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Abstract

Passivity enforcement is a key step in the extraction of linear

macromodels of electrical interconnects and packages for Sig-

nal and Power Integrity applications. Most state-of-the-art tech-

niques for passivity enforcement are based on suboptimal or ap-

proximate formulations that do not guarantee convergence. We

introduce in this paper a new rigorous framework that casts pas-

sivity enforcement as a convex non-smooth optimization prob-

lem. Thanks to convexity, we are able to prove convergence

to the optimal solution within a finite number of steps. The

effectiveness of this approach is demonstrated through various

numerical examples.

1 Introduction

Macromodeling of electrical interconnects and packages is

a standard practice in Signal and Power Integrity verification

flows. This approach involves a first step based on full-wave

simulations or direct measurements, in order to capture all

possible signal and power degradation effects due to electro-

magnetic propagation and local/global coupling. This process

results in the characterization of the interconnect network as

a multiport, known through frequency-domain samples of its

scattering matrix. This dataset is then fed to a rational fit-

ting scheme [1], in order to produce a closed-form state-space

macromodel. The latter is finally synthesized as an equivalent

circuit and used in system-level transient simulations.

Since any electrical interconnect is unable to generate en-

ergy, the corresponding macromodels should satisfy passivity

constraints [2]. Passivity may be lost due to numerical approx-

imations during the model identification stage and must be cor-

rected, otherwise the system-level transient simulation may be-

come unstable [3].

Passivity conditions on scattering input-output representa-

tions require that the transfer matrix of the macromodel is

bounded real [2]. Since bounded realness conditions involve

checking the model transfer matrix over infinite (continuous)

frequency sets, various alternative formulations have been pre-

sented, in forms that are more convenient for numerical passiv-

ity enforcement. The most rigorous approach for state-space

macromodels is the so-called Bounded Real Lemma (BRL),

which leads to a convex [4] formulation of passivity enforce-

ment based on Linear Matrix Inequality (LMI) constraints [5].

This approach is unfortunately too expensive in terms of CPU

and especially memory consumption for practical applications.

Other formulations resort to a spectral perturbation of suitably

defined Hamiltonian matrices [3, 6, 7]. Although very pop-

ular and very effective in some cases, the corresponding pas-

sivity enforcement schemes are not guaranteed to converge. A

last class of methods is based on iterative perturbations of the

frequency-dependent energy gain of the system at a finite set

of frequency points, cast as an iterative solution of linear or

quadratic programs [7, 8]. Also these schemes do not guarantee

convergence since an approximate form of the bounded realness

constraints is used. There exist heuristic schemes that always

converge to some passive macromodel, e.g. the pole perturba-

tion approach in [9], but such methods do not guarantee optimal

accuracy preservation.

This paper presents a new and rigorous approach. The passiv-

ity enforcement problem is formally cast as a minimization of

the H∞ norm of the model. This problem can be cast as a con-

vex optimization [4], thus guaranteeing global optimality and

convergence. The objective function to be optimized is verified

to be convex but non-smooth and non-differentiable as a func-

tion of the decision variables. Therefore, we introduce a ded-

icated projection algorithm based on descent directions com-

puted from subgradients and subdifferentials of the objective

function. Numerical examples show that the obtained scheme

is able to always guarantee convergence within any prescribed

tolerance in a finite number of iteration steps.

2 Notation and problem statement

Our starting point is a nominal macromodel H(0), whose

p× p transfer (scattering) matrix is expressed as

H(0, s) = C(sI −A)−1B +D , (1)

where the argument 0 will be used later to denote suitably

defined perturbation variables, s is the Laplace variable, and

A ∈ R
n,n,B ∈ R

n,p,C ∈ R
p,n,D ∈ R

p,p are the state-space

matrices. It is assumed that the eigenvalues λi of matrix A have

strictly negative real part, as easily enforced by most rational

macromodeling schemes, so that the nominal macromodel (1)

is asymptotically stable. Under these assumptions, the model is

passive if and only if the following condition holds

‖H(0)‖H∞
= sup

ω∈R

σ1(H(0, jω)) ≤ 1 , (2)

where σ1 denotes the maximum singular value. Passivity thus

implies the unitary boundedness of the so-called H∞ norm, de-

fined in (2), which provides a quantitative measure of the max-

imum energy gain of the model throughout the frequency axis.

