =

= P̃j0v +
∑

j≥j0
Q̃jv =

∑

k

〈v, ϕj0,k〉ϕ̃j0,k +
∑

j≥j0

∑

k

〈v, ψjk〉ψ̃jk . (3.60)

The stability condition (3.59) becomes then

‖v‖2L2(IR) ³ ||Pj0v||2 +

∑

j≥j0

∑

k

|〈v, ψ̃jk〉|2

 ³ ||P̃j0v||2 +


∑

j≥j0

∑

k

|〈v, ψjk〉|2

 .

(3.61)
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We can now give an explicit expression for the coefficients of the two-scale
analysis/synthesis described formally in Section 2.2. Using the canonical and
hierarchical basis for Vj+1 we have

v =
∑

k∈ZZ
v̆j+1,kϕj+1,k =

∑

k∈ZZ
v̆jkϕjk +

∑

k∈ZZ
v̂jkψjk , (3.62)

with v̆j+1,k = 〈v, ϕ̃j+1,k〉, v̆jk = 〈v, ϕ̃j,k〉, v̂jk = 〈v, ψ̃j,k〉. Equations (2.30)
and (2.31) become

ϕjm =
∑

k∈ZZ
hk−2mϕj+1,k , ∀m ∈ ZZ (3.63)

ψjm =
∑

k∈ZZ
gk−2mϕj+1,k , ∀m ∈ ZZ , (3.64)

while Eq. (2.32) reads

ϕj+1,k =
∑

m∈ZZ
h̃k−2mϕjm +

∑

m∈ZZ
g̃k−2mψjm , ∀k ∈ ZZ . (3.65)

Finally, the corresponding analysis and synthesis on the expansion coefficients
into the approximation and detail spaces become

v̆jm =
∑

k∈ZZ
h̃k−2mv̆j+1,k , ∀m ∈ ZZ , (3.66)

v̂jm =
∑

k∈ZZ
g̃k−2mv̆j+1,k , ∀m ∈ ZZ , (3.67)

v̆j+1,k =
∑

m∈ZZ
hk−2mv̆jm +

∑

m∈ZZ
gk−2mv̂jm , ∀k ∈ ZZ . (3.68)

3.3.1 Vanishing moments and polynomials reproduction

The preceding sections constructed sequences of nested subspaces of L2(IR) such
that the approximation error vanishes when a characteristic index j tends to
infinity. However, the question of “how good” is an approximation at a given
level j0 was not answered. In particular, we still do not know how many levels
need to be included in the approximation to get a small error. The answer to
this question is hidden in the property M3 of Section 3.1. It can be proved
that this condition is equivalent to the property of the local reproduction of
all polynomials of degree up to L − 1 (and L̃ − 1 for the dual system). More
precisely, if we denote with IP L−1 the set of polynomials of degree at most L−1,
we can prove that M3 is equivalent to the two conditions

• the functions {ϕ(x− k)}k∈ZZ generate IPL−1 on IR;

• ∫IR xlψ̃(x)dx = 0, 0 ≤ l ≤ L− 1.
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The first condition insures that at a fixed x any polynomial p(x) can be obtained
as p(x) =

∑
k ckϕ(x − k) for a suitable choice of coefficients ck. Note that the

second condition represents a direct link between approximation properties of
the spaces Vj and the number of vanishing moments of the dual wavelet ψ̃. With
obvious substitutions the same facts apply for the dual system. Of course, the
integrals representing the moments of order l must converge. This requires a
sufficient fast decay of the wavelet functions for |x| → ∞. This is insured when
the wavelets are compactly supported.

3.3.2 Compactly supported wavelets

The use of compactly supported wavelets is of great interest under both a theo-
retical and practical standpoint. On one hand they allow to characterize spaces
of functions like Lp and Besov spaces, which are far more general than L2

or Sobolev spaces [16]. On the other hand, multiresolution decompositions
based on compactly supported scaling functions and wavelets can be extended
to bounded domains, as we will show in Chap. 4.

The compactness of the support for scaling functions and wavelets can be
obtained by imposing a finite length for the filters hn and h̃n. Let us assume
that the functions m0 and m̃0 are trigonometric polynomials

m0(ξ) =
1√
2

n1∑

n=n0

hne
−inξ , m̃0(ξ) =

1√
2

ñ1∑

n=ñ0

h̃ne
−inξ. (3.69)

This means that the refinement equations can be expressed as

ϕ(x) =
√
2

n1∑

n=n0

hnϕ(2x− n) (3.70)

ϕ̃(x) =
√
2

ñ1∑

n=ñ0

h̃nϕ̃(2x− n) . (3.71)

From these expression we see that

supp ϕ ⊆ [n0, n1], supp ϕ̃ ⊆ [ñ0, ñ1].

It can be shown that the support of the scaling functions is indeed exactly

supp ϕ = [n0, n1], supp ϕ̃ = [ñ0, ñ1], (3.72)

and that their polynomial order is such that L ≤ n1 − n0 − 1. Only upper
bounds for the supports of the wavelets can be obtained without imposing
further conditions on n0, n1, ñ0, and ñ1. We have

supp ψ ⊆ [ν0, ν1] supp ψ̃ ⊆ [ν̃0, ν̃1], (3.73)
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where

ν0 =
1

2
[1− (ñ1 − n0)], ν1 =

1

2
[1 + (n1 − ñ0)],

ν̃0 =
1

2
[1− (n1 − ñ0)], ν̃1 =

1

2
[1 + (ñ1 − n0)].

3.4 Examples of wavelets

We give in this section a few examples of orthogonal and biorthogonal wavelets
which satisfy the basic axioms M1-M4 of Section 3.1 and therefore lead to
multilevel decompositions of L2(IR). Many examples of different wavelets can
be found in the literature, and a complete list would be difficult to provide.
Therefore, only three types of wavelets will be described in the following. The
Haar system, the Daubechies wavelets, and the biorthogonal splines wavelets.

3.4.1 The Haar wavelets

The Haar system constitutes the simplest case of orthogonal decomposition of
L2(IR) (see Section 2.1). Being an orthogonal system, the dual spaces and basis
functions coincide with the primal ones, so only the filter h needs to be specified.
Let us define

m0(ξ) = m̃0(ξ) =
1 + e−iξ

2
. (3.74)

This leads to the filter

hn =

{
1√
2

n = 0, 1,

0 otherwise.
(3.75)

It is straightforward to verify that the axioms M1-M4 are satisfied, with L = 1
and a regularity exponent σ = 1/2. From Eq. (3.11), we get the expression for
the scaling function in the Fourier domain,

ϕ̂(ξ) =
1√
2π

1− e−iξ

iξ
, (3.76)

that when transformed back to the natural domain leads to

ϕ(x) =

{
1 if 0 ≤ x < 1,
0 otherwise.

(3.77)

This is nothing else than the indicator function of the unit interval, ϕ = χ[0,1).
The corresponding wavelet can be determined from Eq. (3.40), obtaining

ψ̂(ξ) =
1√
2π

1

iξ
(1− 2e−iξ/2 + e−iξ) (3.78)
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Figure 3.1: Haar scaling function (left panel) and wavelet (right panel).

in the Fourier domain, and

ψ(x) =




1 if 0 ≤ x < 1/2 ,
−1 if 1/2 ≤ x < 1 ,
0 otherwise

(3.79)

Figure 3.1 shows the Haar scaling function and wavelet. As these functions are
not regular, their approximation properties are not very good. It is then natural
to generalize the Haar system to more regular wavelets, which can reproduce
polynomials of higher degree. This can be done in many ways. If we want to
keep the support compact for scaling functions and wavelets, we are forced to
use the Daubechies systems for orthonormal decompositions. More flexibility,
however, is provided by biorthogonal systems, like the B-splines, which are
characterized by useful symmetry properties.

3.4.2 The Daubechies wavelets

The Daubechies wavelets form an orthogonal system. The basis functions have
a compact support and are characterized by more regularity than the Haar
functions. The regularity can be parameterized, and the support increases with
the regularity. This explains the great popularity that these wavelets are having
in the literature. The disadvantages of these systems are that scaling functions
and wavelets are not known in closed form, but can only be generated through
iterative algorithms. Moreover, they are not symmetric around the center ot
their support.

We do not give here the details of their construction (see Ref. [23]). Basically,
the scaling functions are constructed from a trigonometric polynomial function
m0(ξ), which is built so that the property M2 is satisfied. Figure 3.2 shows
the scaling functions and wavelets for different values of L ranging from 2 to 6.
The case L = 1 is exactely the Haar system. Note that the regularity and the
support increase with L. The regularity index σ can be evaluated numerically
and is reported in Table 3.1 for the first values of L.
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L 2 3 4 5 6
σ 0.84 1.14 1.41 1.68 1.91

Table 3.1: Regularity index for the Daubechies scaling functions

3.4.3 Biorthogonal spline wavelets

The biorthogonal spline wavelets generalize the Haar system to higher approxi-
mation order and regularity. As the Haar scaling functions can only reproduce
polynomials of degree 0, i.e. constants, the B-spline scaling functions can repro-
duce locally polynomials of any fixed degree L− 1. In addition, these wavelets
are symmetric with respect to the center of their support. This cannot be
achieved with orthogonal systems like the Daubechies’ wavelets. Indeed, to
achieve symmetry the orthogonality conditions must be “relaxed” to the more
general biorthogonality conditions. We will show in Chapter 4 that symmetry is
a fundamental requirement for the construction of wavelets on the unit interval,
because it allows to avoid different constructions at the edges of the domain.

We recall that the B-spline of order l is obtained through l convolutions of
the box function χ[0,1), through

χ∗l[0,1) = χ[0,1) ∗ · · · ∗ χ[0,1)︸ ︷︷ ︸
l convolutions

(3.80)

It has compact support in [0, l + 1) and is expressed in any interval [m,m+ 1)
as a polynomial of degree l. As these functions are symmetric with respect to
the center of their support, it is convenient to translate them to have the center
in 0 for l odd and in 1/2 for l even. Let us set then

Φl(x) = χ∗l[0,1)

(
x+

⌊
l + 1

2

⌋)
. (3.81)

This will be the primal scaling function for the biorthogonal system.
We can easily see that the function m0(ξ) of axiom M1 is expressed as

m0,l(ξ) = eib l+12 cξ
(
1 + e−iξ

2

)l+1

(3.82)

=





(cos ξ/2)l+1 for l odd,

e−i
ξ
2 (cos ξ/2)l+1 for l even.

From this expression we see that, setting L = l+1, we obtain a regularity index
σ = L − 1/2. Therefore, both the polynomial reproduction and the regularity
of the primal scaling functions increase with L.
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Figure 3.2: Daubechies scaling functions (left column) and wavelets (right column)

for different values of L ranging from 2 (top) to 6 (bottom).

As the integer translates of the primal scaling function are not orthogonal,
we need to construct a dual scaling function so that its integer translates are
biorthogonal to Φl(x). Again, we skip the details of the derivation (see Ref. [20]),
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L L̃ σ̃
2 2 0.18
2 4 0.87
2 6 1.33
2 8 1.85
3 5 0.33
3 7 0.85
4 8 0.32

Table 3.2: Regularity index σ̃ of biorthogonal spline dual scaling functions, for some

pairs L, L̃.

and we show some examples. The dual functions can be determined by finding
solutions to M2. It is obvious that the solution is not unique, because the
function m̃0(ξ) can be chosen with an arbitrary number of zeros in ξ = π.
However, once this number L̃ has been fixed, it can be proved that there is a
unique solution of minimal degree (i.e. minimal length of the dual filter). This
solution is

m̃0(ξ) = e−jrξ/2 (cos ξ/2)L̃
[
k−1∑

n=0

(
k − 1 + n

n

)
(sin ξ/2)2n

]
,

where 2k = L + L̃ and r = rem(L, 2). This holds only when L̃ ≥ L and L̃ + L
is even. In summary, once L has been chosen, a corresponding L̃ ≥ L must be
chosen, with the same parity as L. Then, the filter h̃ is uniquely determined.
The length of the filters h and h̃ can be explicitely calculated in terms of L and
L̃, obtaining

n0 = −
⌊
L

2

⌋
, n1 =

⌈
L

2

⌉
, ñ0 = −

⌊
L

2

⌋
− L̃+ 1 , ñ1 =

⌈
L

2

⌉
+ L̃− 1 .

Table 3.2 shows the regularity index σ̃ for the first pairs L, L̃, while Fig. 3.3
shows examples of primal and dual scaling functions and wavelets.
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Figure 3.3: Biorthogonal splines for L = 2 and L̃ = 2, 4, 6, 8: primal scaling function

(top panel), dual scaling function (left column), primal wavelet (middle column) and

dual wavelet (right column).
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Figure 3.3: (continued). Biorthogonal splines for L = 3 and L̃ = 5, 7, 9, 11.



52 Biorthogonal decomposition of L2(IR)

ϕ(x), L = 4
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Figure 3.3: (continued). Biorthogonal splines for L = 4, L̃ = 8, 10, 12, 14.



Chapter 4

Biorthogonal decomposition on
bounded domains

This chapter focuses on the construction of biorthogonal multilevel decompo-
sitions on bounded domains. The need for this construction stems from the
finite length of all NMTL structures. Clearly, if we want to use wavelet bases
to numerically solve the NMTL equations, these bases must be defined on a
bounded interval of the real line. It is obviously not possible to use directly the
scaling function and the wavelet systems described in Chapter 3, because these
bases are inherently translation invariant on IR.

The problem of an efficient and stable construction of wavelets on bounded
domains is fundamental for the numerical solution of differential or integral
equations stemming from many fields of application. For this reason, several
papers are appearing in the literature about this subject. The reader is referred
to the references [33]-[38]. In our derivation, we will follow the guidelines of
the construction in Refs. [17, 25], although the main point for all the most
recent constructions is the same, namely the preservation of the polynomial
approximation properties at the edges of the domain.

The starting point in our construction is the biorthogonal decomposition
of L2(IR) already described in Chapter 3. The aim is to preserve as much as
possible the properties of the decomposition on the real line, and to modify the
scaling functions and wavelet spaces only near the edges of the domain. Only
a few basis functions of these spaces will need to be re-defined. The procedure
illustrated in the following sections allows to preserve the approximation prop-
erties (i.e. the local generation of all the polynomials up to a certain degree)
and the 2-stability.

As we will be dealing with bounded domains, it is convenient to start with
finite length filters h = {hn}n1n=n0 and h̃ = {h̃n}ñ1n=ñ0 , with n0, ñ0 ≤ 0 and
n1, ñ1 ≥ 0. This insures that both the scaling functions ϕ, ϕ̃ and the wavelets
ψ, ψ̃ have compact support (see Section 3.3.2).

The following sections will use extensively the results of Chapter 3. We will

53



54 Biorthogonal decomposition on bounded domains

start with the simplest case, the half line [0,+∞), and we will construct approx-
imation spaces Vj, Ṽj, wavelet spacesWj, W̃j, and corresponding 2-stable bases.
Even if this domain is bounded only on one side, all the aspects in the treatment
of the edges must be dealt with. We will see in Sec. 4.4 that the construction on
the unit interval [0, 1] can be derived from the construction on [0,+∞) through
little modifications. Finally, Sec. 4.5 introduces the nonlinear approximations
that will be used in next chapter to construct adaptive numerical schemes for
the solution of the NMTL equations.

4.1 Scaling function spaces in IR+

This section will show how a sequence of nested approximation spaces Vj(IR
+)

and Ṽj(IR
+) can be constructed from the biorthogonal system already described

in Chapter 3. To avoid ambiguity, a suffix IR will be appended to all the scaling
functions defined on the real line. Also, this notation will be used for all the
functions defined on IR and vanishing for x < 0. The domain of definition of
these functions can also be interpreted to be IR+ with a slight abuse of notation.
It will be assumed that all the functions without this suffix are intrinsically
defined on IR+. The primal decomposition spaces will be described in detail,
while only the main results will be given for the dual spaces.

The phylosophy underlying this construction is to localize the differences
between the approximation spaces on IR and IR+ around the edge x = 0. This
will allow to use most of the basis functions ϕIRjk and ϕ̃IRjk to generate Vj(IR

+)

and Ṽj(IR
+). We will detail our construction for the scale j = 0, because the

approximation spaces at any scale j can be generated from the spaces at scale
0 by using the isometry Tj already introduced in Eq. (3.22).

From the definitions in Eq. (3.72) we can determine the support of the
dilated scaling functions

supp ϕIR0k = [n0 + k, n1 + k].

Therefore the functions characterized by k ≥ −n0 have the support included in
[0,+∞). Our construction will preserve the scaling functions having support in
[δ,+∞), with δ integer, δ ≥ 0. The corresponding value of k will be denoted by

k∗0 = min{k ∈ ZZ : supp ϕ0k ⊂ [δ,+∞)} = −n0 + δ.

This will determine a corresponding subspace that will be left unchanged,

V (+) = span {ϕIR0k : k ≥ k∗0} . (4.1)

This space clearly corresponds to a subspace of V0(IR).
The scaling function space V0(IR

+) will be obtained from V (+) by adding
some border functions in a finite number. The criterion to build these additional
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functions will be the preservation of the approximation properties of the scaling
function spaces on IR, i.e., the space IP L−1 of the polynomials of degree at
most L − 1 will be locally reproduced. Let {pα : α = 0, . . . , L − 1} be a basis
for IPL−1. Without loss of generality we will use the basis of monomials, i.e.,
pα = xα. Different choices will be discussed in the following sections. Each
element of the basis can be represented for x ≥ 0 as

pα(x) =
∑

k≥−n1+1

cαkϕ
IR
0k(x)

=
k∗0−1∑

k=−n1+1

cαkϕ
IR
0k(x) +

∑

k≥k∗0
cαkϕ

IR
0k(x), (4.2)

where
cαk = 〈pα, ϕ̃IR0k〉 =

∫

IR
yαϕ̃(y − k)dy, α = 0, . . . , L− 1. (4.3)

As the second sum in Eq. (4.2) belongs to V (+), the reproduction of polyno-
mials on IR+ will be mantained if we choose as border functions the linear
combinations

θα(x) =
k∗0−1∑

k=−n1+1

cαkϕ
IR
0k(x), x ≥ 0, α = 0, . . . , L− 1. (4.4)

It can be proved that, as L ≤ n1−n0−1, the functions θα, α = 0, . . . , L−1 are
linearly independent, and also that the two sets of functions θα, α = 0, . . . , L−1,
and ϕIR0k , k ≥ k∗0, are linearly independent. It is then natural to define

V0(IR
+) = span {θα : α = 0, . . . , L− 1} ⊕ V (+). (4.5)

The same definition can be given for the dual space,

Ṽ0(IR
+) = span {θ̃β : β = 0, . . . , L̃− 1} ⊕ Ṽ (+),

where

θ̃β(x) =
k̃∗0−1∑

k=−ñ1+1

c̃βkϕ̃
IR
0k(x), x ≥ 0, β = 0, . . . , L̃− 1 (4.6)

and
c̃βk = 〈pβ, ϕIR0k〉 =

∫

IR
yβϕ(y − k)dy, β = 0, . . . , L̃− 1. (4.7)

Let us set now

k∗ = max{k∗0, k̃∗0} = max{−n0 + δ,−ñ0 + δ̃}. (4.8)

From this point on, without loss of generality, we will set L̃ ≥ L, such as in the
B-spline case. Under this assumption, we have k∗ = k̃∗0 = −ñ0 + δ̃. The scaling
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function spaces at level 0 will then have the form

V0(IR
+) = span

{
{θα : α = 0, . . . , L− 1} ∪ {ϕIR0k : k = k̃∗0, . . . , k

∗ − 1}
∪{ϕIR0k : k ≥ k∗}

}
(4.9)

Ṽ0(IR
+) = span

{
{θ̃β : β = 0, . . . , L̃− 1} ∪ {ϕ̃IR0l : l ≥ k∗}

}
.

From the biorthogonal decomposition on the real line we know that the last sets
of functions in the expressions above are biorthogonal. These define the sets of
scaling functions that are not modified by the construction,

V I
0 = span {ϕIR0k : k ≥ k∗}
Ṽ I
0 = span {ϕ̃IR0l : l ≥ k∗}.

The biorthogonality of the border functions has instead been destroyed by the
construction procedure. It is necessary then to perform a change of basis for
the border sets

V B
0 = span

{
{θα : α = 0, . . . , L− 1} ∪ {ϕIR0k : k = k̃∗0, . . . , k

∗ − 1}
}
,

Ṽ B
0 = span {θ̃β : β = 0, . . . , L̃− 1}.

This is only possible when the dimensions of these two spaces match, with
dimV B

0 = dim Ṽ B
0 = L̃. This leads to a relation between the constants δ and δ̃,

δ̃ − δ = L̃− L+ ñ0 − n0. (4.10)

It is convenient to set δ̃ = 0, so that the number of modified border functions is
minimized. Also, it is required that δ < L, in order to preserve the linear inde-
pendence of the basis functions. Note the difference between the spaces labeled
V I
0 and V

(+)
0 . The latter includes also some of the primal scaling functions on

the real line with support in IR+ that are “shifted” into the space V B
0 . This is

only needed for the biorthogonalization procedure, that requires the dimension
of V B

0 to be L̃.
Let us now relabel the primal and dual basis functions as

θ0k =

{
θk k = 0, . . . , L− 1,
ϕIR0,k∗0+k−L k ≥ L,

(4.11)

θ̃0k =

{
θ̃k k = 0, . . . , L̃− 1,

ϕ̃IR
0,k∗+k−L̃ k ≥ L̃.

(4.12)

This notation leads to the simplified expressions

V I
0 = span {θ0k : k ≥ L̃} , Ṽ I

0 = span {θ̃0k : k ≥ L̃}
V B
0 = span {θ0k : 0 ≤ k < L̃} , Ṽ B

0 = span {θ̃0k : 0 ≤ k < L̃}.
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The final decomposition is obtained through biorthogonalization. From the re-
sults on the real line we have that V I

0 ⊥ Ṽ I
0 , V

B
0 ⊥ Ṽ I

0 , and V
I
0 ⊥ Ṽ B

0 . Therefore
we only need to biorthogonalize the border spaces. We need to determine new
basis sets

ϕ0k′ =
L̃−1∑

k=0

dk′kθ0k, ϕ̃0l′ =
L̃−1∑

l=0

d̃l′lθ̃0l (4.13)

such that
〈ϕ0k, ϕ̃0l〉 = δkl, k, l = 0, . . . , L̃− 1.

This is equivalent to finding two real matrices D and D̃ such that

DXD̃T = I, (4.14)

where X is the Gramian matrix

Xkl = 〈θ0k, θ̃0l〉, ∀k, l = 0, . . . , L̃− 1. (4.15)

Although there is no general result stating the invertibility of the matrx X, it
can be proved that this matrix is non-singular at least in the B-spline case. The
solution of Eq. (4.14) is obviously not unique. It is possible, for example, to
preserve the primal functions by setting D = I, and solving for the dual system
obtaining D̃ = (X−1)T .

In summary, whatever be the choice of the matrices D and D̃, we have
constructed two different bases for V0(IR

+) and Ṽ0(IR
+). The pair of basis sets

indicated with {θ0k, θ̃0k, k ≥ 0} are not biorthogonal in the first L̃ functions,
while the sets {ϕ0k, ϕ̃0k, k ≥ 0}, obtained by setting ϕ0k = θ0k and ϕ̃0k = θ̃0k
for k ≥ L̃, are fully biorthogonal.

Section 4.1.1 shows how a modified refinement equation for the scaling func-
tions on IR+ can be derived, while Section 4.1.2 details the calculation of the
Gramian matrix X. A particular choice of the biorthogonalization matrices D
and D̃ preserving the boundary values of the scaling functions will be derived
in Section 4.1.3.

4.1.1 The refinement equation

Let us consider the primal system {θ0α, α ≥ 0} before the biorthogonalization.
There are two cases α ≥ L and α < L, which must be studied separately.

Case α ≥ L. In this case we can adapt the refinement equation (3.70) for the
corresponding functions on the real line,

θ0α(x) = ϕIR0,k∗0+α−L(x) =
∑

m

hm−2(k∗0+α−L)ϕ
IR
1m. (4.16)

This is possible because ϕIR1m ∈ V
(+)
1 = T1V

(+)
0 for all the values of m in

the sum.
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Case α < L. As in this case θ0α = θα, for x ≥ 0 we have, according to Eq. (4.2)
and (4.3),

xα = θα +
∑

k≥k∗0
cαkϕ

IR
0k. (4.17)

Evaluating this expression in 2x and multiplying for 21/2 we get

2α+1/2xα = 21/2θα(2x) + 21/2
∑

k≥k∗0
cαkϕ

IR
0k(2x)

= θ1α(x) +
∑

k≥k∗0
cαkϕ

IR
1k.

