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Summary

The dissertation describes (i) a mathematically rigorous approach for the derivation and
validation of low–order helicopter mathematical models from first principles and (ii) the
development or improvement of a set of numerical techniques that provide computationally
efficient and reliable tools for the analysis of rotorcraft flight mechanics, and in particular
evaluation of maximum performance and assessment of handling qualities. Simplified
models are expected to provide results at a fraction of the computational cost required for
performing the same analysis on the basis of higher order models, but, at the same time,
the reliability of these results needs to be carefully assessed, which is one of the objectives
of the present work. The techniques developed are tested on various single main rotor
rotorcraft configurations, with a focus on articulated, teetering, and two–bladed–gimballed
rotors.

In particular, the model of a single main rotor helicopter with individual blade flap,
lag, and dynamic twist degrees of freedom was used as a reference for the analysis. Simpli-
fied models based on tip–path–plane dynamics, uniform inflow, linear blade aerodynamic
and parasite drag area were developed for the same helicopter configuration. An order-
ing scheme based on a symbolic math–manipulation toolbox was developed, in order to
automatically generate the equations of motions for the simplified model up to a given
user–defined accuracy. The results obtained for a simplified helicopter models are vali-
dated against those derived for the most complete one, used as a reference. The latter in
turn is validated against available flight test data. The effects of both helicopter model
complexity and trim technique on the accuracy of performance estimate were analysed.

Two themes were developed in the framework of helicopter handling quality assessment.
A stability analysis in the presence of severe gusts is carried out first for a two–bladed
gimballed rotor with coning hinges and pitch–coning coupling, based on a time–periodic
linearized model. The behaviour of the system is thus related to system parameters and
features peculiar to this original configuration and compared with that obtained for a
more conventional equivalent teetering rotor. A second contribution is then proposed for
the determination of the agility potential of a given rotorcraft on prescribed manoeuvres.
An inverse simulation algorithm was implemented and improved for the determination of
the necessary command travel for performing the considered task. The effects of different
modelling approaches on the control action were then studied in order to (i) analyse the
origin of the discrepancies between inverse solutions obtained from different models and
(ii) quantify the reliability of simplified models, while evaluating an uncertainty interval
associated to the control time–histories derived for a certain vehicle model.
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Provided that rotorcraft dynamics often results into computationally demanding nu-
merical techniques for performing a given (set of) analysis task(s), a further contribution
is represented by two novel and numerically efficient techniques that solve the trim and
inverse simulation problems, respectively, for individual blade rotorcraft models. In the
first case, a nested trim algorithm is proposed, based on decoupling rotor and fuselage
dynamics. As for the inverse simulation problem, a Model Predictive Control architecture
is developed, that allows for the solution of the inverse problem formulated for a complex
rotorcraft model by evaluating the control action that successfully tracks a prescribed
trajectory on the basis of a low–order simplified one. Both these algorithms were demon-
strated to provide reliable results at a fraction of the computational burden required by
more conventional shooting algorithms.
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Chapter 1

Introduction

1.1 Low order models in rotorcraft flight mechanics

The analysis of rotorcraft flight mechanics is an important task in the development of
new vehicles. Helicopter aeromechanics, according to [1], is the branch of aeronautical
engineering and science dealing with equilibrium, motion, and control of elastic rotorcraft
in air. For these purposes the development of mathematical models capable of describing
the most relevant features of rotorcraft behaviour represents a fundamental need since the
onset of helicopter engineering. When properly linked with suitable numerical techniques,
these models allow for the evaluation of rotorcraft performance, agility potential and
handling qualities with various degrees of reliability, depending on model complexity and
availability of vehicle’s data.

From a historical perspective, the development of helicopter models has been based on
relatively simple analytical methods until the development of computers. A great deal of
engineering judgment, rules of thumbs, and flight testing characterized the development
of early rotary–wing vehicles. Reference [1] describes the historical milestones of aerome-
chanics until the onset of CFD/CSD loose coupling in the mid-80s. As the computational
power of computers increased, numerical techniques of increasing complexity have been
proposed for the description of flexible blade dynamics and aerodynamic loads (including
rotor–fuselage interaction) on the other. Recent developments have led to full coupling of
CFD and CSD method for the analysis of blade operating conditions, vibrations, aeroa-
coustic. Leishman [2] overviews the open problems in rotorcraft aeromechanics research,
with particular attention to the development of new approaches for the representation of
aerodynamic phenomena which are typical of rotorcrafts, such as dynamic stall, blade–
vortex interaction, wake representation.

Models which include CFD representation can provide an accurate description of many
aerodynamic features, but they are not well suited for flight mechanics analysis, especially
during a preliminary design phase. Their complexity does not allow (at present) fast
solutions required for performance evaluation and their use in direct dynamic simulation is
ruled out by their computational cost. At present, the use of high complexity, fully coupled
CFD/CSD models is limited to the representation of complex phenomena (e.g. blade
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aeroelasticity, vibrations, aeroacustics). Furthermore these model can be used to validate
lower order models when flight or wind tunnel data is not available. As underlined in
Ref. [3], despite the improvement that high–order models will make as computers become
more powerful, simplified tools for rotorcraft analysis will not become obsolete early in the
future for several reasons. First, even if computers are becoming more powerful, in the
near future this computational advantage does not allow the use of high–order models for
extensive analysis as in performance evaluation or multidisciplinary optimization. Second,
the need for real-time simulation requires simplified models that can execute in reasonable
CPU times. Third and most important, simple models provide direct relations between
system parameters and simplifying assumptions at the basis of the mathematical model,
on one side, and the resulting vehicle behaviour on the other. Thus, they play a crucial role
in gaining physical insight into rotorcraft behaviour. Finally the development of rotorcraft
control laws, even with advanced techniques such as robust and adaptive control, is based
on linear or very simple models (see [4] among many possible examples). As a consequence,
reliable simplified models are required not only for analysis or simulation purposes, but
for the development of Flight control System (FCS) as well. While acknowledging the
importance of improvements of high order models, the development of simple or simplified
model is still needed for many engineering tasks.

Two different strategies are possible in the development of low–order rotorcraft math-
ematical models: building the models from first–principles (i.e. from physical laws), or
identifying the model from flight–data. The identification approach is possible only when
the system to be modeled is available or require the development of large databases based
on the design experience of a particular company or group. Limited exception to these
problems are subsystem models (e.g. engine model) or blade profile or fuselage aerody-
namic models. In this cases data may be available provided that tests were performed for
previous use of these components.

On the converse modelling from first principles is available at any point in the helicopter
life–cycle, including the design and development phases. In these latter cases, the full set
of helicopter configuration data may not be available, thus precluding the possibility of
using higher order models. At the same time, the high order models may simply be too
costly (from an implementation or computational cost point of view) for the particular
flight mechanics analysis task. Lower order models are thus the only viable option either
because of the lack of the data needed for generating a high–order rotorcraft model, or
because of their better efficiency in generating the results required from the analysis.

Although the development of suitable mathematical models is a fundamental task in
aeromechanics, the evaluation of the effects of simplifying assumptions at the basis of
each model on performance, loads, and handling qualities evaluation needs to be carefully
assessed. Such an analysis can provide an estimation of the reliability of the results
obtained from each model and it allows for the identification of the minimum complexity
level that correctly represents each feature or task. For this reason models which are
developed need to be validated against flight or wind tunnel data, when available, or at
least compared to the results of higher order models in order to identify their range of
validity and possible areas of improvement.

2



1.2 – State of the art

This study is aimed at developing low order mathematical models and numerical tech-
niques for the evaluation of rotorcraft performance and handling qualities. Furthermore
an assessment of the effects of model simplifying assumptions on the relevant results is
performed in order to identify minimum complexity level required to correctly represent
each flight mechanics task. Several rotorcraft configuration are considered in the analysis,
including an unconventional two–bladed gimballed rotor, which requires the development
of ad hoc analysis techniques as its dynamic behaviour is different from conventional artic-
ulated and teetering rotors. As a consequence standard simplifying assumption can not be
used and original models for its analysis are required. In order to discuss in greater detail
the objectives and the original contribution of this work, the state of the art in the fields
of mathematical modelling, performance and handling qualities evaluation of rotary-wing
aircraft is reviewed in the following section.

1.2 State of the art

1.2.1 Helicopter mathematical modelling

Helicopter mathematical modelling is a fundamental step in the analysis of performance,
stability, dynamic behaviour and handling qualities. For this reason, starting from the
very beginning of rotorcraft engineering, mathematical models of increasing complexity
have been proposed in order to provide a better estimation of helicopter behaviour. A
more detailed analysis of modelling technique and classical simplification assumption is
discussed in Chapter 2.

Many helicopter textbooks describe mathematical modelling approaches and numerical
techniques for the analysis of performance, dynamic behaviour and handling qualities.
Bramwell [5] proposes a very simple static model (i.e. based on the equilibrium of forces
and moments, with no dynamic equations) based on momentum theory and decoupled
longitudinal and lateral equilibria. Padfield [6] develops a more detailed static model,
introducing an equivalent hinge stiffness located at the rotor centre, that results in a
unified modelling approach valid for both articulated and hingeless rotors. Johnson [7],
Prouty [8], Arra [9], and Leishman [10] introduce models based on a more extensive use
of blade element theory. In particular their attention is focused on the description of
tip-path-plane (TPP) dynamics and rotor loads transmitted to the fuselage. All these
textbooks describe empirical corrections with the aim of providing a more realistic estimate
of helicopter performance. Correction factors for induced, parasite, and profile power losses
are introduced in this framework.

