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Multipolar SPM machines for direct drive application: 
a comprehensive design approach 

B. Boazzo, G. Pellegrino, A. Vagati 
Politecnico di Torino 

Corso Duca degli Abruzzi 24, Torino, 10129 Italy 

Abstract -- A closed-form, per-unit formulation is 
proposed, for the design of surface mounted permanent 
magnet motors with high number of poles. The model 
evaluates the shear stress, the power factor and the specific 
Joule loss as the indicators of the machine performance, and 
demonstrates that this is determined by the correct choice of a 
very limited set of key-geometrical parameters. The design 
criteria are described analytically and then applied to example 
designs, FEA validated. Distributed- and concentrated-
winding configurations are considered. The conclusions of the 
paper are consistent with the literature and aim to give a 
roadmap for designers of PM machines in modern 
applications, such as wind power synchronous generators.  
 
Index Terms – PM motor drives, PM machines, Wind 
generation, Motor Design, Surface Mounted PM machines. 

I. INTRODUCTION 
Permanent magnet (PM) synchronous machines are 

recognized for their performance in terms of torque density, 
efficiency and low rotor inertia. In particular, direct-drive 
machines of the surface mounted PM type (SPM) have 
been increasingly adopted as motor and/or generators in 
many up to date fields such as traction and propulsion, 
aerospace and renewable energy production [1]. Recently, 
rare earth PM materials have suffered a significant 
volatility, but still the interest for PM based electrical 
machines is high, as stated in recent works [2]. 

All direct-drive machines have in common the high 
number of poles. Over the last decade, a lot of effort has 
been devoted to the investigation of machines with 
concentrated stator windings, for their characteristics of 
fault tolerance, ease of manufacturing, short end 
connections and high copper filling factor [2-7]. 

The paper proposes a normalized analysis of three-phase 
SPM machines, for the sake of sizing and preliminary 
design of direct-drive motor/generators. The analysis is 
based on simple, per-unit, relationships, including 
distributed and concentrated, single layer, winding types. 

The proposed model is based on the elementary block 
reported in Fig. 1, representing one pole of a SPM machine 
with distributed windings. The key-geometric parameters, 
defined in Fig. 1, are: 

• the airgap length g; 
• the pole pitch a; 
• the tooth length lt; 
• the PM length lm. 

For concentrated windings, the same geometric 
parameters are used, being a still the rotor pole pitch, 
corresponding to one PM pole. Another key parameter is 
the number of slot per pole per phase q, that can be either 
an integer or a fraction. 

 
Figure 1.  Elementary block of a linear-like SPM synchronous machine, 

corresponding to one PM pole pitch. 

In the following, the relationships between the 
geometry, the shear stress (easily related to torque density), 
the power factor (PF) and the Joule loss per surface will be 
expressed by means of simple equations. It will be 
demonstrated that optimal combinations of the geometric 
quantities can maximize the power factor at a specified 
shear stress and vice versa. The emphasis on the power 
factor (read inner power factor or cosine of the torque 
angle) as a key design target has a twofold, strong 
motivation: 
• the power factor determines the power converter 

current size, given the machine active power [8]; 
• a low power factor in a SPM machine is also the 

symptom of an armature flux that is not negligible with 
respect to the PM flux linkage one and that can require 
the magnetic core size to be augmented purposely. 

II. PER UNIT MACHINE MODEL 

A. Magnetic loading and rotor parameters 
The magnetic loading (1) is defined as the peak of the 

fundamental component of the flux density distribution at 
the airgap at no load: 
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Where Br is the PM remanence, kb is the PM shape 
coefficient relating the PM pitch to the fundamental flux 
density component at the airgap and kc is the Carter 
coefficient. Apart from the Carter coefficient, the magnetic 
loading depends on rotor parameters only, given the airgap 
length, and it is independent of the rotor pole pitch a. 

The PM thickness factor lm/g determines the magnetic 
loading (1) and also the de-magnetization current limit of 
the machine. High values such as lm/g > 6 do not increase B 
significantly, and can be justified only if high current 
overload is required or anyway for avoiding de-
magnetization. The example value lm/g = 6 will be 
considered in the following and final designs will be 
verified against de-magnetization. 

B. Electric loading and shear stress 
The electric loading is defined in (2): 

3
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kw in (2) is the winding factor, N is the number of 
conductors in series per pole per phase and Iq is the phase 
current amplitude. It is implicitly intended that the current 
vector is aligned with the quadrature axis, that is the 
maximum force (torque) per Ampere situation. 

