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High speed architectures for finding the first

two maximum/minimum values

Luca G. Amarù, Maurizio Martina, Member IEEE, Guido Masera, Senior Member IEEE

Abstract

High speed architectures for finding the first two maximum/minimum values are of paramount importance in

several applications, including iterative (e.g. turbo and LDPC) decoders. In this brief, stemming from a previous

work, based on radix-2 solutions, we propose higher and mixed radix implementations that improve the architecture

latency. Post place and route results on a 180 nm CMOS standard cell technology show that the proposed architectures

achieve lower latency than radix-2 solutions with a moderate area increase.

Index Terms

Turbo decoder, LDPC decoder, minimum values generator, tree structure approach.

I. INTRODUCTION

Recently, several simplified algorithms for channel decoding have been proposed for Low-Density-Parity-Check

(LDPC) [1], and turbo codes [2]. The λ-min algorithm [3], min-sum and its improved versions [4], are widely used in

LDPC decoders, [5], [6]. Similarly, in [7] a novel multi-input max∗ approximation for turbo and turbo Trellis-Coded-

Modulation (TCM) coding is proposed. All these works share the need for finding the first two maximum/minimum

(max/min) values in a set of M elements. As an example, in the min-sum algorithm [4] the magnitude of the

i-th output of a check node having degree dc is given by the first min of the dc inputs’ magnitudes, unless this

equals the i-th input’s magnitude, in which case the second min is employed. In [7], the Jacobian logarithm of

n inputs is computed as the first max (max1) plus a correction term that depends on max1-max2 where max2 is

the second max. A similar problem can be found also in K-best Multiple-Input-Multiple-Output (MIMO) detectors

[8]–[10], non-binary LDPC decoders [11] and Turbo Product Codes [12], [13] where the computation of the first

W max/min values is required. For the sake of brevity the extension to the search of the first W max/min values

is not investigated in this brief.

All the architectures proposed in [14]–[16] for finding the first two max/min values are based on radix-2 tree

structures or a proper blend of radix-2 and radix-3 blocks. Even if these architectures are remarkably small in

terms of area, they require a relevant number of stages (especially for large M ) which negatively affects the delay.

However, some applications as iterative decoders (e.g. turbo codes [2], [7]), require high throughput and include

feedback loops in the processing: in these cases pipelining does not provide any throughput improvement and

different solutions are necessary.
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In this brief, stemming from [16] we analyze the implementation of a generic radix-K solution and we further

extend the design space considering Mixed Radix Architectures (MRAs). In [17] a similar work is presented.

However, it focuses only on using binary and trinary trees. On the contrary, this work offers a systematic treatment

including MRAs and, to the best of our knowledge, it is the first work addressing MRAs for finding the first two

max/min values.

II. FINDING THE FIRST TWO MAX/MIN VALUES

A. Problem formulation

Given a set XM = {x0, . . . , xM−1} made of M elements we want to find the first two max/min values, namely

yM0 = max(XM ) and yM1 = max(XM \ {yM0 }) (similarly substituting max with min). For the sake of simplicity

in the following we will discuss only the max case as the min equivalent solution can be straightforwardly derived.

According to the tree-based solution proposed in [16], the procedure to find the first two max values out of M

assigned ones can be decomposed in log2(M) levels where level l contains M/2l Comparing Stages (CSs) with

1 ≤ l ≤ log2(M). CSs at the first level (l = 1) receive two input values and sort them, so each CS is made of one

comparator. Each CS at higher levels (l > 1) receives two couples of sorted values from the previous level and

outputs one sorted couple. If we approximate the delay of a CS with the delay of a comparator, we can infer that

the delay of such a structure is O(log2(M)). This assumption will be used along this section. However, in section

IV we will give area and delay results obtained via real implementation of the proposed architectures. On the other

hand, we can implement a radix-M solution that is able to find the first two max values with a delay O(1). This

reduced delay is paid in terms of complexity as we need to compare every input value with each other indeed. Thus,

the total number of comparators (avoiding duplicating comparisons) is M + (M − 1) + · · ·+ 1 = M · (M − 1)/2.