Substituting again the expression (4.17) for xα, we find

θ0α = 2−α−1/2


θ1α +

∑

k≥k∗0
cαkϕ

IR
1k


−

∑

k≥k∗0
cαkϕ

IR
0k

= 2−α−1/2


θ1α +

∑

k≥k∗0
cαkϕ

IR
1k


−

∑

k≥L
cα,k∗0+k−Lθ0k

Using the refinement equation (4.16) for ϕ0k, k ≥ L, we have

θ0α = 2−α−1/2θ1α +
∑

k≥k∗0
Hαkϕ

IR
1k,

where
Hαk = 2−α−1/2cαk −

∑

l≥k∗0
cαlhk−2l, α < L. (4.18)

In summary, collecting the two cases, we can write

θ0α = Hααθ1α +
∑

k≥k∗0
Hαkϕ

IR
1k, (4.19)

where

Hαα =

{
2−α−1/2 α = 0, . . . , L− 1,
0 α ≥ L,

(4.20)

Hαk =

{
2−α−1/2cαk −

∑
l≥k∗0 cαlhk−2l, α = 0, . . . , L− 1,

hk−2(k∗0+α−L) α ≥ L.
(4.21)

This refinement equation shows that each border function at level 0 can be
expressed in terms of the corresponding border function at level 1 plus a suitable
linear combination of the internal functions. The final refinement equation for
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the scaling functions in V0(IR
+) can be obtained by applying the definition in

Eq. (4.11) to the functions at level 1,

θ0α = Hααθ1α +
∑

k≥k∗0
Hαkθ1,k+L−k∗0

= Hααθ1α +
∑

l≥L
Hα,k∗0+l−Lθ1l.

This refinement equation can be written in a more compact form by intro-
ducing the (infinite) filtering matrix H 6 defined as

θ0k =
∑

l≥0
H 6klθ1l, ∀k ≥ 0. (4.22)

The structure of this matrix can be easily visualized as

H 6 =

Hαα Hα,k∗0+l−L

h

h
h

δL

The L×L diagonal block in the upper left corner is due to the choice of mono-
mials as the basis for IPL−1. This block is not diagonal for other choices of basis
sets. Note that the number of columns N ′ with nonzero entries in the first L
rows can be exactely determined from Eq. (4.18) by imposing the limits n0, n1
for the filter h. The result is N ′ = n1 + L + k∗0 − 1. The rows starting from
L consist simply of translations of the filter h. The offset of two adjacent rows
is 2, while the first nonzero entry in row L corresponds to column L + δ (the
indexing of this matrix starts from 0).

The dual filter has a similar structure, with a L̃ × L̃ diagonal block in the
upper left corner, a number of nonzero entries in the first L̃ rows equal to
N ′ = n1 + L̃+ k∗− 1, and L̃+ δ̃ zeros in row L̃. The matrix is visualized in the
picture below.

H̃ 6 =

H̃αα H̃
α,k∗+l−L̃

h̃
h̃

h̃

δ̃L̃
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Let us derive now the refinement equation for the biorthogonal basis set ϕ0α.
As the biorthogonalization process involves only the first L̃ functions, we must
distinguish the two cases α < L̃ and α ≥ L̃.

• α < L̃. In this case we can use the matrixD to express ϕ0α as a linear com-
bination of the non biorthogonal basis functions, according to Eq. (4.13).
Then, we can apply the refinement equation in the non biorthogonal case,
by using Eq. (4.22). Note that if we consider only the first L̃ rows, the
upper limit in the sum is finite. Let us call it N − 1. This limit can be
easily determined, obtaining N = L̃+ k∗ + n1 − 1. We have

θ0s =
N−1∑

l=0

H 6slθ1l, ∀s < L̃. (4.23)

Finally, we express each function ϕ1l as a combination of the biorthogonal
functions,

θ1l =

{ ∑L̃−1
r=0 [D

−1]lrϕ1r if l < L̃,

ϕ1l if l ≥ L̃.

This can be expressed in a compact form as

θ1l =
L̃−1∑

r=0

[Da]lrϕ1r,

where the N ×N matrix Da is defined as

Da =

[
D−1 0
0 I

]
.

Putting all together we have, for α < L̃,

ϕ0α =
N−1∑

r=0




L̃−1∑

s=0

N−1∑

l=0

DksH 6sl[Da]lr



ϕ1r

=
N−1∑

r=0

H0
αrϕ1r, (4.24)

where the matrix H0 is simply the product of the three matrices D, H 6
(the upper L̃×N block) and Da.

• α ≥ L̃. In this case we do not need to change basis because we already
have ϕ0α = θ0α. Therefore, the refinement equation does not change from
Eq. (4.16). After substitution of the correct limits in the sum, obtained
from the support of the filter h, we have

ϕ0α =
n1+k∗0+2α−L∑

m=δ+2α−L
hm−2α+L−k∗0ϕ1m. (4.25)
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Putting the two cases together, we can restate the equations (4.24) and (4.25)
in compact form as

ϕ0α =
∑

m≥0
H⊥αmϕ1m, (4.26)

where the structure of the matrix H⊥ can be visualized as

H⊥ =

H0
αr

h
h

h

2L̃− L+ δ

The number of nonzero entries in the first L̃ rows is N = L̃+ k∗ + n1 − 1.
The construction of the dual biorthogonal scaling function filter H̃⊥ follows

the same guidelines as for the primal filter, with the only difference that no in-
ternal dual scaling functions must be added for the biorthogonalization process.
As a result, the dual biorthogonal scaling function filter matrix has the same
structure as the non-biorthogonal one. In particular, the number of nonzero
entries in the first L̃ rows is N = L̃+k∗+n1−1. The matrix is depicted below,

H̃⊥ =

H̃0
αr

h̃

h̃
h̃

L̃+ δ̃

4.1.2 The Gramian matrix X

We turn now to the actual calculation of the Gramian matrix elements Xαβ =
〈θ0α, θ̃0β〉, which is necessary for the biorthogonalization of the border scaling
functions. Let us recall that due to the assumption L̃ ≥ L, from Eq. (4.12),
we have θ̃0β = θ̃β. Using the definition in Eq. (4.6) and the property of the
reproduction of polynomials, we have

θ̃0β = xβ −
∑

k≥k∗
c̃βkϕ̃

IR
0k.

The expression for the matrix elements becomes then

Xαβ = 〈θ0α, xβ〉 −
∑

k≥k∗
c̃βk〈θ0α, ϕ̃IR0k〉. (4.27)
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We will show in the following that the terms in the summation above are iden-
tically zero, so that the evaluation of the matrix X reduces to the computation
of the moments of the primal scaling functions.

Using Eq. (4.11), we see that

〈θ0α, ϕ̃IR0k〉 =
{ 〈θα, ϕ̃IR0k〉 α = 0, . . . , L− 1

〈ϕIR0,k∗0+α−L, ϕ̃
IR
0k〉 α = L, . . . , L̃− 1.

(4.28)

The second row in the preceding expression vanishes identically due to the
biorthogonality of the scaling functions on the real line. Indeed, when α < L̃−1
we have k∗0 +α−L < k∗, and the inner product evaluates to 〈ϕIR0,k∗0+α−L, ϕ̃

IR
0k〉 =

δk∗0+α−L,k = 0 for k ≥ k∗. It is easily shown that also the first row in Eq. (4.28)

vanishes. Recalling that supp {ϕ̃IR0k, k ≥ k∗} ⊆ [δ̃,+∞), we can notice that
the restriction to positive values of x in the definition of θα (Eq. (4.4)) is not
necessary for the evaluation of the inner product. Therefore, when α < L, we
have

〈θα, ϕ̃IR0k〉 = 〈
k∗0−1∑

l=−n1+1

cαl ϕ
IR
0l

∣∣∣
[0,+∞)

, ϕ̃IR0k〉

= 〈
k∗0−1∑

l=−n1+1

cαlϕ
IR
0l , ϕ̃

IR
0k〉

=
k∗0−1∑

l=−n1+1

cαlδkl = 0

because k ≥ k∗. We can conclude that the calculation of the Gramian matrix
X reduces to

Xαβ = 〈θ0α, θ̃0β〉 = 〈θ0α, xβ〉, α, β = 0, . . . , L̃− 1.

Let us now apply the refinement equation (4.19) to θ0α in the inner product.
We get

〈θ0α, xβ〉 = Hαα〈T1θ0α, xβ〉+
∑

k≥k∗0
Hαk〈ϕIR1k, xβ〉

= Hαα2
−β−1/2〈θ0α, xβ〉+

∑

k≥k∗0
Hαk2

−β−1/2〈ϕIR0k, xβ〉

The last passage is easily obtained through change of variable in the integrals.
Using now the definition of c̃βk (see Eq. (4.7)), we can write

Xαβ = 〈θ0α, xβ〉 =
2−β−1/2

1−Hαα2−β−1/2
∑

k≥k∗0
Hαkc̃βk.
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Note that the modified border filters Hαk are known once the cαk have been
evaluated. Therefore the elements of the matrix X can be expressed in terms of
the coefficients cαk and c̃βk, which are easy to evaluate because they are defined
through functions on the real line. Indeed we have

cαk =
∫

IR
xαϕ̃IR0k(x)dx =

∫

IR
(x+ k)αϕ̃(x)dx

=
α∑

m=0

(
α

m

)
kα−m

∫

IR
xmϕ̃(x)dx =

α∑

m=0

(
α

m

)
kα−mcm0. (4.29)

The value of cαk can therefore be evaluated for each k from the set of coefficients
with k = 0. These can be evaluated by applying the refinement equation to the
dual scaling function on IR,

cα0 =
∫

IR
xαϕ̃(x)dx =

ñ1∑

m=ñ0

h̃m2
1/2
∫

IR
xαϕ̃(2x−m)dx

=
ñ1∑

m=ñ0

h̃m2
−α−1/2

∫

IR
(x+m)αϕ̃(x)dx

=
ñ1∑

m=ñ0

h̃m2
−α−1/2

α∑

s=0

(
α

s

)
mα−s

∫

IR
xsϕ̃(x)dx

= 2−α−1/2
α∑

s=0

(
α

s

)


ñ1∑

m=ñ0

h̃mm
α−s


 cs0.

Recalling that
∑

m h̃m =
√
2, we obtain

cα0 =
2−α−1/2

1− 2−α

α−1∑

s=0

(
α

s

)


ñ1∑

m=ñ0

h̃mm
α−s


 cs0, α > 0. (4.30)

The evaluation of c00 is trivial because

c00 =
∫

IR
ϕ̃(x)dx = 1. (4.31)

In conclusion, Eq. (4.30) can be applied recursively to calculate cα0, ∀α > 0.

4.1.3 Boundary value preserving biorthogonalization

In the foregoing sections a set of modified border functions have been con-
structed for the primal and dual systems. These functions, θα and θ̃β respec-
tively, were derived from the basis of monomials of the spaces of polynomials
IPL−1 and IP

L̃−1. This basis is such that only the first monomial, i.e., the con-
stant, is different from zero in the point x = 0. All the others vanish when
evaluated in the origin. This property is obviously true also for the functions
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θα and θ̃β, of which only the two with α = 0 and β = 0 do not vanish in zero.

In general, the matrices D and D̃ in Eq. (4.14) do not necessarily preserve this
property for the biorthogonal basis functions ϕ0k, ϕ̃0k. This section shows how
the system (4.14) can be solved with the constraint that only one function for
the primal and only one for the dual system be nonvanishing in x = 0.

The procedure is based on two steps. First, all the functions except the first
are biorthogonalized. Second, a border function is added for the primal and
dual system so that they are biorthogonal to the rest of the basis functions.
The two steps are now examined in further detail.

Let us partition the matrices X, D and D̃ by extracting the first row and
column,

X =

[
X0 Xr

Xc X1

]
D =

[
D0 Dr

Dc D1

]
D̃ =

[
D̃0 D̃r

D̃c D̃1

]
. (4.32)

The suffix 0 indicates scalars, r stands for a row vector of length L̃ − 1 and

c stands for a column vector of length L̃ − 1. The matrices with the suffix

1 are square with dimension L̃ − 1, and link quantities that involve all the
basis functions except the first. The biorthogonalization of the sets {θ0k, k =
1, . . . , L̃− 1}, {θ̃0k, k = 1, . . . , L̃− 1} corresponds to finding two real matrices
D1 and D̃1 satisfying

D1X1D̃
T
1 = I.

In the following we will suppose that these matrices have already been deter-
mined. The rest of the biorthogonalization does not depend on a particular
choice for D1 and D̃1. As a result, we get two sets of biorthogonal functions
{ϕ0k, k = 1, . . . , L̃ − 1}, {ϕ̃0k, k = 1, . . . , L̃ − 1} spanning the same space of
the corresponding non biorthogonal functions.

We add now two new functions θ00 and θ̃00, with the only constraint that
they are independent from the others. This is obviously true for the basis of
monomials, for which these new border functions are identically equal to 1.
We want to define two new functions ϕ00 and ϕ̃00 that satisfy the following
conditions,

〈ϕ00, ϕ̃0s〉 = 0 for s > 0 (4.33)

〈ϕ̃00, ϕ0s〉 = 0 for s > 0 (4.34)

〈ϕ00, ϕ̃00〉 = 1 (4.35)

Let us write the new border functions as

ϕ00 = α0θ00 +
L̃−1∑

s=1

αsϕ0s, ϕ̃00 = β0θ̃00 +
L̃−1∑

s=1

βsϕ̃0s. (4.36)

Substituting these expressions in (4.33) and (4.34) we obtain,
{
αs = −α0〈θ00, ϕ̃0s〉,
βs = −β0〈θ̃00, ϕ0s〉,

∀s = 1, . . . , L̃− 1. (4.37)
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Substituting now Eq. (4.36) in Eq. (4.35) and using Eq. (4.37) we get, after a
straithgforward calculation,

α0β0K = 1, (4.38)

where

K = 〈ϕ00, ϕ̃00〉 −
L̃−1∑

s=1

〈θ00, ϕ̃0s〉〈θ̃00, ϕ0s〉. (4.39)

If we define now the column vectors

α =




α1
...

α
L̃−1


 , β =




β1
...

β
L̃−1


 ,

we can express the solution in a matrix form,

α = −α0D̃1X
T
r

β = −β0D1Xc

K = X0 −XrD̃
T
1D1Xc.

Note that there is still one degree of freedom, i.e. the ratio between α0 and β0.
Once this is fixed, both α0 and β0 are uniquely determined by Eq. (4.38), and
so are the other coefficients.

Finally, the remaining blocks of the matrices D and D̃ can be determined.
Using their definition in Eq. (4.13) we obtain





Dr = αTD1

Dc = 0
D0 = α0





D̃r = βT D̃1

D̃c = 0

D̃0 = β0.

(4.40)

4.1.4 Other polynomial bases

The construction of the border scaling functions is based on a particular choice
of basis set for the polynomials to be reproduced. The construction in the
foregoing sections was performed using the basis of monomials pα due to its
simplicity. On the other hand, it is well known that the basis of monomials
often leads to ill-conditioned problems and loss of accuracy in the evaluation of
related quantities. This fact occurs also in the present construction of the border
scaling functions. In particular the condition number of the biorthogonalization
matrix X grows very large when L and L̃ increase. Therefore, the gain in
accuracy due to better approximation spaces is “spoiled” by the ill-conditioned
biorthogonalization.

These problems could be partially avoided by using different bases for the
polynomial spaces IPL−1 and IP

L̃−1. In this section we list the expressions
for the basic quantities introduced in the construction of the scaling function
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spaces when a different polynomial basis is chosen. Their derivation requires
a few straightforward passages, and is not detailed here. In addition, only the
primal quantities are listed, because the dual case can be recovered through
obvious substitutions.

Let us assume a choice of basis functions for IP L−1, different from the mono-
mials pα = xα, which we will denote by ρα(x), with α = 0, . . . , L− 1. This new
basis set can be expressed in terms of the monomials through a change of basis
matrix Z,

ρα(x) =
L−1∑

r=0

Zαrpr(x)

pα(x) =
L−1∑

r=0

[
Z−1

]
αr
ρr(x) (4.41)

The matrix Z allows to determine the following parameters and functions in
the new polynomial basis (denoted in the following with the superscript (new))
in terms of the same quantities based on the basis of monomials

• expansion coefficients of the polynomial basis functions into the scaling
functions on the real line,

c
(new)
α,k = 〈ρα, ϕ̃IR0k〉 =

L−1∑

r=0

Zαrcr,k ,

• border scaling functions,

θ(new)α (x) =
L−1∑

r=0

Zαrθr(x) ,

• refinement equation for border scaling functions

H(new) = ZHẐ−1,

where H is the non-biorthogonal border filter matrix made of the two
blocks in Eq. (4.20) and (4.21), and Ẑ−1 is a matrix with Z−1 in the
upper-left block and filled with ones in the main diagonal to reach the
correct dimension required by the matrix product,

• biorthogonalization matrix

X(new) = ẐXZ̃T ,

where Ẑ is a matrix with Z in the upper-left block and filled with ones in
the main diagonal to reach the correct dimension required by the matrix
product;
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Figure 4.1: Bernstein polynomials for n = 8 and b = 1.

Among the many polynomial bases there is one in particular that is known to
be better behaved than the monomials, the Bernstein or Bezier polynomials [13,
14, 36, 37]. The general expression of the Bernstein polynomials of degree n is

Bnr,b(x) = b−n
(
n

r

)
xr(b− x)n−r, r = 0, . . . , n , (4.42)

where b is a parameter that controls the definition interval [0, b] of the polyno-
mials. Figure 4.1.4 shows the Bernstein polynomials of degree n = 8 defined for
b = 1.

The Bernstein polynomials are also convenient because only one is nonva-
nishing at x = 0, thus allowing for boundary adaption of the border scaling
functions, and because the change of basis matrix Z and its inverse are known
analytically,

Zr,s =

{
(−1)r−s

(
n
s

)(
s
r

)
b−s s ≥ r

0 s < r
,

[
Z−1

]
r,s

=





(
s
r

) [(
n
r

)]−1
br s ≥ r

0 s < r
.

It should be noted that both Z and Z−1 are upper triangular. The usefulness
of the Bernstein polynomials will be shown in the example of Section 4.4.4.
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4.1.5 Approximation properties

We will list here the main approximation properties of the spaces Vj(IR
+) con-

structed in the previous sections. We recall that the unitary operator Tj, defined
in Eq. (3.22), can be applied to the space V0(IR

+) to obtain the corresponding
space at level j. Throughout this section we will use the functions {ϕ0k, k ≥ 0}
as the biorthogonalized basis set for V0(IR

+).
First of all, it can be demonstrated that the functions {ϕ0k, k ≥ 0} consti-

tute a 2-stable basis for V0(IR
+). This result is extremely important because

it states the equivalence of the norm in V0(IR
+) with the `2(IN) norm of the

expansion coefficients into this basis. More precisely, we have

V0(IR
+) =



v =

∑

k≥0
αkϕ0k : {αk} ∈ `2(IN)



 ,

with
‖v‖L2(IR+) ³ ‖{αk}‖`2(IN), ∀v ∈ V0(IR+). (4.43)

As for the construction on the real line, we can define projection operators
Pj : L2(IR+)→Vj(IR

+) that, given any function in L2(IR+), can extract its
approximation at level j. Again, only the operator P0 needs to be explicitely
defined, because the operators at any other level j can be obtained through the
use of the isometry Tj according to

Pj = Tj ◦ P0 ◦ T−1j .

It is natural to define

P0v =
∑

k≥0
v̆0kϕ0k , with v̆0k =

∫

IR+
v(x)ϕ̃0k(x)dx. (4.44)

It can be easily proven that P0v ∈ V0(IR+) and that the operator is continuous.
Moreover, we have

Pjv = v, ∀v ∈ Vj(IR+)

Pj ◦ Pj+1 = Pj, ∀j ≥ 0.

With obvious substitutions, also the operators P̃j acting on the dual spaces can
be constructed.

The last important approximation property that we list here is the Jackson
inequality. As we are dealing with Hilbert spaces in this work, we will use
a particular case. The reader should note that this inequality (as well as the
Bernstein inequality, which we will not mention here) is true for far more general
Banach spaces, like Besov spaces. The Jackson inequality can be stated in a
formal way as follows. If the scaling function ϕ belongs to a Sobolev space
Hs0(IR+), it can be shown that, for all 0 < s < min(s0, L),

‖v − Pjv‖L2(IR+) <∼ 2−js|v|Hs , ∀v ∈ Hs, ∀j ∈ IN. (4.45)
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This means that if we choose a scaling function that is sufficiently regular, we
are sure to get a good approximation for all classes of less regular functions. As
the level j increases, the norm of the approximation error tends exponentially to
zero at a rate controlled by the regularity index s of the function being analyzed.

4.2 Wavelet spaces in IR+

This section introduces the wavelet spaces on the half line, using the same
procedure adopted on IR. Basically, we want to determine a complement space
W0(IR

+) such that V1(IR
+) = V0(IR

+) ⊕W0(IR
+). The wavelet space W0(IR

+)
will include the details needed to refine the approximation of a given function.
Note that the sum must be a direct sum to insure uniqueness, but does not
need to be orthogonal. Indeed, we will look for biorthogonal wavelet spaces,
such that

V1(IR
+) = V0(IR

+)⊕W0(IR
+), (4.46)

Ṽ1(IR
+) = Ṽ0(IR

+)⊕ W̃ 0(IR
+), (4.47)

W0(IR
+) ⊥ Ṽ0(IR

+), (4.48)

W̃ 0(IR
+) ⊥ V0(IR

+). (4.49)

The orthogonal setting is obviously a particular case.
The starting point is the scaling functions basis set {θ0k, k ≥ 0} constructed

in Section 4.1. Note that this is the basis before the biorthogonalization process,
so the first L̃ functions are, in general, not biorthogonal. By applying the
operator T1 to this set we get a basis for V1(IR

+). We need to express each
basis function of V1(IR

+) in terms of the basis functions of V0(IR
+), plus some

other functions. These functions will generate the wavelet space W0(IR
+). The

space Wj(IR
+) will then be obtained applying again Tj, as we did to generate

the scaling function spaces.
Let us recall two identities that hold on the real line, and that will be needed

in the following,

ϕIR1k =
∑

m

h̃k−2m ϕ
IR
0m +

∑

m

g̃k−2m ψ
IR
0m, (4.50)

ψIR0m =
∑

l

gl−2m ϕ
IR
1l , (4.51)

with gn = (−1)nh̃1−n and g̃m = (−1)mh1−m. As for the scaling function spaces,
also for the wavelet spaces the construction will preserve the internal basis
functions, already defined on IR, and will define the smallest set of modified
border functions to achieve completeness.

Let us consider first the internal wavelet functions. From Eq. (4.1) we know
that the set T1(V

(+)) = {ϕIR1k : k ≥ k∗0} was left unchanged in the construction



70 Biorthogonal decomposition on bounded domains

of the scaling function spaces. Therefore, the wavelet functions that can be
generated from this set through Eq. (4.51) will also be left unchanged. Recalling
that h̃n is not vanishing only when ñ0 ≤ n ≤ ñ1, we can evaluate the lower bound
in the sum of Eq. (4.51) to be l = 1+ 2m− ñ1. This lower bound must also be
l ≥ k∗0. This condition allows to determine the smallest integer m = m∗

0 such
that the wavelet functions on the real line can be used without modifications.
This integer evaluates to

m∗
0 :=

⌈
k∗0 + ñ1 − 1

2

⌉
(4.52)

and the corresponding internal wavelet space will be

W I
0 = span {ξ0m = ψIR0m : m ≥ m∗

0}. (4.53)

We need to define additional functions that, together with the basis functions
of W I

0 and V0(IR
+), will generate all V1(IR

+).
Let us consider now which functions of V1(IR

+) we are able to generate
with the internal scaling function and wavelet spaces only. These spaces are
generated by {ϕIR0m, m ≥ k∗0} and {ψIR0m, m ≥ m∗

0}, respectively. Substituting
these functions in Eq. (4.50) and enforcing the bounds on m, we get a lower
bound on k. A straightforward calculation shows that this bound is

k = 2k∗0 + ñ1 − 1. (4.54)

Therefore, using the internal spaces, we can only construct the internal functions
{ϕIR1k, k ≥ k}.

However, we do not need to enforce the reconstruction for all the functions
k < k, because of the special form of the refinement equation for the non-
biorthogonal scaling functions. Indeed, Eq. (4.19) can be rewritten as

θ1α = H−1
αα


θ0α −

∑

k≥k∗0
Hαkϕ

IR
1k


 ,

showing that the border functions {θ1k, k < k∗0} can be expressed in terms
of the corresponding functions at level 0 plus the functions at level 1 with
k ≥ k∗0. Therefore, only the gap k∗0 ≤ k < k needs to be filled. The border
scaling functions will then be generated automatically through the refinement
equation.