The average shear stress is: 

        3  

The shear stress is measured in N/m2 and is the time-
averaged tangential force acting on the elementary block of 
Fig. 1 divided by the airgap surface. In case of a cylindrical 
machine, the shear-stress is representative of its torque 
capability. 

Once the magnetic loading is set, according to the PM 
grade, shape and thickness (1), the shear stress will depend 
on the electric loading (2) only. This can be upper limited 
either by Joule losses (i.e. thermal issues and efficiency) or 
by de-magnetization. Plus, the power factor can also set a 
limitation to the feasible electric loading, in particular in 
fractional slot machines. 

Joule loss 
The Joule loss factor kj represents the copper loss per 

airgap unit surface, expressed in W/m2: 

2
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ρCu in (4) is the copper resistance, kCu is the slot filling 
factor, kend is the length of the conductors including the end 
connections divided by their active length. Bfe is the peak 
flux density in the stator yoke, and kt is the tooth scaling 
factor, accounting for the tooth width and, consequently, 

the peak flux density in the teeth. 
The specific Joule loss (4) is inversely proportional to 

the tooth length (non normalized), independently of the 
airgap and the pole pitch. 

C. Power factor 
With the machine phase currents in time quadrature with 

the PM flux linkage and neglecting the stator resistance 
voltage drop, the PF angle ϕ is expressed in normalized 
terms as: 

4
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Where Lpole,pu is the per-unit phase inductance of the 
elementary block, whose normalization coefficient is: 

·
2 ·

2
· ·         6  

With l being the machine stack length. From (3) and (5) 
follows that B and A both contribute to produce the shear 
stress, whilst they are in competition when dealing with the 
power factor angle: given A and B and then the shear stress, 
the machine PF can be higher or lower according to the 
per-unit inductance Lpole,pu. 

In other words, the relationship between the shear stress 
(read torque) and the power factor depends on the pole per-
unit inductance, and wrong design choices can produce 
machines with a poor power factor, given the torque 
specification. In the following the minimization of the pole 
per-unit inductance is addressed, and the criteria for a best 
compromise between shear stress and power factor are 
pointed out. 

III. MINIMIZATION OF THE POLE INDUCTANCE 
The inductance of the elementary block of Fig. 1 (7) is 

the sum of the slot leakage term and the magnetization one. 

, , ,           7  

In normalized quantities, the two terms of (7) depend on 
the four basic parameters defined in Fig. 1, with 
expressions that can be different in the cases of distributed, 
intended as integer q values, and concentrated windings, 
intended as fractional q values. 

A. Distributed winding machines 
With integral q, the per-unit magnetization inductance 

is: 

, 6 · · 1
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The slot inductance expression is independent of q and it 
is then valid both for integral and fractional slot numbers: 

, 2 ·
1 ·

1 1 · ·
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From (8) and (9) it turns out that Lm is proportional to 
the ratio a/g, while Lslot is inversely proportional to the 
same quantity. 

Fig. 2 shows that an a/g value exists, that minimizes the 
total per-unit inductance, sum of (8) and (9): it can be 
demonstrated that the minimum inductance condition 
corresponds to Lm = Lslot. 

 
Figure 2.  Per-unit pole inductance (8) + (9) for a distributed winding 

machine having q = 2, as a function of a/g, with lm/g = 6 and different lt/g 
values. 

Posing Lm = Lslot, the per-unit pole pitch giving the 
minimum inductance is found, from (8) and (9): 
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The minimum inductance value, corresponding to (10), 
is: 

, 1
1

 
1 1
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With distributed windings, the effect of q in the 
formulae (8)-(11) is very limited and the key parameters for 
pole pitch selection according to (10) turn out to be lm/g and 
lt/g. Typical values of kt are 0.8 to 0.9 in this case. The 
choice of lm/g has been addressed in section II.A. The 
choice of the tooth length factor lt/g is more open: as 
evidenced in Fig. 2, longer teeth increase the pole 

inductance and would result in a lower power factor, 
according to (5). However, shorter teeth would increase the 
specific Joule loss (4), due to the reduction of the copper 
cross section. A tradeoff between loss and power factor 
must be found. 