B. Fixed Radix Architecture (FRA)

A delay O(logK(M)) is obtained by using a tree structure made of radix-K CSs with K < M (Fig. 1). At

l = 1 there are M/K concurrent CSs, each of which finds the first two max values out of its K inputs with a

delay O(1). Thus, each of these CSs contains K · (K − 1)/2 comparators working concurrently. The total number

of comparators at l = 1 is

Cl=1 = [M · (K − 1)]/2. (1)

Then, we define XK1 [i] the set of K elements processed by the i-th CS (0 ≤ i ≤ M/K − 1) at l = 1

(
∪M/K−1

i=0 XK1 [i] = XM ) and yK1
0 [i] = max(XK1 [i]), yK1

1 [i] = max(XK1 [i] \ {yK1
0 [i]}). For 1 < l ≤ logK(M),

the i-th CS receives K couples y
Kl−1

0 [i ·K + j], y
Kl−1

1 [i ·K + j] with 0 ≤ i ≤ M/Kl − 1 and 0 ≤ j ≤ K − 1.

Inspired by [16] we can infer that yKl
0 [i], the first max output by the i-th CS at level l, is obtained comparing the

K max1 values from the previous level, yKl−1

0 [i ·K+ j]. Thus, K · (K−1)/2 comparators are required to compute

yKl
0 [i]. Similarly, to compute yKl

1 [i] we need to compare y
Kl−1

0 [i ·K+p] and y
Kl−1

1 [i ·K+q] with 0 ≤ p, q ≤ K−1
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and p ̸= q. As a consequence, to complete the computation of yKl
1 [i] further K · (K − 1) comparators are required,

as detailed in section III-B. The total number of comparators for 1 < l ≤ logK(M) is

Cl>1 =

logK(M)∑
l=2

M

Kl
· 3K · (K − 1)

2
=

3(M −K)

2
. (2)

From (1) and (2) the total number of comparators is

C = Cl=1 + Cl>1 = (M ·K + 2M − 3K)/2. (3)

second

maximummaximum

first

l = 2

y
Kl

0 [0] y
Kl

1 [0]

yM
0

yM
1

comparing stage M

K
− 1comparing stage 0

comparing stage M

K2 − 1comparing stage 0

l = 1

xM−1xM−KxK−1

K K

x0

yK1

1 [M
K

− 1]yK1
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0 [M
K

− 1]yK1

1 [0]
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0 [0] yK2

0 [ M
K2 − 1]

y
Kl−1

0 [0] y
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Kl−1 − 1]

comparing stage 0l = logK(M)

Figure 1. Radix-K tree structure

C. Mixed Radix Architecture

The solution detailed in the previous paragraphs can be applied as is only when logK(M) ∈ N. However, several

cases of practical interest where M is not a power of K can give better area/latency trade-offs. To that purpose we

propose to use MRA, namely different levels in the tree use different radix. In the following we will refer to this

solution as InteR-level-MRA (IR-MRA). Further flexibility could be achieved by using a different radix for each CS

at level l, namely, Kl[i] is the radix of the i-th CS at level l. This solution will be referred to as IntrA-level-MRA

(IA-MRA).
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1) IR-MRA: If N is the number of levels we have

C =
M · (K1 − 1)

2
+

3M

2

N∑
n=2

Kn − 1

Φn(1)
(4)

with Φn(ρ) =
∏n−1

i=ρ Ki and Kl the radix at level l. Imposing

M =
N∏
l=1

Kl M,Kl ∈ N+ (5)

we can find several arrays KN = {K1, . . . ,KN} that satisfy (5), where the elements of KN are taken from the

set of the dividers of M . To that purpose we introduce DN as the set of all the arrays KN that satisfy (5) and

δN , the cardinality of DN . If we impose that M is a power of two and we take the logarithm of (5) we obtain

γ = log2(M) =
∑N

l=1 log2(Kl). As a consequence, the problem of finding δN simplifies to finding the set of N

positive integers (log2(Kl)) whose sum is γ. Thus, we obtain δN =
(
γ−1
N−1

)
. As an example, for M = 32 and N = 3

there are six possible IR-MRA (δ3 = 6). To find the solution that requires the minimum C we consider (4) and

impose ∂C/∂Kl = 0 for each l:

K1=

√√√√3
N∑

n=2

Kn − 1

Φn(2)
Kl|1<l<N=

√√√√ N∑
n=l+1

Kn − 1

Φn(l + 1)
(6)

with (5) as a constraint, so that KN is chosen to satisfy (5).

