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Output-based incentive regulation: benchmarking
with quality of supply in electricity distribution

Carlo Cambini, Elena Fumagalli, Annalisa Croce

Abstract—Incentive regulation is moving towards new schemes
where standard efficiency mechanisms are combined with output-
based incentives (related to quality of supply, sustainability
and innovation). Assessing performance of regulated utilities
requires models capable to account for these different regulatory
objectives. Benchmarking analysis has been in use for a longtime;
however, whether these models should incorporate even quality
as an additional regulated output is still a matter of debate.

In this paper we study how benchmarking DEA models can
be designed to correctly accommodate all regulated variables,
including continuity of supply. To this end, we discuss different
models to measure technical efficiency, using a comprehensive
and balanced panel for 115 electricity distribution Zones,that
belong to the largest Italian utility. Our results show that, for
our data set, quality significantly affects efficiency scores . We
thus claim that the effect of additional regulated outputs should
always be tested in benchmarking models.

Index Terms—DEA, electricity distribution, incentive regula-
tion, quality of supply.

I. I NTRODUCTION

Incentive regulation is moving towards new schemes where
standard efficiency mechanisms are combined with additional
output measures that focus, more traditionally, on qualityof
supply but also, more recently, on sustainability and innovation
[1], [2]. Both Italy and the UK (through the so called RIIO
model) are moving in this direction [3], [4]. In this context,
assessing performance of regulated utilities requires models
capable to account for these different (in part also conflicting)
regulatory objectives [5].

Benchmarking analysis has been in use for a long time and
largely applied to electricity distribution [6]. From a survey
of the literature two aspects emerge that are relevant for this
work. First, a consensus does not exists on the choice of
input and output variables to be included in the benchmarking
models [7]. This can be attributed to the different availability

C. Cambini is with the Dep. of Management and Production Engineering,
Politecnico di Torino, Torino, Italy and with Florence School of Regulation,
Communication and Media, Firenze, Italy (e-mail: carlo.cambini@polito.it;
carlo.cambini@eui.eu).

E. Fumagalli is with the Dep. of Management, Economics and
Industrial Engineering, Politecnico di Milano, Milano, Italy (e-mail:
elena.fumagalli@polimi.it).

A. Croce is with the Dep. of Management, Economics and Indus-
trial Engineering, Politecnico di Milano, Milano, Italy (e-mail: annal-
isa.croce@polimi.it).

Technical and financial support from the Italian RegulatoryAuthority for
Electricity and Gas is kindly acknowledged. The opinions expressed in this
paper are the personal opinions of the authors. They do not necessarily
represent the official position of the Italian Regulatory Authority (nor of Enel
Distribuzione) and do not commit the Authority (nor Enel Distribuzione) to
any course of action in the future.

of data but also to the different objectives of the studies.1

Second, whether it is appropriate to include quality measures
in benchmarking models is still a matter of investigation. A
couple of recent studies find a clear trade-off between quality
and technical efficiency (companies with higher cost structures
present higher levels of quality) [9], [10]; on the contrary,
the introduction of quality does not seem to produce any
noticeable effect on the average technical efficiency scores
estimated in [11], [12].

In this paper we study how Data Envelopment Analysis
(DEA) models can be designed to correctly represent the
electricity distribution activity and, using continuity of supply
as an example, if and how they can accommodate additional
regulated outputs, while still delivering meaningful and useful
results. More specifically, on the basis of our knowledge of
the distribution sector, we discuss the best choice of input-
output variables to measure technical efficiency in a cost-
only model and in a cost-and-quality model. Our dataset
is a comprehensive and balanced panel for 115 different
distribution Zones, that belong to the largest Italian distribution
utility, and spans a period of six years (from 2004 to 2009). In
addition, the Italian Regulatory Authority for Electricity and
Gas (Autorità per l’energia elettrica e il gas- AEEG) has
provided several detailed measures of quality of supply.

Our results show that quality has a significant effect upon
zonal efficiency scores (we also observe that specific structural
variables, namely, territorial density and energy consumption
per customer, characterise the most efficient Zones). We thus
claim that the effect of additional regulated outputs should
always be tested in benchmarking models. This is relevant
when assessing incentive mechanisms that are designed to
drive benefits for consumers and, at the same time, to provide
companies with incentives to invest in quality and, more
generally, in network innovation or sustainability.

The paper is structured as follows. In Section II we describe
the electricity distribution sector in Italy and in SectionIII we
present our dataset. In Section IV we describe the methodol-
ogy for the analysis and discuss our choice for the input and
output variables. In Section V we report the main results of
the study. Section VI concludes.