B. Single-layer, concentrated winding machines 
The slot inductance expression is still (9). Lm,pu is now: 

, 12 ·
1

·        12  

In Fig. 3 the per-unit inductance of one pole is reported 
as a function of a/g for the fractional slot example case q = 
2/7. 

 
Figure 3.  Per-unit pole inductance (10) + (8) for a concentrated winding 

machine having q = 2/7, as a function of a/g, with lm/g = 6 and lt/g as a 
parameter. 

Posing (9) equal to (12), the minimum inductance 
condition and the minimum inductance value are now: 

  √6 ·  ·
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The pole pitch of minimum inductance (13) is 
proportional to q this time, while q has little effect in (10), 
as said. 

IV. COMPARISON OF FRACTIONAL AND INTEGRAL SLOT 
MACHINES 

In Figs. 4-6 integer and fractional q numbers are 
compared in terms of per-unit inductances. Figure 4 reports 
the pole per-unit inductance as a function of normalized 



 

 
 

pole pitch a/g. 

 
Figure 4.  Comparison of the per-unit pole inductance of concentrated 
(dashed line) and distributed (continuous line) winding machines, all 

having lm/g = 6 and lt/g = 35. 

It turns out that: 
• All the curves tend to coincide in the lowest a/g area, 

where the pole inductance is dominated by the slot 
term. 

• For higher a/g values, fractional slot machines have 
much higher inductance values, as expected. 

• All the curves with integer q are superimposed, while 
the ones with fractional q can be significantly different, 
as commented. 

• Fractional slot machines have the minimum inductance 
for lower a/g values than integral slot ones (i.e. at 
higher pole numbers, in case of rotating machines). 

 
Figure 5.  Pole pitch giving the minimum inductance condition (9) or 

(12), for integer and fractional q, respectively, reported as a function of the 
slot per pole per phase number and the tooth length. lm/g = 6. 

In Figs. 5 the pole pitch of minimum inductance is 
reported as a function of q values, either fractional (13) or 
integral (10). In Fig. 6 the corresponding, minimum 
inductance values are reported, calculated using (11) and 
(14). In both the figures three different tooth length values 
lt/g are considered. From Figs. 5 and 6 turns out that: 
• in fractional slot machines, the pole pitch value giving 

the minimum inductance grows proportionally with the 
parameter q, as also evident from (13). 

• accordingly, the minimum inductance is in inverse 
proportion with q, when this is fractional (14). 

• As a consequence, the difference in inductance between 
the ones with lower numbers, such as 1/4 or 2/7, and 

higher numbers, such as 2/5 or 1/2, can be significant. 
• The inductance of integral q machines is independent 

from q and lower than the one of any possible fractional 
q machine. 

 
Figure 6.  Minimum value of the pole per-unit inductance, corresponding 

to the pole pitch values of Fig. 5, as a function of the slot per pole per 
phase number and the tooth length. lm/g = 6.  

V. ANALYSIS OF MINIMUM INDUCTANCE 
MACHINES 

For summarizing the analysis presented up to here, the 
power factor is evaluated at a given shear stress value, for 
all q values. In Fig. 7 the power factor is reported, 
according to (5), as a function of q and lt/g, calculated as 
follows. 

The magnetic loading is very similar for all machines, 
all having lm/g = 6, Br = 1.12 T, kb = 1.2 (e.g. valid for arc 
magnets with span equal to 5/6). The Carter coefficient is 
1.05 for integral q and 1.085 for fractional q. The reference 
shear stress value is set to 62.5 kN/m2, and the electric 
loading is evaluated according to (3). The electric loading 
is around 55 kA/m in this case. The minimum per-unit 
inductance is evaluated via (11) and (14). Last, the power 
factor is calculated via (5) for all machines. 

 
Figure 7.  Power factor at same shear stress (σ = 62.5 kN/m2) as a 

function of the slot per pole per phase number and the tooth length. lm/g = 
6. 

It must be remarked that the machines represented in 
Fig. 7 have different pole-pitches, calculated according to 
(10) and (13), that means they would all have different pole 
numbers, in case of they are rotating machines. 

