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Abstract

A method of solution of the inverse problem in heat conduction is presented. The method,
based on an adjoint optimization procedure, is applied to the design of the pattern of circular
cooling passages inside coated turbine blades. The general case of a non-homogeneous solid
material is considered. The numerical solution of both the temperature field and of the adjoint
problem is based on a finite element method. The mathematical method is explained and the
procedure is validated against theoretical and experimental data available in open literature.

Keywords. Inverse problem, heat conduction, adjoint methods.

1 Introduction

A wide range of engineering problems in thermal analysis and design has been formulated as
inverse heat transfer problems [1]. The inverse problem involves the estimation of the cause by
utilizing the knowledge of the effect. Several studies focus on the relation cause-effect between
heat flux and temperature. A classical example of this class of inverse problems deals with the
estimation of an unknown boundary heat flux, by using temperature measurements taken below
the boundary surface. Other studies estimate the steady or unsteady inlet temperature profile, or
cover aero-thermal effects by estimating steady/transient wall heat flux in laminar flow, or deduce
inlet velocity estimation based on the temperature measurements. For conciseness, the interested
reader is addressed to [1, 2, 3, 4, 5, 6] and references therein. In fact, the abovementioned problems
are out of the scope of the present work, which belongs to the class of the design problems.
The design problem can be formulated as an inverse problem in which some conditions are given
at the boundary, while the shape of the body contour that realizes the imposed thermal features is
unknown. Applications of this approach to heat conduction design problems have been proposed
and successfully applied to turbine blade cooling in the last three decades. The heat conduction
inverse problem of design the geometry of the internal cooling passages of a turbine blade has been
solved for circular [8], super-elliptic [10], generic geometries of the cooling passages in multi-holed
turbine blade [7, 9]. The numerical procedures are based mainly on a direct solver driven by an
optimization method. In one of the earliest applications [8] a Boundary Element Method (BEM)
for heat conduction analysis and a gradient method, the Steepest Descent Method (SDM), have
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been used to converge to the inverse problem solution. After that, the exponential growth of
computational resources has allowed for an extensive use of more flexible and CPU consuming
numerical approaches. Solvers based on FEM or FVM in two and three dimensions have been
used to evaluate the thermal field, while, in the modelisation of the physics, the convection and
radiation effects have been included. Then the research evolved to conjugate heat transfer analyses
by including the mutual interactions with the fluid flow and by modelling film cooling effects [19].
From the optimization counterpart, the improvements of gradient based methods have lead to the
various formulations by adjoint methods for 2D/3D problems [9, 17, 18], while the use of genetic
algorithms has been also introduced for the solution of the single objective and multi-objective
optimization problems.
A new impulse to thermal design in aerospace propulsion is related to recent efforts of design-
ing aeroengines which meet the Vision 2020 requirements on gasturbine emissions and efficiency
from Advisory Council for Aeronautics Research in Europe (ACARE). A straight way to enhance
efficiency is obtained by increasing the maximum cycle temperature, i.e. the temperature into
the combustion chamber. Moreover, other investigations introduce the Interstage Turbine Burner
(ITB) concept to modify the thermodynamic cycle during flight, going towards variables cycle
aeroengines. In both approaches a closer control of the temperatures is required and the thermal
design of the some engine components, as the burners and the turbine blades, becomes more ag-
gressive. In this scenario, automated inverse problem solvers can help the designer to make choices
based on a wider investigation of the design variables space.
In the present work an approach to inverse problem solution is proposed. The method is based on
the adjoint optimization and follows the footsteps of a technique of aerodynamic design [11],[12].
The mathematical treatment of the adjoint problem differs from previous adjoint approaches (e.g.
see [9, 18]). In fact, the proposed formulation does not need a sensitivity problem to be solved
and it includes a penalization for imposing geometrical constraints. To allow for the treatment of
coated bladings, the heat conduction equation in a non-homogeneous material has been considered.
As first step, circular cooling passages are treated and a way to impose non-intersecting contour
constraints is developed. A FEM approach has been used both to compute the thermal field inside
the turbine blade and to solve for the adjoint problem. The plan of the paper is as follows: in
the next section the mathematical model and the inverse problem solution are presented; then
the adjoint problem is derived and the numerical technique is explained. Finally the geometric
parametrization of the blade cooling passages is derived and the procedure is validate against
an analytical solution and against a test-case based on experimental data available in the open
literature.
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Figure 1: Domain geometry and nomenclature.
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2 Governing Equations and Inverse Problem Formulation