We can rewrite indeed (6) as

K1 =
√

3(K2 − 1) if N = 2 (7)

K1 =
√
3(2K2 − 1)

Kl =
√
2Kl+1 − 1 1 < l < N − 1

KN−1 =
√
KN − 1

 if N > 2. (8)

Finally, by substituting (7) and (8) in (5) we obtain

M=K2 ·
√
3(K2 − 1) (9)

M=
√
3(2K2 − 1) ·

N−2∏
l=2

√
2Kl+1 − 1 ·

√
KN − 1 ·KN . (10)

Unfortunately, both (9) and (10) can be written as polynomial Diophantine equations with integer coefficients

that do not always admit solutions in N [18]. Usually in IR-MRAs δN is of the order of few tens; thus, DN can

be explored exhaustively as shown in section IV.

2) IA-MRA: The formalization proposed in section II-C1 to compute C can be extended to the case of IA-MRA

as

C =
N∑
l=1

Cl Cl =

Ol∑
i=0

αl ·Kl[i] · (Kl[i]− 1) (11)

where Ol is the number of CSs at level l and αl=1 = 1/2, αl>1 = 3/2. This implies that (5) should be rewritten as

M =

N∏
l=1

Kl M ∈ N+ Kl =
1

Ol

Ol∑
i=0

Kl[i] (12)
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Figure 2. l = 1 CS architecture (radix-K): array of comparators (a), one-hot index generator for N (b), 1-bit mux-like structure (c), generation

of tz,w (d)

where Kl is the average radix at level l. The minimization of (11) is Diophantine, as for the IR-MRA case, as a

consequence, it is not always possible to explicitly find optimal solutions. Even if δN tends to be large, we explored

exhaustively DN , as for the IR-MRA case. Experimental results show that in different cases IR-MRAs and IA-

MRAs achieve the same C for a given N . For the sake of brevity, we will concentrate on IR-MRAs. However, in

section IV we will show IA-MRAs results when they have lower complexity than the corresponding IR-MRA.

III. ARCHITECTURAL DESCRIPTION

Each CS is made of three main parts: an array of comparators, some One-Hot Index Generators (OHIGs), and

some Mux-Like Structures (MLSs).

A. Level l = 1 comparing stages

Note that in this section we consider input values belonging to one CS, namely xj with 0 ≤ j ≤ K − 1. Thus,

indices do not correspond to the ones given in section II when XM and XK1 [i] were defined.

Let us define xp and xq as two inputs out of the possible K ones, sp,q as the sign of xp − xq and sq,p = sp,q

where (·) is the one-complement operator (see Fig. 2 (a))1. If input xn is max1 then sq,n = 1 for every q such that

0 ≤ q ≤ K − 1 and q ̸= n. Now we build an array N containing K elements, where the p-th element is

Np =
K−1∧

q=0,q ̸=p

sq,p (13)

and
∧

stays for the logic-and operation. As it can be observed, if n is the index of max1 of the i-th CS, namely

n = arg(max(XK1 [i])), N is the One-Hot (OH) binary representation of n. Finally, N is used as the selection

1If xp = xq , sp,q is not relevant as choosing either xp or xq is the same.
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signal of an MLS (see Fig. 2 (b)). According to (13) we concurrently compute all the bits of the OHIG resorting

to K and-gates each of which receives K − 1-input sq,p signals (see the dashed box in Fig 2 (b)). The MLS can

be described as follows. Given xu ∈ XK1 [i], 0 ≤ u ≤ K − 1 and being xu,v the v-th bit of xu we obtain yK1
0,v [i],

the v-th bit of yK1
0 [i], as

yK1
0,v [i] =

K−1∨
u=0

xu,v ∧Nu (14)

where
∨

is the logic-or operation. According to (14) a 1-bit MLS is made of a K-input or-gate and K 2-input

and-gates (see Fig. 2 (c)). As a consequence, we concurrently obtain each bit of yK1
0 [i] by replicating the 1-bit

MLS.