The results of Fig. 7 show that: 
• The choice of q is critical for avoiding unacceptable PF 

values, that is the case with many of the q – lt/g 



 

 
 

combinations of Fig. 7. 
• Machines with shorter teeth have a better power factor, 

but they also have higher specific loss (4). 
• Although all the machines are heavily loaded (55 

kA/m), the power factor of distributed winding ones is 
still very high. This can be even too high, for practical 
applications, determining dangerously high values of 
short-circuit current. For this reason, integral q 
machines do not require the strict respect of the 
minimum per-unit inductance in their design, unless 
otherwise specified. 
It must be remarked that machines with same q and 

different lt/g also have a different per unit pitch (a/g)0, in 
Fig. 7. The plot of the loss factor (4), corresponding to the 
machines of Fig. 7 is not reported here because it would 
have required restrictive assumptions about kend and the 
absolute value of the teeth length. Examples in absolute 
numbers are given in the following section. 

VI. DESIGN FLOWCHART 
In this section, the design flowchart is described, based 

on the per-unit model of the SPM machine. The target is to 
design a rotating machine. It is then convenient to introduce 
the relationships between torque and shear stress (15), 
depending on the rotor radius r and the stack length l, and 
the expression of the number of poles (16), given the radius 
and the pole pitch. 

· 2 · r · l               15  

· r
                   16  

It is assumed that designs with a power factor lower than 
0.7 at rated torque should be rejected. In linearity, machines 
with a power factor lower than 0.7 would have the armature 
flux linkage higher than the PM flux linkage and, in other 
words, a disadvantageous oversizing of the power converter 
given the machine active power. 

The flow chart is organized as follows: first, the per-unit 
model is iteratively utilized for determining the size and 
performance of the elementary block (subsections A and B). 
Then the size and performance of the rotating machine is 
determined, being this machine the assembly of the just 
defined elementary block (subsection D). 

A. Preliminary data  
• Airgap length g 
• Type of cooling (upper limit of the specific loss: kj0) 
• PM grade (Br) and per-unit thickness lm/g 
• Steel peak exploitation Bfe 
• Type of winding q 

B. Design of the elementary block 
1. The magnetic loading B is calculated (1). 
2. An expected shear stress value is set, referring to the 

values that are typical for machines having the same 
type of cooling 

3. The electric loading is calculated from B and σ, 
according to (3). 

4. A tentative tooth length is set and the specific loss is 
calculated (4), to be compared to upper limit of the 
specific loss, kj0. Also the end connection factor is a 
tentative value, to be double checked once the active 
length of the machine is determined. 

5. If kj is less than or equal to the accepted specific loss 
then proceed, otherwise step back to point 4, with an 
augmented tooth length lt. 

6. The pole pitch is determined according to the minimum 
inductance condition, (10) or (13), respectively. 

7. The power factor is evaluated. 
8. If PF > 0.7 ok, otherwise lt is reduced and step back to 

point 3. 

The outputs of this stage are: 
• The pole pitch a/g 
• The tooth length lt/g 
• The shear stress, the electric loading and the power 

factor 

C. Target machine specification 
The final rotating machine is defined according to: 

• Target torque T0 and rated speed. 
• Maximum outer diameter, maximum stack length. 

D. Design of the rotating machine 
Given the calculated shear stress: 

9. From (15), the product r2l is evaluated according to the 
target torque and the calculated shear-stress. 

10. Given r2l, the rotor radius and stack length are chosen, 
within the maximum length limit. 

11. Once r is chosen, the number of pole pairs (16) is 
evaluated and truncated to the closest feasible number. 

12. The end connection length is evaluated and the specific 
loss is recalculated according to. 

13. Also the machine inductance and the power factor are 
recalculated, after the pole pitch truncation at step 11. 

14. The stator outer radius is calculated 
15. If the stator radius exceeds the outer dimension limits, 

step back to point 10 with a reduced r and an 
augmented l, whenever possible. 

16. If all ok, the design is FEA evaluated 

VII. EXAMPLE DESIGNS 
Two example machines are designed, one having 

distributed windings and one with concentrated windings. 
The target performance is a direct-drive wind power 
generator, rated 3 MW at 16.9 rpm, that means 1695 kNm 



 

 
 

continuous torque. The target heat flow ratio is kj  ≤ 8000 
W/m2, referring to direct wind ventilation. The stator 
diameter must be lower than or equal to 4 m. 