Let consider the heat conduction equation in a non-homogeneous material and Robin boundary
conditions. This set of equations may be written in a compact integral conservative form as:

∇ · (k∇T ) = 0 on Ω (1a)

k
∂T

∂n
= h(Tg − T ) on Γ = Γb (1b)

k
∂T

∂n
= h(T − Tcj) on Γc =

N∪
j=1

Γj (1c)

where T is temperature, Tg, Tcj are gas and coolant flows temperatures, h is the heat transfer
coefficient and n is outward normal vector. For the thermal conductivity, we pose k = k(x) as a
function of position vector x. In fact, in turbine blades with ceramic coating one can distinguish at
least two regions with very different k−values. A sketch of a generic domain is given in Figure 1.
Γb is the external surface of the turbine blade, Γa is the interfacial surface between inner core
blade (light grey) and coating material (dark grey), and Γc is the union of the Γj surfaces of the
N inner cooling passages. In the classical thermal inverse problem the boundary shape of the
cooling passages Γj is regarded as unknown while some field variables are known at the external
boundary Γb.
In the literature, whatever the method of solution used, various choices has been adopted in
formulating the the inverse problem. In [7] both the heat flux and the temperature are imposed
in a discrete set of points on Γb. In [8] the temperature on Γb is imposed and the geometry that
realizes a target heat flux distribution in Γb is sought for. In [9] mixed boundary conditions are
imposed in both Γb and on Γj , while looking for the geometry of the cooling passages that realizes
the desired temperature in a discrete set on points on Γb. In the present work the approach is
similar to the latter case, which is in our opinion the most suitable for a straight application, as well
as for the experimental validation. We impose Robin boundary conditions both on the external
blade surface Γb and on the internal cooling passages Γj , here supposed of circular shape, and we
use adjoint based gradient method to find the hole locations and diameters which realize a desired
temperature distribution Tb(x) along the boundary Γb. In the present work the temperature
distribution Tb(x) is a known function related to a designer choice.
The numerical solution of system (1) is based on the Finite Element Method. The derivation
of steady conduction equation is a standard exercise in classical textbook on FEM and will not
repeated here. As a guidelines and using the terminology and notation of [21](see p.87–92), let
assume for the temperature field the form

T (x, y) =
r∑

i=1

NiTi = [N ]{T } (2)

where [N ] = {N1, Ni, . . . , Nr} is the shape function matrix and {T} = {T1, Ti, . . . , Tr}T the nodal
temperature vector. The eqs. (1) can be reduced to

[K]{T } = {f} (3)

where

[K] =

∫
Ω

[B]T [D][B] dΩ+

∫
Γ

h[B]T [N ]ds (4)

{f} = −
∫
Γ

q[N ]T ds+

∫
Γ

hTw[N ]T ds (5)

with

[B] =

 ∂N1

∂x
∂N2

∂x . . . ∂Nr

∂y

∂N1

∂y
∂N2

∂y . . . ∂Nr

∂y

 [D] = k(x) I (6)
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The system (3) may be linear or not, depending on the expressions of [K] and {f}. The parallel
version of the SPOOLES package has been used to solve system (3).
The inverse problem is solved as an optimization problem, as outlined in the next section. The
procedure iterates on a series of direct computations until all boundary condition and constraints
are satisfied within an expected range of gradient and cost function residuals.