Heffley and Minch [11] propose a minimum complexity mathematical model for a
conventional helicopter configuration to be used in flight simulation. Rotor motion is
described by first order dynamics for longitudinal and lateral TPP tilt angles, whereas
coning is assumed constant. A uniform static inflow is used and rotor inplane forces are
determined by thrust tilt only. Such model has been developed with the aim of minimizing
the number of parameters required to tune the model to represent the desired helicopter
for pilot training purposes.

In a series of reports Chen et al. [12, 13, 14] propose a mathematical model for both
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articulated and teetering rotors. The rotor is described by second order Tip–Path–Plane
dynamics where rotor states are the Fourier coefficients of the blade flapping truncated at
the first harmonic terms (i.e. coning, longitudinal and lateral tilt). Linear aerodynamics
is used to evaluate blade loads, so that average rotor force and moment coefficients can be
evaluated analytically by integrating aerodynamic and inertial loads along blade span and
over one rotor revolution. Static uniform inflow is used. Effects of main rotor downwash
on tail surfaces are included. The tail rotor is described similarly to the main rotor but the
2nd order dynamic description of the tip–path–plane is replaced by a quasi–static approach
and cyclic pitch is not represented.

Howlett [15, 16] presents an individual blade model of the UH-60A helicopter. This
model, described in detail also in [17], features a full nonlinear description of fuselage
aerodynamics, constant rotor angular speed, rigid articulated blades with an accurate
representation of the lag damper, a dynamic model of main rotor triangular inflow, and
a simple tail–rotor model with dynamic uniform inflow [18]. Effects of blade torsional
deformation are also accounted for, but the model neglects blade bending in the flap and
lead-lag planes, shaft and fuselage elastic modes, and important aerodynamic effects, such
as circulation hysteresis and rotor wake distortion.

In recent years the development of mathematical models for flight mechanics have been
focused on the description of blade flexibility, rotor wake and its interaction with fuselage,
tail surfaces, tail rotor, and main rotor itself. Blade flexibility is often modeled by one-
dimensional finite elements using bending in flap and lag directions, torsion around blade
span and elongation along blade span due to centrifugal forces as degrees of freedom. In
this framework models with fully flexible rotor blades are presented for an articulated
configuration in [19], while in [20] a teetering rotor is considered together with a flexible
fuselage. Aerodynamic models are even more complex. Fixed wake models have been
superseded by prescribed wake models first, free wake models later on, and eventually
advanced CFD calculation (such as direct Navier-Stokes simulations). Since such CFD
simulations are extremely demanding from the computational point of view, simpler inflow
and wake models are used for flight mechanics studies. This justifies the interest for simpler
but effective approaches such as low order dynamic inflow models [3].

In spite of the extensive literature dealing with rotor dynamic behaviour (in particular
articulated and hingeless rotors), two–bladed teetering rotors received a marginal atten-
tion from the researchers. Two–balded gimballed rotors have attracted even less studies.
Teetering rotors were adopted in the past for relatively large military rotorcraft, such as
the Bell models 205 [21] and 212. Nowadays they are still popular for light helicopters,
such as the Robinson R–22, and remotely piloted vehicles (RPV) like the Yamaha R–Max.
Teetering rotor dynamic characteristics are often improved by means of additional devices,
such as a stabilizing Bell bar, as on the AB–47 helicopter, or the Bell–Hiller bar, featuring
aerodynamic paddles, such as in the Yamaha R–Max RPV [22]. These devices are effective
in improving the dynamic characteristics of the rotor, especially during manoeuver tran-
sients, yet they are designed on grounds of some reasonable engineering practice, previous
experience and flight testing.

A two–bladed gimballed rotor was considered in the 60’s as a possible configuration for
heavy lift helicopters with tip jets and no pitch hinge [23]. The spherical hinge, allowing
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for feathering motion, and a blade circulation control based on small jets distributed along
the blade span should have allowed for full rotor control.

1.2.2 Trim

An extensive literature on rotorcraft trim is available, where different techniques are pro-
posed, ranging from relatively simple analytical or algebraic [5, 6] techniques, to meth-
ods based on direct numerical simulation [24], including the more sophisticated autopilot
method [25], up to computationally more demanding techniques which include the de-
termination of periodic rotor states by means of shooting techniques [26] or harmonic
balance [27].

A comprehensive review of rotorcraft trim techniques was proposed by Peters [28],
where the paper is focused on the formal mathematical description of the trim problem
and on implementation aspects rather than on performance of the different methods.
Starting from the mathematical definition of a trim problem for a rotorcraft (i.e. the fact
that periodicity needs to be included in the trim approach to take into due account rotor
behaviour and its coupling with rigid body states), the authors define the most general
equations to describe rotorcraft trim. The mathematical formulation requires a state space
approach, the periodicity constraint can be enforced by means of a permutation matrix
(which may degenerate to the identity matrix for rigid body states) between states as
in [26]. The equations include Lagrangian multipliers for internal forces in case of a multi-
body system formulation. To solve the trim problem, two different class of constraints
need to be enforced: periodicity constraints and trim constraints. The latter ones depend
on the states, their derivatives and control variables, but cannot be a linear combination
of periodicity constraints (i.e. no sum of forces or moments on the system can be used). A
mathematical approach to the solution of optimal trim is proposed, i.e. when the number
of controls is higher than the number of constraints. To solve a trim problem, four different
sets of equations are thus required: (i) differential equations, (ii) implicit equations, (iii)
quasi-periodicity conditions and (iv) trim constraints. To enforce periodicity an approach
based on either enforced periodicity or on transfer-matrix methods is required.

Schank [29] in his PhD dissertation proposes an analysis of trim as an optimization
problem, in particular when variable rotor speed and several aerodynamic surfaces are
present. The optimal trim is based on a nonlinear programming method for the gener-
alized reduced gradient and it is integrated with a multi–body, comprehensive rotorcraft
aeroelastic code.

1.2.3 Performance

The analysis of helicopter performance requires a rotorcraft mathematical model and a
trimming algorithm. Classical performance tasks are the evaluation of flight envelopes,
maximum rate of climb, ceiling in and out of ground effect, maximum rate of turn.

Several comprehensive helicopter analysis tools are now available. They have been de-
veloped by government agencies (2GCHAS [30], RCAS [31]), helicopter industry (TECH02,
COPTER, CRFM, HOST [32]), academia (UMARC [33], DYMORE [34], MBDyn [35]),
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or commercial companies (FLIGHTLAB [36], CHARM [37], CAMRAD II [38]). All these
tools allow for the evaluation of rotorcraft performance. Harris [39] compares the results
obtained by some of the comprehensive codes at high advancing speed with flight test or
full rotor wind tunnel tests in order to highlight the reliability, field of applicability of
present rotor modelling techniques and their improvements in the last years.

Despite the ongoing development of more complex models, reasonable performance
evaluation can be achieved also with lower order models. Johnson [40] describe the use of
low order models for the development of a conceptual design tool for rotorcraft performance
analysis, while in [41] the performance results obtained with the simplified models used in
NDARC are compared with those obtained with CAMRAD and other high order models.

Bousman and Norman [42] describe techniques for the analysis of predictive capabilities
of aeromechanics numerical techniques, in particular hover and forward flight performance,
blade aerodynamic and structural loads, vibratory forces, and aeroelastic/aeromechanical
stability. The main objective of the study is the identification of the accuracy level of
current techniques in the previous areas and to identify the research areas in which im-
provement is required. The accuracy of the mathematical model and numerical technique
is determined by the slope of the regression line which relates measured and calculated
behaviour (a perfect agreement is represented by a slope of 1). The standard error of
estimate of the linear regression is a measure of scatter or dispersion, and in some cases
may provide a better assessment of accuracy than the regression line slope.

1.2.4 Inverse simulation

Inverse simulation has been considered in the past as a useful and versatile tool for inves-
tigating several aspects of fixed– and rotary–wing vehicle dynamics [43], from early works
aimed at the evaluation of manoeuvring performance [44, 45, 46], including agility [47, 48],
up to more recent developments in the framework of support to design [49], model val-
idation [50] and handling quality evaluation [51]. Bagiev and Thomson [52] provide a
technique for a preliminary assessment of handling qualities for an autogyro by means of
inverse simulation demonstrating that an approach based on inverse simulation of mission
task elements can be used for various rotorcraft configurations, including nonconventional
ones. The results of the numerical analysis were compared to Cooper Harper grading of
the same manoeuvres executed in flight tests. A fairly good agreement was obtained, thus
validating the technique.

A wide plethora of methods for solving inverse simulation problems in flight mechanics
has been considered, which can be grouped into three major categories: (i) differential
methods [44], suitable for nominal problems only, where the number of control inputs
matches that of the tracked variables; (ii) integration methods [53, 46], where the required
control action is evaluated over a discrete time interval, a method that can handle also
redundant problems, where the number of control variables exceeds that of tracked outputs
(e.g. by means of a local optimization approach [54]); and (iii) global methods, where the
time-history of control variables is determined over the whole duration of the tracked
manoeuvre by means of a variational approach [55] or optimization method [56].