It can be proved that the dimension of the space WB
0 , which collects the

border wavelet functions, is exactely m∗
0. When this space is added to W I

0 , also
the remaining k− k∗0 functions of V1(IR

+) will be generated. However, from the

definition of m∗
0, we can see that m∗

0 = dk−k∗0
2
e. The cardinality of the wavelet

border functions set is then approximately half of the cardinality of the set of
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functions that are to be generated. This simply means that these functions are
not linearly independent, because part of them can still be expressed as linear
combinations of functions in V0(IR

+) plus some “internal wavelets”. We omit
here the details of the proof, which leads to the definition of the border wavelet
functions as

ξ0,m∗
0−k := ϕIR

1,k−2k+1
− P0 ϕ

IR
1,k−2k+1

, ∀k = 1, . . . ,m∗
0. (4.55)

The corresponding space will then be

WB
0 = {ξ0m : m = 0, . . . ,m∗

0 − 1}, (4.56)

and the complete wavelet space on the half line will be

W0(IR
+) = span {ξ0m : m = 0, . . . ,m∗

0 − 1} ⊕ span {ξ0m = ψIR0m : m ≥ m∗
0}

= WB
0 ⊕W I

0 . (4.57)

The same scheme leads to the construction of the dual wavelet space,

W̃ 0(IR
+) = span {ξ̃0m : m ≥ 0} = W̃B

0 ⊕ W̃ I
0 ,

where

W̃ I
0 = {ξ̃0m = ψ̃

IR

0m : m ≥ m̃∗
0}, m̃∗

0 :=

⌈
k∗ + n1 − 1

2

⌉

W̃B
0 = {ξ̃0,m̃∗

0−k := ϕ̃IR
1,l−2k+1

− P̃0 ϕ̃
IR
1,l−2k+1

: ∀k = 1, . . . , m̃∗
0}

l = 2k∗ + n1 − 1

The last step consists of the biorthogonalization of the border wavelet func-
tions, in order to satisfy Eqs. (4.48) and (4.49). The biorthogonalization of
wavelets is slightly more complex than the corresponding biorthogonalization
of the scaling functions. This is due to the fact that both for the primal and
dual systems some internal wavelets must be included in the sets to be modified
in order to achieve biorthogonality. It is not difficult to prove that the total
number of primal and dual wavelets to be modified is

m∗ = max{m∗
1, m̃

∗
1},

where

m∗
1 =

⌈
l + ñ1 − 1

2

⌉
, m̃∗

1 =

⌈
k + n1 − 1

2

⌉
.

Without loss of generality, and consistently with the assumption L̃ ≥ L, we will
set m̃∗

1 ≤ m∗
1. This is true when the primal scaling functions are B-splines. In
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conclusion, the first m∗ primal and dual wavelets need to be redefined through
two basis changes,

ψ0m′ =
m∗−1∑

m=0

em′mξ0m (4.58)

ψ̃0n′ =
m∗−1∑

n=0

ẽn′nξ̃0n

such that
〈ψ0m, ψ̃0n〉 = δmn m,n = 0, . . . ,m∗ − 1

This is equivalent to finding two real matrices E and Ẽ such that

EY ẼT = I, (4.59)

where Y is the Gramian matrix

Ymn = 〈ξ0m, ξ̃0n〉, ∀m,n = 0, . . . ,m∗ − 1. (4.60)

As for the scaling functions, we have constructed two different basis sets for
W0(IR

+) and W̃ 0(IR
+). The first, indicated with {ξ0m, ξ̃0m, ∀m ≥ 0} is not

biorthogonal in the firstm∗ functions. The second, labelled {ψ0m, ψ̃0m, ∀m ≥ 0}
with ψ0m = ξ0m and ψ̃0m = ξ̃0m for m ≥ m∗, is fully biorthogonal. Indeed, we
can easily show that

〈ψjm, ψ̃j′n〉 = δjj′ δmn , ∀j, j ′,m, n ≥ 0.

Finally, it can be shown that the basis {ψjm : m ≥ 0} for Wj(IR
+) (and

similarly for the dual system) is uniformly 2-stable for each j ≥ 0.
The following sections give further details about the construction of the

wavelet spaces. Section 4.2.1 describes the construction of the border wavelets
through the characterization of the projection operators P0 and P̃0. Section 4.2.2
details the derivation of the filters of the refinement equation for the wavelets,
and Section 4.2.3 determines the expression for the Gramian matrix Y.

4.2.1 Projection operators

If we recall the definition of the border wavelets in Eq. (4.55), we need to
characterize the projection operators P0 by evaluating the quantities

P0ϕ
IR
1k =

∑

m≥0
〈ϕIR1k, ϕ̃0m〉ϕ0m.

There are two different cases, depending on whether the index k is smaller or
larger than k∗. We recall that we only need to project those functions with
k ≥ k∗0. Let us examine these cases separately.
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• k∗0 ≤ k < k∗. In this case we have ϕIR1k = θ1,L+k−k∗0 , which belongs to
the space V +

1 \ V I
1 = V +

1 ∩ V B
1 of the internal functions that have been

included in the border functions for the biorthogonalization. Recalling
the definition of the matrix D in Eq. (4.13), we can write

θ1,L+k−k∗0 =
L̃−1∑

n=0

[D−1]L+k−k∗0 ,nϕ1n.

We have then

〈ϕIR1k, ϕ̃0m〉 =
L̃−1∑

n=0

[D−1]L+k−k∗0 ,n〈ϕ1n, ϕ̃0m〉

=
L̃−1∑

n=0

[D−1]L+k−k∗0 ,n
∑

l≥0
H̃⊥ml〈ϕ1n, ϕ̃1l〉

=
L̃−1∑

n=0

[D−1]L+k−k∗0 ,nH̃
⊥
mn;

• k ≥ k∗. In this case we have ϕIR1k = θ
1,L̃+k−k∗ = ϕ

1,L̃+k−k∗ . We can use
directly the refinement equation on ϕ̃0m, obtaining

〈ϕIR1k, ϕ̃0m〉 =
∑

l≥0
H̃⊥ml〈ϕ1,L̃+k−k∗ , ϕ̃1l〉

= H̃⊥
m,L̃+k−k∗ .

Putting the two cases together we get

P0ϕ
IR
1k =

∑

m≥0
Pkmϕ0m, (4.61)

where

Pkm =





∑L̃−1
n=0 [D

−1]L+k−k∗0 ,nH̃⊥mn if k∗0 ≤ k < k∗

H̃⊥
m,L̃+k−k∗ if k ≥ k∗.

(4.62)

The projection matrix Pkm is then formed by a column of the dual biorthogonal
scaling function filter H̃⊥, eventually multiplied by the matrix D−1. Recalling
the structure of this filter from Section 4.1.1, we can derive the length of the
row k,

Pkm = 0 ∀m > L̃+max

{
0,

⌈
k − k∗ − δ̃ + 1

2

⌉}
.

We can now express the wavelets in terms of known functions, as

ξ0m = ϕIR
1,2m+k−2m∗

0+1
− P0 ϕ

IR
1,2m+k−2m∗

0+1

= ϕIR
1,2m+k−2m∗

0+1
−
∑

n≥0
P2m+k−2m∗

0+1,nϕ0n. (4.63)
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In the same way, we can characterize the projectors on the dual spaces. For the
dual system, however, due to the initial choice L̃ ≥ L, we do not have to care
for the special case k < k∗, because we only need to project the functions for
k ≥ k∗. We have

P̃km = 〈ϕ̃IR1k, ϕ0m〉 = H⊥m,L̃+k−k∗ , k ≥ k∗,

with nonzero entries determined by

P̃km = 0 ∀m > L̃+max

{
0,

⌈
k − k∗ − L̃+ L− δ + 1

2

⌉}
,

while the corresponding dual wavelets read

ξ̃0m = ϕ̃IR
1,2m+l−2m̃∗

0+1
−
∑

n≥0
P̃2m+l−2m̃∗

0+1,nϕ̃0n. (4.64)

4.2.2 Wavelet filters

This section is devoted to the derivation of the filters for the primal and dual
wavelets, for both the non biorthogonal and the biorthogonal system. The
derivation of the non biorthogonal filters is straightforward from the decompo-
sition in Eq. (4.63), which we recall here setting km = 2m+ k − 2m∗

0 + 1,

ξ0m = ϕIR1,km −
∑

n≥0
Pkm,nϕ0n.

We can apply the refinement equation (4.26) to express the sum in terms of
the scaling functions at level 1. Also, recalling the expression for ϕ̃IR1,km already
determined in Section 4.2.1, we can immediately write

ξ0m =
∑

l≥0
G 6mlϕ1l, (4.65)

where the non biorthogonal filter has the expression

G 6ml =
{

[D−1]L+km−k∗0 ,l −
∑

n≥0 Pkm,nH⊥nl if k∗0 ≤ km < k∗,
δkm,l −

∑
n≥0 Pkm,nH⊥nl if km ≥ k∗.

(4.66)

The length of the row m of this matrix is determined by the product between P
and H⊥, and is given by the last column in H⊥ with at least a nonzero entry in
the first Nm rows, where Nm is the length of row m in P . The overall structure
of this matrix is obtained by adding the ladder of the internal wavelets filters, as
we did for the scaling functions. The number of leading zeros in row m∗

0, which
corresponds to the first internal wavelet, evaluates to nz = ν0 + L̃ + 2m∗

0 − k∗.

The structure of G 6 is depicted below.
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G 6 =

G0

g

g
g

nz

Similar expressions hold for the dual system, for which we have

ξ̃0m =
∑

l≥0
G̃ 6mlϕ̃1l, (4.67)

where
G̃ 6ml = δlm,l −

∑

n≥0
P̃lm,nH̃⊥nl (4.68)

and lm = 2m + l − 2m̃∗
0 + 1. The structure of the matrix G̃ 6 is completed

by the filters of the internal wavelets, beginning at row m̃∗
0 and column ñz =

ν̃0 + L̃+ 2m̃∗
0 − k∗, as shown below.

G̃ 6 =

G̃0

g̃

g̃
g̃

ñz

Let us now derive the wavelet filters for the biorthogonal systems. Recalling
that the biorthogonalization of the wavelets involves only the first m∗ functions
of the primal and dual system, we need to distinguish the two cases m < m∗

and m ≥ m∗.

• m < m∗. In this case the biorthogonal wavelets ψ0m are easily expressed
in terms of the non biorthogonal ones through the matrix E defined in
Eq. (4.58). Using then the non biorthogonal refinement equations we have

ψ0m =
m∗−1∑

l=0

emlξ0l =
m∗−1∑

l=0

eml
∑

s≥0
G 6lsϕ1s;

• m ≥ m∗. In this case the wavelets are the same before and after the
biorthogonalization, so also the refinement equation is exactely the same
as for the non biorthogonal system.
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Putting the two cases together we obtain the biorthogonal refinement equation

ψ0m =
∑

l≥0
G⊥mlϕ1l, (4.69)

where the wavelet filter is

G⊥ml =
{ ∑m∗−1

s=0 emsG 6sl if m < m∗

G 6ml if m ≥ m∗,
(4.70)

obtained from the non biorthogonal filter by left multiplying its first m∗ rows
by the matrix E and leaving the others unchanged. The biorthogonal primal
filter has the same structure as the non-biorthogonal one, except the number
of rows in the upper-left block, which is now equal to m∗, and consequently
the number of vanishing entries at the beginning of row m∗, which evaluates to
n′z = ν0 + L̃+ 2m∗ − k∗. Its global structure is shown below.

G⊥ =

G0
b

g
g

g

n′z

The same expressions hold, with obvious substitutions, for the dual filter, de-
picted below.

G̃⊥ =

G̃0
b

g̃
g̃

g̃

ñ′z

4.2.3 The Gramian matrix Y

The calculation of the Gramian matrix Y is much simpler than for the corre-
sponding matrix X used to biorthogonalize the scaling functions. Indeed, we
can use the expression of the non-biorthogonal filters G 6 and G̃ 6 to reduce the
calculation of the elements of Y to inner products of scaling functions that are
biorthogonal. More precisely, we have

Ymn = 〈ξ0m, ξ̃0n〉 =
∑

h≥0

∑

l≥0
G 6mhG̃

6
nl〈ϕ1h, ϕ̃1l〉 =

∑

l≥0
G 6mlG̃

6
nl. (4.71)
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The matrix Y is then simply obtained by multiplying the primal and (trans-
posed) dual non orthogonal wavelet filters (the first m∗ rows), according to

Y = G 6
[
G̃ 6
]T
.

4.2.4 Boundary adaption of wavelets

As for the scaling functions, it may be convenient in the applications to have
as few as possible nonvanishing wavelets at the edge x = 0. As a matter of
fact, when the scaling functions are boudary adapted, i.e., only one is nonzero
at x = 0, the non-biorthogonal wavelets can be constructed so that only one
primal and one dual wavelet is nonzero at x = 0. The non-biorthogonal filters
G 6 and G̃ 6 express the wavelets in terms of the biorthogonal scaling functions,
which we suppose to be boundary adapted. If a row has a vanishing entry in
the first column, the corresponding wavelets will not depend on the first scaling
function but only on the other scaling functions, which all vanish at x = 0.
Consequently, if we perform one loop of gaussian elimination in order to force
the first column (starting from the second row) of G 6 and G̃ 6 to be made of
zeros, we get automatically boundary adaption for wavelets with a nonzero value
at x = 0. Finally, if the biorthogonalization is performed with care according to
the guidelines of Section 4.1.3, also the biorthogonal wavelets will be boundary
adapted.

4.3 An example

This section will apply the results of the preceding sections to the biorthogonal
spline decomposition of the half line for the case L = 3, L̃ = 5. We will show
the border scaling functions, the wavelets, and the corresponding filters for
the primal and dual systems, before and after the biorthogonalization. Before
proceeding with the example, we summarize the main computational steps of
the construction.

1. Pick a biorthogonal multilevel decomposition on the real line. This will
determine the scaling functions ϕ and ϕ̃, which are uniquely defined by
the filters h and h̃.

2. Choose appropriate values of the arbitrary constants δ and δ̃, such that
Eq. (4.10) is satisfied.

3. Evaluate cα0 ∀α (resp. c̃β0 ∀β) through Eq. (4.30).

4. Evaluate the coefficients cαk (resp. c̃βk) through Eq. (4.29).

5. Evaluate the modified filters for the border scaling functions Hαα and Hαk

(resp. H̃ββ and H̃βk) through Eqs. (4.20) and (4.21).



78 Biorthogonal decomposition on bounded domains

ϕ(x) ϕ̃(x)

−1 0 1 2
0

0.2

0.4

0.6

0.8

−5 0 5
−1

0

1

2

Figure 4.2: Primal and dual scaling functions for the biorthogonal spline decompo-

sition of IR in the case L = 3, L̃ = 5

6. Evaluate the Gramian matrix Xαβ through Eq. (4.1.2).

7. Apply the biorthogonalization procedure to the border scaling functions
by solving Eq. (4.14)

8. Determine the filters for the biorthogonal bases with Eq. (4.26).

9. Evaluate the projection matrices P and P̃ through Eq. (4.62).

10. Build the filters for the non-biorthogonal border wavelets using Eq. (4.66).

11. Calculate the Gramian matrix Y from Eq. (4.71).

12. Apply the biorthogonalization procedure to the border wavelets by solving
Eq. (4.59)

13. Determine the biorthogonal filters for the border wavelets using Eq. (4.70).

4.3.1 The case L = 3, L̃ = 5

In this section we will examine in detail the case L = 3, L̃ = 5. We know that
this is a valid choice of the parameters from Section 3.4.3. The characteristic
constants of the corresponding multiresolution scheme on IR are

L = 3 L̃ = 5
n0 = −1 ñ0 = −5
n1 = 2 ñ1 = 6.

(4.72)

We show for convenience plots of the primal and dual scaling functions (Fig. 4.2).
These scaling functions are symmetric with respect to x = 1/2 and can repro-
duce locally all polynomials of degree 2 and 4, respectively.

To start the construction of the boundary scaling functions we need to pick
a pair of positive integers δ and δ̃ that determine the left edge of the support
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k c̃0k c̃1k c̃2k c̃3k c̃4k
0 1 0.5 0.5 0.5 0.6
1 1 1.5 2.5 4.5 8.6
2 1 2.5 6.5 17.5 48.6
3 1 3.5 12.5 45.5 168.6
4 1 4.5 20.5 94.5 440.6
5 1 5.5 30.5 170.5 960.6
6 1 6.5 42.5 279.5 1848.6
7 1 7.5 56.5 427.5 3248.6
8 1 8.5 72.5 620.5 5328.6
9 1 9.5 90.5 864.5 8280.6
10 1 10.5 110.5 1165.5 12320.6

Table 4.1: Coefficients c̃βk for β = 1, . . . , L̃− 1.
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Figure 4.3: Structure of the filter matrices for the non biorthogonal primal and dual

scaling functions.

for the first primal and dual scaling functions that will not be modified (in the
non-biorthogonal system). As L̃ > L we can choose δ̃ = 0. The corresponding
value of δ is then automatically determined by Eq. (4.10), as well as k∗0 and k∗,

δ = 2 δ̃ = 0
k∗0 = 3 k∗ = 5.

(4.73)

For illustration, we list the coefficients c̃βk needed in the construction in
table 4.1. Due to the choice of the monomials as the basis for the polynomials
to be reproduced at the border, the values ot these coefficients grows with β
and k.

The structure of the non-biorthogonal scaling function filter matrices H 6

and H̃ 6 is visualized in Fig. 4.3. We recall that these are infinite matrices
(on one side only), so the number of rows and columns shown in the pictures
has been determined to visualize appropriately their global structure. Note the
L×L and L̃× L̃ upper diagonal blocks, which are due to the choice of the basis
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3.0000 4.5833 9.5000 22.5167 57.8000
4.3333 8.7500 20.2333 50.7500 134.6952
8.0000 18.0000 44.0000 114.0000 308.8000
1.0000 3.5000 12.5000 45.5000 168.6000
1.0000 4.5000 20.5000 94.5000 440.6000

Table 4.2: The Gramian matrix X.

of monomials. The number of nonzero entries in the first L and L̃ rows for the
primal and dual matrices, respectively, is

n1 + L+ k∗0 − 1 = 7

ñ1 + L̃+ k∗ − 1 = 15

We turn now to the biorthogonalization of the scaling function spaces. The
Gramian matrix X is shown in Table 4.2. Its condition number is about 2×104.
Therefore, a significant loss of precision is expected in the biorthogonalization
of the border scaling functions. As a result, the biorthogonality relations will
not be satisfied at the machine precision, because the least significant digits will
be lost.

The biorthogonalization system has been solved by setting the entries in the
main diagonal of the matrix D to ones. The structure of the resulting biorthog-
onal filters H⊥ and H̃⊥ for the primal and dual scaling functions is depicted in
Fig. 4.4. Note that due to the particular choice of D in the biorthogonalization,
the upper diagonal block has disappeared from H̃⊥, but not completely from
H⊥. The first column has only one nonzero entry, because the boundary-value
preserving biorthogonalization was obtained by separating the first border func-
tion from the others (see Section 4.1.3). The number of nonzero entries in the
first L̃ rows for the primal and dual filters is, respectively,

L̃+ k∗ + n1 − 1 = 11

L̃+ k∗ + ñ1 − 1 = 15.

We show now plots of primal and dual scaling functions before and after
the biorthogonalization. Figure 4.5 reports the primal scaling functions, while
Figure 4.6 reports the duals. Note that all the primal scaling functions except
the first do not change with the biorthogonalization. The biorthogonal dual
scaling functions, instead, are completely different from their non biorthogonal
counterpart, because the matrix D̃ is nearly full. Note that the support of the
first L primal scaling functions before the biorthogonalization is [0, n1+k

∗
0−1],

while for the first L̃ duals we have [0, ñ1+k
∗−1]. After the biorthogonalization,

the support of the duals does not change, while for the primal scaling functions
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Figure 4.4: Structure of the filter matrices for the biorthogonal primal and dual

scaling functions.

we get [0, n1 + k∗ − 1] due to the inclusion of some internal functions (two in
this case) to reach a number of L̃.

Next, we consider the generation of wavelets and their filters. The constants
involved in the construction of the non-biorthogonal wavelets are

m∗
0 = 4 m̃∗

0 = 3
k = 11 l = 11,

while the total number of primal and dual biorthogonal border wavelets must
be

m∗ = 8.

This means that four primal wavelets and five dual wavelets need to be added
for the biorthogonalization.

The first step is the construction of the projection matrices P and P̃ . We
do not need to determine all the entries in these matrices, but only the rows
needed for the construction of the border wavelets. These rows correspond in
the present case to the indices k = 4, 6, 8, 10 for primals and k = 4, 6, 8 for
duals.

The non-biorthogonal wavelet filters G 6 and G̃ 6 are shown in Fig 4.7. The
structure is similar to the one of the scaling function filters. Note that there is
only one nonvanishing entry in the first column of the filters. These are indeed
the filters after the boundary adaption of the border wavelets, which is possible
because also the scaling functions are boundary adapted.

The biorthogonal wavelet filters G⊥ and G̃⊥ are shown in Fig. 4.8. The
biorthogonalization was performed as for the scaling functions, i.e., setting the
diagonal entries in the primal change of basis matrix E to ones. This choice
preserves the primal wavelets except the first and modifies all the dual wavelets.
It should be mentioned that the condition number of the biorthogonalization
matrix Y is about 8.4×106. This means that also for the wavelets the biorthog-
onalization relations will be satisfied with reduced accuracy.

Finally, we show the plots of the border wavelets. Figure 4.9 shows the
primal and dual non-biorthogonal wavelets, Fig. 4.10 shows the biorthogonal
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primal wavelets, and Fig. 4.11 shows the biorthogonal dual wavelets. Also in
this case the biorthogonal primal wavelets are identical to the non-biorthogonal
ones except the first due to the choice of matrix E. Due to the bad condition
number of the matrix Y and the initial choice of the monomials, the resulting
dual biorthogonal wavelets have a bad behavior, with highly varying values
between one function and the other.

At the end of this chapter, in Section 4.4.4, we will show that the Bernstein
polynomials and a careful biorthogonalization can be employed to generate bet-
ter behaved scaling function and wavelet systems.
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Figure 4.5: Primal border scaling functions θ0k (left column) and ϕ0k (right column).

The index k ranges from 0 (top) to L̃− 1 (bottom).
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Figure 4.6: Dual border scaling functions θ̃0k (left column) and ϕ̃0k (right column).

The index k ranges from 0 (top) to L̃− 1 (bottom).
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Figure 4.7: Structure of the filter matrices for the non-biorthogonal primal and dual

wavelets.
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Figure 4.8: Structure of the filter matrices for the biorthogonal primal and dual

wavelets.
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Figure 4.9: Primal (left column) and dual (right column) non-biorthogonal border

wavelets. The index k ranges from 0 (top) to m∗
0 − 1 (bottom) for primal wavelets

and from 0 (top) to m̃∗0 − 1 (bottom) for dual wavelets.
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Figure 4.10: Primal biorthogonal border wavelets. The index k ranges from 0 (top)

to 3 (bottom) in the left column and from 4 (top) to 7 (bottom) in the right column.
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Figure 4.11: Dual biorthogonal border wavelets. The index k ranges from 0 (top)

to 3 (bottom) in the left column and from 4 (top) to 7 (bottom) in the right column.
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4.4 The unit interval

This section describes how the multilevel decomposition of the half line derived
in the preceding sections can be adapted to build a decomposition of the unit
interval [0, 1]. The main point is to merge two parallel decompositions of the
positive and negative half line, after a translation of the latter by 1. In addition,
we want to decouple the effects of the two boundary points, so that each of them
can be studied separately. This requires to start with an initial level j0 > 0, in
order to have the supports of the scaling functions small enough with respect
to the length of the whole domain [0, 1]. More precisely, we will set j0 so that
the scaling function spaces on the unit interval will be constructed as

Vj(0, 1) = span {ϕ(0)
jl : l ∈ IL} ⊕

span {ϕjk : k ∈ II} ⊕
span {ϕ(1)

jr : r ∈ IR} ,∀j ≥ j0,

with II 6= ∅ and where the boundary functions ϕ
(0)
jl and ϕ

(1)
jr are constructed in-

dependently. Here, and from now on, the suffix (0) or (1) refers to the boundary
point 0 or 1, respectively.

4.4.1 Scaling function spaces

The first step is the construction of the scaling function spaces at level 0 for the
primal and dual systems on the half line IR−. We will parallel our construction
of Section 4.1, adapting it to the case x ≤ 0. Therefore, we will not show all
the details of the construction.

We need to specifiy two bases for the spaces of polynomials IP L−1 and IP L̃−1.
These can be the same of the ones used for IR+ or different. In the following,
we will use a particular basis to obtain symmetric scaling functions at the two
edges. After fixing these bases, we can define modified border functions by
imposing the reproduction of the polynomials. The right edge of the support
for the first scaling functions that will not be changed in the construction is
tuned by two nonnegative integers δ1 and δ̃1. Therefore, the internal scaling
function spaces will be formed by functions with support in (−∞,−δ1] and
(−∞,−δ̃1] for the primal and dual system, respectively. The newly defined
border functions will then have the expression

θ(0
−)

α (x) =
−n0−1∑

k=1−δ1−n1
c
(1)
αkϕ

IR
0k(x) , x ≤ 0 , ∀α = 0, . . . , L− 1,

and similarly for the duals. The scaling function spaces can be expressed as the
linear combination of internal and border functions, just like in Eq. (4.9),

V0(IR
−) = span {θ0−α : α = 0, . . . , L− 1} ⊕
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span {ϕIR0k : k = 1− δ̃1 − ñ1, . . . ,−n1 − δ1} ⊕
span {ϕIR0k : k ≤ −δ̃1 − ñ1}

Ṽ0(IR
−) = span {θ̃0−β : β = 0, . . . , L̃− 1} ⊕

span {ϕ̃IR0k : k ≤ −δ̃1 − ñ1}.