3 Variational formulation, adjoint equation and gradient

We define the cost function

F(Γc, T ) =
1

2

∫
Γb

[T (x)− Tb(x)]
2
dΓ + χP(Γc) (7)

where the P(Γc) is a penalization function added to enforce the geometric constraints to the
optimization problem. The control variable is the set of relations defining the cooling passages
geometry Γc. In two dimensions, each boundary has a parametric representation as follows

Γj ∈ R2 : x =
∑
j

µjpj(s), y =
∑
j

νjqj(s) (8)

where pj(s), qj(s) are shape functions and µj , νj are the control parameters that can be packed
in a single vector αi.
The optimal temperature field must satisfy the governing equation (1) and some geometric con-
straints. In order to solve such constrained extremum problem we introduce the Lagrangian
function

L(T,Γ,Λ) = F(Γc, T ) +

∫
Ω

Λ∇ · (k∇T )dΩ (9)

where Λ(x) is a Lagrange multiplier. The Lagrangian will allow us to treat the problem as
unconstrained. A stationary configuration is found when the variation of L with respect to all its
arguments, that are now considered independent functions, is 0. We compute δL as

δL = δLT + δLΛ + δLΓj (10)

All the contributions to δL must be 0 at the minimum. Hence, to find a stationary point we
enforce

δLT = 0 δLΛ = 0

In general this results in δLΓj ̸= 0. To reach the minimum we take δΓj such that δL = δLΓj < 0.
Note that the variations of L with respect to the Lagrange multipliers Λ simply yield the heat
conduction equation. The condition δLT = 0 leads to the adjoint equation and its boundary
conditions. Based on the second Green’s identity the second integral can be formulated as

δLT =

∫
Ω

Λ∇ · (k∇(δT ))dΩ+

∫
Γb

(T − Tb)(δT )dΓ =

=

∫
Ω

(δT )∇ · (k∇Λ)dΩ+

∫
Γ

Λk∇(δT ) · n dΓ−
∫
Γ

(δT )k∇Λ · n dΓ +

∫
Γb

(T − Tb)(δT )dΓ =

=

∫
Ω

(δT )∇ · (k∇Λ)dΩ+

∫
Γb

(
Λk

∂(δT )

∂n
− (δT )k

∂Λ

∂n
+ (T − Tb)(δT )

)
dΓ+

N∑
i

∫
Γi

(
Λk

∂(δT )

∂n
− (δT )k

∂Λ

∂n

)
dΓ

(11)
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By perturbing the boundary conditions (1b,1c) we can write

k
∂(δT )

∂n
= −h(δT ) on Γ = Γb

k
∂(δT )

∂n
= h(δT ) on Γ = Γj

(12)

Substituting in (11) and considering all this integral contributions must vanish, we have

∇ · (k∇Λ) = 0 on Ω

k
∂Λ

∂n
= hΛ + (T − Tb) on Γb

k
∂Λ

∂n
= −hΛ on Γj

(13)

The adjoint problem (13) is formally identical to system (1). By changing Λ← T and with slight
modifications to the set of boundary conditions, the numerical method used to solve the thermal
problem can be applied to the adjoint problem.
To derive the variations δLΓj we observe that, from eq.(8) they are formally equivalent to (and
therefore replaced by) the variations of the Lagrangian function against the control parameters αi

δLα =
∑
i

∂

∂αi

[∫
Ω

Λ∇ · (k∇T ) dΩ+ χP
]
δαi =

∑
i

Giδαi (14)

where

Gi =
∂

∂αi

[∫
Ω

Λ∇ · (k∇T ) dΩ+ χP
]

(15)

The final expression of the terms Gi(Γi, T,Λ) depends on the adopted parametrization of the
cooling passages geometry. The final formulation of Gi for circular cooling holes will be derived in
the next section.
If we update αi with