As underlined in Ref. [43], the solution of the inverse problem is a task significantly
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more challenging for the rotorcraft case than for a conventional airplane, especially when
individual blade dynamics is incorporated in the model [57]. On the other hand, one of
the advantages of integration methods is represented by their capability of dealing with
complex, high order mathematical models of the vehicle. In this respect, the same baseline
inverse solution scheme can easily accommodate models of various levels of complexity
without substantial changes to the architecture of the algorithm. This allows for a fair
comparison among different inverse solutions obtained on the basis of different vehicle
models, provided that the issue of unconstrained states is properly addressed. This often
results in numerically demanding algorithms [54, 57].

It is evident that by keeping helicopter model complexity down to a minimum level,
the computational effort necessary for a systematic analysis of the agility potential can
be substantially reduced. Computation efficiency can be increased by application of a
two–time–scale approach [58].

Rutheford and Thomson compared the results obtained for a helicopter model where
rotor was represented either as a disk or by means of individual rotor blade dynamics [57],
but their paper was more focused on the extension of the inverse simulation approach to
the individual blade model and the comparison was carried out mainly with a validation
purpose.

A detailed description of inverse simulation peculiarities for the rotorcraft case is re-
ported in Lu’s PhD dissertation [59]. Lu describes two different approaches for the solution
of inverse problems in helicopter and ship control including systems having nonminimum–
phase characteristics. The first technique, based on sensitivity-analysis theory, allows the
Jacobian matrix to be calculated by solving a sensitivity equation and overcome to some
extent the problem of high–frequency oscillations. The second one, based on a Nelder–
Mead search–based optimization algorithm, is completely derivative–free and overcome
problems often encountered in control applications when discontinuous features such as
actuator amplitude or rate limits are introduced.

Bagiev et al. [60] showed that a modified inverse simulation scheme that includes a
predictive step can provide more realistic solutions to the inverse simulation problem, es-
pecially when dealing with aggressive manoeuvres. A baseline IS algorithm may predict
values which exceed the physical limits of the real vehicle, such as mechanical limitations
on control travel or control rates (based on hydraulic actuator stroke and other character-
istics), limits on main and tail rotor torque, total required power or even structural limits
of critical components. A predictive step is thus introduced in order to identify in advance
if and when such limits are approached during a manoeuvre, so that the control task can
be modified and turned into a feasible one.

Together with inverse simulation, other numerical techniques are available for the
evaluation of performance and handling quality over prescribed, possibly optimal, ma-
noeuvres. Among other examples, Bottasso et al. [61] propose two different techniques
for the solution of rotorcraft trajectory optimization problem in this framework. A direct
transcription is used to solve an optimization problem by introducing a function of system
states in the cost function at every time interval. Conversely, direct multiple shooting
allows for the definition of a cost function only at discrete points along the trajectory.
The first technique suits well lower order model, whereas the direct multiple shooting can
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be coupled also to medium complexity models.

1.2.5 Handling qualities

In the rotorcraft field, handling qualities (HQ) are regulated by ADS 33 standards [62].
These standard require rotorcraft to comply with handling qualities requirements which
are stated either in the frequency domain or as Mission Task Elements (MTE). The require-
ments in the frequency domain are formulated in terms of acceptable range for frequency
and damping of rotorcraft characteristic modes and can thus be evaluated by means of
linearization or Fourier analysis of helicopter models or real flight data, when available.
Mission Task Elements are elementary manoeuvres which must be accomplished while ful-
filling requirements on speed, position tolerance with respect to the prescribed trajectory,
maximum time to complete the manouevre, minimum Cooper–Harper grades in perform-
ing the manoeuvre in nominal/degraded environments. Other requirements are set for
the dynamic behaviour in hover, low speed, and advancing flight. In particular threshold
values are set for rotorcraft mode frequency and damping while control response type are
analyzed in detail.

During the whole design phase, compliance of rotorcraft with handling quality require-
ments is based on the development of mathematical models. All comprehensive rotorcraft
analysis tools include techniques for linearization and model dynamic evaluation for the
analysis of handling qualities. Linearization is easily performed on helicopter models which
do not include individual blade dynamics. The introduction of individual blade dynam-
ics leads to time variant models. The stability analysis of such models require different
techniques and in particular Poincaré maps and Floquet analysis. Floquet theory for the
analysis of handling qualities was introduced by Peters and Hohenemser [63], and refined
by Peters [64] and McVicar and Bradley [65] together with a faster technique for the
evaluation of rotorcraft trim. In a recent paper, Peters et al. [66] describe a technique
to solve the the integer-multiple arbitrariness in the imaginary part of the characteristic
exponents of the system which determine the frequency of the mode in the Floquet anal-
ysis. Bauchau and Wang [67] present two methodologies for the stability analysis that are
applicable to generic nonlinear rotorcraft models, which do not rely on linearization of the
system but exploit the behaviour of some of the system states when perturbations from
an equilibrium condition are introduced. The technique of singular value decomposition
is used to generate either a partial Floquet or an autoregressive approach, depending on
the base of functions used to describe system dynamics, in order to assess system stability.
Guglieri [68] describe the effects of modelling assumptions on drive train and fuel control
design on the evaluation of handling qualities.

As described above, inverse simulation allows for the evaluation of helicopter behaviour
in performing Mission Task Elements and therefore provides valuable data on handling
qualities. The trajectory of a mission task element can be used as the objective function in
an inverse problem and therefore command, attitude and more in general whole rotorcraft
state time–histories can be derived in order to provide information on command action,
command travel, frequencies excited in the manoeuvre, dominant modes, etc.
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1.3 Objectives of the study

During the whole design cycle, and in particular when developing novel or nonconventional
configurations, a mathematical model which can reliably assess system behaviour at a
small computational cost represents a valuable tool. In particular during early phases of
the design (feasibility, conceptual design or preliminary design), key configuration choices
are taken. The possibility of performing preliminary flight mechanic analysis, evaluating
the impact of design choices on performance and handling qualities with only a limited
set of data, and with a known confidence in the results, allows a formidable advantage in
the development of better rotorcraft platform.

The objective of this dissertation is to propose an approach for the derivation of low
order helicopter mathematical models from first principles and for the development of nu-
merical techniques that provide computationally efficient and reliable tools for rotorcraft
flight mechanic analysis. These approaches are tested on a wide range of single main rotor
rotorcraft configurations with special attention to articulated and teetering rotors, and
including innovative designs such as an unconventional two–bladed–gimballed rotor. The
effects of model detail are analyzed for both steady–state flight performance and handling
quality evaluation. For these tasks numerical techniques for trim, linearization, and in-
verse simulation have been implemented. In this framework a contribution is provided by
improving existing techniques (e.g. inverse simulation) and developing new analysis tools
(e.g. metrics for comparing the reliability of inverse solutions command time histories) in
order to develop faster techniques that provide reliable information based on low–order,
simplified helicopter models. As the choice of model complexity is a tradeoff between
computational cost and accuracy of the results, for each analysis task the minimum level
of model complexity that correctly represents helicopter behaviour is assessed.

As stated above, the analysis is focused on the development of models from first princi-
ples. This approach is followed for two main reasons. First of all the purpose of this work is
to propose a modelling approach able to represent any rotorcraft configuration, including
innovative ones at the design stage, whereas the approach based on system identification
requires the availability of a flying vehicle. Furthermore modeling from first principles
allows for a direct assessment of the relation between system parameters and the resulting
rotorcraft behaviour, with a thorough analysis of the effect of configuration changes.

The attention will be focused on performance and handling quality evaluation. These
fields were chosen because they cover some of the most important tasks in flight mechanics
and also as they require a thorough test of mathematical models in many conditions,
including the most demanding ones.

The most widespread use of flight mechanic models is for performance evaluation (in-
cluding those modelling techniques where only steady–state conditions are evaluated and
no dynamic simulation is required). With respect to steady state performance, the objec-
tive is to investigate the trade–off between the computation effort necessary for obtaining
a set of trimmed flight conditions and the accuracy of the results. Both helicopter model
complexity and trimming technique are considered in this analysis and their effects on
rotorcraft equilibrium is studied in detail. An estimate of the accuracy of low–order mod-
els and the relevant simplifying assumptions in predicting vehicle characteristics is useful
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in order to assess their reliability with respect to the same set of results obtained from
more accurate models or flight tests. The relevance of the study becomes evident if one
acknowledges the mathematical complexity, numerical difficulties, and computational cost
of determining the trimmed flight conditions for a high–order individual blade helicopter
model. In such a case the periodic nature of helicopter steady states must be taken into
account, so that trim conditions on flight path variables (velocity, flight–path angle and
turn–rate) must be enforced in an average sense. For preliminary design purposes and/or
vehicle comparison, simpler model may suit the scopes of the analysis. The requirement
for a simplified analysis may be dictated by the availability of a limited set of vehicle
parameters and configuration data or by the necessity for a fast evaluation of global char-
acteristics in terms of performance.