A similar approach is used to obtain yK1
1 [i], namely combining sz,w signals with a blinding circuit that acts as a

mask for the position of max12. Let us define t̂z,w = sz,w ∧Nw where t̂z,w = 1 when xw ≥ xz and xw ̸= yK1
0 [i].

If input xn is max1 sn,w = 0 and t̂n,w = 0. As a consequence, to identify max2 we can not simply compute

M̂w =
∧K−1

z=0,z ̸=w t̂z,w as for max1. We can avoid this problem by introducing tz,w = t̂z,w ∨ Nz: if input xn is

max1, Nn = 1 and tn,w = 1 (see Fig. 2 (d)). We can now build a second array M that contains K elements, where

the w-th element is

Mw =
K−1∧

z=0,z ̸=w

tz,w. (15)

As for max1, m is the index of max2 in the i-th CS, m = arg(yK1
1 [i] = max(XK1 [i] \ {yK1

0 [i]}), M is the OH

binary representation of m and the v-th bit of yK1
1 [i] is obtained as

yK1
1,v [i] =

K−1∨
u=0

xu,v ∧Mu. (16)

According to (15) and (16), yK1
1 [i] is obtained with an OHIG and an MLS, (Fig. 2 (b) and (c)) by substituting sq,p

and N with tz,w and M respectively.

B. level l > 1 comparing stages

A radix-K CS at l > 1 computes the first two max values among its K input couples y
Kl−1

0 [i ·K + j], y
Kl−1

1 [i ·

K + j], 0 ≤ i ≤ M/Kl − 1, 0 ≤ j ≤ K − 1. The max1 output by the i-th CS (yKl
0 [i]) is obtained by processing

the K input values y
Kl−1

0 [i ·K + j] with the same architecture used for l = 1.

Let us define YKl−1

0 [i] and YKl−1

1 [i] as the two sets containing y
Kl−1

0 [i · K + j] and y
Kl−1

1 [i · K + j] values

respectively (each set contains K values). As far as max2 is concerned, two cases are possible: i) yKl
1 [i] ∈ YKl−1

0 [i],

namely yKl
1 [i] is one of the max1 received as inputs. ii) yKl

1 [i] ∈ YKl−1

1 [i], yKl
1 [i] is one of the max2 values. Case

i) can be solved with the same architecture used for l = 1. On the other hand, case ii) requires to compare

y
Kl−1

0 [i ·K + p] and y
Kl−1

1 [i ·K + q] with 0 ≤ p, q ≤ K − 1 and p ̸= q. Let us define y
Kl−1

0 [a] and y
Kl−1

1 [b] with

a ̸= b as one element of YKl−1

0 [i] and YKl−1

1 [i] respectively. Then, the sign of yKl−1

0 [a]− y
Kl−1

1 [b] is s0,1a,b. If f is

2The formulation proposed in the following should ease understanding the underlying idea even if from a formal point of view it has some

redundancy.
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Figure 3. l > 1 CS architecture (radix-K)

the index of the element in YKl−1

1 [i] that is max2 of the i-th CS, F is its OH binary representation, where the b-th

element is Fb =
∧K−1

a=0,a ̸=b s
0,1
a,b. A further MLS selects yKl

1 [i] as the f -th element of YKl−1

1 [i]. To complete the

architecture (see Fig. 3) we need to infer if yKl
1 [i] belongs to YKl−1

0 [i] or to YKl−1

1 [i]. This selection is accomplished

by observing that if yKl
1 [i] ∈ YKl−1

1 [i] then r =
∨K−1

b=0 Fb = 1.

Table I

FRA POST SYNTHESIS RESULTS: A [µM2] AND L [NS]

M = 8 M = 16 M = 32 M = 64

Kl = 2 11026/1.7 23105/2.2 51613/2.6 97906/3.2

Kl = 4 - 23904/1.7 - 115310/2.4

Kl = 8 16494/1.2 - - 172474/2.3

Kl = 16 - 70250/1.5 - -

Kl = 32 - - 263270/1.8 -

Kl = 64 - - - 819798/2.3

IV. EXPERIMENTAL RESULTS

The analytical approach proposed in section II can be used to identify the set of solutions with minimum C. This

strategy is useful when the design space tends to be large, as in the IA-MRA case. In Table II area and latency for

a 180 nm CMOS standard cell technology of one comparator (data represented on six bits) and one radix-2 CS at

l = 1 and l > 1 are shown; the complexity of the comparator(s) is about half the complexity of the CS. Moreover,

data in Table II allow for a reasonable estimation of the area and latency of radix-2 architectures summarized in