Matching the dimensions of the border spaces for the subsequent biorthogonal-
ization, we get a relation between δ1 and δ̃1 similar to Eq. (4.10),

δ̃1 − δ1 = L̃− L− (ñ1 − n1). (4.74)

The spaces at any level j ≥ 0 can be obtained through the operator Tj applied
to V0(IR

−) and Ṽ0(IR
−).

We need now to translate the construction to have its origin in the point
x = 1 and domain in (−∞, 1]. We recall that the translation of the spaces at
level j requires exactely 2j steps to shift the point x = 0 in x = 1. It is then
straightforward to get the expressions for the new border functions at x = 1,

θ
(1)
jα (x) =

2j−n0−1∑

k=2j+1−δ1−n1
c
(1)
α,k−2j ϕ

IR
jk(x) , x ≤ 1,

and similarly for the duals. The scaling function spaces will be

V0(−∞, 1) = span {θ(1)jα : α = 0, . . . , L− 1} ⊕
span {ϕIRjk : k = 2j + 1− δ̃1 − ñ1, . . . , 2

j − n1 − δ1} ⊕
span {ϕIRjk : k ≤ 2j − δ̃1 − ñ1}

Ṽ0(−∞, 1) = span {θ̃(1)jβ : β = 0, . . . , L̃− 1} ⊕
span {ϕ̃IR0k : k ≤ 2j − δ̃1 − ñ1}.

We impose now that the two sets of border functions in x = 0 (see Eq. (4.9))
and x = 1 do not overlap. As we are still working under the hypothesis L̃ ≥ L,
we only need to use the dual system. We obtain the relation

−ñ0 + δ̃0 ≤ 2j − δ̃1 − ñ1,

that can be used to evaluate the minimal starting level j0,

j0 = dlog2(ñ1 − ñ0 + δ̃0 + δ̃1)e. (4.75)

In summary, we have constructed the scaling function spaces

Vj(0, 1) = span {θ(0)jk : k = 0, . . . , L− 1} ⊕
span {ϕIRjk : k = −n0 + δ0 . . . , 2

j − δ1 − n1} ⊕
span {θ(1)jk : k = 0, . . . , L− 1},
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and similarly for the dual system. These expressions are valid when j ≥ j0.
Note that the dimensions of the primal and dual scaling function spaces are the
same,

dimVj(0, 1) = 2j + 2L+ 1− δ0 − δ1 − n1 + n0 , ∀j ≥ j0.

Since Vj+1(0, 1) = Vj(0, 1) ⊕ Wj(0, 1), this implies that the dimension of the
wavelet spaces will be

dimWj(0, 1) = 2j+1 − 2j = 2j

for both primal and dual systems.
We describe now how to choose the polynomial basis sets in order to obtain

symmetric scaling functions at the two edges of the interval. The key point
is obviously to start with symmetric polynomials and with symmetric scaling
functions on IR. Therefore, we will particularize our derivation to the biorthog-
onal B-spline system, and we will choose a basis set p1,α for IPL−1 in IR− such
that

p1,α(y) = p0,α(−y) α = 0, . . . , L,

where p0,α are the basis elements used in 0+. This leads immediately to a
relation between the modified scaling functions in 0 and 1,

θ
(1)
jα (x) = θ

(0)
jα (1− x).

To obtain now symmetric filters we set δ1 = δ0 and δ̃1 = δ̃0. This is possible
because Eqs. (4.10) and (4.74) can still be satisfied. Therefore, we will not
distinguish between these integers at the two edges, and we will indicate them
with δ and δ̃, respectively.

In the symmetric B-spline case the coefficients c
(1)
αk can be easily related to

c
(0)
αk . Indeed we have

c
(1)
αk =

∫

IR
p1,α(y)ϕ̃0k(y)dy =

∫

IR
p0,α(−y)ϕ̃(y − k)dy

=
∫

IR
p0,α(y)ϕ̃(y + k + r)dy = c

(0)
α,−k−r,

where r = rem(L, 2). From the B-spline properties shown in Section 3.4.3 we
know that r and the limits of the filters on IR are related through

n1 = r − n0.

This leads to the following expression of the border functions in terms of the
scaling functions of the multiresolution on IR,

θ
(0)
jα (x) =

n1−n0+δ−1∑

k=1

Cα,k ϕ
IR
j,k−n1(x)

∣∣∣
[0,1]

, (4.76)

θ
(1)
jα (x) =

n1−n0+δ−1∑

k=1

Cα,k ϕ
IR
j,2j−k−n0(x)

∣∣∣
[0,1]

, (4.77)
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where the matrix Cαk corresponds to the coefficients evaluated at the left edge
x = 0+,

Cαk =
{
c
(0)
α,k−n1 , α = 0, . . . , L, k = 1, . . . , n1 − n0 − 1 + δ

}
. (4.78)

Note that in Eq. (4.77) the scaling functions on IR are superimposed with the
same matrix C, but with a decreasing translation index. Equivalently their
support shifts towards left when k increases. If we reorder now the sequence of
basis functions of Vj(0, 1) as

Vj(0, 1) = span {θ(0)jk : k = 0, . . . , L− 1} ⊕
span {ϕIRjk : k = −n0 + δ0 . . . , 2

j − δ1 − n1} ⊕
span {θ(1)j,L−k : k = 0, . . . , L− 1} =

= span {θjl, l = 0, . . . , dimVj(0, 1)− 1},

we can express the refinement equation with the filter matrix H 6 in a simple
form,

θjl =
∑

m

H 6lmθj+1,m.

The structure of H 6 is shown in the picture below,

H 6 =

H 60

H 61

H 6c

where H 61 is obtained from H 60 by reversing the order of rows and columns

and the center block H 6c is formed by a ladder of filters h as already shown in
Section 4.1.1 for the half line filters. It should be noted that the bottom right
block does not need to be explicitely computed. In addition, as the filters h
are also symmetric, the overall matrix H 6 is invariant under an inversion of the
order of its rows and columns. The filters for the dual scaling functions and
their biorthogonal versions for primals and duals are derived in the same way
as above, therefore the details will not be presented here. The structure of the
filter matrices remains unchanged. In conclusion, once the filter matrices for the
half line have been obtained, the filter matrices for the scaling functions on [0, 1]
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Figure 4.12: Structure of the filter matrices for the scaling functions on the unit

interval at level j0 = 4.

are easily derived by imposing that their dimension matches the dimension of Vj
(rows) and Vj+1 (columns), and by forcing the symmetry conditions described
above.

As an example, we show in Fig. 4.12 the structure of the filter matrices in
the case of the B-spline multiresolution with L = 3 and L̃ = 5 already treated
in Section 4.3.1 for the half line. In the figure the level j is set equal to the
minimum allowed level j0. This leads to the dimensions of the scaling function
spaces dimVj(0, 1) = 16 and dimVj+1(0, 1) = 32. These are the number of rows
and columns, respectively, in the filter matrices.

We turn now to the derivation of a direct link between the biorthogonal scal-
ing functions on the interval and the biorthogonal scaling functions on IR. This
will be used in Section 5.2 for the evaluation of integrals of refinable functions
on the interval.

Let us consider the primal system of biorthogonal scaling functions on [0,1]
at refinement level j, with j ≥ j0. We consider them indexed as ϕjk, with k
ranging from 0 to dimVj(0, 1)− 1. There are three different cases.

• k < L̃. In this case the biorthogonalization matrix D can be used to
express the functions in terms of the non biorthogonal scaling functions,
through

ϕjk =
L−1∑

n=0

dknθjn +
L̃−1∑

n=L

dknθjn
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=
L−1∑

n=0

dkn

n1−n0+δ−1∑

l=1

Cnl ϕ
IR
j,l−n1

∣∣∣
[0,1]

+
L̃−1∑

n=L

dknϕ
IR
j,k∗0+n−L

=
n1−n0+δ−1∑

l=1

{
L−1∑

n=0

dknCnl

}
ϕIRj,l−n1χ[0,1] +

L̃−1∑

n=L

dknϕ
IR
j,k∗0+n−L,

where we used the definition of the matrix C in Eq. (4.78) and the indi-
cator function of the unit interval χ[0,1].

• L̃ ≤ k < dimVj(0, 1) − L̃. In this case the scaling functions are internal
and correspond to

ϕjk = θjk = ϕIR
j,k∗+k−L̃

• dimVj(0, 1) − L̃ ≤ k ≤ dimVj(0, 1) − 1. This case can be analyzed from
the first case through direct use of symmetry.

If we split the matrix D as

D =
(
Dl

∣∣∣ Dr
)
,

with Dl including the first L columns and Dr the remaining L̃−L columns, we
can define a matrix M0 as

M0 =
(
DlC

∣∣∣ Dr
)
.

This matrix can be used to express the functions ϕjk in terms of the functions
ϕIRjk, 



ϕ0
j

ϕI
j

ϕ1
j


 =



M0 0 0
0 I 0
0 0 M1







ϕIR,0
j

ϕIR,I
j

ϕIR,1
j


 χ[0,1] , (4.79)

where the block M1 is derived from the block M0 by reversing the order of
rows and columns and the arrays on the left and right side are defined formally
as

ϕ0
j

=
[
ϕj,0, . . . , ϕj,L̃−1

]T

ϕI
j

=
[
ϕ
j,L̃
, . . . , ϕ

j,dimVj−L̃−1

]T

ϕ1
j

=
[
ϕ
j,dimVj−L̃, . . . , ϕj,dimVj−1

]T

ϕIR,0
j

=
[
ϕIRj,1−n1 , . . . , ϕ

IR
j,k∗−1

]T

ϕIR,I
j

=
[
ϕIRj,k∗ , . . . , ϕ

IR
j,2j−δ̃−ñ1

]T

ϕIR,1
j

=
[
ϕIR
j,2j+1−δ̃−ñ1 , . . . , ϕ

IR
j,2j−1−n0

]T
.
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The size of the identity matrix in Eq. (4.79) is 2j − 2δ̃ − ñ1 + ñ0 + 1, and the
number of columns in the top-left and bottom-right blocks is n1 − ñ0 + δ̃ − 1.

Similar results hold for the dual system, where the scaling functions ϕ̃IRjk
involved range from k = 1 − ñ1 to k = 2j − 1 − ñ0. The size of the identity
matrix in the dual case is the same, while the number of columns in the top-left
and bottom-right blocks becomes ñ1 − ñ0 + δ̃ − 1.

4.4.2 Wavelet spaces

Section 4.4.1 showed that the construction of the scaling functions on the unit
interval is readily obtained from the construction on the half line, provided that
the filters are symmetric and the refinement level j is larger than a minimum
refinement level j0. This last requirement cannot be relaxed, because the whole
construction on the unit interval is based upon a decoupling of the effects of
the left and right borders. Instead, the first requirement is not strictly neces-
sary. The scaling functions and wavelets can also be constructed starting from
asymmetric functions, like the Daubechies’ ones. We will not discuss here this
more general construction, because the symmetric setting is sufficient for our
applications. In addition, as we plan to use scaling functions and wavelets on
the unit interval to solve differential problems which treat the two boundaries
in the same way, it does seem appropriate to use symmetric basis functions.
Given these assumptions, the construction of wavelets on the unit interval can
be readily obtained from the construction on the half line in the same way as we
did for the scaling functions. We will not give all the details of the construction
here, but only the main results which lead to the definition of the 2j wavelets
and to the primal and dual wavelet filters. We will describe the derivation of
the biorthogonal wavelets. The non-biorthogonal wavelets are derived in the
same way through obvious substitutions.

We recall from Section 4.2 that the number of modified border wavelets at
the edge x = 0 is m∗. Therefore, the number of border wavelets at the edge
x = 1 will also be m∗. As the dimension of the wavelet space Wj(0, 1) must
be 2j, there will be 2j − 2m∗ internal wavelets that remain unchanged from the
construction on IR. This is true both for the primal space and for the dual
space. Therefore, we can construct the wavelet space on the unit inteval as

Wj(0, 1) = {ψ(0)
jm : m = 0, . . . ,m∗ − 1} ⊕

{ψIRjm : m = m∗, . . . , 2j −m∗ − 1} ⊕
{ψ(1)

jm : m = 0, . . . ,m∗
0 − 1} (4.80)

= {ψjm : m = 0, . . . , 2j − 1}
where the border wavelets ψ

(1)
jm at the edge x = 1 are expressed in terms of the

border wavelets at x = 0 through reflection and translation by 1,

ψ
(1)
jm(x) = ψ

(0)
jm(1− x).
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This definition leads to a refinement equation for the primal biorthogonal wavelets
as

ψjm =
∑

l

G⊥mlϕj+1,l, (4.81)

where {ϕj+1,l, l = 0, . . . , dimVj+1(0, 1)} represent the biorthogonal scaling func-
tions on the unit interval at level j+1. The matrix G⊥ has a structure depicted
below,

G⊥ =

G⊥0

G⊥1

G⊥c

where the bottom right block G⊥1 is obtained from the top left block G⊥0 by
reversing the order of rows and columns, and the center block G⊥c is made of a
ladder of wavelet filters on IR.

This construction is possible when the two systems of border wavelets do not
interact with each other. This leads to the definition of a minimum refinement
level jw0 , which can be different from the minimum level j0 required by the
scaling function construction. The level jw0 can be determined by imposing that
the support of the rightmost border wavelet at the edge x = 0 is strictly included
in the interval [0, 1/2]. For the B-spline wavelets this leads to the expression

jw0 =
⌈
1 + log2

(
2L̃+

3

2
L+ rem(L, 2)− 3

)⌉
. (4.82)

The actual minimum refinement level will be

J0 = max{j0, jw0 } (4.83)

Table 4.4.2 shows the value of the minimum refinement levels j0 and jw0 for
various pairs (L, L̃).

As an example, we report in Fig. 4.13 the structure of the non-biorthogonal
and biorthogonal primal and dual wavelet filter matrices for the example L = 3,
L̃ = 5 treated in Section 4.3.1. The refinement level is set in the figure to the
minimum allowed jw0 = 5.
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L L̃ j0 jw0
2 2 2 3
2 4 3 4
2 6 4 5
2 8 4 5
3 5 4 5
3 7 4 6
3 9 5 6
3 11 5 6
4 8 5 6
4 10 5 6
4 12 5 6
4 14 5 6

Table 4.3: Minimum refinement levels for the B-spline multiresolution on the unit

interval for various pairs (L, L̃).
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Figure 4.13: Structure of the filter matrices for the wavelets on the unit interval at

level j = 5.

4.4.3 Wavelet analysis and synthesis

A biorthogonal multiresolution on IR is fully characterized by the primal and
dual scaling function and wavelet filters. Similarly, the multiresolution on the
unit interval that has been constructed is fully characterized by the modified
scaling functions and wavelets filter matrices. These matrices are listed below
without the ⊥ superscript because we will refer hereafter to the biorthgonal
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filters. Instead, we emphasize with the superscript (j) the dependence of these
matrices on the refinement level j.

• Primal scaling function filter matrixH(j). The dimensions are dimVj(0, 1)×
dimVj+1(0, 1). The matrix H(j) defines the refinement equation for the
primal scaling functions

ϕjk =
∑

m

H(j)
km ϕj+1,m.

• Dual scaling function filter matrix H̃(j). The dimensions are dim Ṽj(0, 1)×
dim Ṽj+1(0, 1). The matrix H̃(j) defines the refinement equation for the
dual scaling functions

ϕ̃jk =
∑

m

H̃(j)
km ϕ̃j+1,m.

• Primal wavelet filter matrix G(j). The dimensions are 2j × dimVj+1(0, 1).
The matrix G(j) defines the refinement equation for the primal wavelets

ψjk =
∑

m

G(j)
km ϕj+1,m.

• Dual wavelet filter matrix G̃(j). The dimensions are 2j × dim Ṽj+1(0, 1).
The matrix G̃(j) defines the refinement equation for the dual wavelets

ψ̃jk =
∑

m

G̃(j)
km ϕ̃j+1,m.

The biorthogonality of the scaling functions and wavelets bases can be re-
stated in terms of these four matrices. In particular, we have the following
identities, which are valid for any refinement level j ≥ J0

• Biorthogonality of primal and dual scaling functions

HH̃T = I. (4.84)

The equivalent relation on IR is expressed in Eqs. (3.8) and (3.9).

• Biorthogonality of primal and dual wavelets

G G̃T = I. (4.85)

The equivalent relation on IR is Eq. (3.52).

• Orthogonality between dual scaling functions and primal wavelets

G H̃T = 0. (4.86)

The equivalent relation on IR is Eq. (3.49)(first row).
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• Orthogonality between primal scaling functions and dual wavelets

G̃ HT = 0. (4.87)

The equivalent relation on IR is Eq. (3.49)(second row).

Finally, the reconstruction property stated formally in Eq. (2.32) and for the
multiresolution on IR in Eq. (3.50) becomes

H̃T H + G̃T G = I. (4.88)

Let us consider now an arbitrary function v ∈ L2(IR) and suppose that the
expansion coefficients v̆Jk into the primal scaling functions at refinement level
J have been computed in some way,

PJv(x) =
∑

k

v̆JkϕJk.

The computation of these coefficients will be the subject of Section 5.1.4. We
particularize now the expressions for the wavelet analysis and synthesis stated
formally in Eqs. (2.33)-(2.35). The analysis expressions, valid ∀j = J0, . . . , J−1,
are

v̆jk =
∑

m

H̃(j)
kmv̆j+1,m (4.89)

v̂jk =
∑

m

G̃(j)
kmv̆j+1,m, (4.90)

while the synthesis relation, valid ∀j = J0, . . . , J − 1, is

v̆j+1,m =
∑

k

H(j)
kmv̆jk +

∑

k

G(j)
kmv̂jk. (4.91)

These relations are readily derived from the refinement equations for scaling
functions and wavelets (see the items in the list above) and from the recon-
struction identity

ϕj+1,m =
∑

k

H̃(j)
kmϕjk +

∑

k

G̃(j)
kmψjk

through use of the biorthogonality of primal and dual systems. Equations (4.89)-
(4.91) can be viewed as simple matrix-vector products at any fixed refinement
level j, although the practical implementation should take advantage of the
particular structure of the filter matrices. An optimized code can perform the
wavelet analysis and synthesis in O(N) operations, where N = dimVj+1(0, 1) is
the starting number of coefficients.

For future reference, we will describe the full wavelet analysis and synthesis
processes through all possible levels j = J0, . . . , J − 1 with abstract operators,
defined below. We introduce the following notations
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• v̆: array with the dimVJ scaling function coefficients of a general function
vJ = PJv, v ∈ L2.

• v̂: array with the dimVJ0 scaling function coefficients at level J0 followed
by the wavelet coefficients at increasing levels j = J0, . . . , J − 1.

• v̂j: array with the dimVj scaling function coefficients at level j followed
by the wavelet coefficients at increasing levels j, . . . , J−1. Clearly v̂J0 = v̂
and v̂J = v̆.

We can restate Eqs. (4.89)-(4.91) with these notations as

v̂j = W̃jv̂j+1 , v̂j+1 =WT
j v̂j

for j = J0, . . . , J − 1. The operators W̃j and Wj are depicted in the figure
below, and obviously satisfy the identities

W̃jWT
j =WT

j W̃j = I.

Wj =

H(j)

G(j)

0

0

I

W̃j =

H̃(j)

G̃(j)

0

0

I

The full chain of wavelet analysis can finally be expressed through

v̂ = W̃v̆ , v̆ =WT v̂

where the operators W̃ and W are defined as

W =WJ0 · · ·WJ−1 , W̃ = W̃J0 · · · W̃J−1. (4.92)

It should be noted that, due to the highly sparse structure of these operators,
the application of W̃ and WT can be performed in O(dimVJ) operations.

4.4.4 An example (continued)

The foregoing section showed that the biorthogonal multiresolution on the unit
interval is characterized by four filter matrices that satisfy Eqs (4.84)-(4.88).
However, under a practical standpoint, these relations cannot be satisfied ex-
actely. This is due to roundoff errors in the implementation of the algorithms
in a computer code. In this section we show which are the major sources of
loss of accuracy in the determination of the scaling function and wavelet filters,
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and therefore in all applications using this construction of wavelets on the unit
interval. We will use as a test case the example presented in Section 4.3.1, i.e.
the B-spline biorthogonal multiresolution for L = 3, L̃ = 5.

The best achievable accuracy in numerical computations is the machine
precision, which varies between platforms. The order of magnitude in double
precision floating point arithmetic is generally ε ∼ 10−16. It is well known that
some ill-conditioned problems lead to the amplification of small perturbations,
thus reducing the overall accuracy in the solution. Even a simple linear system
can only be solved at a reduced accuracy when the system matrix has a large
condition number. The construction of scaling functions and wavelets on the
unit interval is based upon the solution of two linear systems, namely Eq. (4.14)
and Eq. (4.59). These are the biorthogonalization systems for scaling functions
and wavelets. It is then important that the system matrices X and Y are
well-conditioned. Otherwise, the biorthogonality and reconstruction identities
in Eqs. (4.84)-(4.88) will be satisfied at a reduced accuracy.

We want to define significant quantities that can be immediately related
to the losses of accuracy in the wavelet conputations. We will consider these
measures, where max | · | indicates the maximum magnitude among all the
elements of the matrix in the argument.

• Maximum error in the biorthogonality between primal and dual scaling
functions,

ε1 = max |H H̃T − I|

• Maximum error in the biorthogonality between primal and dual wavelets,

ε2 = max |G G̃T − I|

• Maximum error in the orthogonality between primal wavelets and dual
scaling functions,

ε3 = max |G H̃T |

• Maximum error in the orthogonality between primal scaling functions and
dual wavelets,

ε4 = max |G̃ HT |

• Maximum error in the reconstruction,

ε5 = max |H̃T H + G̃T G − I|

In addition, we compute the condition number of the matrices X and Y .
Let us consider the aforementioned example. Table 4.4 shows the quantities

listed above in the case L = 3, L̃ = 5. In column (a) the basis of monomials has
been used for the polynomials, and the biorthogonalization has been performed
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(a) (b) (c) (d)
ε1 2.7× 10−12 5.7× 10−14 5.7× 10−14 5.7× 10−14

ε2 5.1× 10−9 1.2× 10−8 3.1× 10−9 6.0× 10−10

ε3 1.6× 10−12 3.2× 10−13 1.3× 10−8 1.4× 10−11

ε4 1.4× 10−9 7.1× 10−10 2.8× 10−14 6.2× 10−11

ε5 1.4× 10−9 9.8× 10−11 1.2× 10−10 1.6× 10−11

cond(X) 2.1× 104 2.9× 101 2.9× 101 2.9× 101

cond(Y ) 8.4× 106 8.4× 106 8.4× 106 8.4× 106

Table 4.4: Errors in the case L = 3, L̃ = 5.

for both scaling functions and wavelets by setting the main diagonal of the pri-
mal change of basis matrices D and E to ones. It should be noted that the
condition number of both X and Y is quite large, leading to large errors for all
the biorthogonality relations. In column (b) the basis of Bernstein polynomials
with b = 2, b̃ = 4 has been used, with the same biorthogonalization procedure.
The condition number of the matrix X is significantly reduced. The correspond-
ing error on the biorthogonality between primal and dual scaling functions is
small (ε1). However, the condition number of Y has not changed, so there is a
large error in the biorthogonality between primal and dual wavelets (ε2). As the
primal wavelets are unchanged (except the first for boundary adaption), the er-
ror involving the primal wavelet filter and not the dual wavelet filter (ε3) is also
small. It can be concluded that the largest errors occur in the biorthogonaliza-
tion of the border wavelets. This can be checked in column (c), where the same
Bernstein polynomials have been used, but the biorthogonalization of wavelets
was obtained by leaving the duals unchanged (except the first). The role of
primals and duals in the magnitude of errors is exchanged with the results in
column (b).

The weight of errors can be balanced between primal and dual wavelets
given a badly conditioned matrix Y . In order to do so, the biorthogonalization
of wavelets can be achieved through SVD decomposition. More precisely, the
matrix Y is decomposed into two orthogonal matrices U and V and a diagonal
matrix S,

Y = U S V T .

Then, the matrices E and Ẽ are computed according to

E = S−r UT , Ẽ = S1−r V T ,

where r is an additional parameter that can be used to attribute part of the
singular values of Y to the primal wavelets and part to the dual wavelets. If
r = 0.5 we have a perfect balance between primal and dual wavelets. Column
(d) of Table 4.4 was obtained with this biorthogonalization procedure (together
with boundary adaption). Note that the errors are now more balanced between
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all the measures considered in the first 5 rows of the table. In particular, the
maximum error (6.0×10−10) is smaller than the corresponding maximum errors
in the other cases (a), (b), and (c) by at least one order of magnitude.

In conclusion, a careful biorthogonalization procedure together with a good
choice of the polynomial basis can reduce the loss of accuracy in the computation
of wavelets. We showed that the errors due to the biorthogonalization of border
wavelets dominate on errors due to other sources. The main responsible is the
biorthogonalization matrix Y , which has a large condition number. At present,
it does not seem possible to reduce further the condition number of Y with this
construction of wavelets. Therefore, the overall accuracy at which computations
can be performed using these wavelets on the interval cannot be higher than
the limits described in this section. However, when only scaling functions are
employed in the computations, very high accuracies can be achieved by using the
Bernstein polynomials instead of the monomials. When very high accuracies are
required, it is advisory to use extended precision arithmetic for the computation
of the filters.