Let as assume that condition (2) does not hold, so that the

nominal model is not passive. We want to perturb the state-

space matrices such that the resulting perturbed macromodel

is passive. As typical in most published passivity enforcement

schemes, we choose to perturb only the state-to-output mapping

matrix C, which is usually constructed by collecting the residue

matrices of a partial fraction expansion of H(0, s). This is only

feasible if σ1(D) ≤ 1, a condition that is easily enforced during

the model identification stage. We define a perturbation matrix

X ∈ R
p,n and its corresponding “vectorized” form x ∈ R

pn,1,



which are related through

x = vec(X) , X = mat(x) , (3)

where the “vec” operator stacks the columns of its matrix argu-

ment in a single column vector, and the “mat” operator performs

the inverse operation. We then define the perturbed macromodel

H(x) through its transfer matrix

H(x, s) = (C +X)(sI −A)−1B +D . (4)

The H∞ norm of the perturbed macromodel is

h(x) = ‖H(x)‖H∞
= sup

ω∈R

hω(x) , (5)

where hω(x) = σ1(H(x, jω)) denotes the maximum singular

value of the transfer matrix (4) at a fixed frequency ω. The

perturbed macromodel (4) is passive if and only if h(x) ≤ 1.

A second minimal perturbation condition will be also needed

for our passivity enforcement scheme, in order to guarantee that

the model accuracy will be preserved. In this work, we will

measure the amount of perturbation as

f(x) = ‖x‖2 = ‖X‖F , (6)

where 2 and F denote the Euclidean and the Frobenius norm,

respectively. We will then formulate our optimal passivity en-

forcement scheme as the following optimization problem

min
x

f(x), s.t. h(x) ≤ 1 , (7)

where the minimal perturbation condition is set as an objective

function and the passivity condition appears as an inequality

constraint. Other equivalent or weighted perturbation norms [6]

can be used as well with suitable modifications of (6).

3 Convexity and smoothness

We recall that a set S is convex if

ϑx1 + (1− ϑ)x2 ∈ S , 0 ≤ ϑ ≤ 1 .

A function φ : Rn → R is convex if its domain D is a convex

set and if for any x1,x2 ∈ D we have

φ(ϑx1 + (1− ϑ)x2) ≤ ϑφ(x1) + (1− ϑ)φ(x2)

with 0 ≤ ϑ ≤ 1. It follows from the triangle inequality that

any norm is convex, therefore both f(x) in (6) and h(x) in (5)

are convex functions. Therefore, the optimization problem (7)

minimizes a convex function over a convex set. It is well known

that these properties guarantee that there exist a unique global

optimum x∗.

A vector g ∈ R
n is called subgradient of a convex function φ

at x, if for all z in the domain of φ, it holds that

φ(z) ≥ φ(x) + g⊤(z − x). (8)

If φ is differentiable, then g = ∇φ(x) is the unique subgradi-

ent. However, subgradients exist also at points where φ is non

differentiable. The set ∂φ(x) collecting all such subgradients is

called subdifferential and is always closed and convex.