Table I as A
(2)
M = A

(2)
Cl=1

· M
2 + A

(2)
Cl>1

·
(
M
2 − 1

)
and L

(2)
M = L

(2)
Cl=1

+ (N − 1) · L(2)
Cl>1

. Similar formulas can be

obtained to estimate A and L for higher radix and MRAs.
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Table II

COMPARATOR AND RADIX-2 CS AT l = 1 AND l > 1 POST SYNTHESIS RESULTS: A [µM2] AND L [PS]

comparator CS @ l = 1 CS @ l > 1

AC/LC A
(2)
Cl=1

/L
(2)
Cl=1

A
(2)
Cl>1

/L
(2)
Cl>1

467/400 880/500 2503/600

Table III

POST P&R FRA AND MRA RESULTS: A [µM2] AND L [NS]

FR (Kl) MR N=2 (K1/K2) MR N=3 (K1/K2/K3)

M=32

(16/2) (2/16) (4/8) (4/4/2) (4/2/4) (2/4/4)

(2) 157643/2.0 281772/2.0 96211/2.0 75780/2.2 72651/2.2 99709/2.2

73355/2.6 (8/4) (8/2/2) (2/8/2) (2/2/8)

94130/2.0 929011/2.2 155873/2.2 121188/2.2

FR (Kl) MR N=4 (K1/K2/K3/K4) FR (Kl) MR N=3 (K1/K2/K3)

M=64

(4/4/2/2) (4/2/4/2) (4/2/2/4) (2/4/2/4)

M=24

(6/2/2) (2/6/2) (2/2/6)

(2) 155423/2.6 150217/2.6 151835/2.6 190267/2.6 56451/2.0 94163/2.0 74957/2.0

137261/3.2 (2/4/4/2) (2/2/4/4) (2) (2/3/4) (2/4/3) (3/2/4)

(4) 206287/2.6 178323/2.6 50868/2.5 64922/2.0 73040/2.0 56480/2.0

160219/2.4 (8/2/2/2) (2/8/2/2) (2/2/8/2) (2/2/2/8) (3/4/2) (4/2/3) (4/3/2)

184369/2.6 304103/1.6 221290/2.6 194228/2.6 58376/2.0 51560/2.0 55276/2.0

To highlight the area/latency trade-off we define η∗M = (A∗
M ·L∗

M )/(A
(2)
M ·L(2)

M ) where A∗
M and L∗

M are the area

and the latency of a generic radix architecture with M inputs. An architecture that halves the latency at the expense

of doubling the area with respect to the radix-2 solution has η∗M = 1. Thus, architectures of particular interest are

the ones with η∗M < 1.

Results shown in Table I highlight that FRAs do not permit to tune the A/L trade-off: for M = 32 there are

only two solutions: radix-2 and radix-32. In the radix-2 solution area is 80% lower and latency 30% larger than

radix-32 case. Moreover, the only FRAs with η∗M < 1 are the radix-4 ones: η(4)16 = 0.8 and η
(4)
64 = 0.88.

To obtain more accurate results [19], VHDL developed architectures have been synthesized with Synopsys Design

Compiler for shortest delay, Placed and Routed (P&R) with Cadence Encounter using a 180 nm CMOS standard

cell technology at 0oC and with supply voltage 1.95V.

Even if the expression of Mw (15) can be optimized by-hand (each element tz,w contains the common term

Nw), we prefer to leave the task of logic minimization to the logic synthesizer to explore a larger space of

complexity/performance trade-offs. Experimental results shown in the following for [14]–[16] have been reproduced

for a fair comparison with the proposed solutions for six bit data width. We show in Table III the experimental

results obtained for (M = 32, N = 2), (M = 32, N = 3), (M = 64, N = 4) and (M = 24, N = 3) respectively,

where the best result is highlighted in bold. It is interesting to observe that IA-MRAs for the cases show in Table

III exist. For the case M = 32, N = 2 the best solution requires C = 130 and 94130 µm2. However, with four
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radix-5 and two radix-6 CSs at l = 1 and K2 = 6 we obtain C = 115. Even if this solution minimizes C it requires

5-input and 6-input and/or-gates leading to an area of 104903 µm2, about the 10% more than the best IR-MRA.