4.5 Wavelet approximations

This section focuses on the approximation properties of the wavelet expansions
on the unit interval. The first issue that will be discussed in Section 4.5.1 is the
behavior of the approximation error of a given function f with different refine-
ment levels. The second issue (Section 4.5.2) will be the concept of nonlinear
approximation based on thresholding of the wavelet coefficients. This capability
of wavelets is of paramount importance, because it allows very high compres-
sion rates in the representation of functions, it can limit memory usage and
save computation time in numerical applications. This is the main reason why
there is so much interest for wavelets in the literature. The reader is referred
to [54, 53] and references therein for reviews of the theory and applications.

4.5.1 Linear approximations

The concept of linear approximation has already been discussed throughout the
foregoing sections. The key is the characterization of functional spaces based on
the projection operators Pj and P̃j associated to biorthogonal multiresolution
analyses on bounded or unbounded domains. Bearing in mind our application,
we will focus here on the biorthogonal B-spline multiresolution on the unit
interval constructed in Chapter 4.

The behavior of the approximation error of a given function f at a refinement
level j is explicitely predicted by the Jackson inequality of Eq. (4.45), which we
recall here for convenience. If the scaling function ϕ belongs to a Sobolev space
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Hs0 , it can be shown that, for all s < min(s0, L),

‖v − Pjv‖L2 <∼ 2−js|v|Hs , ∀v ∈ Hs, ∀j ∈ IN.
This means that if the function f under investigation is sufficiently regular, the
decay of the approximation error is controlled by the regularity of the scaling
function ϕ.

We illustrate this fact on a simple example. Let the function f be a gaussian
pulse centered at x = 1/2,

f(x) = exp

{
−(x− 1/2)2

0.002

}
. (4.93)

This function, plotted in Fig. 4.14 (top left panel) is C∞ on [0, 1]. Let us consider
for example the biorthogonal B-spline multiresolution with L = 2 and L̃ = 4.
The primal scaling functions are piecewise linear, and all polynomials of degree
at most 1 can be locally reproduced. From the Jackson inequality we expect that
the L2 approximation error should decay at least as 2−2j for increasing j. The
top right panel shows the L∞ approximation error (not predicted by Jackson,
which only deals with the space L2) as a function of the refinement level j.
Even if the L∞ norm is stronger than the L2 norm, the approximation error
decays with slope −2, as expected. The second row in the figure shows different
approximations of the function f , and the third row depicts the corresponding
approximation errors as functions of x.

A further investigation on the behavior of the approximation error was per-
formed by repeating the same analysis with a different multiresolution, namely
the biorthogonal B-spline system with L = 3 and L̃ = 5. In this case the primal
scaling function is piecewise quadratic, so all polynomials of degree at most 2
can be locally reproduced. The behavior of the approximation error for increas-
ing j should decay at least as 2−3j . This is confirmed by the top right panel of
Fig. 4.15.

In conclusion, for regular functions f , the behavior of the approximation
error can be explicitely bounded by the Jackson inequality. In particular, both
the multiresolution system to be adopted and the maximum needed refinement
level j can be chosen a priori once the functions to be represented are known.
With the approximations described in this section, the choice of a multireso-
lution based on a scaling function that is more regular than the functions to
be represented is useless. This is the limit of the so-called linear approxima-
tions. In the next section we show that highly optimized representations can
be obtained even when the function f has low regularity.

4.5.2 Nonlinear approximations

Let us consider again the Jackson inequality under a different perspective. If
we are analyzing a function f that is less regular than the scaling function ϕ,
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Figure 4.14: Approximations of a gaussian pulse (top left panel) at various levels

j in the case L = 2, L̃ = 4. The second row shows the projections onto the scaling

function spaces Pjf , and the third row shows the approximation errors as functions

of x with respect to the exact function f . The top right panel illustrates the decay

of the approximation errors as the level j increases. The dashed line corresponds to

a slope −2.

then the approximation error decays at a rate controlled by the regularity of
the function under investigation. This rate can be unacceptably low, leading
to a large number of refinement levels to be included in the representation. If
the function f is poorly regular everywhere in its domain, nothing better can
be done. Instead, if the function f presents few localized singularities and is
sufficiently regular elsewhere, the local approximation error predicted by the
Jackson inequality will have a fast decay in the regions of high regularity, and a
slow decay in correspondence of the singular points. This leads to large wavelet
coefficients only near the singularities of f , due to the sharp space localization
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Figure 4.15: Approximations of a gaussian pulse (top left panel) at various levels

j in the case L = 3, L̃ = 5. The second row shows the projections onto the scaling

function spaces Pjf , and the third row shows the approximation errors as functions

of x with respect to the exact function f . The top right panel illustrates the decay

of the approximation errors as the level j increases. The dashed line corresponds to

a slope −3.

of each single wavelet. The example of Fig. 2.4 for the Haar system is a simple
illustration of this important fact.

Let us fix a coarse level J0. The difference between f and its projection PJ0f
in the left hand side of the Jackson inequality can be expanded into a series of
all the detail functions with levels larger than J0. More precisely, in the wavelet
basis we have

f − PJ0f =
∑

j≥J0

∑

k

f̂j,kψjk.

Taking the norm of this expression, we obtain the approximation error in terms
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of the magnitudes of the wavelet coefficients,

||f − PJ0f ||2 ³
∑

j≥J0

∑

k

|f̂j,k|2

from which we can note that if the representation of f is “sparse” in the wavelet
basis, i.e., few wavelet coefficients are large, only those coefficients will con-
tribute significantly to the approximation error.

This argument naturally leads to the concept of nonlinear approximation.
We introduce the finest refinement level Jmax at which we want to approximate
a given function f . The approximation PJmaxf can be expanded into scaling
functions at the minimum refinement level J0 and wavelets up to a maximum
level Jmax − 1,

PJmaxf(x) =
∑

k

f̆J0,kϕJ0,k +
Jmax−1∑

j=J0

∑

k

f̂jkψjk.

The nonlinear (adaptive) approximation is based on the thresholding of the
wavelet coefficients. In this superposition we keep only those terms correspond-
ing to wavelet coefficients above a given threshold ε. We define a threshold-
dependent set of wavelet indices

Λε =
{
(j, k) : |f̂j,k| > ε

}
. (4.94)

The set of retained coefficients will be

Sε =
{
f̆J0,k,∀k

}
∪
{
f̂j,k : (j, k) ∈ Λε

}
. (4.95)

Note that we still include in this set all the scaling function coefficients at the
minimum refinement level J0 for a correct representation of the “low frequency”
portion of the function f . The nonlinear approximation of f will then be ex-
pressed by a projection operator that depends itself on f ,

P ε
Jmaxf(x) =

∑

k

f̆J0,kϕJ0,k +
∑

Λε

f̂jkψjk. (4.96)

We can also define a sparsity index SJmaxI (ε), defined as the percentage of re-
tained coefficients with respect to the total number of coefficients for a given
threshold ε and maximum refinement level Jmax,

SJmaxI (ε) = 100 · cardSε
dimVJmax

(4.97)

Moreover, as each coefficient f̂j,k pertains to a wavelet function localized around
the dyadic point xjk = (2k+1) 2−j−1, the magnitude of the wavelet coefficients
can be used as a “measure” of the regularity of the function f at a given



108 Biorthogonal decomposition on bounded domains

ε = 10−3 P ε
10f

j

0 0.5 1

4

5

6

7

8

9

0 0.5 1

0

0.2

0.4

0.6

0.8

1

ε = 10−4 P ε
10f

j

0 0.5 1

4

5

6

7

8

9

0 0.5 1

0

0.2

0.4

0.6

0.8

1

ε = 10−5 P ε
10f

j

0 0.5 1

4

5

6

7

8

9

0 0.5 1

0

0.2

0.4

0.6

0.8

1

ε = 10−6 P ε
10f

j

0 0.5 1

4

5

6

7

8

9

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure 4.16: Adaptive approximations (L = 2, L̃ = 4) of a gaussian pulse (Fig. 4.14,

top left panel) obtained through suppression of wavelet coefficients below a given

threshold ε. The left panels show the location of the wavelet coefficients with magni-

tude larger than ε, separated through refinement levels j. The right panels show the

adaptive approximation obtained with the coefficients depicted in the left panels.

location x and a given scale j. Figure 4.16 illustrates these concepts using
the gaussian pulse of Eq. 4.93. The left column shows the locations xjk of
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Figure 4.17: Adaptive approximations (L = 2, L̃ = 4) of a gaussian pulse (Fig. 4.14,

top left panel) obtained through suppression of wavelet coefficients below a given

threshold ε. The left panel shows the nonlinear approximation error (at refinement

level j = 10) as a function of the threshold ε. The dashed line indicates the error

in the linear approximation retaining all wavelet coefficients. The right panel shows

the sparsity index in the adaptive approximation (i.e. the percentage of retained

coefficients) as a function of the threshold.

the wavelet coefficients with magnitude larger than ε. For convenience they
have been separated through scales j on the y−axis. The right panel shows
the corresponding approximation P ε

j . Obviously the approximation gets better
as the threshold decreases and the number of retained coefficients increases.
However, the significant coefficients are concentrated where the “singularity”
of f occurs. Figure 4.17 shows the behavior of the nonlinear approximation
error and of the sparsity index as functions of the threshold. It is clear that
quite sparse representations can be obtained with a small loss of details in the
representation of f .

Part of this work has been dedicated to the construction of wavelet systems
on the unit interval. As the modified border wavelets are not simple translations
of a dilated mother wavelet, it should be checked that the space-scale localiza-
tion is preserved also at the edges of the domain. Figure 4.18 shows that this
localization is indeed preserved. The top panel shows the same gaussian pulse
of Fig. 4.16 centered now at xc = 0.02. The bottom panels show the locations
of wavelet coefficients (always for the B-splines with L = 2, L̃ = 4), above a
fixed threshold ε. The approximation errors and the sparsity index, shown in
Fig. 4.19, top row, behave in the same way as in the case with xc = 0.5. As the
function is sufficiently regular everywhere, it is possible to gain accuracy and
sparsity in the representation by increasing the regularity of the adopted mul-
tiresolution. This fact is illustrated in the bottom row of Fig. 4.19, where the
approximation errors and the sparsity index obtained in the B-spline case with



110 Biorthogonal decomposition on bounded domains

f

0 0.5 1

0

0.2

0.4

0.6

0.8

1

ε = 10−3 ε = 10−4

j

0 0.5 1

4

5

6

7

8

9

j

0 0.5 1

4

5

6

7

8

9

ε = 10−5 ε = 10−6

j

0 0.5 1

4

5

6

7

8

9

j

0 0.5 1

4

5

6

7

8

9

Figure 4.18: Gaussian pulse centered near the edge of the interval [0, 1] (top panel)

and locations of its wavelet coefficients above different thresholds ε.

L = 3 and L̃ = 5 are plotted versus the same thesholds ε as in the top row. Both
the errors and the sparsity indices are smaller than in the case L = 2, L̃ = 4. It
can be concluded that highly sparse representations can be achieved throughout
the domain [0, 1] using the wavelet systems constructed in this chapter.

The following example further illustrates the high degree of sparsity in the
representation of signals with isolated singularities. Figure 4.20 shows a step
function v with finite rise time. This function has two localized singularities in
the first derivative. Signals of this kind are very important in our applications,
because the waveform of digital signals can often be modelled with functions
like v. Performing the nonlinear approximations with different thresholds ε we
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Figure 4.19: Nonlinear approximation of the gaussian pulse in Fig. 4.18 in the B-

spline case L = 2, L̃ = 4 (top row) and L = 3, L̃ = 5 (bottom row). The left panels

show the nonlinear approximation error (at refinement level j = 10) as a function

of the threshold ε. The dashed line indicates the error in the linear approximation

retaining all wavelet coefficients. The right panels shows the sparsity index in the

nonlinear approximation (i.e. the percentage of retained coefficients) as a function of

the threshold.

obtained the approximation error depicted in the left panel of Fig. 4.21, and
the corresponding sparsity index in the right panel. It should be noted that
retaining only less than 6% of the total number of coefficients in the wavelet ex-
pansion the approximation error is the smallest possible at the refinement level
Jmax. Figure 4.22 shows the locations of the wavelet coefficients above a fixed
threshold ε in the left panels, and the corresponding nonlinear approximation
in the right panels.

The nonlinear approximation can also be regarded under a slightly different
perspective. Instead of fixing the threshold ε, we can fix the total number N of
coefficients to retain. Consequently, we need to choose which are the coefficients
to be included. The answer is the set of the largest scaling function and wavelet
coefficients. As each coefficient contributes independently to the L2 norm of
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Figure 4.20: Step function with finite rise time
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Figure 4.21: The left panel shows the nonlinear approximation error (at refinement

level j = 10) as a function of the threshold ε for the step function in Fig. 4.20.

The dashed line indicates the error in the linear approximation retaining all wavelet

coefficients. The right panel shows the sparsity index in the nonlinear approximation

(i.e. the percentage of retained coefficients) as a function of the threshold.

the function f , we are sure that the L2 norm of the approximation error will be
the smallest possible when the smallest coefficients are disregarded.
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Figure 4.22: Adaptive approximations (L = 2, L̃ = 4) of the step function in

Fig. 4.20, top panel, obtained through suppression of wavelet coefficients below a

given threshold ε. The left panels show the location of the wavelet coefficients with

magnitude larger than ε, separated through refinement levels j. The right panels

show the adaptive approximation obtained with the coefficients depicted in the left

panels.
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Chapter 5

Integrals of refinable functions

The formulation of the TDSE method in Chap. 1 derived a linear system of
ODEs equivalent to the spatial discretization of the NMTL equations. This
linear system (1.28) is fully characterized once the integrals of products of trial
and test functions or their derivatives are known. The computation of these
integrals in the case of piecewise linear functions used in Chap. 1 was trivial.

This chapter is devoted to the evaluation of integrals of refinable functions.
We call refinable function any function satisfying a refinement equation. We will
see that derivatives or primitives of the scaling functions are refinable functions.
The results presented in this chapter will be applied in Chap. 6 to the solution
of the NMTL equations by using as trial and test functions the scaling functions
and wavelets on the unit interval constructed in Chap. 4.

The following sections will show that the computation of the aforemen-
tioned integrals can be performed with the only knowledge of the refinement
equations of the functions to be integrated. These integrals are indeed multivari-
ate refinable functions, and their computation can be reduced to an equivalent
eigenvector problem.

Section 5.1 will summarize the results of Ref. [21] about the calculation of
integrals of refinable functions on unbounded domains. Section 5.2 will then
apply the construction of scaling functions and wavelets on the unit interval
given in Chapter 4, and determine how to evaluate integrals of functions on
bounded domains.

5.1 Unbounded domains

Throughout the following we will indicate with ϕm : IRq → IRq a refinable
function with associated mask {amk , k ∈ ZZq},

ϕm(x) =
∑

k∈ZZq
amk ϕ

m(2x− k), ∀x ∈ IRq. (5.1)

115
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The suffix m is an index that we will use to distinguish different refinable func-
tions. Even if our application is intrinsically 1D, we will work with a space of
dimension q to keep the derivation as general as possible. Recalling the defini-
tion of scaling functions in Chapter 3, we see that the mask is nothing else than
the rescaled associated filter,

amk =
√
2hmk , ∀k ∈ ZZq.

We will suppose in the following that the masks have finite support.
The objective will be the evaluation of integrals of the type

∫

IRq
ϕ0(2j0x− α0)

M∏

m=1

qm(D)ϕm(2jmx− αm)dx, (5.2)

where qm is a homogeneous polynomial of degree dm and D is the differentia-
tion operator. We can get rid of the differentiation operator by defining new
functions

Υm(x) = qm(D)ϕm(x), m = 1, . . . ,M. (5.3)

It is easy to see that the functions Υm also satisfy a refinement equation with
associated masks {bmk },

bmk = 2d
m

amk , ∀k ∈ ZZq, m = 1, . . . ,M. (5.4)

If we set Υ0 = ϕ0 and b0k = a0k ∀k, we are reduced to the evaluation of integrals
of the type

I(α0, . . . , αM ; j0, . . . , jM) =
∫

IRq

M∏

m=0

Υm(2jmx− αm)dx. (5.5)

Without loss of generality we will assume that the refinement levels are sorted
in ascending order, i.e.

j0 ≤ j1 ≤ . . . ≤ jM−1 ≤ jM .

The process of the evaluation of the integrals (5.5) is based on the iterative
application of the refinement equation to each of the functions in the product,
with repeated changes of variable. At the end of the process we will have to
evaluate a set of integrals of type I(0, α1, . . . , αM ; 0, . . . , 0), i.e., only containing
translated refinable functions with all the dilation factors equal to one. This re-
duction of refinement levels is dealt with in Section 5.1.1. Section 5.1.2 will show
that the computation of integrals with all the functions at the same refinement
level can be reduced to an eigenvector problem.
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5.1.1 Refinement levels reduction

We begin with the consideration that the change of variable x → 2rx leads to
the identity

I(α0, . . . , αM ; j0, . . . , jM) = 2qrI(α0, . . . , αM ; j0 + r, . . . , jM + r).

Setting then r = −j0 in previous expression we obtain

I(α0, . . . , αM ; j0, . . . , jM) = 2−j0qI(α0, . . . , αM ; 0, j1 − j0 . . . , jM − j0). (5.6)

Therefore, we can consider directly the case with j0 = 0.
Next step is to apply the refinement equation (5.1) to the function with

m = 1. We get

I(α0, . . . , αM ; 0, j1, . . . , jM) =

=
∫

IRq


 ∑

α∈ZZq
b0αΥ

0(2x− 2α0 − α)




M∏

m=1

Υm(2jmx− αm)dx

= 2−q
∑

α∈ZZq
b0α

∫

IRq
Υ0(x− 2α0 − α)

M∏

m=1

Υm(2jm−1x− αm)dx

= 2−q
∑

α∈ZZq
b0α I(α+ 2α0, α1, . . . , αM ; 0, j1 − 1, . . . , jM − 1).

The same procedure can be repeated until the refinement level of the second
function reaches 0, obtaining

I(α0, . . . , αM ; 0, j1, . . . , jM) = 2−j1q
∑

γ1

∑

γ2

· · ·
∑

γj1

b0γ1b
0
γ2
· · · b0γj1 · (5.7)

I(γj1 + 2γj1−1 + . . .+ 2j1−1γ1 + 2j1α0, α1, . . . , αM ; 0, 0, j2 − j1, . . . , jM − j1).

We have then reduced the integral (5.5) to a sum of integrals with two functions
at refinement level 0. Repeating this procedure we can reach the situation where
all the functions are at the same refinement level. Let us then consider the
general case, when p functions have already reached this level and the remaining
ones are M − p+ 1. We can split the integral as

I(α0, . . . , αM ; 0, . . . , 0, jp, . . . , jM) = (5.8)
∫

IRq




p−1∏

m=0

Υm(x− αm)



(

M∏

m=p

Υm(2jmx− αm)

)
dx,

where p = 1, . . . ,M . Indeed, when p = 0 we can apply Eq. (5.6), and when
p =M +1 all the functions are at the level 0, and we can define a new function

H(α1 − α0, . . . , αM − α0) = I(α0, . . . , αM ; 0, 0, . . . , 0) =
∫

IRq

M∏

m=0

Υm(x− αm)dx.
(5.9)
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This will be the exit condition from a recursive scheme that we are going to
describe in the remaining part of this section. The evaluation of integrals of the
type (5.9) will be the subject of Section 5.1.2.

Let us now apply the refinement equation to the first p functions in the
integral (5.8),

I(α0, . . . , αM ; 0, . . . , 0, jp, . . . , jM ) =

=
∫

IRq



p−1∏

m=0

(∑

nm

bmnmΥ
m(2x− 2αm − nm)

)

(

M∏

m=p

Υm(2jmx− αm)

)
dx

= 2−q
∫

IRq



p−1∏

m=0

(∑

nm

bmnmΥ
m(x− 2αm − nm)

)

(

M∏

m=p

Υm(2jm−1x− αm)

)
dx

= 2−q
∑

n0

∑

n1

· · ·
∑

np−1




p−1∏

m=0

bmnm


 ·

∫

IRq




p−1∏

m=0

Υm(x− 2αm − nm)



(

M∏

m=p

Υm(2jm−1x− αm)

)
dx.

This equation can be interpreted as a recursive formula, that can express the
integral (5.8) as a superposition of integrals of the same kind, but with smaller
refinement levels for all the functions with m ≥ p. This formula reads

I(α0, . . . , αM ; 0, . . . , 0, jp, . . . , jM) = 2−q
∑

n0

∑

n1

· · ·
∑

np−1




p−1∏

m=0

bmnm


 · (5.10)

I(n0 + 2α0, . . . , np−1 + 2αp−1, αp, . . . , αM ; 0, . . . , 0, jp − 1, . . . , jM − 1)

In conclusion, the evaluation of the integral (5.5) in the general case can be
reduced to a superposition of integrals of the type (5.9). This superposition is
determined by a recursive algorithm whose steps are itemized below.

• Apply Eq. (5.6) to get rid of the first refinement level j0;

• Apply the recurrence relation (5.10) for p = 1, . . . ,M ;

• Evaluate the integrals (5.9) (see next section).

5.1.2 The eigenvector equation

This section will show how the integral already introduced in Eq. (5.9),

H(x1, . . . , xM) =
∫

IRq
Υ0(x)

M∏

m=1

Υm(x− xm)dx

can be evaluated at lattice points xi = αi ∈ ZZq without any use of quadrature
formulas. The refinement equation of the functions in the product will be
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used to determine an eigenvector problem equivalent to the computation of the
integral. Note that the number of variables is here s =Mq.

Let us substitute the refinement equation for each Υm in the integral. After
few straightforward passages we get

H(x1, . . . , xM)

=
∫

IRq

(∑

γ0

b0γ0Υ
0(2x− γ0)

)
M∏

m=1

(∑

γm

bmγmΥ
m(2x− 2xm − γm)

)
dx

=
∑

γ0γ1···γM

M∏

m=0

bmγm

∫

IRq
Υ0(2x− γ0)

M∏

m=1

Υm(2x− 2xm − γm)dx.

Changing now variable according to 2x−γ0 = ξ, and setting µm = γ0−γm, m =
1, . . . ,M we get the expression

H(x1, . . . , xM ) = 2−q
∑

µ1···µM

∑

γ0

{
b0γ0

M∏

m=1

bmγ0−µm

}
H(2x1 − µ1, . . . , 2xM − µM).

If we evaluate this expression at lattice points αm ∈ ZZq, we obtain

H(α1, . . . , αM) =
∑

µ1···µM
h2α1−µ1,...,2αM−µMH(µ1, . . . , µM), (5.11)

where

hµ1,...,µM = hµ = 2−q
∑

γ

b0γ

M∏

m=1

bmγ−µm . (5.12)

Equation (5.11), which can be rewritten in compact form

H(x) =
∑

µ∈ZZqM
hµH(2x− µ), x ∈ ZZqM (5.13)

represents an eigenvalue equation of which the integral H is an eigenvector.
Note also that from Eq. (5.13) we immediately see that the integral H itself is
a refinable function with filter hµ ∈ ZZqM .

Let us now recall that the functions Υm are the derivatives of the refinable
functions ϕm, with their masks related by Eq. (5.4). We can introduce an
integral in the same fashion as H but with the derivatives removed,

F (x1, . . . , xM) =
∫

IRq
ϕ0(x)

M∏

m=1

ϕm(x− xm)dx. (5.14)

Following the same procedure above we can easily prove that also F satisfies a
refinement equation

F (x) =
∑

µ∈ZZqM
cµF (2x− µ),
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where the filter cµ is defined similarly to hµ,

cµ1,...,µM = cµ = 2−q
∑

γ

a0γ

M∏

m=1

amγ−µm . (5.15)

The two functions F and H can be easily related if we differentiate F through
the polynomials qm(D) with respect to the arguments xm. The result is

H(x) = (Q(D)F )(x),

where Q is a homogeneous polynomial on IRqM expressed by

Q(y1, . . . , yM) =
M∏

m=1

qm(−ym).

Note that deg[Q] is the total number of derivatives in the original integral (5.2).
Using now the definition of the masks bm in Eq. 5.4 we can see that

hµ = 2deg[Q]cµ. (5.16)

We obtain then the two eigenvector equations

F (α) =
∑

µ∈ZZqM
c2α−µF (µ), (5.17)

2− deg[Q]H(α) =
∑

µ∈ZZqM
c2α−µH(µ), (5.18)

from which we see that once the matrix c2α−µ is computed, both the integrals F
andH (with any number of derivatives) are expressed by eigenvectors associated
to the eigenvalues 1 and 2− deg[Q], respectively.