II. ELECTRICITY DISTRIBUTION IN ITALY

In Italy in 2009 there were over 150 Distribution System
Operators (DSO), that delivered a total volume of 279 TWh.

1Benchmarking has been (and still is) largely employed for regulatory
purposes, either directly to set parameters in tariff schemes or, indirectly,
to evaluate company performances at tariff reviews [8].
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The largest company,Enel Distribuzione, was responsible
for 86.2% of the distributed energy, followed byA2A Reti
Elettriche (4.1%) andAcea Distribuzione(3.6%). The other
operators held marginal quotas (equal to or less than 1% in
volumes). Enel was present over the entire national territory
and it was organized in four Macro Areas, eleven Territorial
Units and 115 Zones (each Territorial Unit has its local
managers and coordination is ensured at the level of Macro
Areas).

DSOs are regulated by AEEG: since the year 2000, an
incentive-based mechanism applies (with a four-year reg-
ulatory period), with the objective to stimulate productive
efficiency. As better explained below, the price-cap formula
is modified by an additional parameter (Q) linked to quality
of supply. Starting from the second regulatory period (in 2004)
a hybrid mechanisms applies where capital expenditures are
subject to a fixed Rate of Return (RoR), while operational
expenditures are required to decrease with an X efficiency
factor (this decision was taken by the government and not
by AEEG - Law n. 290/2003).2 More recently, AEEG added
an input-based element to the regulatory framework. Specific
investments (for instance, certain new substations, but also
selected smart grid demonstration projects) benefit from an
increase in Weighted Average Capital Cost (WACC) for period
of 8 to 12 years (in the third tariff period, a 2% extra WACC
in addition to the ordinary return).

As far as quality is concerned, in the year 2000 AEEG intro-
duced a reward and penalty scheme that linked the distribution
tariff to an output measure of continuity of supply: the average
number of minutes lost per customer for long (longer than
3 minutes), unplanned interruptions - SAIDI indicator.3 This
indicator is measured separately in more than 300 territorial
districts, covering the entire national territory: each district
includes municipalities that are homogeneous in population
density, that are located in the same administrative province
and whose network is managed by the same distribution
company. Economic incentives are calculated per district on
an annual basis, as a function of the difference between a
target-SAIDI and the actual-SAIDI (performance standardsare
defined separately for each territorial district). The distribution
tariff is unique across the entire national territory and the price
pt (in year t) changes according to the formula:
pt = pt−1(1 +RPI −X +Q)

where RPI is the retail price index,X is the efficiency
factor andQ is the quality adjustment. Yearly values of the
parameterQ are calculated,ex post, on the basis of companies’

2According to the Italian regulatory framework, investmentdecisions on
electricity distribution networks are taken by DSOs. The regulator intervenes
only ex-postchecking the actual deployment of the investments and the cor-
respondence between investments and reported costs. Each year the regulator
updates the distribution tariff to take into account the actual changes in
invested capital [13].

3Continuity of supply is described by the number and durationof supply
interruptions. For a given distribution area and time period, the average
duration of long interruptions per consumer (or customer minutes lost)
is measured by SAIDI (System Average Interruption DurationIndex), the
average number of long interruptions per customer by SAIFI (System Average
Interruption Frequency Index), and the average number of short (shorter than
3 minutes and longer than 1 second) interruptions per customer by MAIFI
(Momentary Average Interruption Frequency Index).

performances and can assume a negative or a positive sign.
WhenQ is positive (negative), it means that, at a national level,
quality has improved more (less) than required and consumers
are called to contribute (consumers pay a reduced tariff).

Beginning with the second regulatory period (in 2004),
target-SAIDI are calculated using a formula that assumes a
convergence in performance of all districts with equal popula-
tion density to the same quality level in the medium term (12
years).4 This approach enables the regulator to expect greater
improvements from district that are under-performing with
respect to the national standards and vice versa. Moreover,the
results of a customer survey are used to define penalties and
rewards: two different valuations of quality are considered, to
reflect the different Willingness To Pay (WTP) of residential
and non-residential customers. Since the third period (2008-
11), the regulator included in the scheme a further quality di-
mension: the frequency of interruption for both short and long
interruptions - again, with an objective to reach convergence
in performance over a 12-year period [14].

In summary, the constraint imposed by the law and the vast
number and heterogeneity of distribution companies have re-
sulted in a regulatory framework composed by several “build-
ing blocks” (a fixed RoR on capital, an efficiency factor for
operational expenditures, input-based incentives for specific
investments and output-based regulation for quality of supply).
Concerned about cost inefficiencies that might result from
this approach (for instance, infrastructural interventions may
help improving the reliability and the quality of the services
provided), the Italian regulator is keen on considering a more
unified approach, based to a greater extent on an output-
based regulation [13], [15]. Hence, within both the presentand
future regulatory frameworks (the fourth tariff period began in
January 2012), it would be desirable to perform quantitive
analyses to verify the overall efficiency of the regulatory
scheme. This clearly motivates the study described in this
paper.