In this framework, one goal of the research activity is to develop an ordering scheme
based on a symbolic math–manipulation toolbox, in order to automatically generate the
equations of motions for the simplified model up to a given user–defined accuracy. Using
this tool, the generation of helicopter models with different level of details becomes a
straightforward activity and analysis of performance and handling qualities can rely on
more models.

In the framework of handling qualities (HQ) analysis, the evaluation of a minimum
level of complexity required to provide reliable information on stability and characteristic
modes as well as vehicle capability in performing a given (set of) flight task(s) allows for
the preliminary assessment of its HQ potential as soon as a sufficient amount of informa-
tion is available during the design process. Depending on rotorcraft configuration, the task
of determining characteristic modes and stability margins for handling qualities analysis
may not be trivial. In particular, when time-varying periodic models are used a Floquet
analysis is required to evaluate stability and (indirectly) frequency. Furthermore, innova-
tive configurations such as the two–bladed gimballed rotor discussed in Chapter 3.6, may
introduce rotor degrees of freedom which lead to modes not even present in conventional
rotor, and hardly discussed in the literature. For this reason complete and simplified
models are compared to analyze whether low–order ones can represent the most relevant
features of vehicle’s dynamics.

It is clear that the assessment of the ability of a rotorcraft platform to comply with
handling qualities requirements [62] already in the early design phases allows a sound se-
lection of rotorcraft configuration and relevant parameters when design changes are more
easily implemented and less expensive. Furthermore, an early definition of the bare air-
frame flying qualities allows the definition of flight–control system requirements in the
early phases of the design, allowing more time for their development and more reliable
models to be used as reference. As an example, the evaluation of the total required power
allows one to determine the feasibility of a given manoeuvre prescribed by handling quality
requirements, if the required power remains within acceptable limits (zero to maximum)
during the whole manoeuvre. At the same time the manoeuvre can be made more demand-
ing (e.g. increasing the required displacement or turn rate), in order to identify vehicle
performance limits for a particular configuration. Furthermore vehicle dynamics in the
presence of large command travel can be analyzed without the need for including stability
augmentation systems in the model, as long as the IS scheme easily compensates for mild
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instabilities. This allows for the analysis of pure baseline helicopter model performance.
Given the important information that inverse simulation can provide on handling qual-

ities, the analysis of the effects of different approaches in deriving a helicopter model on the
results obtained from inverse simulation algorithms (command action, command travel,
etc.) is performed. The objectives are (i) to analyze the origin of the discrepancies between
inverse solutions obtained from different models of the same vehicle, while performing a
given task, and (ii) to evaluate the uncertainty on command laws necessary to realize a
specified flight task associated to a certain vehicle model. The first objective requires the
identification of those critical situations in which a given model fails to provide a reli-
able inverse solution for the considered task. The definition of an uncertainty interval is
a parameter of paramount importance for the development of robust control laws (e.g.
stability and command augmentation systems that equip modern rotorcraft). Both tasks
are then focused towards the identification of the minimum level of detail required in the
model in order to provide reliable information on vehicle’s agility potential.

Provided that the inverse solution of helicopter equations of motion becomes compu-
tationally more demanding and numerically more difficult, a novel tool was developed for
solving the inverse simulation problem for rotorcraft motion. The solution proposed is
based on the evaluation of the control action that successfully tracks a prescribed trajec-
tory on the basis of a low–order simplified model and its implementation on a high order,
more accurate one. The algorithm proposed uses a Model Predictive Control (MPC)
scheme for the solution of the inverse simulation problem for rotorcraft dynamics. The
complex model which needs to be analyzed is substituted in the inverse simulation step
by a simplified lower–order one that requires a significantly shorter CPU time to solve the
inverse problem. The control action evaluated for the low–order model is then propagated
forward in time on the most complex, high–order one. The architecture of the system
requires a continuous exchange of data on control activity and (a possibly selected subset
of) state variables between the two models. This limits the drift of system output from
the desired one during unsteady manoeuvres and allows for asymptotically recovering the
correct airspeed during steady–state flight phases.

Finally, helicopter flight mechanics studies are often focused on the impact of main
rotor level of detail on the evaluation of performance, trim conditions and dynamic be-
haviour. Limited attention is devoted to the fuselage aerodynamic description and its
impact on flight mechanic analysis, as the main rotor is usually the major subject of these
studies. This is due to the lack of data on fuselage aerodynamics caused mainly by cost
constrains. With respect to fuselage models, two goals are pursued in this work. The first
one is the description of the impact of fuselage aerodynamic models on the most impor-
tant helicopter flight mechanic analysis tasks, and for this reason both performance and
handling qualities analysis are carried out. The second objective is the description of an
approach that provides a satisfactory fuselage aerodynamic characterization when a lim-
ited set of data is available. A technique which enables extension of available data based
on a limited range of angles of attack and sideslip to a full database in spherical coordi-
nates to allow realistic simulation of forward, backward and sideward flight is developed.
The approach is based on empirical techniques such as drag area and shape evaluation
and on published reference data on fuselage aerodynamic characterization.
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1.4 Outline of the dissertation
In what follows, chapters 2 and 3 are dedicated to the description of rotorcraft mathemat-
ical modelling. Chapter 2 provides an overview of helicopter model levels of complexity,
and it is then focused on common features shared by helicopter models, with a special
attention to fuselage models and the assembly of helicopter equations of motion. The last
task is not trivial, as main rotor and fuselage states are strongly inertially coupled. A
detailed description of the mathematical approach used is thus proposed.

Chapter 3 is dedicated to the description of main rotor models, taking into considera-
tion different configurations (in particular articulated and gimballed rotors) and individual
blades vs tip–path–plane models. The derivation of low–order models and possible im-
provements are presented.

The results for performance and handling quality analysis are reported in the follow-
ing chapters. Chapter 4 describes the evaluation of helicopter steady–state performance.
Attention is devoted to the effects of simplifying assumptions and model complexity on
maximum performance evaluation for a UH–60A helicopter. Performance analysis is pre-
sented for an articulated configuration only.

The results on handling qualities are collected in Chapter 5 for both gimballed, teeter-
ing and articulated configurations. The first part is dedicated to the evaluation of handling
qualities by means of low–order models for gimballed rotor focusing the attention on sta-
bility analysis and identification of fuselage and rotor characteristic modes. The second
part is focused on inverse simulation as a tool to analyze handling qualities and in partic-
ular the effects of model complexity on command time histories determined by means of
inverse simulation algorithm. After an extensive qualitative and quantitative analysis of
the results, the chapter presents an original technique for solving the inverse simulation
problem for a high order model derived from a model predictive control scheme.

A chapter of conclusions ends the dissertation.
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Chapter 2

Mathematical model of the
helicopter

The mathematical description of the helicopter is a complex task and different strategies
may be adopted, depending on the purpose for which the model is developed. The equa-
tions of motion of the vehicle are written by combining the contributions of all elements.
Each element (and in particular the main rotor) can be described by means of models
characterized by various levels of complexity. More detailed models are expected to be
more accurate, but at the same time they require longer development time for implement-
ing the model, more configuration data and higher computational power for running the
desired analysis.

This chapter is devoted to the description of the features which are common for all
helicopter models, in particular fuselage, empennage, tail rotor and rigid–body equation
of motions. Before going into deeper detail, the coordinate systems used in helicopter
modelling are introduced. A self standing chapter (Chapter 3) is dedicated to the main
rotor model, which plays a major role in the development of a helicopter model.

In spite of considerable differences in terms of model complexity and level of details,
all rotorcraft models share a similar structure. They are based on a modular approach
involving a rotor, fuselage, empennage and tail rotor model as clearly described in [6].
Forces and moments generated in each element of the helicopter are then summed to
evaluate the rotorcraft rigid body dynamics.

2.1 Levels of helicopter modelling
The complexity of an helicopter simulation model is characterized mainly by two aspects:

• the description of rotor dynamics (depending on how the blade is connected to the
hub: articulated vs. rigid blade);

• the aerodynamic interaction between the main rotor and the surrounding air; this
can be described by a variety of models for rotor/blade aerodynamics, as well as
inflow, downwash, and rotor wake models;
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2 – Mathematical model of the helicopter

Table 2.1. Levels of rotor modelling*.

Level 0 Aerodynamics linear airfoil aerodynamics
static uniform inflow with momentum theory
analytically averaged aerodynamic loads

Dynamics rigid blades featuring steady-state flapping motion possibly described
in terms of multi–blade coordinates

Level 1 Aerodynamics linear airfoil aerodynamics
dynamic inflow with momentum theory
analytically integrated aerodynamic loads

Dynamics rigid blades featuring
1.1) quasi-steady motion
1.2) flap dynamics
1.3) flap+lag dynamics
1.4) flap+lag dynamics and quasi steady torsion

Level 2 Aerodynamics nonlinear airfoil aerodynamics with (limited) 3-D effects
dynamic inflow with momentum theory
local effects of blade–vortex interaction
2-D unsteady aerodynamics and compressibility effects
numerically integrated aerodynamic loads

Dynamics 2.1) rigid blades featuring flap+lag dynamics
2.2) low–order elastic bending and torsional blade models

Level 3 Aerodynamics nonlinear 3-D aerodynamics with full wake analysis
unsteady aerodynamics and compressibility effects
numerically integrated aerodynamic loads

Dynamics detailed structural representation in terms of either elastic modes or
finite elements

*Note: the definitions of Levels 1 to 3 are taken from [6].