Two problems need still to be addressed. One is the unicity of the eigenval-
ues. The other is the suitable normalization to be considered for the numerical
evaluation of the corresponding eigenvectors. As far as unicity is concerned, it
is proved in Ref. [21] that when each ϕm is µm times continuously differentiable
the eigenvector in Eq. (5.18) is unique. The main theorem, which is based on
asymptotic expansions of certain Stationary Subdivision Operators [18, 21], also
proves that

H(α) = (−1)|µ|Wα,

where
∑

β∈ZZqM
c2α−βWβ = 2−|µ|Wα, α ∈ ZZqM

∑

α∈ZZqM
(−α)νWα = µ! δνµ, |ν| ≤ |µ|, ν, µ ∈ ZZqM

+

This solves the problem of evaluating the integral H, because it indicates ex-
plicitely the correct normalization to be used for the eigenvector. We recall
that the costruction of the matrix whose eigenvectors must be evaluated is not
difficult because its entries are sums of products of the original masks amk .
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5.1.3 An example: the scalar case

This section particularizes the results of previous sections to the scalar univari-
ate case. We want to compute integrals of the type

I(α0, α1; j0, j1) =
∫

IR
Υ0(2j0x− α0)Υ

1(2j1x− α1)dx

where the functions in the product are the derivatives of refinable functions

ϕm(x) =
∑

n

amn ϕ
m(2x− n)

according to

Υm(x) =
d`m

dx`m
ϕm(x).

Note that the integral can only be evaluated when the order of differentiation of
the first function is `0 = 0. The application of the recursive procedure illustrated
in Section 5.1.1 leads to the following three equations,

• I(α0, α1; j0, j1) = 2−j0I(α0, α1; 0, j1 − j0),

• I(α0, α1; 0, j1) =
1
2

∑
n a

0
nI(n+ 2α0, α1; 0, j1 − 1), for j1 > 0,

• I(α0, α1; 0, 0) = H(α1 − α0).

The function H is defined as

H(y) =
∫

IR
Υ0(x)Υ1(x− y)dx

and satisfies the refinement equation

2−`1H(y) =
∑

n

cnH(2y − n),

where

cn =
1

2

∑

ν

a0νa
1
ν−µ.

We show the structure of the system matrix in the case when the mask is
{cn, n = 0, . . . , N + 1}. The refinement equation can also be written, when H
is evaluated at lattice points, as

2−`1H(n) =
N∑

n=1

c2m−nH(m).

From this expression we can visulalize the structure of the eigenvector problem
as

2−`1




H(1)
H(2)
...

H(N)



=




c1 c0 0 . . 0
c3 c2 c1 c0 . .
...

...
...

...
...

...
0 . . 0 cN+1 cN



·




H(1)
H(2)
...

H(N)



. (5.19)
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The eigenvector will be unique when ϕ1 is continuously differentiable at least
`1 times, and the correct normalization will be given by

N∑

m=1

m`H(m) = `!

5.1.4 Inner products

This section is devoted to the calculation of inner products between an arbitrary
function and a refinable function. This case is not included in the discussion of
the foregoing sections, because all the functions in the product to be integrated
in Eq. (5.2) must be refinable. The problem of the evaluation of inner products
stems from the need of finding the expansion coefficients of an arbitrary function
into a biorthogonal basis of refinable functions. Given such a biorthogonal
system on IR, we can write, for any function f ∈ Vj, where Vj is the primal
scaling function space,

f =
∑

k

〈f, ϕ̃jk〉ϕjk .

Conversely, when f ∈ Ṽj, the dual scaling function space, we have

f =
∑

k

〈f, ϕjk〉ϕ̃jk .

The expansion coefficients are then evaluated in both cases through an integral
of the function f times a refinable scaling function. In case f does not belong
to the approximation spaces Vj or Ṽj, the evaluation of the coefficients can be
performed in the same way. The result, however, will be the set of coefficients
of the approximation of f at level j,

Pjf =
∑

k

〈f, ϕ̃jk〉ϕjk

P̃jf =
∑

k

〈f, ϕjk〉ϕ̃jk .

We will consider first the integral

If =
∫

IR
f(x)ϕ(x)dx, (5.20)

where f ∈ C0(IR) is a continuous function on IR and ϕ is a refinable function
with (finitely supported) mask {an, n = n0, . . . , n1}. The continuity of f is
essential for the following derivation. Applying the refinement equation to ϕ in
the integral we get

If =
1

2

n1∑

m=n0

am

∫
f
(
y +m

2

)
ϕ(y)dy,
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where the change of variable y = 2x −m has been used. If we iterate p times
the refinement equation and the corresponding change of variable, we get

If =
1

2p

n1∑

m1=n0

· · ·
n1∑

mp=n0

am1 · · ·αmp

∫

IR
f
(
x

2p
+
mp

2p
+ · · ·+ m1

2

)
ϕ(x)dx.

When p gets large, the function in the integral viewed as a function of x ap-
proaches a constant value when evaluated in the support of ϕ. This can be
showed in a rigorous way by using the continuity of f . As the integral of the
scaling function ϕ is equal to one, ϕ behaves like a Dirac function centered at
some point xc. We recall that for the biorthogonal B-spline scaling functions
we have xc = rem(L, 2). In summary, the function

1

2p

n1∑

m1=n0

· · ·
n1∑

mp=n0

am1 · · ·αmp
f
(
xc
2p

+
mp

2p
+ · · ·+ m1

2

)
(5.21)

converges uniformly to the constant If when p→∞. The level of approximation
in the evaluation of the integral is controlled by p.

Let us assume now p fixed. The evaluation of Eq. (5.21) requires to sample
the original function f(y) at some points on the y axis. Intuitively, looking at
the main integral (5.20), it is clear that f needs only to be sampled where the
refinable function ϕ is nonzero. The actual minimum and maximum values of
y to be used can be obtained by considering the lower and upper limits in the
sum for all indices mi, i = 1, . . . , p. We obtain

ymin =
xc
2p

+ n0

p∑

i=1

1

2i
, ymax =

xc
2p

+ n1

p∑

i=1

1

2i
.

When p→∞ we can sum the geometrical series obtaining

ymin = n0, ymax = n1,

which are exactely the limits of the support of ϕ. As the set of points yi are
equally spaced with a sampling interval of 2−p, the required values of the original
function are f(yi), where

yi = n0 +
i− n0 + xc

2p
, i = 0, . . . , 2p(n1 − n0)− n1 + n0.

A straightforward generalization holds when the integral to be evaluated
contains the refinable function at level j and location k. Indeed, a trivial change
of variable leads to

If,jk =
∫

IR
f(x)ϕjk(x)dx =

∫

IR
f̂(x)ϕ(x)dx,

where

f̂(x) = 2−j/2f

(
x+ k

2j

)
.
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Therefore, the integral If,jk can be handled in the same say as above. The
sequence of points yi that are needed for its evaluation at the approximation
level p will be

yi =
1

2j

(
k + n0 +

i− n0 + xc
2p

)
, i = 0, . . . , 2p(n1 − n0)− n1 + n0,

which are strictly included in the support of ϕjk. Setting now

{fi} = {2−j/2f(yi)},

it can be easily shown that the evaluation of the multiple sums in Eq. (5.21)
can be achieved through the iterated application of the operator

If,jk ' (↓ ∗)p{fi},

where the star indicates the convolution with the filter
{
an
2
, n = n0, . . . , n1

}

and the arrow indicates a downsampling of a factor of two. In other words, a
sliding window of length n1 − n0 + 1 is applied to the sequence fi skipping one
point every two, and the whole procedure is repeated p times.

5.2 Bounded domains

This section is devoted to the evaluation of integrals containing products of
derivatives of scaling functions on bounded domains. Only the monodimen-
sional case will be considered. The construction of biorthogonal multiresolutions
on the unit interval derived in Section 4.4 will be used here. This will allow
to perform the calculations with a simple extension of the evaluation scheme
described in Section 5.1 for the integrals on the real line.

We consider the general form of the integrals to be evaluated,

I[0,1] =
∫ 1

0
ϕ0(2j0x− α0)

M∏

m=1

qm(D)ϕmjm,αm(x)dx, (5.22)

where the functions ϕmjm,αm are scaling functions belonging to Vjm(0, 1). As the
support of all these functions is included in the unit interval, the integral can be
also restated by substituting the indicator function of [0, 1] to the first function

ϕ0(x) = χ[0,1](x), j0 = α0 = 0,

obtaining

I[0,1] =
∫

IR
χ[0,1](x)

M∏

m=1

qm(D)ϕmjm,αm(x)dx. (5.23)
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We recall from Eq. (3.77) that the indicator function of the unit interval is the
scaling function of the Haar decomposition. Therefore, it is a refinable function
with a mask having only two nonzero entries,

a00 = a01 = 1, a0k = 0 otherwise.

Moreover, we can also express each scaling function ϕm, m = 1, . . . ,M as a
superposition of refinable functions on the real line. This was already accom-
plished in Section 4.4.1. We restate here the main result, derived from Eq. 4.79,
with the notations used in this chapter,

ϕmjm,αm = χ[0,1]

∑

lm

Mm
αm,lmϕ

m,IR
jm,lm

. (5.24)

The limits in the sum are described explicitely in Section 4.4.1. The key point
is that each scaling function at level jm on the unit interval is expressed as a
linear combination of (few) scaling functions of the underlying construction on
IR, at the same refinement level, eventually restricted to the domain [0, 1]. As
the indicator function obviously satisfies

χ[0,1] = χ[0,1] · χ[0,1],

the expression of the integrals (5.22) becomes

I[0,1] =
∑

l1

· · ·
∑

lm

{
M∏

m=1

Mm
αm,lm

}∫

IR
χ[0,1](x)

M∏

m=1

qm(D)ϕm,IRjm,lm
dx. (5.25)

Each of the integrals in the sum is now applied to the product of derivatives
of refinable functions on IR, and can be evaluated through the scheme given in
Section 5.1.

5.2.1 Inner products

We consider here the evaluation of the inner product of an arbitrary continuous
function f ∈ C0([0, 1]) with (biorthogonal) scaling functions on the unit interval.
The aim is then the computation of

fjk =
∫ 1

0
f(x)ϕ̃jk(x)dx.

These can also be interpreted as the expansion coefficients of Pjf into the basis
of the primal scaling function space Vj(0, 1),

Pjf(x) =
∑

k

fjkϕjk(x),

with j ≥ j0, defined in Section 4.4.1. The expansion coefficients into the dual
basis can be obtained by simply exchanging the role of primal and dual scaling
functions.
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As the translation invariance is lost on the unit interval (and on bounded
domains in general), the procedure developed in Section 5.1.4 cannot be applied
in the present case. Let us write then the function f as

f(x) = g(x) + r(x),

where g(0) = g(1) = 0 and

r(x) = f(0) + [f(1)− f(0)] x.

Due to the linearity of this decomposition, we can obtain the expansion coeffi-
cients fjk as the superposition

fjk = gjk + rjk,

where
Pjg(x) =

∑

k

gjkϕjk(x), r(x) =
∑

k

rjkϕjk(x).

Note that Pjr = r because the scaling function spaces that we use in this work
include the polynomials of degree at least one.

Let us consider the gjk first. We recall that the dual scaling functions on
the unit interval can be expressed as linear combinations of the dual scaling
functions of the underlying biorthogonal multiresolution on IR. Therefore we
can write (see Section 4.4.1)

gjk =
∫ 1

0
g(x)ϕ̃jk(x)dx =

∫

IR
g(x)ϕ̃jk(x)dx =

∑

l

M̃k,l

∫

IR
g(x)ϕ̃IRjl (x)dx,

where

g(x) =

{
g(x), x ∈ [0, 1]
0 otherwise.

As the function g is continuous on IR, the results obtained in Section 5.1.4 can
be immediately applied for the evaluation of gjk.

We turn now to the computation of rjk. These are readily obtained once the
expansion coefficients of the monomials pα(x) = xα with α ∈ {0, 1} are known,
i.e.

pα(x) =
∑

k

pαkϕjk(x).

Referring to the scaling function spaces constructed in Section 4.4.1, at a fixed
level j three cases can be distinguished,

1. 0 ≤ k < L̃,

2. L̃ ≤ k < dimVj − L̃− 1,

3. dimVj − L̃− 1 ≤ k < dimVj
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The first case refers to the left edge, the second to the internal scaling functions,
and the third to the right edge. The third case can be immediately obtained
from the first by reflection and symmetry, and will not be detailed here.

Let us consider the internal functions first (case 2 in the list above). As the
internal scaling functions are the translated biorthogonal scaling functions on
the real line, ϕ̃jk = ϕ̃IR

j,k∗+k−L̃ , we have

pαk = 〈pα, ϕ̃IRj,k∗+k−L̃〉 =
∫

IR
xα 2j/2ϕ̃(2jx− [k∗ + k − L̃])dx =

= 2−j(α+1/2)
∫

IR
yα ϕ̃(y − [k∗ + k − L̃])dy = 2−j(α+1/2)c

α,k∗+k−L̃.

The coefficients cαl are defined in Eq. (4.3).
We consider now the left edge, i.e., case 1 in the list above. As the con-

struction of the scaling function spaces is based on the separation of the left
and right edge, we start with the study of the expansion of the monomials on
the half line [0,∞) at level j = 0. From the definition of the primal border
functions in Eq. (4.4) we can write for x ≥ 0

pα(x) = θα(x) +
k∗−1∑

k=k∗0

cαkϕ
IR
0k(x) +

∑

k≥k∗
cαkϕ

IR
0k(x) =

=
L̃−1∑

l=0

qαlθ0l(x) +
∑

k≥k∗
cαkϕ

IR
0k(x),

where

qαl =

{
δαl, 0 ≤ l < L,

cα,l−L+k∗0 L ≤ l < L̃,

and where ϕ0l represent the primal scaling functions on the half line before the
biorthogonalization. These are expressed in terms of the biorthogonal scaling
functions through the inverse of the change of basis matrix D,

θ0l(x) =
L̃−1∑

s=0

[
D−1

]
ls
ϕ0s(x).

Therefore, we obtain

pαk =
L̃−1∑

s=0

p
(0)
αkϕ0s(x) +

∑

k≥k∗
cαkϕ

IR
0k(x),

where

p
(0)
αk =

L̃−1∑

l=0

qαl
[
D−1

]
lk
.
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Finally, the expansion coefficients at level j are found by applying the operator
Tj to the equation

pα(x) =
∑

k

p
(0)
αkϕ0k(x),

obtaining

pαk = 2−j(α+1/2)p
(0)
αk = 2−j(α+1/2)

L̃−1∑

l=0

qαl
[
D−1

]
lk
.

Putting all the cases together, we get the final expression for the expansion
coefficients rjk,

rjk = f(0) p0k + [f(1)− f(0)] p1k.

5.2.2 Expansion of discontinuous functions

The evaluation of the expansion coefficients of an arbitrary continuous function
defined on the unit interval into the scaling function bases has been solved
in the foregoing section. This section focuses on the evaluation of the same
expansion coefficients when the function presents some isolated discontinuities.
It should be noted that the continuity is essential for the application of the
method described in Section 5.2.1.

Any discontinuous function f can be expressed as a superposition of a con-
tinuous part fc ∈ C0 plus a discontinuous part µ, which collects all the jumps
of f ,

µ(x) =
Nd∑

n=1

αnu(x− xn),

where the total number of jumps is Nd, their height is expressed by the coeffi-
cients αn, and u(·) is the Heaviside step function. Due to the linearity of the
projection operator Pj, the computation of the expansion coefficients of f is
solved once the expansion coefficients of the singular part µ are known. These
coefficients are expressed as inner products with the dual scaling functions,

µjk =
∫ 1

0
µ(x)ϕ̃jk(x)dx, ∀k = 0, . . . , dimVj(0, 1)− 1. (5.26)

The same procedure applies with obvious substitutions for the computation of
the expansion coefficients into the dual scaling function basis, therefore only
the evaluation of the primal coefficients will be detailed here. By substituting
the definition of the singular part µ in Eq. (5.26), we get

µjk =
Nd∑

n=1

αn

∫ 1

0
u(x− xn)ϕ̃jk(x)dx.

If we integrate each term in the sum by parts, we obtain

µjk =
Nd∑

n=1

{Ñjk(1)− Ñjk(xn)},
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where Ñjk indicates the primitive of the scaling function ϕ̃jk,

Ñjk(x) =
∫ x

0
ϕ̃jk(s)ds.

We recall that the scaling functions on the unit interval are a linear combi-
nation of the scaling functions on IR restricted to the unit interval through some
coefficients that we collect in a matrix M̃ (see Eqs. (4.79) and (5.24)). Using
this property we can also express the primitives of the scaling functions on the
unit interval as a linear combination of the primitives of the scaling functions
on IR. With few straightforward passages we get the expression

µjk =
Nd∑

n=1

αn
∑

l

M̃kl

[
Φ̃IR
jl (1)− Φ̃IR

jl (xn)
]
, (5.27)

where Φ̃IR
jl represents the primitive of the dual scaling function on IR,

Φ̃IR
jl (x) =

∫ x

−∞
ϕ̃IRjl (s) ds. (5.28)

Combining Eqs. (5.28) and (5.27) we obtain the final expression for the expan-
sion coefficients,

µjk = 2−j/2
Nd∑

n=1

αn
∑

l

M̃kl

[
Φ̃(2j − l)− Φ̃(2jxn − l)

]
,

where Φ̃ is the primitive of the dual scaling function on IR at the zeroth refine-
ment level,

Φ̃(x) =
∫ x

−∞
ϕ̃(s) ds. (5.29)

The last step is the evaluation of the primitive of the scaling function on IR
at an arbitrary point. We assume as usual that the scaling function is compactly
supported in [ñ0, ñ1]. This implies that

Φ̃(x) = 0 ∀x ≤ ñ0,

Φ̃(x) = 1 ∀x ≥ ñ1.

It is also easy to prove that the primitive satisfies the refinement equation

Φ̃(x) =
ñ1∑

n=ñ0

ãn
2

Φ̃(2x− n), (5.30)

where ãn are the mask coefficients of the scaling function on IR.
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Let us evaluate Eq. (5.30) at an integer k ∈ {ñ0+1, . . . , ñ1− 1}. This is the
set of integer points at which the primitive assumes nontrivial values. A simple
change of variable leads to

Φ̃(k) =
2k−ñ0∑

m=mi

1

2
ã2k−mΦ̃(m) =

mf∑

m=mi

1

2
ã2k−mΦ̃(m) +

2k−ñ0∑

m=mf+1

1

2
ã2k−m, (5.31)

where

mi = max{2k − ñ1, ñ0 + 1}, mf = min{2k − ñ0, ñ1 − 1}.

The above equation can be restated in matrix form as

[
I − 1

2
A
]
Φ̃ = α, (5.32)

where the matrix A has the same structure as in Eq. (5.19), Φ̃ is the array of
the primitive values at nontrivial integers, and α collects the second sum in
the right-hand side of Eq. (5.31). The system (5.32) is invertible because the
maximum eigenvalue of the matrix A is unitary. Once the primitive values at
integers are known, the value at any dyadic point xjk = k2−j can be computed
by applying recursively the refinement equation (5.30).



Chapter 6

TDSE with scaling functions and
wavelets

In this chapter we will apply the biorthogonal scaling function and wavelet
bases on the unit interval constructed in Chapter 4 to the transient solution
of Nonuniform Multiconductor Transmission Lines through the TDSE method
described in Chapter 1.

Two different approaches will be followed, according to the nature of the
voltage source waveforms exciting the line. If these waveforms are regular,
we will show in Section 6.1 that very high accuracies can be obtained by in-
creasing the regularity and the polinomial order of the trial functions. This
holds because also the voltage and current along the line are highly regular,
and can be represented efficiently when the approximation spaces match their
regularity. On the other hand, when there are singularities in the forcing wave-
forms, increasing the regularity of the approximation spaces has no effects on
the maximum approximation error. A large number of trial functions is needed
to represent the solution with a good accuracy. However, we will show in Sec-
tion 6.2 that when the singularities are isolated, the nonlinear approximation
based on wavelet thresholding leads to adapted representations of the solution.
The number of trial functions giving a significant contribution to the represen-
tation of the solution are concentrated near its singularities. Consequently, the
overall representation of the solution results highly sparse.

6.1 TDSE with scaling functions

The TDSE method was introduced in Chapter 1 without reference to any spe-
cific choice of trial and test functions. It is easy to show that the formulation of
the TDSE method of Sec. 1.1 can be used without modifications if the trial and
test functions are the biorthogonal scaling functions on the unit interval con-
structed in Chapter 4. Indeed, the only requirements on the basis functions are
expressed in Eq. (1.19) and (1.20). These conditions insure that only one basis
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function is non-vanishing at z = 0, and similarly at z = 1. In addition, the sup-
ports of these two border functions must be disjoint. Recalling the properties
of the scaling function systems on the unit interval constructed in Chapter 4,
we see that these two conditions are automatically satisfied.

We recall here for convenience the implicit system of ODE’s of Eq. (1.36),
stemming from the aforementioned formulation of the TDSE method,

Ψ̂
d

dt
x̂(t)+Φ̂ x̂(t) = ∆̂SVS(t)+∆̂SD

d

dt
VS(t)+∆̂LVL(t)+∆̂LD

d

dt
VL(t). (6.1)

Each unknown in the array x̂(t) represents one expansion coefficient of volt-
age or current at time t into the trial functions system (see Eq. (1.35)). The
approximation space for the solution is the scaling function space Vj(0, 1) at a
refinement level j ≥ j0, where j0 is the minimum allowed level expressed by
Eq. (4.75). Following the notations of Chapter 1 we set

ζn = ϕj,n−1, n = 1, . . . , Nζ = dimVj

φn = ϕj,n−1, n = 1, . . . , Nφ = dimVj

ηn = ϕj,n−1, n = 1, . . . , Nζ = dimVj.

Note that all the three basis sets coincide with the primal scaling function
systems, while the dual scaling functions are not used. Indeed, the primal
scaling functions offer the best trade-off between regularity and length of the
support. On one hand, the dual scaling functions are always less regular than
the primal scaling functions, at least in the biorthogonal B-spline systems with
practical values of L and L̃. On the other hand, they are characterized by
longer supports and longer filters. Therefore, the primal scaling functions offer
a better representation of the solution when employed as trial functions and,
when employed as test functions, produce a larger number of vanishing entries,
or equivalently a smaller bandwidth, in the system matrices of Eq. (6.1) with
respect to the dual scaling functions.

The system matrices Ψ̂ and Φ̂ are computed through the following opera-
tions.

• Expansion of the per-unit-length matrices L(z), C(z), R(z), and G(z)
into the basis functions φn (see Eq. (1.11)). Due to the biorthogonality of
the scaling function systems the expansion coefficients can be computed
through inner products with the dual scaling functions. Section 5.2.1
shows how these inner products can be computed in a fast and accurate
way.

• Computation of inner products of the basis functions. In particular, the
two sets of inner products

Amn = 〈 d
dz
ζn, ηm〉
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(see Eq. (1.16)) and
B(k)
mn = 〈ζn φk, ηm〉

(see Eq. (1.18)) are needed. These are easily expressed as integrals of
refinable functions, as shown in Section 5.2. The computation of these
inner products can then be performed without any use of quadrature
formulas through the algorithms developed in Chapter 5.

Figure 6.1 shows examples of the system matrices obtained by varying the
values of L and L̃ in the construction of the scaling function systems (i.e. the
accuracy of the discretization scheme). The refinement level is set to j = 6
for all the pairs (L, L̃) in the figure. Note that the structure of these matrices
is unchanged from the simple piecewise linear approximation case detailed in
Chapter 1. In particular, both the matrices Ψ̂ and Φ̂ have a banded structure.
This allows to use fast factorization algorithms for banded matrices and leads to
the computation of the quantities Ψ̂−1Φ̂x̂ in O(Nζ) operations. The bandwidth
of these matrices increases with increasing regularity (i.e., with the parameter
L). The modifications of the matrices near the edges are due to the special
construction of the border scaling functions developed in Chapter 4.

The solution of the system of ODE’s in Eq. (6.1) can be obtained through
a suitable integration scheme in time. As in the case of piecewise linear ap-
proximations, we will use a 5th − 6th order Runge-Kutta scheme [10]. Once
the expansion coefficients x̂(t) are computed by the time-stepping routine, the
voltage and current solutions on each conductor can be computed at any z
location along the line and any time t in a postprocessing stage, through the
superpositions in Eq. (1.9) and (1.10). Also this postprocessing involves O(Nζ)
arithmetic operations.

6.1.1 The exponential line

The improved approximation properties of the TDSE method with scaling func-
tions are illustrated on the following example. The matched 1:4 scalar expo-
nential line described and solved with piecewise linear trial and test functions
in Sec. 1.3.1 is solved here with scaling function bases of various order. In
particular, we will use the primal scaling functions corresponding to the pairs

(L, L̃) ∈ {(2, 4), (3, 5), (4, 8), (5, 9), (6, 10)}

and will investigate the behavior of the approximation error of the solution ob-
tained with the TDSE method with respect to the reference solution obtained
by inverse FFT of the analytical frequency domain solution. Special care has
been taken to insure that the periodization effects due to the FFT introduce
insignificant deviations in the reference solution with respect to the exact solu-
tion. The approximation errors on voltage (Ev) and current (Ei) are defined in
Eq. (1.38).
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Figure 6.1: Structure of the system matrices of Eq. (6.1) using primal scaling func-

tions from the biorthogonal B-spline systems on the unit interval with order (L, L̃)

as trial and test functions. Each dot represents a nonzero P × P block.