(δαi)
n = −ρGni (16)

by taking ρ > 0, then δLα ≤ 0. By iterating such a procedure, the minimum is eventually
reached. This method, namely the Steepest Descent Method (SDM), has a slow convergence.
Better convergence rates can be obtained with the Conjugate Gradient Method (CGM), in which
the correction δα at the iteration n is given as

(δαi)
n = (δαi)

n−1 + βnGni (17)

where βn is defined by the modified Polak-Ribière formula

βn = max


∑
i

Gn(Gn − Gn−1)∑
i

Gn−1Gn−1
, 0

 (18)

3.1 Geometric parametrization and constraints

Scope of this section is to derive a formulation of Gi able to parametrize the geometric optimization
variables αj and to include the necessary set of constraints.
We consider circular cooling passages. The boundary of each of M coolant passages is defined by

x = aj +Rj cos θ, y = bj +Rj sin θ 1 ≤ j ≤M (19)
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where C = (aj , bj), Rj are the center and radius of the j-th circle, respectively.
The vector of control variables can be defined as

{α} = {a1, . . . , aj , . . . , aM , b1, . . . , bj , . . . , bM , R1, . . . , Rj , . . . , RM} (20)

The holes boundaries cannot intersect each other and must lie far from the coating region of the
blade. These requirements are constrains of the optimization problem and are introduced using
penalization. In a way similar to [8], considering M coolant passages, we write the penalization
function as

P =
M∑
i

d0
Ai − d0

+
M∑
j

M∑
i=1,i̸=j

df
Bij − df

(21)

where

Ai =
√
(xp − ai)2 + (yp − bi)2 −Ri (22)

is the minimum distance between the i-hole surface and the Γa contour (see Figure 1), and

Bij =
√
(ai − aj)2 + (bi − bj)2 − (Ri +Rj) (23)

is the minimum distance between two coolant passage contours Γi and Γj . The complete set of
derivatives is

∂Ai

∂ai
=

(ai − xp)√
(xp − ai)2 + (yp − bi)2

∂Ai

∂bi
=

(bi − yp)√
(xp − ai)2 + (yp − bi)2

∂Ai

∂Ri
= −1

(24)

and
∂Bij

∂ai
= −∂Bij

∂aj
=

(ai − aj)√
(aj − ai)2 + (bj − bi)2

∂Bij

∂bi
= −∂Bij

∂bj
=

(bi − bj)√
(aj − ai)2 + (bj − bi)2

∂Bij

∂Ri
=

∂Bij

∂Rj
= −1

(25)

Finally, we derive the expression for the variation of the Lagrangian function with respect to the
parametrization.

δLα =
∑
i

Giδαi

Letting a variation αi ← αi+ δαi, neglecting higher order terms, the functional Gi can be reduced
to

Gi =



∫
Γi

Λ∇ · (k∇T ) (x− αi)

Ri
dθ + χ

∂P
∂αi

1 ≤ i ≤M∫
Γi

Λ∇ · (k∇T ) (y − αi)

Ri−M
dθ + χ

∂P
∂αi

M + 1 ≤ i ≤ 2M∫
Γi

Λ∇ · (k∇T )r dθ + χ
∂P
∂αi

2M + 1 ≤ i ≤ 3M

(26)

where the derivative of the penalization function P are given by eqs.(24)-(25) . Finally, let note
that in eq.(20) the three set of control variables aj , bj , Rj has been collected into a single vector
αi , therefore we are now led to a formulation of Gi in which the three different contributions have
been distinguished.
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4 Numerical Results

The proposed numerical procedure is a classical optimization approach based on the adjoint equa-
tion to compute the functional gradient. Basically it consists of the following steps:

1. solve the direct problem (1)

2. solve the adjoint problem (13)

3. evaluate the functional gradient (14)

4. compute the conjugate direction of search via (17) and march towards the extremum

5. update the solution and test the convergence criterium

Two numerical applications are proposed in the next subsections. The first example is a test
against an analytical solution. The second test is based on the experimental data of the Mark-II
turbine blade [20] .