III. D ATASET AND DESCRIPTIVE STATISTICS

Our dataset was built with the support of the Italian reg-
ulatory authority, by means of a dedicated data collection.
As mentioned, it is a comprehensive and balanced panel for
115 Zones, that belongs to Enel Distribuzione, tracked from
2004 to 2009 (one and a half regulatory period). For each
Zone the dataset comprises a wide set of information, ranging
from technical variables and accounting data to quality related
variables.

More specifically, as for technical variables, the dataset
includes the number of Low Voltage (LV) customers, the
energy consumed by LV residential and non-residential users
and by Medium Voltage (MV) consumers, the area served
(in km2), the transformer capacity for primary and secondary
substations (in MVA) and the network length (inkm, for MV
and LV, cable and overhead lines). Accounting data are given
in terms of annual revenues, asset values (detailed for primary
and secondary substations, MV and LV feeders and for points

4This is strictly related to the existence of a unique, national distribution
tariff.
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Figure 1. Continuity indicators (MV)

of connection) and operating costs (including labour, services,
materials and other costs).

AEEG provided data on customer minutes lost for long
interruptions (SAIDI) as well as on the frequency of long and
short interruptions (SAIFI and MAIFI, respectively); more-
over, a key novelty of our dataset is the detailed information
on the amounts annually received in rewards (paid in penal-
ties) for out-performing (under-performing) with respectto
the regulatory standards. Note that continuity of supply data
(indicators and incentives) are given per territorial district:
these are smaller geographical areas than the Zones and are
homogeneous in customer density - a parameter that is strictly
correlated with continuity of supply (higher continuity isto be
expected in more dense areas). However, to ensure coherence
with the other variables in the dataset, zonal data were com-
puted by aggregating district data. This means that, inevitably,
the correlation between density and continuity became less
precise.

A key aspect of Enel’s (and therefore Italian) continuity data
is illustrated in Figure 1. Even if the SAIDI and SAIFI+MAIFI
values steadily improved over the observed period, it is clear
that the average number of interruptions (both long and short)
as well as the average number of customer minutes lost are,
on average, more than double in the South of Italy, compared
to the North and Center.5

This geographical classification (North, Center and South)
is adopted also in the rest of the paper. As a matter of fact, it
has been in use for regulatory purposes since the year 2000.6

IV. M ETHODOLOGY AND CHOICE OF VARIABLES

In this paper we estimate a multi-input, multi-output dis-
tance function, using the DEA methodology. DEA involves
the use of linear programming methods to construct, non-
parametrically, a frontier surface over the data. Efficiency
measures are computed relative to this surface: the units for
which the efficiency score is equal to 1 are considered efficient,

5Data refer to average zonal values of SAIDI, SAIFI and MAIFI for MV
interruptions (that provide the main contribution to the indicators) and exclude
events of Force Majeure as well as events on the High Voltage network.

6AEEG refers to these three areas of Italy with the termCircoscrizioni.

while the remaining units have a score smaller than 1, that
represents their distance from the efficiency frontier.

More specifically, assuming an input-oriented approach and
Constant Returns to Scale (CRS), the efficiency of a given unit
i, which usesm inputs to produces outputs is calculated as:
min θi
s.t.
yri ≤

∑n

i=1
λiyri r = 1, 2, ...s

θxpi ≥
∑n

i=1
λixpi p = 1, 2, ...m

λi ≥ 0 i = 1, 2, ...n
wherexpi is thepth input andyri is therth output for uniti

andλi is annx1 vector of constants.7 The technical efficiency
of unit i is θi and determines the amount by which observed
inputs can be proportionally reduced, while still producing the
given output level [16].

A few remarks on the methodology are in order. First,
in electricity distribution it is fair to assume that demandis
mostly beyond the control of the firm, hence the choice, in line
with the literature, to use an input-oriented model. Second, our
results show an average scale efficiency always above 93%,
this motivating the choice of a CRS assumption. Third, DEA
methods do not make a distinction between unobserved factors
and inefficiency: to partially compensate for this shortcoming,
we resorted to a bootstrap approach.8

Finally, “choosing the input–output variables is an im-
portant step in DEA” (Giannakis et al., 2005, p. 2263).
Similar statements are found in almost every benchmarking
work. Nonetheless, an exhaustive discussion over more or less
appropriate choices of variables for the electricity distribution
activity is rarely found in the literature. In this Section,we
explain the reasons behind our choice of variables, also in
cases where benchmarking is extended to additional regulated
outputs (such as quality in the Italian example). A discussion
of this sort appears extremely relevant in view of a more
extended use of output-based regulation, as in the regulator’s
intentions.