• rotor-fuselage interaction.

In this framework, Padfield [6] proposes a classification of rotor models for simula-
tion divided into three levels of increasing complexity (Tab. 2.1, Levels 1 to 3). Level
1 models can be used for performance studies and “evaluation of parametric trends for
flying qualities”, only in the framework of low–bandwidth control tasks and “well within
operational flight envelope”. Level 2 models permit to extend the study to the whole
operational flight envelope, with medium–bandwidth control tasks. Level 3 models are
necessary for describing vehicle dynamics in extreme conditions, such as at the bounds of
the safe flight envelope, including “rotor limit loads predictions, vibration analysis, rotor
stability analysis”.
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This classification, developed for the analysis of helicopter dynamic response to con-
trols, suits also studies aimed at performance evaluation. For preliminary design purposes
and/or vehicle comparison, simpler models may suit the goals of the analysis. The re-
quirement for a simplified analysis may be dictated by the availability of just a limited set
of vehicle parameters and configuration or by the necessity for a fast evaluation of global
characteristics in terms of performance. A Level 0 rotor modelling is thus introduced which
considers blade motion at steady state and the average force and moment exchanged by
rotor and fuselage in the framework of the trim problem. Such a model is unsuitable
for simulation, but it provides a useful physical insight into the relation between design
parameters, vehicle characteristics and expected performance. As one of the goals of this
work is to provide an evaluation of the reliability of these simplified approaches, Level 0
models are introduced in the analysis when possible and their results are compared with
respect to data obtained from higher complexity models.

2.2 Coordinate Systems
For the development of the helicopter equations of motion, the following reference frames
are used:

• inertial coordinate system FI
• body coordinate system FB
• wind coordinate system FW
• nonrotating shaft coordinate system FS
• rotating shaft coordinate system FR
• hub–wind coordinate system Fw
• rotating hub coordinate system FH
• blade span coordinate systems Fbi with i = 1, · · · , Nb

• tail rotor coordinate system FT
Coordinate transformation matrices between different frames are defined through suitable
sets of Euler angles. Most of the coordinate systems are used in all helicopter models. Only
the hub–wind coordinate system Fw is used in models where rotor dynamics is described
by Tip–Path Plane model whereas a rotating hub coordinate system FH is used with
gimballed models or other configurations where rotor hub is free to move with respect to
the shaft.

2.2.1 Inertial reference frame

The inertial frame is assumed fixed to a flat, non rotating Earth, FI {N,E,D} (North-
East-Down). The coordinates of the centre of mass of the aircraft are defined in terms of
latitude, longitude, and altitude h = −D.

15
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2.2.2 Body axes

The body fixed reference frame FB has its origin at the fuselage centre of mass and moves
with it. The xB axis lies in the longitudinal plane towards the nose of the aircraft, the zB
axis lies in the longitudinal plane towards the bottom, and the yB axis directed towards
the right side of the aircraft completes a right-hand triad. Aircraft equations of motion
are written in body reference frame. The attitude of the body fixed reference frame with
respect to the inertial one can be described by means of roll φ, pitch θ, ad yaw ψ angles.
The transformation between the two reference frames is given by the matrix

LBI =

 cos θ cosψ sinψ cos θ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − cosφ cosψ cosφ cos θ

 (2.1)

In order to prevent singularities, Euler angles are limited in the following range

−π ≤ ψ ≤ π
−π/2 < θ < π/2
−π ≤ φ ≤ π

(2.2)

2.2.3 Wind axes

The origin of the wind reference frame, FW , lies on the fuselage centre of mass. The xW
axis points in the direction of the velocity, zW towards the bottom and yW completes a
right–handed coordinate system, as shown in Fig. 2.1. The transformation between the
body and wind reference frames is given by

LBW =

 cosαf cosβf − cosαf sin βf − sinαf
sin βf cosβf 0

sinαf cosβf − sinαf sin βf cosαf

 (2.3)

xB
yB

zB

yw
xw

zw















Figure 2.1. Wind axes reference frame.

where αf is the fuselage angle of attack, whereas βf is the fuselage angle of sideslip. The
velocity vector in wind axis is written as vW = (V, 0, 0)T . In body reference frame it
becomes
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vB = LBWvW =

 V cosαf cosβf
V sin βf
V sinαf cosβf

 (2.4)

2.2.4 Rotor reference frames

Nonrotating and Rotating shaft

Both nonrotating and rotating shaft coordinate systems, FS and FR, have their origin
at the rotor hub centre, in position rHB with respect to the aircraft centre of mass. The
orientation depends on shaft longitudinal iθ and lateral iφ tilt as shown in Fig. 2.2. The
transformation between body and nonrotating shaft reference frames is given by

LSB =

 cos(iθ) 0 − sin(iθ)
sin(iθ) sin(iφ) cos(iφ) cos(iθ) sin(iφ)
sin(iθ) cos(iφ) − sin(iθ) cos(iθ) cos(iφ)

 (2.5)

xB

yB

zB

yS

xS

zS

i i

i

i
i

i

Figure 2.2. Nonrotating shaft reference frame.

The yR axis of FR is aligned with the reference blade, xR axis is aligned with the reference
blade advancing direction, while zR = zS is alighed with the z axis of the nonrotating
shaft frame, so that its orientation depends on the shaft longitudinal iθ and lateral iφ
tilt. The rotation angle between the nonrotating and rotating shaft coordinate systems is
given by the reference blade azimuth position ψ counted from the −xS axis and positive
in the direction of rotation of the rotor, as described in figure 2.3. The transformation
between nonrotating and rotating shaft reference frames is given by, when the rotor turns
in anticlockwise direction when seen from above,

LRS =

 sin(ψ) cos(ψ) 0
− cos(ψ) sin(ψ) 0

0 0 1

 (2.6)

17



2 – Mathematical model of the helicopter

xS
yS

zS=zR

yR

xR



Figure 2.3. Rotating shaft reference frame.

Hub wind reference frame

xS
yS

zS=zw

yw

xww

Figure 2.4. Hub wind reference frame.

In models based on tip–path–plane (TPP) dynamics, the aerodynamic loads are more
easily written in a hub wind reference frame. As shown in Fig 2.4, the hub wind reference
frame Fw shares the same origin with the nonrotating shaft reference frame (i.e. the hub
centre) as well as the same z axis (zS = zw). The xw axis points towards the direction of
the inplane airflow velocity at the rotor hub centre. The rotation angle βw between the
nonrotating shaft and hub wind reference frames is

βw = sin−1
(
vS/

√
u2
S + v2

S

)
(2.7)

Finally the rotation matrix LwS between the reference frames is evaluated as

LwS =

 cosβw sin βw 0
− sin βw cosβw 0

0 0 1

 (2.8)

In hub wind axis the components of the airstream speed along the yw axis is always equal
to zero. The velocity along xw and zw axes is often written in nondimensional form as

vHw = ΩR (µ, 0, λ)T
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where µ is the advance ratio, whereas λ is the rotor inflow ratio, which takes into ac-
count the uniform inflow speed and the vertical component of the rotor hub speed,
λ = wS/(ΩR) − ν. The nondimensional inflow is ν = ν0 + (r + e)/R(νc cosψ + νs sinψ).
As the velocity is evaluated at the rotor centre the sine and cosine components can be
dropped so that λ = wS/(ΩR)− ν0. Note that in normal operating conditions the inflow
ratio λ is negative and the nondimensional uniform inflow coefficients ν0 is positive.

Nonrotating and Rotating hub reference frame

In the gimballed rotor, the nonrotating hub (NRH) coordinate system FNRH {x′, y′′, zH}
has the same origin of the nonrotating shaft system (the hub gimbal centre), but it is
tilted with respect to the nonrotating shaft by two rotations: a first rotation of an angle
θH about the yS axis, that brings xS in x′ and zS in z′, then a rotation about the x′ axis of
an angle φH that brings the yS axis in y′′ and z′ in zH . Finally the rotating hub coordinate
system FH {xH , yH , zH} is rotated from the NRH about zH of an angle ψ = π/2 − ψ̃H .
At ψ = 0 the reference blade is in the aft position (similarly to the rotating shaft reference
frame), and ψ increases with time in the direction of the rotation.