4.1 Coated cylinder with internal heating.

Let consider the heat transfer problem on a composite hollow cylinder with coating and a single
circular heating passage as shown in Figure 2. The cylinder radii are rb = 58, ra = 38 ,r1 = 25
millimeters. The inner flow has a temperature Tc = 603.15K, while the temperature of the
external gas flow is Tg = 303.15K. The thermal conductivities of the inner core and of coating
are k1 = 15 and k2 = 0.2 W/(Km), respectively.
Robin boundary conditions have been applied by specifying the heat convection rates for the inner
flow passage (hc = 400W/m2) and for the exterior cylinder surface (hg = 60W/m2). The exact
solution of the temperature field on the whole domain is obtained by classical analytical methods
and it can be found in [13](page 63, example 3-11).
The inverse problem here proposed is inspired to a similar test-case found in [8]. From the
knowledge of the temperature Tb(Γb) on the external cylinder surface, the correct geometry of
the system is sought. Starting from a generic geometric configuration for the cylinder, as shown
in Figure 3, we solve for the location and radius of the inner hole that realizes the target wall
temperature Tw = Tb(Γb) (= 337.230 K ) .

a1 [mm] b1 [mm] r1 [mm] Q [W/m2] Tb [K]

Theoretical 0 0 25 2044.79 337.230
Numerical 0.303 0.012 24.933 2044.54 337.234

Error 5.22·10−3 (*) 2.07·10−4 (*) 0.27% 0.012% 0.0012%

Table 1: Composite hollow cylinder Test. Comparison between numerical and theoretical value of
main parameters. In (*) the absolute error has been scaled to the external cylinder radius rb.
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The problem parametrization follows the guidelines given in section 3.1. The control variables are

αi = {a1, b1, R1}

i.e. the center coordinates and the radius of the inner circular hole, respectively. The thermal field
and the related adjoint problem are then solved at each optimization step and the domain geometry
is updated following eq. (17) by the CGM strategy. We used parabolic triangular finite element.
Adaptive mesh refinement with error control is obtained by using the bamgmeshing and adaptation
tool [22]. Initial and final temperature field and geometry are shown in Figure 3. The system has
shown a fast and monotonic convergence. In Figure 4 the control variables αi and the functional
residuals are plotted versus the optimization steps. As visible, after 20 iterations the functional
residual is decreased of three orders of magnitude, even if a penalization has been applied. It must
be noted, anyway, that there was very few control variables and that the influence of the penalty
function was limited to the mitigation of asymmetric variations of the gradient components.
A comparison between numerical and analytical results is given in Table 1. The close agreement
between data confirms the high resolution of the computations: the highest relative error is below
0.3%. We also note the remarkable accuracy of the heat flux computation, which involves a
derivative evaluation and therefore was supposed to be more prone to numerical error. Moreover,
the heat flux is a dependent variable which plays a key role on the system since it is imposed as
boundary condition.

4.2 Mark II turbine blade

Experimental data about the Mark II and CF3X internally cooled turbine blades are available in
the open literature [20] and have been used as a reference test-case in several work on the conjugate
heat transfer and optimal blade design. The Mark II stator vane geometry is depicted in Figure 7b .
The cooling system of this blade is composed by ten circular passages (M = 10). In the original
work a method of evaluating the heat transfer coefficient is outlined and the experimental results
(wall pressure, blade surface temperature and heat flux coefficient) are given for a wide range of
working conditions. Walking on the footsteps of the previous section, the experimental data are
used here to formulate a design problem and to solve it by the inverse numerical procedure. The
measured surface temperature for a selected working condition (namely, the run-15 ) is assumed as
target temperature Tb(x). Then, starting from an arbitrary initial geometry, the correct coolant
passage pattern is sought by solving the adjoint inverse problem.
First, we define the expression for the heat coefficients. For the coolant passages, the expression
of the Nusselt number given in [20] is used