4 Subdifferential of the H∞ norm

Let us consider the perturbed macromodel (4) and compute

its singular value decomposition at frequency ω̄i

H(x, jω̄i) = U (i)
Σ

(i)[V (i)]H (9)

We denote with ℓi the multiplicity of the largest singular value

σ
(i)
1 , and the first ℓi columns of U (i) and V (i) as U

(i)
1 and V

(i)
1 ,

respectively. Since the H∞ norm is defined (2) as the supre-

mum of the largest singular values among all frequencies, let us

collect all frequencies {ω̄i, 1 ≤ i ≤ q} at which this supremum

is attained, i.e., such that

σ
(i)
1 = sup

ω∈R

hω(x) = h(x) , 1 ≤ i ≤ q . (10)

The subdifferential of the H∞ norm can be expressed as

∂h(x) =
{

vec
(

q
∑

i=1

ℜ{Ψ(jω̄i)V
(i)Y iU

(i)H}⊤
)}

, (11)

where Ψ(jω) = (jωI−A)−1B and where the q matrices Y i ∈
R

ℓi,ℓi are such that Y i = Y ⊤

i ≥ 0 and
∑q

i=1 TrY i = 1.

The above result is reported here without proof. For additional

details, see [11, 12].

We remark that when that there are multiple extremal fre-

quencies (q > 1) or multiple singular values (ℓi > 1 for some

i), the H∞ norm h(x) results non-differentiable at x. Con-

versely, if q = 1 and ℓ1 = 1, a much simpler characterization is

possible, since in this case h(x) results differentiable, and the

subdifferential includes a single element ∇h(x), which can be

expressed as

∇h(x) = vec
(

ℜ{Φ(jω̄)v1u
H
1 }⊤

)

. (12)

It is worth noting that most existing passivity enforcement

schemes based on singular value perturbation employ expres-

sion (12) as the basis for their algorithm setup. The lack of

smoothness is typically not addressed, leading to inevitably ap-

proximate, non-convex, and possibly incorrect formulations.

5 Smooth and non-smooth descent schemes

Let φ be a convex function. If φ is differentiable, the direction

pointed by the negative gradient −∇φ(x) is the steepest descent

direction. Gradient-based descent schemes for minimization of

φ find the solution by applying iterative update rules of type

x(k+1) = x(k) − αk∇φ(x(k)),

where αk is a suitable step size. In case φ is convex but non-

smooth, as for the H∞ norm h(x), a similar approach for min-

imization can be adopted, by generalizing the update rule as

x(k+1) = x(k) − αkg
(k), (13)

where g(k) ∈ ∂φ(x(k)) is a subgradient. Although it is not

guaranteed that a generic subgradient is a descent direction for

φ, it is possible to select a particular subgradient g∗ that mini-

mizes the corresponding directional derivative of φ over all di-

rections. To this end, it suffices to solve the following additional

convex optimization problem

g∗ = arg min
g∈∂φ(x)

‖g‖ , (14)

as proved in [10].
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Figure 1: First three iterations of the outer bisection loop on the

macromodel perturbation amount ν. For each iteration, x∗ de-

notes the optimal solution of problem (15). Bottom right panel

depicts the situation at convergence.

6 The main algorithm

Here, we restate the direct formulation (7) in a form that will

be easily solved numerically. First, we define the (convex) set

Xν = {x : f(x) ≤ ν} ,

including all parameter configurations defining perturbed mod-

els that differ from the nominal system less than ν. For in-

stance, ν may be some prescribed desired accuracy level that is

set by the designer in the problem setup phase. Among all such

models, we seek the one with minimal H∞ norm by solving

problem

min
x

h(x), s.t. x ∈ Xν . (15)

Denoting the optimal solution as x∗, the following two cases

may apply

1. if h(x∗) ≤ 1, we have found a passive macromodel with

controlled accuracy with respect to nominal macromodel;

in other words, problem (15) with the additional passivity

constraint h(x) ≤ 1 is feasible;

2. if instead h(x∗) > 1, we can conclude that there exist no

passive macromodel which deviates less than ν from the

original model.

We then argue that there exists an optimal accuracy ν = ν∗

such that problem

min
x

h(x), s.t. x ∈ Xν , h(x) ≤ 1 (16)

is feasible. We will look for the optimal accuracy ν∗ by an outer

bisection loop, as illustrated in Fig. 1 and described below.