Blade span

The blade span coordinate system Fbi with i = 1, · · · , Nb, is centered at the ith blade
hinge, in a position rR,eR = (0, e,0) in the rotating shaft reference frame with respect to the
rotor hub centre, when an articulated rotor is considered, or rH,rcH = (0, rc, δ) in rotating
hub reference frame for a gimballed rotor. The yb axis is aligned with the blade, the xb axis
is aligned with the blade advancing direction, and zb completes a right–handed coordinate
system. The transformation between the rotating shaft (or rotating hub) and blade span
reference frames depends on flap (or coning) β and lag (if present) ζ angles and on the
hinge system geometry. For the UH–60A helicopter the lag and flap hinges are assumed
as coincident but the lag degree of freedom anticipates the flap one. The transformation
matrix is thus given by

LbR =

 cos(ζ) − sin(ζ) cos(β) sin(ζ) sin(β)
sin(ζ) cos(ζ) cos(β) − cos(ζ) sin(β)

0 sin(β) cos(β)

 (2.9)

2.2.5 Tail rotor reference frame

Tail rotor coordinate system is fixed to the vehicle. The origin is placed at the tail rotor
centre. The xT axis is parallel to the xB axis, zT axis is aligned with the tail rotor shaft.
The tail rotor is canted with respect to the fuselage around the xT axis. The tail rotor
cant angle Γ correspond to the main rotor lateral can angle iφ. The transformation matrix
between body and tail reference frame is given by
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LTB =

 1 0 0
0 cos(Γ) sin(Γ)
0 − sin(Γ) cos(Γ)

 (2.10)

2.3 Equations of motion
The equations of motion of the fuselage are formulated in the body fixed coordinate system,
using a Newtonian approach. Assuming a rigid fuselage, the governing equations are

m(v̇B + ωB × vB) = FB (2.11)
Iω̇B + ωB × (IωB) = MB (2.12)

with

vB = (u v w)T (2.13)
ωB = (p q r)T (2.14)

I =

 Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

 (2.15)

FB = (Fx Fy Fz)T (2.16)
MB = (L M N)T (2.17)

External forces FB and moments MB acting on the fuselage can be divided into the
following contributions

• main rotor inertial, elastic and aerodynamic loads, F r and M r

• fuselage aerodynamic loads, F f and M f

• horizontal and vertical tail aerodynamic loads, F ht,vt and Mht,vt

• tail rotor thrust and moment, F tr and M tr

• weight, W

so that

FB = F r + F f + F ht + F vt + F tr +W (2.18)
MB = M r +M f +Mht +M vt +M tr (2.19)

Note that all the contributions of the helicopter main components F x and Mx are writ-
ten without subscript when referred to the body–fixed reference frame. The following
paragraphs describe how fuselage, rotor, tail rotor and empennage forces and moments
can be evaluated. Some of the models (in particular rotor ones) add states (e.g. blade
flap and lag degrees of freedom, and inflow states) to the fuselage rigid body states,
xf = (u, v, w, p, q, r, φ, θ, ψ)T .

20



2.3 – Equations of motion

2.3.1 Fuselage

Until recently, fuselage aerodynamic forces and moments were usually determined by
means of wind tunnel testing, with full scale models [69, 70] when possible or with scaled
ones [71]. In recent year the developments of computational fluid dynamics (CFD) meth-
ods allowed the reduction of wind tunnel testing campaigns by generating most of the
data by means of computer simulations. In particular Direct Navier Stokes (DNS) solvers
provide good results even including the complex aerodynamic behaviour generated by the
rotor [72]. This comes at a very high computational cost which largely exceeds the lim-
its imposed by flight mechanic studies. Therefore the applicability of these techniques is
restricted to other areas of study such as fuselage design and helicopter configuration.

As a consequence simpler approaches are used in flight mechanics literature. The
simplest ones [5, 11, 73] are based on the description of fuselage drag only by means of
equivalent parasite area. This approach is followed even in models where the rotor model
is very complex [73]. The fuselage forces are referred to the fuselage aerodynamic centre
which is placed in a position rfB with respect to the aircraft centre of mass. In this case let
uf ,vf , and wf be the components of the flow in body reference frame where wf includes
the effect of rotor inflow, so that wf = wB − kλλ0 where kλ = kλ(xHB ) depends on the
vertical position of the rotor with respect to the fuselage. Fuselage aerodynamic forces are
evaluated as

F f =

 −1
2ρuf |uf |SxCDx
−1

2ρvf |vf |SyCDy
−1

2ρwf |wf |SzCDz

 (2.20)

where Sx, Sy, Sz are the projections of the fuselage area on the frontal, lateral and vertical
plane while CDi with i = x, y, z is the drag coefficient of the section. The product of
SiCDi is called the effective flat plate drag. An estimate of these terms can be obtained
by a methodology described in Prouty (p. 280) [8], not recalled here. The simple model of
Eq. (2.20) takes into account the aerodynamic drag in forward flight, in non symmetrical
flight and the main rotor downwash on the fuselage. Fuselage aerodynamic moments can
be evaluated as M f = rfB × F f . In the first phases of the design process, when the final
shape of the fuselage and the aerodynamic centre position are unknown, the aerodynamic
forces can be evaluated directly at the fuselage centre of mass.

A more complex approach involves the description of the variation of aerodynamic
forces (not only drag but also lift and sideforce) and moments as a function of the direction
of the impinging flux. This is achieved using the aerodynamic angles αf = arctan (wf/uf )
and βf = arctan

(
vf/

√
u2
f + w2

f

)
, which describe the direction of the flow in body axes.

Force and moment coefficients are provided in body or wind reference frame, but depend
only on the direct variable (αf for longitudinal parameters, βf for lateral-directional ones).
The relationship can be described by means of interpolating polynomials [74, 14, 6] or
tables [75, 76, 15, 77] accessed trough lookup table functions. The polynomial description
is faster but less accurate and cannot describe some local behaviour which conversely can
be well represented in tables.

21



2 – Mathematical model of the helicopter

In most of the previous references the longitudinal values (drag, lift and pitch moment)
are corrected for small variation of the βf angle. Large variations of βf are assumed either
unlikely at high speed or possible at low speeds only, when they have a limited impact
due to the small dynamic pressure. This assumption is correct for forward flight which
is the main objective of most of the studies cited above. A further confirmation of this
is given by the fact that aerodynamic coefficients are usually provided for an interval
−90◦ < αf < 90◦ and −30◦ < βf < 30◦, as in [15], with the notable exception of [6],
where data at high angles of attack and sideslip is provided for a generic fuselage shape,
and coefficients for normal operating condition are provided for each helicopter studied.

The limited availability of data at high angles of sideslip has a detrimental effect on the
ability to represent some important flight conditions. As an example in hover αf ≈ −90◦
and βf may vary due to small perturbations from perfectly stationary flight. The results
of lateral and rearwards flight are even more biased when a limited set of data is used or
data available on narrow ranges are extrapolated.

For this reason for this thesis a complete map of aerodynamic coefficients based on
the full αF and βf envelope has been developed. When data is not available (i.e. in
rearward flight) the database was built on the bases of both empirical considerations [8]
and available data of rearward flight [71, 6]. Even when the database is complete for all
αf and βf values, particular attention needs to be paid for ensuring that the boundary
conditions of the database are consistent (e.g. when βf = ±90◦, αf is not defined but forces
and moments in body reference frame have to be close to constant for small perturbations
around that particular condition).

This method allows for the evaluation at any time step of fuselage forces and moments
in body reference frame as a function of the dynamic pressure and aerodynamic angles.
This approach was used to model a UH-60A fuselage based on data published in Refs. [15]
and [77].

The final force and moment coefficients are written in the fuselage reference frame
(with axes parallel to the body–fixed ones, but centered in the aerodynamic centre) to
avoid at any time step the coordinate transformation between wind and fuselage (body)
reference frames, where aerodynamic coefficients are evaluated as in [17]. Forces are thus
evaluated in the form

F f = ρ

2V
2
f Sref

 CA,xf (αf , βf )
CA,yf (αf , βf )
CA,xf (αf , βf )

 (2.21)

where Sref is a reference area which is used to scale force coefficients and Vf = u2
f+v2

f+w2
f .

By taking into account the displacement between fuselage aerodynamic centre and CoG,
the fuselage aerodynamic moments are evaluated according to the following formula,

M f = ρ

2V
2
f Sref `ref

 CA,lf (αf , βf )
CA,mf (αf , βf )
CA,nf (αf , βf )

+ rfB × F f (2.22)

where `ref is a reference length (e.g. `ref = R).
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2.3.2 Main rotor

The rotor is the most important element of the helicopter and, as a consequence, its model
plays a fundamental role in the description of helicopter flight mechanics. As described
in detail is section 2.1, the level of detail introduced in rotor dynamic and aerodynamic
description defines the mathematical model complexity and accuracy and therefore its
possible fields of use. Provided that the aim of this dissertation is to identify which level
of detail is required for particular tasks in rotorcraft flight mechanics analysis (e.g. perfor-
mance in level flight, handling qualities, etc. ), a wide set of rotor models are developed
and coupled with the same fuselage aerodynamic model. To allow a modular approach
in the development of full rotorcraft simulators, a standard interface was developed be-
tween fuselage and rotor models. Furthermore, since the evaluation of inflow speed is
strictly related to the rotor operating condition, the inflow model is included in the main
rotor model. This is a reasonable choice when a dynamic inflow model is selected, and
it becomes mandatory when a static inflow is used, as its evaluation requires an iterative
scheme with main rotor thrust.