At first, the flowchart of section VI is applied to the 
design of the concentrated windings machine, indicated as 
design 1. The number of slot per pole per phase is q = 2/5, 
that showed to give better power factor values than most of 
the other fractional values according to the presented 
analysis (e.g. Fig. 7). The design procedure is iterated for 
obtaining a stator radius that is exactly 2 m and to comply 
with the power factor and loss constraints. The geometry of 
the resulting design is summarized in the left column of 
Table I, along with the main input and coefficients to be 
used in the formulae. In Fig. 8 (top) the sketch of the 
laminations is also reported. The model calculated 
performance, is reported in Table II. The minimum 
inductance condition (13) has been pursued, as described in 
the design flowchart, and the calculated PF is 0.7, at the 
bottom of the accepted range. 

TABLE I – GEOMETRY OF THE TWO EXAMPLE DESIGNS 

 
Design 1 

concentrated 
windings 

Design 2 
distributed 
windings 

Slot/pole/phase q 2/5 1 

Magnet grade Br 1.12 T 

Airgap g 5 mm 

Core flux 
density Bfe 1.5 T 

PM length lm/g 6.1 

Stator radius R 2 m 2 m 

Rotor radius r 1.840 m 1.782 m 

Stack length l 1.3 m 1.3 m 

Pole pitch a/g 19.3 25.0 ** 

Tooth length lt/g 23.7 * 35.27 *** 

Pole pairs p 60 45 

Yoke length ly 23.6 mm 30.5 mm 

Carter  kc 1.085 1.05 

End 
connections kend 1.093 1.41 

Tooth scaling kt 0.73 0.8 

Slot filling kCu 0.4 0.4 
* Designed for PF = 0.707, according to (5) 
** Lower than (10), giving the minimum inductance 
*** Chosen for having the same kj (4) of the design 1 

The distributed winding example, called design 2, has q 

= 1, for having the slots not too slender that would cause 
the winding to be hardly feasible. The geometry of design 2 
is described in Table I and the calculated performance in 
Table III. The sketch of the laminations is in Fig. 8 
(bottom). 

The design flowchart applied in this case has some 
differences with respect to section VI: instead of the 
minimum inductance condition (10), that would have led to 
(a/g)0 = 44.19, a lower pole pitch factor a/g = 24.95 has 
been selected, corresponding to a higher pole number with 
shorter end connections and still giving a good power 
factor (0.80 in Table III). Moreover, the tooth length has 
been chosen for having the same specific loss of design 1, 
according to (4), for making the comparison of the two 
machines more straightforward. According to the design 
target, the output machine has the same stator outer 
diameter, the same calculated torque and Joule loss of 
design 1, with longer teeth and then a smaller rotor 
diameter. This means the shear stress is no longer a 
uniform metric for the comparison of the two example 
designs: the model and FEA calculated torque will be used 
instead in the following. Iron loss is not included in the 
comparison, due to the low fundamental frequency of the 
example application. 

 
(design 1 - q = 2/5) 

 
(design 2 - q = 1) 

Figure 8.  Sketches of the laminations of the two example deisgns. 

A. Finite element validation of the model 
The per-unit design procedure is validated via static 

magnetic FEA runs in FEMM [9]. Finite element results are 
given in Tables II and III, aside the model results for the 
two example designs.  



 

 
 

TABLE II – PERFORMANCE OF DESIGN 1, q = 2/5 

 Eq. Model FEA 

B (1) 1.14 T 1.09 T 

A (2) 53496 A/m 

σ  60.99 kN/m2 52.99 kN/m2 

kj (4) 6821 W/m2 6275 W/m2 

T (15) 1695 kNm 1473 kNm 

Phase current  4278 Apk 

Phase voltage  664 Vpk 577 Vpk 

Joule loss  111.4 kW 102.5 kW 

Lm (12) 8.78 mH  

Lslot (9) 8.83 mH 
15.38 mH*  

Ltot  17.61 mH 
24.16 mH* 25.76 mH 

PF  0.7* 0.7 
* Tooth tip inductance included 

TABLE III – PERFORMANCE OF DESIGN 2, q = 1 

 Eq. Model FEA 

B (1) 1.145T 1.11 T 

A (2) 56748 

σ (3) 64.99 kN/m2 57.78 kN/m2 

kj (4) 6821 W/m2 6017 W/m2 

T (15) 1695 kNm 1507 kNm 

Phase current  3715 A pk 

Phase voltage  671 V pk 577 V pk 

Joule loss  111.4 kW 98.3 kW 

Lm (8) 2.55 mH  

Lslot (9) 8.1 mH 
9.7 mH*  

Ltot  10. 65 mH 
12.25 mH* 11.87 mH 

PF  0.80* 0.83 
* Tooth tip inductance included 

The magnetic loading is FEA evaluated at no load, and 
the model is very accurate in this case. The electric loading 
is set to be equal purposely, as also the Joule loss (specific 
and total) should be. The number of turns in series per 
phase has been chosen to have a phase voltage of 577 V 
peak at rated current, for both machines. 