6.1 – TDSE with scaling functions 135

L = 2, L̃ = 4 L = 3, L̃ = 5

10
1

10
2

10
−5

10
−4

10
−3

10
−2

N
10

1
10

2
10

−6

10
−5

10
−4

10
−3

10
−2

N

L = 4, L̃ = 8 L = 5, L̃ = 9

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

N
10

1
10

2
10

−8

10
−7

10
−6

10
−5

10
−4

N

L = 6, L̃ = 10

10
1

10
2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

N

Figure 6.2: Maximum absolute error on voltage (dots) and current (stars) for the

matched 1:4 exponential line excited by a unitary gaussian pulse. Each panel corre-

sponds to a different biorthogonal B-spline scaling function system of order (L, L̃).

The slope of the dotted lines in the each panel corresponds to N−L, where N is the

total number of basis functions.
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Figure 6.3: Matched 1:4 exponential line with gaussian excitation. Maximum abso-

lute error on voltage (left) and current (right) as a function of the refinement level J

and approximation order L of the basis functions. The total number of basis functions

is approximately N = 2J .

The source voltage generator is the same gaussian pulse as in Eq. (1.37).
This waveform is C∞. Therefore, the approximation error predicted by the
Jackson inequality is only due to the choice of the approximation spaces and
not to the functions to be approximated. Figure 6.2 shows the behavior of the
voltage and current approximation errors as functions of the total number of
trial functions N = dimVj. Each panel reports the errors for one of the pairs
(L, L̃) listed above. This results show that the decay of the approximation error
follows a power law which is consistent with the polynomial order of the trial
functions. More precisely,

Ev(N) ∼ N−L, Ei(N) ∼ N−L.

Figures 6.3 and 6.4 depict the same errors on voltage and current as functions
of the polynomial order L of the approximating spaces and the refinenent levels
j (we recall that N is approximately equal to 2j). These plots show that a
good approximation can be achieved either by using few functions with a high
regularity or many functions with less regularity. The best results have of course
been obtained with the largest number (N = 125) of trial functions with the
highest regularity (5th degree polynomials).

It should be noted that a high accuracy can be obtained by using high
order scaling functions only when the source waveform is highly regular. When
vs(t) presents some localized singularities, like in the examples of Sec. 4.5.2,
the decay of the approximation errors is dominated by the regularity of the
solution, making the choice of higher order approximating functions useless. In
this case, better results can be obtained through a nonlinear approximation by
using hierarchical bases instead of canonical bases. This is dealt with in the
forthcoming section.
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Figure 6.4: Matched 1:4 exponential line with gaussian excitation. Maximum ab-

solute error on voltage (left) and current (right) as a function of the approximation

order L of the N basis functions.

6.2 TDSE with wavelets

This section shows that the nonlinear approximations with thresholding of the
wavelet coefficients described in Section 4.5.2 can be employed to get adapted
representations of the solution to the NMTL equations. This is particularly
useful when the waveforms of the voltage sources at the line terminations present
isolated singularities. For example, this is the case of trapezoidal pulse trains,
which present discontinuities in their first derivative.

The key point is the characterization of the approximation spaces for the
solution to be obtained with the TDSE method. Given a maximum refinement
level Jmax, we consider only those functions in the space VJmax with signifi-
cant wavelet coefficients. This requires to introduce a threshold ε that defines
whether a wavelet coefficient is to be retained or not. This threshold, as shown
in Sec. 4.5.2, determines also the overall accuracy at which the approximation
can be obtained. Once the threshold is fixed, the approximation of the “true”
solution is obtained by applying the nonlinear projection operator P ε

Jmax intro-
duced in Eq. (4.96). This operator selects the wavelet coefficients belonging
to the set Sε, defined in Eq. (4.95), and disregards the others. The nonlinear
approximation of the solution can then be described through a sparse repre-
sentation, with a sparsity index SJmaxI (ε), defined in Eq. (4.97), indicating the
percentage of retained coefficients.

The procedure described in the above paragraphs leads naturally to operate
directly with the wavelet bases instead of the scaling function bases. We recall
from Sec. 4.4.3 that the wavelet analysis and synthesis processes allow to switch
between scaling function and wavelet bases through iterative application of the
filters H and G. These operations can be performed in O(Nζ) operations. If
we apply this basis change to the system (6.1), we obtain a new system where
the unknowns are the expansion coefficients of voltage and current into the
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scaling functions at level J0 (see Eq. (4.83)) and wavelets at the increasing levels
j = J0, . . . , Jmax − 1. Unfortunately, this new formulation destroys the banded
structure of the system matrices. We illustrate this fact on a simple example, by
showing how the structure of a linear operator acting in the canonical (scaling
function) basis varies when the representation is changed into a hierarchical
(wavelet) basis.

Let us consider an operator T : Vj → Vj mapping a function v to a function
w,

w = Tv.

If we denote with v̆, w̆ the column arrays with scaling function coefficients of
the functions v, w, respectively, we have that the operator can be represented
with a dimVj × dimVj matrix T = Tmn,

w̆ = Tv̆.

We indicate now with v̂ and ŵ the set of coefficients of v and w in the wavelet
basis, according to the notations used in Sec. 4.4.3. We have the following
formal identities,

v̂ = W̃ v̆, v̆ =WT v̂,

where the operator W̃ performs the wavelet analysis and the operator WT the
synthesis. These two operators are defined in Eq. (4.92). The operator T in the
wavelet basis will be represented as

ŵ = T̂v̂,

where
T̂ = W̃ TWT .

Let us consider a simple tridiagonal matrix Tmn with all the nonvanishing
entries equal to 1. The structure of this operator is depicted in the left panel of
Fig. 6.5. The right panel shows the structure of this operator in the wavelet ba-
sis. The operator is sparse in both cases, but the structure of its representation
in the wavelet basis is much more complex.

The foregoing example showed that the structure of operators in wavelet
bases is sparse and highly structured. However, this structure does not allow an
efficient sparse factorization and, consequently, a fast inversion. Similarly, the
structure of the system matrix Ψ̂ when using a wavelet representation does not
allow a sparse factorization and inversion as in the case of the scaling function
representation. This results in a much larger computational effort and makes
this representation highly inefficient for the solution of the NMTL equations
with the TDSE method.

There are two possible alternatives to deal with this problem. The first is
to derive an alternative formulation of the TDSE method, which is explicit in
the time derivatives of the unknowns. This formulation will be the subject of
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Figure 6.5: Operator T in the scaling function representation (left) and wavelet

representation (right).

vs(t)
RS

RL

Figure 6.6: Scalar lossles uniform line

Sec. 6.3, where a detailed derivation is shown. In the remaining part of this sec-
tion we will focus instead on a different approach, which is based on performing
all the computations in the scaling function basis. Therefore, the system (6.1)
is actually solved. However, at each time iteration (or every niter iterations) the
solution is processed through wavelet analysis, thresholding, and systhesis. This
process does not affect the overall computational effort, which remains O(Nζ),
but the structure of the solution is enforced to be sparse. Indeed, even if the
time-stepping routine operates in the scaling function basis, the solution is non-
linearly filtered at each time step and is therefore adaptively represented. We
will illustrate the inclusion of nonlinear wavelet filtering in the TDSE method
through simple examples, like the scalar lossless uniform line (Sec. 6.2.1) and
the scalar exponential line (Sec. 6.2.2).

6.2.1 The uniform line

Let us consider the scalar lossless uniform line of Fig. 6.6. The (normalized) per-
unit-length parameters are L = 1 H and C = 1 F. The line length is L = 1 m,
consequently the one-way delay time is T = 1 s. The line terminations are
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matched to the characteristic impedance of the line, Rs = 1 Ω, RL = 1 Ω. The
voltage source is a 1 V trapezoidal pulse train with period T0 = 8 s, 50% duty
cycle, and rise time tr equal to the fall time tf . We will examine three different
values of the rise time, namely tr = 0.3T , tr = T , and tr = 2T . For each of
these three cases, we will study the approximation error as a function of the
wavelet threshold ε used in the nonlinear approximation.

We consider first the solution with no wavelet thresholding. This corre-
sponds to a linear approximation of the solution in the sense of Sec. 4.5.1. The
left panels of Fig. 6.7 show the behavior of the voltage approximation error Ev

as a function of the refinement level J used in the simulations for two different
pairs (L, L̃) = (2, 4) and (3, 5). These figures show that the decay of the errors
has a slope −1 in both cases. This slope is dictated by the regularity of the
solution and not by the regularity of the trial functions. Therefore, the use of
higher order trial functions is useless for this type of forcing waveforms. For
this reason, we will use the pair (L, L̃) = (2, 4) throughout the following.

Next, we consider the dependence of the approximation error on the thresh-
old ε. As described in the foregoing section, at each time step we perform
wavelet analysis to compute the wavelet coefficients, then we suppress all the
wavelet coefficients with magnitude smaller than ε, and finally we reconstruct
the solution through wavelet synthesis. This allows to compute both the overall
sparsity index of the representation and the spatial location of the significant
wavelet coefficients as a function of time. The middle panels of Fig. 6.7 show
the approximation error Ev as a function of the threshold in the case Jmax = 8,
j0 = 4. We can see that the errors are practically unchanged from the errors
obtained by retaining all the wavelet coefficients (dashed lines). The only de-
viation can be noticed in the first two rows for large values of the threshold.
In these cases the nonlinear approximation error becomes dominant with re-
spect to the discretization error at the finest level. We can also notice that
the minimum allowable error for the representation of the analytical solution
(continuous line) is approximately one-half of the error obtained with the TDSE
method.

The main advantage of the nonlinear approximation process is evident from
the right panels of Fig. 6.7, where the sparsity index of the adapted representa-
tion is plotted versus the threshold ε. We see that, with the exception of very
small values of the threshold, for which many wavelet coefficients become non-
negligible, quite high degreees of sparsity can be achieved. Less than 15% of the
total number of coefficients needed to linearly represent the solution are used
in the nonlinear representation. This can be obtained at no loss of accuracy.

Figure 6.8 shows the location of the significant scaling function and wavelet
coefficients in the (z, t) plane for two different values of the threshold ε. From
these plots we notice that the wavelet representation is adapted to the travelling
singularities along the line. In fact, the wavelet coefficients follow precisely the
characteristics of the hyperbolic transmission line equation, which are lines in
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Figure 6.7: Uniform matched lossless scalar line with a trapezoidal pulse train

voltage source. The one-way delay time is T = 1 s. The rise time is tr = 2T in the

first row, tr = T in the second row, and tr = 0.3T in the third row. The left panels

show the linear approximation errors in the voltage obtained with the TDSE method

with respect to the exact solution for different refinement levels j in the case L = 2,

L̃ = 4 (circles) and L = 3, L̃ = 5 (stars). The slope of the continuous line is −1.
The middle panels show the nonlinear voltage approximation errors obtained with

different thresholds for the wavelet coefficients, and using Jmax = 8, L = 2, L̃ = 4.

The dashed line is the linear approximation error for the solution without wavelet

thresholding, and the continuous line is the maximum linear approximation error of

the exact solution. The right panels show the sparsity index in the representation of

the solution as a function of the threshold ε.

the (t, z) plane with slope equal to the inverse of the propagation speed. It is
evident from the plots that the number of wavelet coefficients increase when
the threshold is decreased, thus leading to a larger sparsity index. Also, the
number of wavelet coefficients increases when the rise time is decreased at a
fixed threshold ε. This is due to the fact that the “strength” of the singularities,
which can be formally defined as the jump in the first derivative, is inversely
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Figure 6.8: Uniform matched lossless scalar line with a trapezoidal pulse train

voltage source. The one-way delay time is T = 1s. The rise time is tr = 2T in the

first row, tr = T in the second row, and tr = 0.3T in the third row. The locations

of the significant wavelet coefficients in the nonlinear approximation of the voltage

solution (with Jmax = 8, L = 2, L̃ = 4) are plotted in the (z, t) plane. The threshold

for wavelet coefficients is ε = 10−4 in the left panels and ε = 10−5 in the right panels.

proportional to the rise time because the amplitude of the pulses is fixed.
The adaptivity of this method is further illustrated on another example. The

same transmission line as above is terminated with unmatched loads, namely
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Figure 6.9: TDSE solution for the unmatched lossless scalar uniform line with

Jmax = 8, L = 2, L̃ = 4.

RS = 0.1 (small driver impedance) and RL = 10 (high receiver impedance).
The source waveform is a 1 V step with rise time tr = 0.3T . With these load
conditions the voltage and current at the line ends show a typical oscillating
behavior due to multiple reflections of the input pulse. This is illustrated by
Fig. 6.9, depicting voltage and current at the loads obtained with the TDSE
method with nonlinear thresholding of the wavelet coefficients using ε = 10−5.
Figure 6.10 shows the location of the retained wavelet coefficients, which fol-
low the bouncing singularities along the characteristic lines. As the travelling
reflected wave reduces its amplitude at each reflection, the stregth of the singu-
larities dims down, leading to a smaller number of wavelet coefficients needed
to represent the solution.
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Figure 6.10: TDSE solution for the unmatched lossless scalar uniform line with

Jmax = 8, L = 2, L̃ = 4: location in the (z, t) plane of the voltage wavelet coefficients

larger than ε = 10−5.
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Figure 6.11: TDSE solution for the matched 1:4 exponential line excited by a

trapezoidal train voltage source, obtained with Jmax = 8, L = 2, L̃ = 4.

6.2.2 The exponential line

This section solves the scalar exponential line already treated in Sections 1.3.1
and 6.1.1 with a trapezoidal pulse excitation (rise time tr = 0.4 s, duration
τ = 3.4 s). We consider the matched line in order to compare the results with
the reference solution obtained through inverse FFT. Figure 6.11 reports the
results of the TDSE simulations with no wavelet thresholding. The top panels
of Fig. 6.12 report the approximation errors on voltage and current obtained
with wavelet thresholding for different values of the threshold ε together with
the corresponding sparsity indices. Also in this case, as for the uniform line,
highly sparse representations can be obtained at no loss of accuracy. Indeed, the
errors obtained with thresholding are always comparable to the corresponding
errors in the solution without thresholding, indicated in the top left panel of
the figure with solid (voltage) and dashed (current) lines. The bottom panels of
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Figure 6.12: Matched 1:4 exponential line with trapezoidal voltage source. Top left

panel: maximum absolute error on voltage (circles) and current (stars) obtained with

the TDSE method (Jmax = 8, L = 2, L̃ = 4) as a function of the threshold ε for

the wavelet coefficients. The solid and dashed lines indicate the approximation errors

obtained with no wavelet thresholding for voltage and current, respectively. Top right

panel: sparsity index of the nonlinear approximation of voltage and current obtained

with the same wavelet thresholds used in the left panel. Bottom panels: location of

the voltage wavelet coefficients larger than ε = 10−4 (left) and ε = 10−5 (right).

Fig. 6.12 depict the location of significant wavelet coefficients in the (z, t) plane
for two different values of the threshold ε. As for the uniform line, these plots
give a quick interpretation of the solution in terms of travelling waves, which
in this case are not simple translations of a single pulse as the time increases.
It should be noted that the location of the significant coefficients is determined
from the solution itself while it is generated by the time-stepping routine.
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6.3 Adaptive TDSE

This section is devoted to the derivation of an alternative formulation of the
TDSE method with respect to the derivation of Sec. 1.1. The advantages of
the following formulation are fourfold. First, the resulting system of ODE’s will
be explicit in the time derivatives of the unknowns. Second, there will be no
derivatives of the source voltage waveforms in the system of ODE’s to be solved.
Third, the use of biorthogonal trial and test functions allows to use wavelet
bases and therefore to compute the solution directly in its adapted wavelet
representation. Fourth, a preprocessing renormalization of the NMTL equations
leads to solve non-dimensional equations. This will allow to perform wavelet
thresholding without concerning about the physical nature of the unknowns
(voltage or current). Section 6.3.1 details the formulation of the time-explicit
TDSE method, and Sec. 6.3.2 shows its application with wavelet bases. Finally,
Sec. 6.3.3 presents some applications of the method.

6.3.1 The general formulation

We begin with the derivation of the non-dimensional form of the NMTL equa-
tions. We introduce the following reference quantities,

• reference voltage V0,

• reference current I0,

• reference impedance R0 = V0/I0,

• reference time delay T ,

• reference length L (the length of the line),

• reference speed v0 = L/T .

Even if these reference quantities are arbitrary, the choice of their numerical
value must be guided by prior knowledge of the characteristics of the trans-
mission line under investigation. For example, T should be chosen as close as
possible to the one-way propagation delay time, while R0 should be approxi-
mately equal to the impedance level of the line. These normalization constants
are used to define the following non-dimensional variables

• normalized space coordinate x = z/L, x ∈ [0, 1],

• normalized time coordinate τ = t/T ,

• normalized voltage vector v(x, τ) = V(Lx, Tτ)/V0,

• normalized current vector i(x, τ) = I(Lx, Tτ)/I0.
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A simple change of variable in the NMTL equations (1.1)-(1.2) leads to

∂

∂x
i(x, τ) = −L(x) ∂

∂τ
i(x, τ)−R(x)i(x, τ), (6.2)

∂

∂x
i(x, τ) = −C(x) ∂

∂τ
v(x, τ)−G(x)v(x, τ), (6.3)

where

L(x) =
v0
R0

L(Lx)

C(x) = v0R0C(Lx)

R(x) =
L
R0

R(Lx)

G(x) = LR0G(Lx).

The same procedure can be applied to the Thévénin terminations of the
line (1.3)-(1.4), obtaining their non-dimensional form

v(0, τ) = vS(τ)− rSi(0, τ) (6.4)

v(1, τ) = vL(τ) + rLi(1, τ) , (6.5)

where

rS =
RS

R0

, rL =
RL

R0

.

We discussed in Sec. 6.2 that it would be convenient to obtain a time-explicit
system of ODE’s in order to save computation time. This can only be achieved
when the partial differential equations to be discretized are explicit in the time
derivatives. For this reason, we derive two sets of equations equivalent to the
NMTL equations by inverting the normalized inductance and capacitance ma-
trices L(x) and C(x). This is possible because these two matrices are symmet-
ric and positive definite for all x [7]. We can introduce then the normalized
elastance and reciprocal inductance matrices as the inverse of the normalized
capacitance and inductance matrices,

S(x) = C
−1
(x) , Γ(x) = L

−1
(x) , ∀x. (6.6)

The NMTL equations become

∂

∂τ
i(x, τ) = −Γ(x) ∂

∂x
v(x, τ)− ΓR(x)i(x, τ), (6.7)

∂

∂τ
v(x, τ) = −S(x) ∂

∂x
i(x, τ)− SG(x)v(x, τ), (6.8)

where

SG(x) = C
−1
(x)G(x) , ΓR(x) = L

−1
(x)R(x) , ∀x. (6.9)
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Following the same procedure used in Section 1.1, we expand the voltages
and currents into the functions ζn,

v(x, τ) =
Nζ∑

n=1

ζn(x)vn(τ), (6.10)

i(x, τ) =
Nζ∑

n=1

ζn(x)in(τ), (6.11)

and the four matrices Γ(x), S(x), SG(x), ΓR(x) into the functions φk,

Γ =
Nφ∑

k=1

φk(x)Γk,

S =
Nφ∑

k=1

φk(x)Sk,

ΓR =
Nφ∑

k=1

φk(x)ΓRk, (6.12)

SG =
Nφ∑

k=1

φk(x)SGk.

Projecting now equations (6.7)-(6.8) onto the test functions ηm, we get the
equations

Nζ∑

n=1

Emn
d

dτ
in(τ) +

Nζ∑

n=1

ΓRmnin(τ) +
Nζ∑

n=1

Γmnvn(τ) = 0, (6.13)

Nζ∑

n=1

Emn
d

dτ
vn(τ) +

Nζ∑

n=1

SGmnvn(τ) +
Nζ∑

n=1

Smnin(τ) = 0, (6.14)

valid ∀m = 1, . . . , Nζ . The matrices used in the above expressions can be
expressed as

ΓRmn =
Nφ∑

k=1

ΓRkB
(k)
mn,

Γmn =
Nφ∑

k=1

ΓkF
(k)
mn,

SGmn =
Nφ∑

k=1

SGkB
(k)
mn, (6.15)

Smn =
Nφ∑

k=1

SkF
(k)
mn,
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where

B(k)
mn = 〈ζn φk, ηm〉 (6.16)

F (k)
mn = 〈 ∂

∂x
ζn φk, ηm〉. (6.17)

These equations are explicit only when the coefficients of the time derivatives
are such that

Emn = 〈ζn, ηm〉IP = δmnIP .
This is true only when the two sets {ζn} and {ηm} are biorthogonal. In this
case we obtain

d

dτ
im(τ) = −

Nζ∑

n=1

ΓRmnin(τ)−
Nζ∑

n=1

Γmnvn(τ), (6.18)

d

dτ
vm(τ) = −

Nζ∑

n=1

SGmnvn(τ)−
Nζ∑

n=1

Smnin(τ). (6.19)

We proceed now to apply the line terminations. We will follow a procedure
slightly different from the one we used in Sec. 1.1. As the choice of basis
functions needed to obtain a time-explicit discretization of the NMTL equations
is restricted to biorthogonal pairs, we will relax some of the assumptions made
in Sec. 1.1. In fact, as we are planning to use the biorthogonal wavelet pairs as
trial and test function, we must take into account that more than one wavelet
function is nonvanisning at the edges of the unit interval. The trial and test
functions will have herafter the following properties

ζ1(0) 6= 0, ζNζ (1) 6= 0

ζ1(1) = 0, ζNζ (0) = 0 (6.20)

supp ζ1 ∪ supp ηNζ = supp ζNζ ∪ supp η0 = ∅.

It is important that the contributions coming from the two edges do not inter-
act directly with each other, as stated by the second and third condition. It
should be noted that both the biorthogonal scaling function and wavelet bases
constructed in Chapter 4 satisfy these conditions. Note also that for this deriva-
tion we identified the main nonvanishing border functions with the first and last
trial function. However, this ordering does not necessarily need to be preserved
in the actual implementation.

Let us take now the load equations (6.4)-(6.5) and substitute the expansion
of the voltage and current at the two edges,

Nζ−1∑

n=1

ζn(0)vn = vS − rS
Nζ−1∑

n=1

ζn(0)in

Nζ∑

n=2

ζn(1)vn = vL + rL

Nζ∑

n=2

ζn(1)in.
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We define now two pairs of new variables at the two edges,

a1 =
Nζ−1∑

n=1

λ0n [vn + rSin]

b1 =
Nζ−1∑

n=1

λ0n [vn − rSin]

aNζ =
Nζ∑

n=2

λ1n [vn + rLin]

bNζ =
Nζ∑

n=2

λ1n [vn − rLin] .

These can be interpreted as progressive and regressive normalized voltage waves
with respect to a reference impedance equal to the load normalized resistance
matrices. The coefficients λ0n and λ1n are defined in terms of the boundary values
of the trial functions,

λ0n =
ζn(0)

ζ1(0)
, λ1n =

ζn(1)

ζNζ(1)
. (6.21)

If the matrices rS and rL are invertible, we can express the voltage and current
coefficients of the edge trial functions with n = 1 and n = Nζ in terms of the
newly defined variables and the “internal” (m = 2, . . . , Nζ − 1) voltage and
current coefficients,

v1 =
1

2
(a1 + b1)−

Nζ−1∑

n=2

λ0nvn

i1 =
1

2
r−1S (a1 − b1)−

Nζ−1∑

n=2

λ0nin

vNζ =
1

2
(aNζ + bNζ)−

Nζ−1∑

n=2

λ1nvn

iNζ =
1

2
r−1L (aNζ − bNζ )−

Nζ−1∑

n=2

λ1nin.

The main advantage in using the new variables a, b is in the implementation
of the load equations. In fact, these equations are simply expressed as Dirichlet
type conditions on a1 and bNζ . More precisely,

a1(τ) =
vS(τ)

ζ1(0)
, (6.22)

bNζ(τ) =
vL(τ)

ζNζ(1)
. (6.23)



152 TDSE with scaling functions and wavelets

Therefore, only two border equations involving the variables b1 and aNζ need
to be derived. These are easily obtained by forming the linear combinations

Nζ−1∑

m=1

λ0m [(6.19)− rS(6.18)]

Nζ∑

m=2

λ1m [(6.19) + rL(6.18)] .

Finally, the elimination of v1, i1, vNζ , and iNζ from all the resulting equations
(2P border equations plus 2P (N − 1) “internal equations”) leads to the system
of ODE’s

d

dτ
x(τ) = Θx(τ) +ΩSvS(τ) +ΩLvL(τ) , (6.24)

where
x =

[
bT1 , i

T
2 , · · · , iTNζ−1, a

T
Nζ
, vT2 , · · · , vTNζ−1

]T
. (6.25)

It should be noted that no derivatives of the source voltages are involved. This
is impossible to achieve when the ODE system is derived from the non-explicit
NMTL equations like in Sec. 1.1. This allows to process any source waveform
of practical interest as long as it can be evaluated at an arbitrary time t. The
drawback is that the load matrices rS and rL must be invertible. No short-circuit
or open-circuit terminations can be used with this formulation. A permutation
matrix T can be applied to the above system as in Section 1.2 to rearrange the
unknowns and obtain a more compact system matrix,

d

dτ
x̂(τ) = Θ̂ x̂(τ) + Ω̂SvS(τ) + Ω̂LvL(τ) , (6.26)

where
x̂ =

[
bT1 , i

T
2 , v

T
2 , · · · , iTNζ−1, v

T
Nζ−1 , a

T
Nζ

]T
(6.27)

and
Θ̂ = TTΘT, Ω̂S = TTΩS, Ω̂L = TTΩL.