For further details on the DEA methodology, see [18].

A. Cost-only models

Drawing on previous work as well as on our knowledge of
the distribution activity, we built a first model (Econ) with
energy consumption (energyit) and number of LV consumers
(LV consit) as the outputs for Zonei in yeart.9 As mentioned,
the energy requested by final users is not under the control
of a DSO, however the network is built to have an adequate
capacity to transport it; similarly, all requests for connection

7The Variable Returns to Scale (VRS) model differs from the CRS model
for an additional constraint:

∑
n

i=1
= 1. This convexity constraint ensures

that the firm is compared against other firms with similar size. The ratio
between CRS efficiency results (ECRS ) and VRS results (EV RS ) provide
information about Scale Efficiency (SE), that is:SE = ECRS/EV RS .

8The process involves using the original sample values to construct an
empirical distribution of the variable of interest by repeated sampling of the
original data series, application of the estimation process to the sampled data
and then calculating relevant statistics, e.g. means and standard deviations
from these results. The bootstrap has been advocated as a wayof ‘analyzing
the sensitivity of measured efficiency scores to the sampling variation’ [17].

9The option to separate residential and non-residential consumption was
considered but it did not alter the results in any significantway.
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Table I
OUTPUT VARIABLES BY GEOGRAPHICAL AREA

Geo. area res_energyit nonres_energyit energyit

(GWh) (GWh) (GWh)

North 477.4 1794.4 2271.7

Center 384.8 1066.8 1451.6

South 487.3 880.9 1368.2

Total 461.8 1301.0 1762.7

perc_resit LV consit areait

% (n°) (km2)

North 21.8 276945 2215.4

Center 27.5 223791 2340.9

South 35.7 272102 2853.6

Total 28.2 264041 2480.2

must be fulfilled by the distributor (within certain technical
limits).

Our choice of inputs included capital and non-capital inputs
(operating costs). As for the capital input, we preferred the
total gross value of the assets (substations, feeders and points
of connection) over capital expenditures, to avoid penalizing
a Zone for making recent investments (capitalit) [18]. As
for non-capital input, we included labour (the main voice),
services, materials and other operating costs - and excluded
depreciation and taxes (op_costsit).

Considering outputs first, we report in Table I the aver-
age zonal values by geographical area. Zones in the Center
of Italy have, on average, a lower, annual residential con-
sumption (res_energyit) relative to Zones in the North and
South (384 GWh against 477 and 487 GWh, respectively);
non-residential LV consumption plus MV consumption (in
brief, non-residential consumption,nonres_energyit) is al-
most twice as high in the North (1794 GWh) with respect
to the Center (1067 GWh) and the South (881 GWh).10 As
a result, total consumption (energyit) is, on average, 2271
GWh in the North, 1452 GWh in the Center and 1368 GWh
in the South; clearly, the percentage of residential consumption
with respect to total consumption is higher in the South
(perc_resit). The average number of LV consumers per Zone
(LV consit) is around 277,000 in the North, 272,000 in the
South, while it amounts to a lower value (around 224,000 on
average) in the Center.

Average zonal values of input variables are reported in Table
II: both capital and non-capital inputs are higher in the South
relative to the North and Center: the zonal average ofcapitalit
is around 297 millionC in the South, 251 millionC in the
North and 227 millionC in the Center; average values of
op_costsit are around 19 millionC in the South, 17 million
C in the North and 15 millionC in the Center.11

In addition to these descriptive statistics, we found it
extremely informative to look at output-input ratios. This

10Consumption grows over the observed period, except non-residential
consumption in 2009 as a consequence of the economic crisis.

11In line with the regulatory framework, operating costs havesteadily
decreased over the observed period ranging from (a company average of)
19.56 million C per Zone in 2004 to 16 millionC in 2008; in 2009, operating
costs increased to 18.55 millionC.