NuD = Cr · 0.022Pr0.5ReD
0.8 (27)

where Pr and Re are the Prandtl and Reynolds numbers based on the coolant flow rate, viscosity
and temperature. Cr is an empirical correction parameter introduced in [20].
For the external blade surface a polynomial approximation of the heat transfer coefficients has
been computed by fitting and smoothing the experimental data. The curve obtained is shown in
Figure 5. Again, the control variables are the centre coordinates and radii of the circular cooling
passages. These variables has been packed as

αi = {a1, . . . , aj , . . . , aM , b1, . . . , bj , . . . bM , R1, . . . , Rj , . . . , RM} 1 ≤ j ≤M

Starting from the generic initial condition depicted in Figure 7c, the inverse procedure has been
applied until a satisfactory level of convergence is reached. The converged solution and temperature
field are shown in Figure 7d, while the experimental and the evaluated blade surface temperature
are compared in Figure 5 . The convergence of the objective functional and of the L2-norm residual
of controls αi is monitored in Figure 6.
Although this test being quite severe (there are 30 control variables and strong penalty functions),
the geometrical configuration obtained is close to the real one. For each αi the relative error is
less than 0.5%, a value slighly bigger than the error observed in the previous test T1.
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It as also observed that the penalization effect is twofold: it reduces the convergence rate dramat-
ically and it makes the solution less sensitive to the original objective functional. In the present
case it acts also as a smoothing filter for the target temperature peaks and experimental noise.
Nevertheless, by using a parallel implementation of the FEM code, the full computation has run
in about one hour on a 8-core Intel i7 workstation.

5 Conclusions

An adjoint procedure for the solution of the inverse heat conduction problem has been proposed.
Compared to similar approaches, the present method does not require the evaluation of an ad-
ditional perturbation field and the functional gradient with respect to the controls variables is
computed from its parametrization. This simplification is supposed to increase the robustness
of the whole numerical procedure. The numerical tests carried out have shown an acceptable
convergence rate, even if as much as 30 control variables and a strong penalization are taken into
account. The latter is supposed to be responsible for the convergence worsening. In fact, it is well
known that the number of control variables does not affect the performances of adjoint procedures.
Nevertheless the computational cost is affordable on a medium level workstation.
The method has been specialized to the case of blade with circular passages holes. The extension
to other geometries and to the three-dimensional case is straightforward but at the cost of 3D FEM
computations and of a more complex parametric representation. The procedure has been validated
against analytical and experimental solutions. From the numerical point of view a general purpose
FEM engine can be used to solve both the thermal and the adjoint problem. Therefore, the method
can be implemented in any free or commercial FEM engine that allows to impose user defined
function as boundary conditions.
its optimality is of tb.
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Figure 3: Test 1. Geometry and temperature field

IT

X
C

,Y
C

R
C

0 50 100 150
-0.01

0

0.01

0.02

0.03

0.005

0.01

0.015

0.02

0.025

XC
YC
RC

IT

O
B

J

50 100 150
10-4

10-3

10-2

10-1

100

101

Figure 4: Test 1. Convergence history of xc = a1, Yc = b1, Rc = r1 (left) and of the objective
function residuals (right) versus optimization step.
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Figure 5: Test Mark II. Heat transfer Coefficient fitting (left) and comparison of the surface
temperature obtained by the inverse problem and the target temperature distribution (right).
Symbols refers to the experimental data, solid lines to numerical results ).
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Figure 6: Test Mark II. Convergence history of L2-norm of gradient residuals (left) and of the
objective function residuals (right) versus optimization step.
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Figure 7: Test Mark II. Initial (a) and final (b) grid and cooling passage pattern. Initial (c) and
final (d) temperature field.
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