Let us assume that at the first iteration k = 1 (top left panel)

problem (16) is not feasible. Therefore, the accuracy ν1 is too

stringent and the set Xν1
is too small. We then need to relax the

accuracy to a larger value ν2 > ν1 which makes problem (16)

13 14 15 16 17 18 19 20 21 22
300

350

400

450

500

No. of iteration

ν

Figure 2: PCB interconnect: values attained by ν during the last

few bisection iterations. Squares and circles denote iterations

where h(x∗) > 1 and h(x∗) < 1, respectively.

feasible. The top right panel in Fig. 1 illustrates this situation,

highlighting that the intersection of sets Xν2
and {x : h(x) ≤

1} is nonempty. The optimal accuracy is such that ν∗ ∈ [ν1, ν2].
We then define ν3 = (ν1 + ν2)/2 and solve problem (16) again

(bottom left panel). This bisection process on ν is repeated until

convergence (bottom right panel). We remark that we do not

need to obtain the optimal solution x∗ of problem (16) at each

iteration. Rather, we need to determine only the feasibility of

this problem. If the problem is feasible, we decrease ν. If the

problem is infeasible, we increase ν.

7 A projected subgradient scheme

The feasibility of problem (16) is addressed via an itera-

tive projected subgradient algorithm. We pick a generic initial

point x(0), and we generate the next point by performing a step

in the direction −g(0)

x̃(0) = x(0) − α0g
(0)

where g(0) is a subgradient of the function h(x) in x0 and α0 is

a suitable step size. Generally, x̃(0) does not belong to the feasi-

ble set Xν , therefore we project the x̃(0) on the set Xν obtaining

the new candidate solution

x(1) = [x̃(0)]Xν
= [x(0) − α0g

(0)]Xν

where [·]X is the operator that performs an orthogonal Eu-

clidean projection of its argument onto X . The above process

is repeated following the iterative scheme

x(k+1) = [x(k) − αkg
(k)]X (17)

until convergence. See [13] for technical details on fundamental

assumptions of this method and convergence proofs.

8 Numerical examples

We demonstrate the proposed passivity enforcement algo-

rithm through two practical cases. The first example is a 4-port

coupled PCB interconnect. Its scattering matrix has been mea-

sured from DC up to 20 GHz with resolution 10 MHz. These

samples have been processed by the well known Vector Fit-

ting (VF) algorithm [1] to obtain an initial macromodel (1),

with n = 272 states. The projected subgradient method has

been applied to the model in order to enforce its passivity. The

algorithm required 22 outer bisection iterations before reach-

ing a relative accuracy 3.33× 10−7 on the optimal perturbation
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Figure 3: PCB interconnect: singular values of original non

passive and compensated models.
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Figure 4: PCB interconnect: scattering responses of original

and compensated models.

ν∗ . The values attained by ν at the last few iterations are re-

ported in Fig. 2. The singular values of the starting non passive

model and of the final compensated model are depicted in the

Fig. 3. A comparison between few scattering responses before

and after passivity enforcement is depicted in Fig. 4, showing

an excellent accuracy preservation.

We demonstrate through a second example the reliability of

the proposed scheme, by processing a model for which the stan-

dard methods [3, 6] fail. A nominal macromodel (n = 60 poles)

has been obtained by applying the VF algorithm to the scatter-

ing responses of a sharp 2-port filter. This model was first sub-

ject to the iterative passivity enforcement scheme [3], which is

based on passivity constraints derived from a linearized expres-

sion of the Hamiltonian eigenvalues as a function of residues.

The optimal algorithm settings discussed in [6] were used. Fig-

ure 5 shows that very large perturbations of the singular values

and model responses are induced throughout the frequency axis.

This method diverges in very few iterations. We then applied

our proposed projected subgradient algorithm, easily obtaining

a passive model with a very good accuracy, as demonstrated in

Fig. 6, where few scattering responses of original and passive

models are compared.

This last example shows that, thanks to the convex formu-

lation, the proposed algorithm is able to manage cases where

other state-of-the-art methodologies fail to converge.
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