Table II
INPUT VARIABLES BY GEOGRAPHICAL AREA

Geo. area capitalit op_costit emplit

(mln C) (mln C) (n°)

North 251.1 17.1 185.9

Center 227.5 14.9 176.4

South 297.5 18.6 210.7

Total 263.5 17.2 193.2

nlengthit t_cap_pit t_cap_sit
(km) (MVA) (MVA)

North 8599.1 1014.4 706.8

Center 8803.6 701.0 517.9

South 10547.0 781.5 577.9

Total 9370.1 862.0 619.2

Table III
INPUT-OUTPUT RATIOS INEcon MODEL

Geo. area capitalit/ capitalit/

LV consit energyit

(C) (C/MWh)

North 980.5 128.8

Center 1072.5 176.7

South 1172.3 242.6

Total 1071.4 181.3

op_costit op_costit
LV consit energyit

(C) (C/MWh)

North 63.6 8.5

Center 67.7 11.2

South 70.3 14.7

Total 67.0 11.4

preliminary analysis produced also two hypotheses on the
expected results from the benchmarking excercise.

As illustrated in Table III, the ratios of capital and non-
capital inputs to the number of LV consumers show similar
values in the South and in the Center, and they are only a
10% higher than the amount registered in the North. In turn,
the differences between the ratios of capital and non-capital
inputs over energy consumption are much larger. The South of
Italy presents average values of capital/MWh and of operating
costs/MWh that are around 1.8 times greater than in the North
and around 1.3 times greater than in the Center.

Assuming a rational conduct on the part of Enel Dis-
tribuzione, we deduct that the costs of distribution are strongly
related to the number of customers served. We thus expect that
Zones where the single customer consumes relatively more
energy will make a “better” use of their inputs and, thus, will
be more efficient. In other words, these statistics suggest that
in the North of the country, where the percentage of residential
consumption is lower, Zones will present a higher efficiency
relative to other parts of Italy.

Another aspect that is usually associated to distribution costs
is territorial density. This is true also for Enel Distribuzione.
Figure 2 shows capital and non capital inputs per customers
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Figure 2. Costs and territorial density

vs. the number of customers perkm2. To be precise, those
represented in Figure 2 are average zonal values over the
observed period; moreover, as density presents a large standard
deviation and several outliers, we limited the graph to the 95%
percentiles of the observed data.12 The effect of territorial
density is as expected: both capital and non-capital costs
decrease with the number ofubt/km2. We thus anticipate
a second result from the benchmarking analysis, i.e. to find
higher technical efficiency in more densely populated Zones.

Given the amplitude of our dataset, we considered also
building an alternative benchmarking model (Tech), where
input and output variables were expressed in terms of physical
units. In analogy with theEcon model, capital input was
measured by transformer capacity in MVA (t_capit) and
network length inkm (nlenghit) while operating costs were
approximated by the number of employees (emplit). As for
the outputs, we considered adding to the energy consumption
and the number of customers also the area served - another
variable that can be considered exogenous for a DSO (areait).

Two of the outputs (energyit andLV consit) were already
commented upon. As reported in Table I, the extension of the
area served, constant over time is, on average, equal to 2853
km2 in the South, 2340km2 in the Center and 2215km2 in
the North.

As for the inputs, Table II shows that the average zonal num-
ber of employees (emplit) is higher in the South (210 workers
on average) relative to the North and the Center (around 180
workers).13 The average network length (nlenghit) per Zone
is around 10,500km in the South, and only around 8600km
in the North and 8800km Center.14 The average capacity of
primary substations(t_cap_pit) is around 1014 MVA in the
North, 701 MVA in the Center and 781 MVA in the South.
The average capacity of secondary substations (t_cap_sit) is

12The dataset average density is 186ubt/km2 , but a few (5%) Zones
present densities of over 400ubt/km2 while others of less than 37ubt/km2

(5%).
13The number of employees sensibly decreased over the observed period,

from 231 in 2004 to 167 in 2009 (on average, more than 60 workers per
Zone).

14Separate values for MV feeder and LV feeders show the same geograph-
ical difference.

equal to 707 MVA, 518 MVA and 578 MVA, respectively for
the North, Center and South.15

As we did for theEcon model, we looked also at input-
output ratios: a DEA model finds the units of observation that
are efficient with respect to a combination of these ratios. As
for the number of employees, we encountered no particular
problems: it seemed reasonable to define “efficient” a distribu-
tion Zone that minimizes the number of workers per consumer,
or per energy delivered, or even perkm2 of area served.
Similarly, as for network length, it sounded reasonable to label
as more efficient a Zone with lesskm of feeders per customer,
or perkm2 of area served; however, it was more difficult to
argue that a distribution Zone is more efficient than another
because it is characterized by lesskm of feeders per MWh
delivered. The interpretation became even more difficult when
dealing with transformer capacities. While a Zone with an
adequate installed transformation capacity per MWh delivered
is indeed efficient, there is no practical meaning in labeling
as efficient a Zone that minimizes its transformer capacity per
km2 or per customer (remember that we are including in the
model only the number of LV customers).