IA-MRAs for M = 32, N = 3 require in the best case C = 78 and 72651 µm2, the same result obtained with

K1 = 4, K2 = 2, K3 = 4. When M = 64, N = 4 the best solution requires C = 159 and 150217 µm2. However,

with two radix-2 and twenty radix-3 at l = 1, K2 = 2, one radix-2 and three radix-3 at l = 3 and K4 = 4 we

obtain C = 143 and A = 145801 µm2, about the 3% less than the best IR-MRA.

Table IV

POST P&R EXPERIMENTAL RESULTS: A [µM2] AND L [NS] COMPARISONS

M [14]–[16] Proposed

6

[15] [16] Kl = 6
K1 = 2 K1 = 3

K2 = 3 K2 = 2

13451/1.5 10158/1.6 13197/1.1 11329/1.4 8827/1.4

η∗6 > 1 - η∗6 = 0.89 η∗6 = 0.98 η∗6 = 0.76

7

[15] [16] Kl = 7
K1 = 4, 3

K2 = 2

13718/1.7 13390/1.7 15184/1.1 13472/1.3

η∗7 > 1 - η∗7 = 0.73 η∗7 = 0.77

8

[14] [16] Kl = 8
K1 = 2 K1 = 4

K2 = 4 K2 = 2

17617/2.1 13640/1.7 23343/1.2 21938/1.4 13799/1.4

η∗8 > 1 - η∗8 > 1 η∗8 > 1 η∗8 = 0.83

The proposed architecture can also be employed to reduce L when M is not a power of two. As an example, if

M = 9 a radix-2 solution imposes an unbalanced tree structure with N = 4. The implementation of such a structure

leads to A = 21025 µm2 and to L = 2 ns. On the other hand, with a FRA-3, corresponding to N = 2, we obtain

A = 14426 µm2 and L = 1.6 ns. It is worth noting that there is no IA-MRA for M = 9, N = 2 that performs

better than K1 = K2 = 3. Similarly, M = 24 as a radix-2 solution has an unbalanced tree structure with N = 5.

On the contrary, with N = 3 we have nine possible MRAs. As it can be observed, the 4/2/3 MRA improves the

latency of 25% with respect to the FRA-2 and requires an area overhead of less than 1.1%. For M = 24, N = 3

IA-MRAs exist, however they require C = 54 as the best solution reported in Table III.

In Table IV we compare our MRAs with other approaches proposed for finding the first two min values in LDPC

decoders [14], [15]3: considered cases are M = 8 for [14], M = 6, M = 7 for [15]. For the cases M = 6 and

M = 7 we consider also the unbalanced radix-2 tree proposed in [16] for a generic M , whereas, for the case

M = 7 we use a IA-MRA: one radix-4 and one radix-3 at l = 1 (K1 = 4, 3) and K2 = 2.

For MRAs in Table III we observe that when M = 32 the best solution with N = 2 (8/4) leads to η∗32 > 1

whereas the best solution for N = 3 (4/2/4) achieves η∗32 = 0.84. When M = 64, N = 4 the best solution (4/2/4/2)

3Even if in [14] and [15] min values are found we will refer to max values.
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gives η∗64 = 0.89 that is slightly worse than the FRA Kl = 4 (η(4)64 = 0.88). Finally, for M = 9, Kl = 3 we have

η
(3)
9 = 0.55; for M = 24 the best solution (4/2/3) achieves η∗24 = 0.81.

V. CONCLUSIONS

In this brief high speed architectures for finding the first two max/min values are presented. The proposed solution

extends previous works based on radix-2 and radix-3 solutions to both higher and mixed radix solutions. As shown by

experimental results MRAs achieve lower latency than radix-2 architectures with a limited area increase. Moreover,

MRAs show better figures than other solutions proposed for LDPC decoders.
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