6.3.2 Time-explicit TDSE with wavelets

This section will particularize the formulation of Sec. 6.3.1 to the use of wavelet
bases on the unit interval constructed in Chapter 4 as trial and test functions.
Two different implementations will be described. The first uses the standard
biorthogonal wavelet bases. The ODE system that can be derived with these
basis functions, however, is not fully equivalent to the system obtained by us-
ing the scaling functions at the maximum refinement level. Consequently, we
present also a second scheme, which uses a slightly modified set of wavelets.
This scheme leads to a system of ODE’s that is fully equivalent to the system
derived in Sec. 6.1.
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Standard wavelet bases

This section illustrates the adaptive TDSE method through use of wavelet bases
on the unit interval. As the trial and test functions must be biorthogonal to pre-
serve the time-explicit form of the discretized NMTL equations, we will expand
the solution into primal wavelets and test the equations with dual wavelets.
The total number of trial and test functions will be equal to the dimension of
the scaling function space at the maximum refinement level Jmax. We will set

{ζn}Nζn=1 = {ϕJ0,k : k = 0, . . . , dimVJ0 − 1} ∪
Jmax−1⋃

j=J0

{ψjk : k = 0, . . . , 2j − 1}

{φk}Nφk=1 = {ϕJmax,k : k = 0, . . . , dimVJmax − 1} (6.28)

{ηm}Nζm=1 = {ϕ̃J0,k : k = 0, . . . , dimVJ0 − 1} ∪
Jmax−1⋃

j=J0

{ψ̃jk : k = 0, . . . , 2j − 1}.

The expansion functions for the per-unit-length parameters are the scaling func-
tions at the maximum refinement level Jmax, because there is no need for an
adapted (sparse) representation. The ordering sequence of the trial and test
functions will be important in the following. The scaling functions at the mini-
mum level J0 are placed first, followed by the wavelets with increasing refinement
levels. Also, the indices n and m become now double indices,

{n} ↔ {(j, k)}, {m} ↔ {(j ′, k′)},
with the first indicating the refinement level and the second the number of func-
tion at level j according to the definitions in Eq. (6.28). To insure uniqueness
in this representation, we conventionally indicate with the “dummy” refinement
level j = J0−1 the pairs (j, k) referring to the scaling functions at the minimum
level J0.

With the foregoing definitions it is possible to compute the boundary val-
ues of the trial functions, i.e., the coefficients λ0n and λ1n of Eq. (6.21). We
will suppose that the boundary adapted biorthogonalization has been used
for both scaling functions and wavelets, and that the basis of the polynomi-
als {ρα(x), α = 0, . . . L− 1} is such that

ρ0(0) = 1, ρα(0) = 0 ∀α > 0.

This assumption is true for the two polynomial bases considered in this work,
i.e., monomials and Bernstein polynomials. A straightforward substitution leads
to the boundary values of the non-biorthogonal border scaling functions,

θ00(0) = 1, θ0k(0) = 0 ∀k > 0,

and similarly for the duals. With the boundary adapted biorthogonalization we
get the corresponding boundary values of the biorthogonal scaling functions,

ϕ00(0) = D00, ϕ0k(0) = 0 ∀k > 0,



154 TDSE with scaling functions and wavelets

where D is the change of basis matrix for the biorthogonalization of the pri-
mal scaling functions, and similarly for the duals, for which D̃00 is used. The
boundary values of the scaling functions at a generic refinement level j is readily
obtained as

ϕj0(0) = 2j/2D00, ϕjk(0) = 0 ∀j, ∀k > 0.

The boundary values of the wavelets can be derived from the biorthogonal
wavelet filters G⊥ and G̃⊥ for primals and duals respectively. At any refinement
level j we have

ψjk(0) = 0, ∀k > 0

due to boundary adaption, while the value at 0 of the first wavelet is

ψj0(0) =
∑

l≥0
G⊥j+1,lϕj+1,l(0) = G⊥00ϕj+1,0 =

√
2 2j/2G⊥00D00.

The dual case can be obtained with obvious substitutions. We can now write
explicitely the coefficients λ0n,

λ0J0−1,0 = 1,

λ0j,0 = G⊥002
j−J0+1

2 ∀j = J0, . . . , Jmax−1,

λ0j,k = 0 otherwise.

Finally, recalling the symmetry of the construction on the unit interval, we can
easily prove that the boundary values at the right edge x = 1 are equal to the
values obtained at x = 0. Therefore, the coefficients λ1n are

λ1J0−1,dimVJ0−1
= 1,

λ1j,2j−1 = G⊥002
j−J0+1

2 ∀j = J0, . . . , Jmax−1,

λ1j,k = 0 otherwise.

We turn now to the computation of the system matrices Θ or Θ̂ in the
wavelet basis. As the derivation of Sec. 6.3.1 was tailored for the application
of wavelets, no modifications are necessary, except a reordering of the trial and
test functions. The principal nonvanishing functions at the edges are indeed
the first and last scaling functions at level J0, and these are not the first and
last functions in the ordering of Eq. (6.28). This operation is trivial. The only
crucial point is the computation of the matrices Γmn, Smn, ΓRmn, and SGmn

of Eq. (6.15), which involve inner products of wavelets through Eqs. (6.16)
and (6.17). In particular, as the expansion functions of the per-unit-length
matrices are the scaling functions, like in the original formulation of the TDSE
method in Sec. 6.1, the same procedure can be applied to compute the expansion
coefficients Γk, Sk, ΓRk, and SGk. Therefore, we only need to focus on the
scalar inner products B(k)

mn and F (k)
mn.
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Under an abstract point of view, the aforementioned inner products can be
regarded as the projection of two operators onto the spaces spanned by the trial
and test functions. More precisely, these operators act on a generic function f
as follows

(B(k)f)(x) = φk(x)f(x), (F (k)f)(x) = φk(x)
d

dx
f(x),

If we choose the biorthogonal scaling functions as trial and test functions we
have that the matrices B(k)

mn and F (k)
mn represent the approximated operators

B(k)
mn = PJmaxB

(k)PJmax , F (k)
mn = PJmaxF

(k)PJmax ,

where Jmax is the refinement level for the scaling function spaces and PJmax is the
corresponding projection operator. It follows that the wavelet change of basis
process already applied in Section 6.2 to a general operator T can be applied
also in this case to obtain the wavelet representation of the operators B(k) and
F (k) in the wavelet basis, obtaining

B̂(k) = W̃ B(k) WT , F̂ (k) = W̃ F (k) WT .

The matrices corresponding to these two operators can then be used to gen-
erate the system matrices of Eqs. (6.18)-(6.18), and consequently the system
of ODE’s (6.26) through the procedure indicated in Sec. 6.3.1. The typical
structure of the system matrix is depicted in Fig. 6.13, where the unknowns are
ordered with all the current expansion coefficients first followed by the voltage
coefficients, and where no losses are included. The placement of the nonvanish-
ing entries in this matrix shows the mutual interaction between different scales,
indicated by non-zero elements outside a band around the main diagonal.

Modified wavelet bases

The TDSE implementation with standard wavelets illustrated in the foregoing
section is not fully equivalent to the scheme that uses the scaling functions at
the maximum refinement level. This fact is due to a difference in the inclusion
of the boundary conditions. We do not report here the formal proof, which
involves a few straightforward calculations. Some numerical tests performed
with the standard hierarchical wavelet bases showed indeed a significant loss of
precision with respect to the canonical bases.

In order to have fully equivalent systems, the sets of trial and test functions
should include the two nonvanishing scaling functions at the maximum refine-
ment level Jmax. In addition, these should be the only nonvanishing functions at
the borders. This is obviously not possible when using the standard hierarchical
wavelet bases. However, we show in the following that it is possible to define a
modified hierarchical system with these features.
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Figure 6.13: Structure of the system matrix of Eq. (6.26) when hierarchical basis

functions are used as trial and test functions.

Let us recall the multilevel decomposition of the scaling functions space at
the maximum level Jmax,

VJmax = VJ0 ⊕WJ0 ⊕ · · · ⊕WJmax−1. (6.29)

We consider in the following only the left edge x = 0, because the same proce-
dure can be applied to the right edge x = 1 using the symmetry of the basis
functions. Each space in Eq. (6.29) can be decomposed into a direct sum of a
border space, indicated with the superscript o, and an internal space, indicated
with the superscript i,

VJmax = V o
Jmax ⊕ V i

Jmax

VJ0 = V o
J0
⊕ V i

J0

Wj = W o
j ⊕W i

j , j = J0, . . . , Jmax − 1

The border spaces are generated by all the nonvanishing scaling functions and
wavelets. If boundary adaption is used their dimension is exactely one. Con-
versely, the internal spaces are generated by scaling functions and wavelets that
are all vanishing at the border. If we collect all the nonvanishing functions in a
border space V b

Jmax , we have that

VJmax =



V

i
J0
⊕

Jmax−1⊕

j=J0

W i
j



⊕ V b

Jmax , (6.30)

where

V b
Jmax = V o

J0
⊕

Jmax−1⊕

j=J0

W o
j . (6.31)
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It can be proved that the border space at the maximum level V o
Jmax is part of

the border space V b
Jmax . Therefore, we can define a modified detail space W b as

V b
Jmax = V o

Jmax ⊕W b. (6.32)

The dimension of this detail space is Jmax− J0. A set of basis functions for this
space can be obtained by removing from the nonvanishing border wavelets their
projection onto V o

Jmax ,

ψmod
j,0 = ψj,0 − 〈ψj,0, ϕ̃Jmax,0〉ϕJmax,0, j = J0, . . . , Jmax − 1. (6.33)

It can be shown that these functions are linearly independent. Moreover, also
the modified scaling function at level J0, obtained in the same way, can be
expressed as a linear combination of these modified wavelets. It should be noted
that these wavelets are not zero-mean functions and are not biorthogonal to the
corresponding duals. However, they all vanish at the border. The gramian
matrix and its inverse can be explicitely calculated, obtaining

Ψj′,j = 〈ψ̃mod
j′,0 , ψ

mod
j,0 〉 = δjj′ − 2(j+j

′−2Jmax)/2,
[
Ψ−1

]
j′,j

= δjj′ + 2(j+j
′−2J0)/2,

for j, j ′ = J0, . . . , Jmax − 1.
Two different hierarchical representations of a function v ∈ VJmax have been

constructed,

v = v̆J0,0ϕJ0,0 +
Jmax−1∑

j=J0

v̂j,0ψj,0 +
∑

k≥1
v̆J0,kϕJ0,k +

Jmax−1∑

j=J0

∑

k≥1
v̂j,kψj,k,

v = v̆Jmax,0ϕJmax,0 +
Jmax−1∑

j=J0

v̂j,0ψ
mod
j,0 +

∑

k≥1
v̆J0,kϕJ0,k +

Jmax−1∑

j=J0

∑

k≥1
v̂j,kψj,k.

The first is the usual multilevel decomposition, and the second is a modified
decomposition which uses the same internal functions, the nonvanishing scal-
ing function at the maximum level Jmax, and the modified border wavelets of
Eq. (6.33). A basis change between these two representations can be derived
analytically by using the boundary adaption of wavelets, obtaining

v̆Jmax,0 = HJmax−J0
00 v̆J0,0 +

Jmax−1∑

j=J0

G00HJmax−j−1
00 v̂j,0,

v̂mod
j,0 = v̂j,0 − G̃00H̃J0−j−1

00 v̆J0,0, j = J0, . . . , Jmax − 1,

and

v̆J0,0 = H̃Jmax−J0
00 v̆Jmax,0 − G00H̃Jmax−J0

00

Jmax−1∑

j=J0

HJmax−j−1
00 v̂mod

j,0 ,

v̂j,0 = G̃00H̃Jmax−j−1
00 v̆Jmax,0 +

Jmax−1∑

j′=J0

Ψj,j′ v̂
mod
j′,0 , j = J0, . . . , Jmax − 1.
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Figure 6.14: Geometry of a high-speed packaging interconnect.

This basis change can be applied to the system of Eqs. (6.18)-(6.19). The
result can be expressed as

d

dτ
imod
m (τ) = −

Nζ∑

n=1

ΓRmod
mn i

mod
n (τ)−

Nζ∑

n=1

Γmod
mn v

mod
n (τ),

d

dτ
vmod
m (τ) = −

Nζ∑

n=1

SGmod
mn v

mod
n (τ)−

Nζ∑

n=1

Smod
mn i

mod
n (τ),

where the unknowns represent the expansion coefficients into the modified hi-
erarchical basis functions. The load equations can now be directly included in
these equations by following the same procedure of Sec. 6.3.1. The advantage
is that the coefficients λ0n and λ1n are now all vanishing except one. In fact,
only one trial function is nonvanishing at each border. The resulting system of
ODE’s is now equivalent to the one obtained with the canonical bases, and has
the same order of accuracy. The structure of the system matrix Θ̂ is similar to
the one reported in Fig. 6.13. This is the formulation of the adaptive TDSE
method that we will adopt in the applications.

6.3.3 Applications

High-speed packaging interconnect

The TDSE method is applied here to the electrical simulation of the structure
depicted in Fig. 6.14. It consists of an array of six conductors providing the
electrical connection between components of possibly different nature, like an
electrical driver on the left and an optical interconnect module on the right. The
conductors are 20 µm thick. Their widths and separations are equal to 1 mm at
the left termination and to 0.125 mm at the right termination. The substrate is
400 µm thick, with a dielectric constant εr = 4.5. The length of the interconnect
is L =5 mm. The per-unit-length inductance and capacitance matrices have
been computed with a commercially available 2D field solver [9] based on the
method of moments (MOM). The results, shown in Fig. 6.15 and 6.16 show
that the per-unit-length parameters suffer of significant longitudinal variations.
Therefore, a significant influence of this nonuniformity is to be expected.

All the conductors are terminated with 50 Ω resistances, and a 1 V step
voltage source with a 20 ps rise time is applied to one of the middle conductors,
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Figure 6.15: Per-unit-length inductance matrix entries as functions of the normal-

ized longitudinal coordinate. The units are H/m.

indexed with the subscript 3. The voltage on this and on the adjacent conductor
(indexed with the subscript 4) is computed with the TDSE method in two
different situations. First, the cross-sectional parameters are evaluated in the
middle of the structure and the uniform MTL model is used. Second, the cross-
sectional parameters are evaluated section by section and the full NMTL model
is used.

The results are plotted in Fig. 6.17, where the dashed lines refer to the
uniform case and the continuous lines to the nonuniform case. It should be noted
that the maximum crosstalk noise levels on the conductor 4 (bottom panels)
are larger in the nonuniform than in the uniform case. This demonstrates that
neglecting the nonuniformity of this interconnect in the simulation process leads
to underestimate the crosstalk noise level and produces inaccurate predictions
for the behavior of the structure.



160 TDSE with scaling functions and wavelets

1

x 10−10

−4

−2

0
x 10−11

−4

−2

0
x 10−12

−1

−0.5

0
x 10−12

−4

−2

0
x 10−13

−3

−2

−1
x 10−13

−4

−2

0
x 10−11

1

x 10−10

−2

−1

0
x 10−11

−4

−2

0
x 10−12

−6

−4

−2
x 10−13

−3

−2

−1
x 10−13

−4

−2

0
x 10−12

−2

−1

0
x 10−11

1

x 10−10

−2

−1

0
x 10−11

−4

−2

0
x 10−12

−1

−0.5

0
x 10−12

−1

−0.5

0
x 10−12

−4

−2

0
x 10−12

−2

−1

0
x 10−11

1

x 10−10

−2

−1

0
x 10−11

−4

−2

0
x 10−12

−3

−2

−1
x 10−13

−6

−4

−2
x 10−13

−4

−2

0
x 10−12

−2

−1

0
x 10−11

1

x 10−10

−4

−2

0
x 10−11

−3

−2

−1
x 10−13

−4

−2

0
x 10−13

−1

−0.5

0
x 10−12

−4

−2

0
x 10−12

−4

−2

0
x 10−11

1

x 10−10

Figure 6.16: As in Fig. 6.15 but for the per-unit-length capacitance matrix entries

in units of F/m.

Line with nonuniform phase speed

This section shows the simulations of a line with nonuniform propagation speed.
Lines of this type can be obtained when the surrounding medium presents lon-
gitudinal variation in the permettivity. We will use a slight modification of the
exponential line already analyzed in Sec. 1.3.1, by fixing the per-unit-length
capacitance at a constant value along the line, i.e. C(z) = C0 = 1 F/m. The
per-unit-length inductance increases exponentially along the line from 1 H/m up
to 4 H/m. These parameters lead to an exponentially increasing nominal char-
acteristic impedance (from 1 Ω up to 2 Ω) and to an exponentially decreasing
nominal phase speed,

ν(z) =
1√

L(z)C
.

Even if this example is purely academical, it allows to show that the adaptive
TDSE method is capable of accurate simulations even when the phase speed
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Figure 6.17: Voltage on the generator (top row) and receptor (bottom row) con-

ductors of the structure in Fig. 6.14. The continuous and dashed lines indicate the

voltages obtained by considering and neglecting, respectively, the longitudinal varia-

tion of the per-unit-length parameters.

is not constant. This is obviously not possible when more standard finite dif-
ference schemes are used, because these schemes strongly rely on the Courant
condition [7], which requires that the time step be matched to the space dis-
cretization step through the propagation speed.

We consider a non-matched line with nominal reflection coefficients at the
left and right ends equal to ΓS = −9/11 and ΓL = 2/3, respectively. With these
load conditions, the input voltage pulse undergoes significant reflections at the
line ends. The voltage waveform used in the following is a 1 V step function with
rise time equal to 0.3 s. The resulting voltages at the left and right terminations
are plotted in the left and right panels of Fig. 6.18, respectively, while the
location of the significant wavelet coefficients (using a threshold ε = 10−4)
is plotted in Fig. 6.19. It should be noted that these coefficients trace the
characteristic curves of the transmission line equations, tracking the location of
the travelling singularities. These curves are no longer straight lines, but are
significantly bended, with a tangent at a fixed z equal to ±1/ν(z).



162 TDSE with scaling functions and wavelets

v(0, t), [V] v(1, t), [V]

0 2 4 6 8
0

0.5

1

1.5

2

0 2 4 6 8
0

0.5

1

1.5

2

t, [s] t, [s]

Figure 6.18: Voltage at the left and right line ends of the line with nonuniform

phase speed of Sec. 6.3.3.
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Figure 6.19: Location of the significant voltage wavelet coefficients for the line with

nonuniform phase speed of Sec. 6.3.3.



Conclusions

A class of numerical schemes for the transient simulation of the Nonuniform
Multiconductor Transmission Lines has been presented. The underlying method,
denoted as Time-Domain Space Expansion (TDSE), is based on a weak formula-
tion of the NMTL equations obtained through spatial expansion of the solution
into some trial functions and testing of the equations with suitable basis func-
tions. The results presented in this work show that numerical schemes of any
fixed approximation order can be obtained by selecting appropriate trial and
test functions.

A significant part of this work has been devoted to the use of wavelet bases
in the TDSE method. Wavelets allow sparse representations of both regular
and singular waveforms and can be used to build adaptive integration schemes
for partial differential equations. Therefore, the solution can be obtained at a
low computational cost even when the signals travelling along the transmission
line present sharp singularities.

The design of such adaptive schemes has required the costruction of modified
wavelet bases defined on bounded domains, starting from wavelet bases defined
on the real line. Indeed, as wavelet bases are intrinsically translation invariant,
they cannot be used directly to represent functions defined on bounded do-
mains. This is the case of the solution of NMTL equations. In addition, some
optimized algorithms for the computation of integrals of wavelets and their
derivatives have been developed. These integrals stem from the discretization
of the NMTL equations through a weak formulation. The presented algorithms
allow the computation of such integrals at the machine precision without use of
quadrature formulas.

The main result of this work is the adaptive TDSE method, which employs
adapted approximation spaces based on wavelet expansions for the solution of
the NMTL equations. This method uses a time-varying sparse representation of
the solution and allows to compute voltage and current along the line at a small
computational cost. Several examples illustrate the advantages of the adaptive
wavelet expansion with respect to the canonical non-adaptive representation.
The results obtained in this work confirm that wavelets constitute a new and
effective tool for the numerical solution of the equations commonly encountered
in the field of Electromagnetic Compatibility.
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Appendix A

Index of symbols

We summarize here the symbols used throughout this work. Only the sym-
bols associated to quantities recurring in more than one section are listed here.
Therefore, the symbols used in the derivations and not going beyond the scope
of one section are not listed. The following tables group the symbols according
to the nature of the quantities they refer to.

NMTL description and TDSE method

V(z, t), I(z, t) voltages and currents at location z and time t
L(z), C(z), G(z), R(z) per-unit-length matrices
P number of conductors
L length of the NMTL
VS(t), VL(t) Thévénin voltage source vectors
RS, RL Thévénin load resistance matrices
ζn trial functions for voltage and current
φk expansion functions for the per unit length pa-

rameters
ηm test functions
Nζ number of trial and test functions ζn and ηm
Nφ number of expansion functions φk
Ψ, Ψ̂ time derivative coefficients in the ODE system

Φ, Φ̂, Θ, Θ̂ linear term coefficients in the ODE system

∆S, ∆̂S, ∆L, ∆̂L source coefficients in the ODE system

ΩS, Ω̂S, ΩL, Ω̂L source coefficients in the explicit ODE system

∆SD, ∆̂SD,∆LD, ∆̂LD source derivative coefficients in the ODE system
x, x̂, x, x̂ arrays with the unknowns in the ODE system
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Multilevel decompositions: spaces and operators

V , V (Ω) generic space of functions defined on Ω
L2(Ω) space of square integrable functions defined on Ω
`2 space of square summable sequences
Hs Sobolev space with regularity s
Cr space of functions with r continuous derivatives
Vj, Vj(Ω) primal approximation spaces at refinement level

j

Ṽj, Ṽj(Ω) dual approximation spaces at refinement level j

Pj, P̃j primal and dual projection operators mapping V
to Vj and Ṽj

Wj, Wj(Ω) primal detail spaces at refinement level j

W̃j, W̃j(Ω) dual detail spaces at refinement level j

Qj, Q̃j primal and dual detail projection operators map-
ping V to Wj and W̃j

Tj dilation operator
IP q space of polynomials of degree at most q
ρα(x) generic basis functions for IP q

pα(x) basis of monomials for IP q

Bnr,b Bernstein polynomials

Multilevel decompositions: scaling functions and wavelets

ϕ, ϕ̃ primal and dual scaling functions
ϕjk, ϕ̃jk primal and dual biorthogonal scaling functions on

bounded or unbounded domains
ϕIRjk, ϕ̃

IR
jk primal and dual biorthogonal scaling functions on

the real line

θα, θ̃β modified primal and dual scaling functions

θjk, θ̃jk primal and dual non-biorthogonal scaling func-
tions on bounded domains

ψ, ψ̃ primal and dual wavelets

ψjk, ψ̃jk primal and dual biorthogonal wavelets on
bounded or unbounded domains

ψIRjk, ψ̃
IR

jk primal and dual biorthogonal wavelets on the real
line

ξjk, ξ̃jk primal and dual non-biorthogonal wavelets on
bounded domains
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Approximation functions and coefficients

v generic function
vj projection vj = Pjv
dj detail dj = Pj+1v − Pjv = Qjv
v̆jk, vjk expansion coefficients of Pjv into the scaling func-

tions basis
v̂jk expansion coefficients of Qjv into the wavelets ba-

sis

Multilevel decompositions: filters

h, h̃ primal and dual scaling function filters on IR
g, g̃ primal and dual wavelet filters on IR

n0, ñ0 index of the first nonzero elements of h, h̃

n1, ñ1 index of the last nonzero elements of h, h̃

L, L̃ number of vanishing moments of primal and dual
wavelets

σ, σ̃ regularity of primal and dual scaling functions
and wavelets

H, H⊥, H̃, H̃⊥ filters of biorthogonal scaling functions on
bounded domains

H 6 , H̃ 6 filters of non-biorthogonal scaling functions on
bounded domains

G, G⊥, G̃, G̃⊥ filters of biorthogonal wavelets on bounded do-
mains

G 6 , G̃ 6 filters of non-biorthogonal wavelets on bounded
domains

M, M̃ matrices expressing scaling functions on [0, 1]
through scaling functions on IR restricted to [0, 1].

j0, j
w
0 , J0 minimum refinement level for the multiresolution

on [0, 1]

Nonlinear approximations

Sε set of retained coefficients in the nonlinear ap-
proximation

P ε
j nonlinear projection operator with wavelet

thresholding
SIj (ε) sparsity index of a nonlinear approximation
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