In summary, when using technical input variables it seemed
inevitable to incur in input-output combinations that had no
practical significance (for instance network length/MWh or
transformer capacity per LV customer). We thus concluded
that a “technical” DEA model would have always led to a
combination of meaningful and unreasonable results when
considered in the light of the activity of a DSO.16 This is
why the so-calledTech model will not be commented further
in this paper.

B. Cost-and-quality models

As for the inclusion of quality of service as an input variable
of the DEA model, we considered three main options:

• to use the total number of interruptions (or the total
duration) expressed, as in [11], by the product of the
number of LV consumers times SAIFI (or SAIDI);

• to substituteop_costsit with the sum of op_costsit
plus penalties paid and minus rewards received
(op_costsRPit): as a consequence, Zones that receive
rewards (present higher levels of quality than requested
by the regulator) become more efficient in terms of non-
capital inputs;

• to add toop_costsit the value of the Energy Not Supplied
(ENS) obtaining a new variable (op_costsENSit); in
this way Zones with higher levels of quality are, again,
relatively more cost efficient.

In particular, to derive the value of ENS we considered:

• the values of SAIDI per Zone and year;
• the WTP parameters indicated by the Italian regulatory

authority: C1 for residential users andC2 for non-

15Over the observed period, primary substation capacity grewmore sig-
nificantly in the North (around 2%) relative to the Center (1.2%) and the
South (around 0.9%); as for secondary substations, capacity grew in similar
proportions in all geographic areas - around 2%.

16Results from DEA confirm this hypothesis and are available from the
authors upon request.
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residential ones (respectively 18 and 36 cC/min/kW)
[19];

• the residential and non-residential energy consumption
per Zone and year (inMWh);

and then calculated the product:
SAIDI · (C1 ·

res_energy
8.76

+ C2 ·
nonres_energy

8.76
).

As before, in order to choose among the different options to
describe quality of service we looked at descriptive statistics
as well as at input-output ratios.

As for the statistics, the variablesNINT = SAIFI ·

LV cons and DINT = SAIDI · LV cons maintain the
regional differences illustrated in Figure 1. The average zonal
values of op_costsRPit (Table IV) are always lower than
op_costsit, indicating that, in general, more rewards were re-
ceived than penalties paid; as expected, the difference between
the two variables is larger in the North than in the Center or
South. On the contrary,op_costsENSit are obviously always
greater thanop_costsit and, on average over the observed
period, ENS added 3.3 millionC in the North, 2.5 million
C in the Center and 3.6 millionC in the South.

When we considered the ratios betweenop_costsRPit

and the number of consumer, we observed that regulatory
incentives slightly amplify the distances, among geographical
areas, described above forop_costsit. In particular, incentives
cut operating costs, on average over the observed period, by
6 C per customer in the North, by 3.1C per customer in the
Center and only by 2C per customer in the South. Conversely,
the ratios ofop_costsRPit over energy consumption do not
alter the geographical distances found above: larger rewards
obtained in the North are distributed over greater amounts of
distributed energy.

As for the ratios ofop_costsENSit over the number of
customers, we found that, on average over the observed period,
ENS adds 13C per customer in the North, 12.7C per
consumer in the South and 11C per customer in the Center
(it slightly decreases the geographical distances, especially
between North and South). On the contrary, ENS adds on
average 1.6C/MWh in the North, 1.7C/MWh in the Center
and 2.6 C/MWh in the South (it amplifies the distances,
especially between Center and South).

Finally, we observed the following. When we represent
quality using NINT or DINT we are adding an input
variable to the cost-only model: for the properties of DEA, we
expect to find equal or higher efficiency scores for all observed
units. Measuring the difference in efficiency scores between
the cost-only and the cost-and-quality model we can thus iden-
tify Zones that exhibit a trade-off between costs and quality
(are less efficient in terms of costs but provide better levels of
quality). Nonetheless, this model, while producing in general
reliable results (Zones with low values ofDINT/LV cons
receive a high score), attributes a high efficiency score also
to Zones with low values ofDINT/MWh. These are often
Zones with good levels of SAIDI but, at the same time, we
could not completely exclude to obtain some approximated
results. For this reason, we decided to drop this option.