Chapter 3 describes in great details rotor models including different configurations
such as articulated and gimballed rotors. Rotor states dynamic equations as well as force
and moment equations are derived for both individual blade and low–order models. In
particular the rotor of the UH-60A helicopter is used as a reference for the derivation of
the equations of motion of an articulated rotor. If the rotor is described by means of
individual blade dynamics with flap, lag, and dynamic twist degrees of freedom, the rotor
state is described by

xr =
(
βi, · · · , βNb , β̇i, · · · , β̇Nb , ζi, · · · , ζNb , ζ̇i, · · · , ζ̇Nb , ϕi, · · · , ϕNb , ϕ̇i, · · · , ϕ̇Nb

)T
where βi, ζi, and ϕi are the flap, lag, and dynamic twist angles of the ith blade, respectively.
Conversely, if the rotor is described by 2nd order TPP dynamics, the rotor state is

xr =
(
a0, ȧ0, a1, ȧ1, b1, ḃ1

)T
where a0, a1, and b1 are rotor coning, longitudinal and lateral TPP tilt respectively.

2.3.3 Tail rotor

The tail rotor can be modeled as the main rotor, but usually such a level of detail is not
necessary as the most important features are rotor thrust and its inflow speed, whereas
inplane forces and tail rotor hub moments are often neglected. Simpler models are usually
sufficient, such as those based on Bailey coefficients [18], adopted in Refs. [15] and [17],
or tip–path–plane models like that proposed by Talbot et al. [14]. The tail rotor model
described in [15] and used in this work for the UH–60A model is described later in this
section.

In other cases, the tail rotor model is identified from wind tunnel data. One example
is represented by K4A-2H tail rotor, which presents a peculiar configuration where the
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thrust delivered by a ducted fan, or fenestron, is controlled varying rotor rpm rather than
blade pitch. Furthermore, the tail rotor is driven by a hydraulic motor. Due to these
innovative features, a wind tunnel test campaign was conducted and the results used to
identify a mathematical model [78]. Thrust is evaluated as

Ttr = Ttr(ntr, V, βtr)

where ntr represents rotor rpm, V and βtr are speed and angle of sideslip at the tail rotor
hub centre, respectively.

The most difficult part in the development of a tail rotor model is often represented by
the reliable evaluation of main rotor and fuselage downwash effect on the air impinging on
the tail rotor itself. Due to the complex shape of main rotor and fuselage downwash and
the fact that the tail rotor enters the downwash region only in a limited speed range, the
interaction is usually described by a lookup table as a function of advance ratio µ, rotor
skew angle χ and tip–path–plane tilt.

Tail rotor aerodynamic model

Tail rotor forces and moments are evaluated by means of momentum theory, as described
in [7]. This technique is computationally far less demanding than individual blade models
used for the main rotor. The smaller size and a (relatively) limited impact on vehicle
dynamics allow for the employment of such a technique even in high–order models. Tail
rotor thrust Ttr and inflow intensity νtr are thus reasonably estimated as a function of
collective command θ0tr at a modest computational cost.

Tail rotor forces and moments are evaluated in tail rotor reference frame, described in
section 2.2.5. The velocity of the tail rotor centre vtr = (utr, vtr, wtr)T is given by

vtr = LTB
(
vtrB + vλr + vλf

)
= LTB

(
vB − rtrB × ωB + vλr + vλf

)
(2.23)

where rtrB is the vector which connects fuselage centre of mass with tail rotor hub centre and
vλr and vλf are the induced velocities due to interaction with main rotor and fuselage,
respectively. Given the tail rotor radius Rtr and its angular speed Ωtr, the tail rotor
advance ratio µtr is given by

µtr =

√
u2
tr + v2

tr

ΩtrRtr
(2.24)

The inflow coefficient is

λtr = wtr
ΩtrRtr

− νtr (2.25)

Tail rotor thrust Ttr is evaluated as

Ttr = 2ρπR4
trνtrΩ2

trvTtr (2.26)

where
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2.3 – Equations of motion

vTtr =
√
µ2
tr + λ2

tr (2.27)

Tail rotor blade pitch is given by

Θ′tr = θ0tr − Ttr
∂a0
∂Ttr

tan δ3tr + Θbias (2.28)

where θ0tr is the collective command, a0 is the tail rotor coning angle, δ3tr is the tail rotor
flapping hinge offset angle, and Θbias is the blade pitch correction due to linear twist.

The inflow dynamics is derived with the same approach used for main rotor inflow and
described in Section 2.4. Only the uniform nondimensional term νtr is considered for the
tail rotor, which evolves according to the first-order dynamics

1
ΩtrvTtr

4
3π ν̇tr + νtr = 1

2vTtr
CTtr (2.29)

where CTtr is the tail rotor thrust coefficient. To evaluate rotor thrust, Bailey coeffi-
cients [18] are introduced

t3.1 = 1
2B

2
tr + 1

4µ
2
tr

t3.2 = 1
3B

3
tr + 1

2Btrµ
2
tr

t3.3 = 1
4B

4
tr + 1

4B
2
trµ

2
tr

(2.30)

where Btr is the blade tip loss factor. According to Bailey, the thrust coefficient can be
expressed as

CTtr = vTtrσtratr
µtrt3.1 + Θ′trt3.2 + θ1tt3.3

2vTtr + σtratr
2 t3.1

(2.31)

where σtr is tail rotor solidity, atr is the tail rotor airfoil linear lift coefficient, whereas θ1t
represents blade twist.

Taking into account only the aerodynamic contribution, tail rotor forces and moments
in body axes are evaluated as

Xtr = 0
Ytr = Ttr sin Γtr
Ztr = −Ttr cos Γtr

(2.32)

 Ltr
Mtr

Ntr

 =

 xtr
ytr
ztr

×
 Xtr

Ytr
Ztr

 (2.33)

2.3.4 Empennage

Helicopters with a conventional configuration (single main and tail rotors) usually include
a vertical tail to lessen the yaw moment balancing effort required to the tail rotor at higher
speed, thus saving power as the tail rotor requires less thrust. Furthermore a horizontal
stabilizer is often introduced to improve longitudinal stability in forward flight. Sometimes
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2 – Mathematical model of the helicopter

the horizontal stabilizer can be tilted at low speed to decrease the drag of the downwash
impinging on the stabilizer.

Horizontal tail aerodynamics

The horizontal tail is modeled as a low aspect ratio finite wing. Lift and drag are given
by the classic expressions

Lht = ρ

2V
2
htShtCL(αht) (2.34)

Dht = ρ

2V
2
htShtCD(αht) (2.35)

where Vht =
√
u2
ht + v2

ht + w2
ht is the wind velocity on the surface, and αht is the angle

of attack of the horizontal tail. CL(αht) and CD(αht) are evaluated from lookup tables
based on wind tunnel tests or high fidelity CFD simulations of the airfoil used or wing
configuration.

The main rotor wake and fuselage downwash affect the tailplane aerodynamics in a
complex way. To model this influence accurately an extensive analysis of the wake would
be required. This can be accomplished by wind tunnel testing or CFD simulation. If
data is available (as in the case of UH–60A) the airspeed Vht at the horizontal tail can be
evaluated as

vht = (uht, vht, wht)T = (vB + ωB × rhtB )kht + vhtλ (2.36)

where rhtB is the position of the horizontal tail aerodynamic centre with respect to the
aircraft centre of mass, vhtλ collects the influence of the rotor and fuselage wake onto the
horizontal tail, and kht is a factor accounting for the loss of dynamic pressure.

When the detailed data on the effects of wakes on the tailplane is not available, some
simplifying assumptions can be used to derive an approximate solution: the wake has
constant radius and the induced flow has uniform speed; no circulation effects are con-
sidered, and the inflow is considered parallel to the rotor shaft. Under these simplifying
assumptions, the main rotor wake affects the aerodynamic characteristics on the horizon-
tal tail only in a limited range of flying conditions: under or above some forward flight
velocities, the wake does not impinges on the tail. This effect is modeled with a inflow
velocity intensity factor ki [79, 6] for the inflow velocity λ0 = ν0ΩR in the expression of
vhtλ = (0, 0, kiλ0)T .

The coefficient ki is equal to 1 when the tail is completely immersed in the wake, it
is equal to zero when the tail plane is outside of the wake. These values are interpolated
at intermediate values when there is only a partial interaction. As shown in the sketch of
Fig. 2.5 the wake angle is

tanχu = u

vi − w
(2.37)
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2.3 – Equations of motion

Figure 2.5. Interference of the main rotor wake with the horizontal stabilizer
at different skew angles.

Let

tanχ1 = lt −R
ht

(2.38)

tanχ2 = lt −R+ lh
ht

(2.39)

tanχ3 = lt +R

ht
(2.40)

tanχ4 = lt +R+ lh
ht

(2.41)

If the wake angle is lower that χ1, or larger than χ4, the wake does not impinge on the
horizontal tail and ki = 0. If χu is between χ2 and χ3 than ki = 1, if χu is between χ1 and
χ2 or χ3 e χ4 then ki = (χu−χ1)/(χ2−χ1) in the first case, and ki = (χu−χ4)/(χ3−χ4)
in the second one.