The discrepancy between FEA and model evaluated 

losses in Table II and III is related to the effect of 
curvature, more evident in design 2: in fact, the adopted 
linear model underestimates the cross section of slots, and 
the error is more evident with longer teeth. Anyway, the 
model approximation is conservative in this case. 

An important difference between the model and FEA is 
the tooth tip inductance term, that is not included in the 
expression used for slot inductance evaluation (9). The 
tooth tip term can be calculated accurately, and in fact it is 
added to the model calculated inductance values of Tables 
II and III, giving out the “starred” inductance value of the 
two tables. The tooth tip inductance is not included in (9) 
because this would have required the definition of a lot of 
additional parameters, since the tooth tip per-unit shape can 
vary a lot from case to case.However, the minimum 
inductance pole pitch condition (10) and (13) is not 
affected by the neglected inductance term, whose only 
effect is to increase the total inductance according to the 
tooth tip shape and then lower the power factor slightly 
with respect to the calculated one. 

B. Effect of core saturation 
The main difference between FEA and the model is the 

underestimate of the shear stress and then the torque. This 
difference is generated by core saturation, not accounted 
for in the model. As said in the first part of the paper, the 
design parameter Bfe is the one that determines the yoke 
and tooth dimensions, referring to the willed core 
exploitation, evaluated at no load. Bfe set to 1.5 T in the 
example designs. This means that when the machine is 
loaded the stator core will actually work at higher values of 
local flux density, due to the armature flux, in particular for 
those machines having a high armature flux indicated by a 
low power factor. 

 
(no load)  (Iq = 4278 A pk) 

Figure 9.  Field density disctribution of design2 at no load and rated load 
Flux density scale between 0 and 2.09 T. 

In Figs. 9 and 10 the flux density maps of the two 
designs are reported, showing both no load and rated load 
conditions. In design 1, the peak flux density at no load is 
1.5 T (yoke and tooth) and 2.05 T (yoke) and 1.70 T (tooth) 
at load. Design 2: 1.55 T at no load (yoke and tooth); 1.65 
(yoke) and 1.75(tooth) at load. 



 

 
 

 
(no load) 

 
(rated load, Iq = 3715 A pk) 

Figure 10.  Field density disctribution of design1 at no load and rated load. 
Flux density scale between 0 and 2.09 T. 

 
Figure 11.  Machine torque according to the linear model and the FEA, as 
a function of the machine current, for the two designs, to put in evidence 

the effect of core aturation. 

Torque saturation as a function of electric loading is 
FEA evaluated and reported in Fig. 10, for the two 
machines, for putting in evidence once more the accuracy 
of the model in linearity, and to quantify the effect of 
having disregarded saturation. Torque saturation is 
somehow expected by machine designers and it is limited 
although significant in both designs, at the calculated 
electric loading. The plots in Fig. 11 have different Ampere 
scales due to the different numbers of turns of the two 
machines. One possible countermeasure against the torque 
overestimate due to saturation, with no modification of the 
proposed design approach, is to choose a lower Bfe (e.g. 1.4 
T), in particular when the machine inductance is such as the 

armature flux is not negligible. Also the model estimated 
voltage is higher than the FEA calculated one, both in 
Table II and Table III, still due to core saturation. 

VIII. CONCLUSION 
The design of surface mounted permanent magnet 

motors with high number of poles is approached by means 
of a per unit linear model. Design examples are provided 
and FEA validated for the case of a large size, direct drive 
wind generator. The concentrate winding design, as 
expected, has a lower power factor, and the choice of the 
slot/pole combination might have a very negative impact on 
this aspect. A low power factor also means a large armature 
flux at load, and then torque saturation due to core 
saturation. The distributed winding design has longer teeth, 
for having the same Joule loss, due to the longer end 
connections. Core saturation at load is lower but still 
evident also in this case. Iron loss are not significant for the 
chosen application but could enter the game in case of 
higher speed ratings. Single layer concentrated windings 
are considered, only: double layer versions could give, in 
general, a better performance. 
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