By choosing the second option,op_costsRPit, we maintain
the same number of variables in both models. However, adding
the regulatory incentives amplifies the geographical distances:

Table IV
OPERATING COSTS INCLUDING QUALITY AND INPUT-OUTPUT RATIOS

Geo. areas op_costRPit op_costENSit op_costRPit/

LV consit

(mln C) (mln C) (C)

North 15.5 20.3 57.6

Center 14.2 17.4 64.5

South 18.1 22.1 68.3

Total 16.2 20.4 63.0

op_costRPit/ op_costENSit/ op_costENSit/

energyit LV consit energyit

(C/MWh) (C) (C/MWh)

North 7.7 76.6 10.1

Center 10.7 78.6 12.9

South 14.3 83.0 17.2

Total 10.8 79.4 13.3

we thus anticipated that, in numerous cases, efficiency scores
in the cost-and-quality model would be lower than in the
costs-only model. Moreover, with this representation we would
be able to find Zones that are penalized by the inclusion
of quality, while maintaining, as before, the possibility to
identify Zones with a higher score in the cost-and-quality
model. Finally, this option did not present the approximations
of the previous case; this derives from the fact that all inputs
are expressed in monetary terms (and we can always consider
efficient a Zone that minimizes its costs). Nevertheless, we
do not present here the results of this option either: effi-
ciency scores obtained with this cost-and-quality model do
not provide additional information with respect to what we
already know from continuity of supply regulation (rewards
and penalties are assigned on the basis of the regulatory
targets).17

Choosing, instead, the variableop_costsENSit, we in-
clude, in a single variable, the costs incurred by the DSO and
the costs sustained by customers for service quality; in other
words, we obtain a “social” cost representation of the non-
capital inputs (that is also independent from the regulatory tar-
gets).18 Moreover, although we can hardly predict the changes
in efficiency scores between the cost-only and the cost-and-
quality model (geographical distances are both decreased and
amplified when adding ENS to operational costs), we are
still in the position to identify Zones that present a trade-off
between costs and quality (in both directions). Finally, wecan
also observe the change (if any) in the efficiency rankis given
by the two models and identify Zones that are stably efficient
(or inefficient) in both representations.

V. RESULTS

In this Section we discuss the results of the two bench-
marking models estimated using the input and output variables
selected in Section IV (and summarized in Table V). More

17In terms of quality, this model partially compensate for heterogeneity in
service areas (remember that regulatory targets for quality are scaled according
to customer density per territorial district).

18This is in line with the choice made in [12].
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Table V
BENCHMARKING MODELS

Input Output

Model 1 capitalit (mln C) energyit (MWh)

Cost-only op_costsit (mln C) LV consit

Model 2 capitalit (mln C) energyit (MWh)

Cost-and-quality op_costENSit (mln C) LV consit

specifically, efficiency scores derive from an input-oriented,
CRS DEA model applied to 114 Zones belonging to Enel
Distribuzione and were computed, using the FEAR Software
Package, with respect to a different frontier for each of thesix
years of the observed period [20].19

A concise representation of the results is given in Table VI
where we report average scores by year and geographical ar-
eas, for Model 1 (cost-only) and Model 2 (cost-and-quality).20

As expected, on average, efficiency in the North of Italy is
higher than in the rest of the country (in both models) and the
geographical differences with respect to Zones in the Center
and in the South are always statistically significant (at 1%
confidence level). Zones in the South present the lowest values
in efficiency scores (the differences with the efficiency scores
in the Center are also negative and significant at 1% confidence
level). Moreover, the (small) increase in Enel’s average scores
over time (in both models) must be interpreted as a reduction
of the zonal differences over the observed period.

In Table VI we also report the difference (in percentage)
between the efficiency scores obtained in the cost-only model
and in the cost-and-quality model. This value is significantly
different from zero (at 1% confidence level) and equals to -
1.52% on average over time. In general, a negative (positive)
value of this difference indicates a larger variance in the results
for Model 2 (Model 1). Considering average differences for
the three geographical areas, it is also clear that the South
of Italy is the area where the inclusion of quality engenders
the largest change: the average difference over time is, in this
case, equal to -2.66% and significant at 1% confidence level.
We thus conclude that, for our dataset, the inclusion of quality
in the benchmarking model provides a more detailed picture
of Enel’s zonal efficiency.

This evidence is in line with the conclusions reached in [9]
(for a panel of 14 UK utilities observed over eight years) and
in [10] (for a cross-section of utilities from eight European
countries).21 On the contrary, our results differ from the
findings presented in [18] where the authors analyze a data set
which is quite similar to the one employed in this study (92
French distribution units, all belonging to the same distribution
company, observed over three years) but conclude that quality
has no significant effect upon their average efficiency scores.
Our results differ also from those derived in [12] (for a panel
of 131 Norwegian utilities observed over a period of four
years), where the authors estimate two models which are
quite similar to the ones we employ in this study (they use

19One Zone had to be dropped because of a major asset divestiture in 2006.
20Bootstrapped results are not discussed in this paper but areavailable from

the authors upon request.
21In [9] the authors apply a Stochastic Frontier Analysis (SFA) method.

Table VI
EFFICIENCY SCORES

Enel Model 1 Model 2 % diff. (2-1)

2004 0.77 0.73 -0.06

2005 0.75 0.74 -0.02

2006 0.79 0.78 -0.01

2007 0.80 0.78 -0.02

2008 0.79 0.80 0.01

2009 0.80 0.81 0.01

Average Enel 0.78 0.77 -0.02

Average North 0.83 0.82 -0.01

Average Center 0.77 0.76 -0.01

Average South 0.74 0.72 -0.03

total expenditures or total expenditures plus the cost of the
ENS as inputs); nevertheless, their work shows no systematic
differences between the results of the two models.

We now turn to consider, specifically, each Zone: as men-
tioned, we are interested in measuring changes in rank between
Models 1 and 2. When a Zone presents a higher rank in Model
2 (where efficiency is estimated relative to “social” costs)than
in Model 1, it means that it is rewarded by the inclusion of
quality and vice versa. On average over time, the inclusion
of quality allows 46 Zones to reach a higher rank, this result
suggesting that, in these Zones, higher costs are justified by
higher levels of quality. Conversely, 57 Zones are penalized
by the inclusion of quality (i.e. their rank in Model 2 is lower
than in Model 1), this suggesting that lower costs were attained
at the expenses of quality. In the remaining 11 cases, zonal
ranks are not influenced by the inclusion of quality; these are
typically extremely efficient or extremely inefficient Zones.
The overall rank correlation between Model 1 and 2 is 0.88.

Finally, in Table VII we characterize “efficient” and “non
efficient” Zones. A Zone is defined as “efficient” (“non-
efficient”) if the average value over time of its efficiency
scores (estimated through Model 1) is higher (lower) than the
median value of the sample. Our results show that efficient
Zones are described by one of the following: a low ratio
of capital inputs over energy consumptions, a low ratio of
non-capital inputs over energy consumption, a low ratio of
capital inputs over the number of consumers. In other words,
and according to our expectations, we find higher efficiency
in Zones where the average consumption per customer is
relatively large (orperc_resit is relatively low) and in Zones
where territorial density is higher; conversely, less efficient
Zones are characterized by a lower average consumption per
consumer and by a lower territorial density (differences are
significant at 1% confidence level).

VI. CONCLUSIONS

Incentive regulation in electricity distribution is soon ex-
pected to enlarge its scope, from a cost efficiency instrument
to one that includes objectives such as innovation and sustain-
ability; moreover, regulators are keen to structure incentives in
these directions as additional regulated outputs. Benchmarking
analysis has been in use for years to assess companies’ per-
formance; nonetheless, it is still unclear if and how additional
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Table VII
DESCRIPTIVES FOR EFFICIENT AND NON-EFFICIENTZONES

capitalit/ capitalit/ op_costit/

LV consit energyit LV consit

“non-eff.” 1216.25 225.31 74.16

“eff.” 927.41 139.02 63.25

op_costit/ energyit/ LV consit/

energyit LV consit areait

“non-eff.” 13.89 5.68 157.28

“eff.” 9.50 7.41 216.32

regulated outputs, such as quality (but then also sustainability
and innovation), are to be included in benchmarking models.

In this paper we studied how different choices of input
and output variables in a DEA model influence the results
of a benchmarking analysis and we argued that not all the
representations of a DSO activity implied by these choices
really capture the essence of an efficient DSO. In particular,
we observed that, when using energy delivered and number of
consumers as outputs, expressing inputs in monetary variables
has several advantages over the option to express them in
technical units. Similarly, we deemed more correct to express
also quality in monetary terms.

The results of the analysis show that, for our dataset,
higher efficiency in electricity distribution is found in areas
characterized by high territorial density (confirming a well
known result) and by high energy consumption per customer
(a less explored evidence). Moreover, we found that average
efficiency scores are affected by the inclusion of quality; also
efficiency scores and ranks of individual zones indicate, for
several observations, a trade-off between cost efficiency and
quality.

In light of the existing literature we are not in the position
to argue for the inclusion of quality in benchmarking models
per sebut, as an ever increasing number of European utilities
collect continuity data, we can certainly recommend that the
effect of quality should always be tested on the specific data
set in use.

Finally, having designed a robust DEA model for our data
set, we believe that further work should focus on refining
the analysis, to address some of the limitations of the DEA
approach. On such a stronger quantitative basis, we deem it
interesting to address the new regulatory challenges mentioned
above and formulate policy indication for the future.
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