Lift and drag are then projected onto the body frame so that

F ht =

 cosαht cosβht − cosαht sin βht − sinαht
sin βht cosβht 0

sinαht cosβht − sinαht sin βht cosαht


 −Dht

0
−Lht

 (2.42)

where

αht = tan−1 (wht/ |uht|)
βht = tan−1

(
vht/

√
u2
ht + w2

ht

) (2.43)

Finally horizontal tail moment in body reference frame can be evaluated as Mht = rhtB ×
F ht.
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2 – Mathematical model of the helicopter

Vertical tail aerodynamics

A similar approach can be used for the vertical tail even if in this case the rotor wake
effect is less important and the fuselage sidewash plays a more significant role. Vertical
lift and drag are modeled as

Lvt = ρ

2V
2
vtSvtCL(βvt) (2.44)

Dvt = ρ

2V
2
vtSvtCD(βvt) (2.45)

where βvt is the angle of sideslip and is evaluated as

αvt = tan−1 (wvt/ |uvt|)
βvt = tan−1

(
vvt/

√
u2
vt + w2

vt

) (2.46)

and Vvt =
√
u2
vt + v2

vt + w2
vt is the wind velocity on the surface. Its components are

evaluated as
vvt = (uvt, vvt, wvt)T = (vB + ωB × rvtB )kvt + vvtλ (2.47)

where, as in the horizontal tail case, vvtλ collects the influence of rotor and fuselage wakes
onto the vertical tail while kvt is a factor accounting for the loss of dynamic pressure.
Vertical tail forces in body axes are evaluated as

F vt =

 cosαvt cosβvt − cosαvt sin βvt − sinαvt
sin βvt cosβvt 0

sinαvt cosβvt − sinαvt sin βvt cosαvt


 −Dvt

Lvt
0

 (2.48)

while moment in body reference frame can be evaluated as M vt = rvtB × F vt.

2.4 Inflow

The frequencies of inflow dynamic modes are of the same order of magnitude as those of
rotor blade flapping modes. It is therefore important to use a dynamic model for rotor
inflow to analyse the stability characteristics of the helicopter. There are many possible
inflow models for the representation of induced velocities at and near a lifting rotor:
uniform or nonuniform, static or dynamic, finite-state or distribute parameters models. A
survey of nonuniform inflow models can be found in Ref. [80].

The Peters-Ha [81] inflow model adopted here is a three-state unsteady inflow model
that treats the inflow variables as dynamic states. It is widely used in flight dynamics
applications. A more detailed modelling approach could have been achieved considering
higher order inflow harmonics [82], but the added complexity was considered not necessary
for the analysis of performance and handling qualities carried out in this study.

The inflow velocity field is modeled with a three-state model, and the flow is considered
orthogonal to the tip–path–plane. The three states represent the uniform component of
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2.4 – Inflow

induced velocity on the rotor disk ν0 and the first harmonic terms, namely, the longitudinal
and the lateral components of a triangular velocity distribution, νc and νs, respectively.

The velocity field is therefore described as

vi(x, ψ) = ΩR [ν0 + xνs sinψ + xνc cosψ] (2.49)

where x = (e+r)/R is the nondimensional position along blade span in articulated rotors,
whereas it is x = (rc + r)/R for gimballed ones.

The equations of motion are first order, linear, time-variant ordinary differential equa-
tions, which are written in hub wind axes in the form [81]

1
ΩMλ

 ν̇0
ν̇ ′s
ν̇ ′c

+L−1
λ

 ν0
ν ′s
ν ′c

 =

 CT
C ′l
C ′m


aero

(2.50)

where the apparent mass matrix Mλ is given by

Mλ =


8
3π 0 0

0 − 16
45π 0

0 0 − 16
45π

 (2.51)

The static gain matrix Lλ is

Lλ =



1
2vT

0 15π
64vM

tan χ2
0 − 4

vM (1 + cosχ) 0
15π
64vT

tan χ2 0 − 4cosχ
vM (1 + cosχ)

 (2.52)

where

µ =
√
u2
S + v2

S/(ΩR) is the advance ratio in wind axes
λ = −wS/(ΩR) + ν0 represents total inflow through the rotor

vT =
√
λ2 + µ2 is the resultant flow through the rotor

χ = arctan µ
λ

provides the wake skew angle and

vM = µ2 + λ(λ+ ν0)
vT

represents the mass-flow parameter due to cyclic disturbances

The model is expressed in hub wind axes. It is thus necessary to transform the lon-
gitudinal and lateral inflow terms into the nonrotating shaft frame, with a rotation βw
described by the coordinate transformation matrix L̃wS (see section 2.2.4).
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Figure 2.6. Inflow diagram in wind axes.

L̃wS =

 1 0 0
0 cosβw sin βw
0 − sin βw cosβw

 (2.53)

with βw = sin−1
(
vS/

√
u2
S + v2

S

)
. The following formulation is thus obtained

1
ΩMλL̃wS

 ν̇0
ν̇s
ν̇c

+L−1L̃wS

 ν0
νs
νc

 = L̃wS

 CT
Cl
Cm


A

(2.54)

with thrust, pitch and roll moments coefficients defined as

CT = T

ρπR2(ΩR)2 (2.55)

Cl = LA
ρπR3(ΩR)2 (2.56)

Cm = MA

ρπR3(ΩR)2 (2.57)

(2.58)

in the nonrotating shaft frame. The evaluation of rotor thrust and aerodynamic moments
is described in detail in Chapter 3.

2.5 Assembly of equations of motion
The system of nonlinear differential equations of motion presented in this chapter together
with rotor equations described in detail in chapter 3 is not explicitly written in first–order
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2.5 – Assembly of equations of motion

state variable form. In fact when the rotor is described by 2nd order dynamics, some rotor
states are inertially coupled with fuselage ones. As a consequence derivatives of velocity
variables appear both on the left and on the right hand side in some equations. In the
most general form, the model can be written in 1st order form as

ẋ = f̃ (ẋ, x, u, t) = f∗ (x, u, t)− M̃ (x, u, t) ẋ (2.59)

where x collects all rotorcraft states as

x = (xTf ,xTr ,xTλ ,xTtr)T (2.60)

assuming that xf , xr, xλ, and xtr are fuselage, main rotor, inflow and tail rotor states,
respectively, and u = (θ0, A1s , B1s , θ0tr)T is the command vector. The matrix M̃ collects
all the coefficients of derivatives of velocity variables in the right hand side of f̃ set of
equations. Conversely f∗ collects all the terms which do not depend on state derivatives.
To integrate in time, the system is rewritten in first–order form as

M (x, u, t) ẋ = f (x, u, t) (2.61)

so that it can be solved as

ẋ = M−1f (x, u, t) (2.62)

The inertial coupling matrix M = I + M̃ is divided for practical reasons into two diagonal
blocks

M =
[

Mc 0
0 Muc

]
(2.63)

where the block Mc is relative to the inertially coupled states (xc), and the block Muc

which contains uncoupled states (xuc). The latter block Muc is diagonal and does not
need to be inverted for the solution of the system, while Mc is a full–order matrix which
needs to be inverted at every time step in order to evaluate state derivatives. When second
order dynamics is used to describe the rotor, rotor state accelerations (either flap,lag, TPP
tilt or hub tilt) are inertially coupled with rigid body velocity derivatives. The coupled
states vector can be assembled as

xc =
(
uB, vB, wB, pB, qB, rB, x

T
rc

)T
(2.64)

where xrc contains the inertially coupled states of the rotor which depend both on the
rotor configuration (articulated, teetering, gimballed, etc.) and on modelling approach
(individual blade, TPP dynamics, etc. ). As an example, in an articulated rotor with flap
and lag degrees of freedom described by means of individual blade dynamics, the coupled
states are xrc =

(
β̇i, · · · , β̇Nb , ζ̇i, · · · , ζ̇Nb

)T
. For a 4-bladed rotor (Nb = 4) the xc vector

of coupled states counts 14 elements (6 for the fuselage and 8 for the rotor) and as a
consequence Mc is a 14x14 matrix (which needs to be inverted at every time step). If the
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2 – Mathematical model of the helicopter

same rotor configuration is described by means of 2nd order TPP dynamics (see Sect. 3.2),
the vector of rotor coupled states is xrc =

(
ȧ0, ȧ1, ḃ1

)T
and xc counts only 9 elements.

The vector of uncoupled states xuc includes fuselage attitude angles as well as all the
rotor and inflow states which are not inertially coupled. As an example, for the articulated
rotor with flap and lag degrees of freedom described by individual blade dynamics the
uncoupled state vector is given by

xuc = (φB, θB, ψB, βi, · · · , βNb , ζi, · · · , ζNb , ν0, νs, νc, νtr) (2.65)

The matrix Mc is the results of the contributions of rigid-body fuselage equations of motion
and of rotor equations, and is given by

Mc = Mfc + Mrc (2.66)

The contribution of the fuselage equations of motion is limited to rigid body states xfc =
(uB, vB, wB, pB, qB, rB)T and is given by

Mfc =
[
mI3 0
0 I

]
(2.67)

where m is the fuselage mass, I3 is a 3x3 identity matrix, and I is the helicopter inertia
tensor. All the terms in the Mrc matrix are derived in Chapter 3 for both individual blade
and TPP dynamics model for an articulated rotor configuration. A similar description of
a two–bladed gimballed rotor is presented in [78].
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Chapter 3

Rotor models

As already discussed in Section 2.3.2, the rotor is the most important element of the he-
licopter and, as a consequence, its model plays a fundamental role in the description of
helicopter flight mechanics. The present chapter is aimed at presenting the development
of mathematical models for the description of different rotor configuration. First an artic-
ulated rotor is considered and both individual blade dynamics and tip–path–plane lower
order models are developed for the UH-60A main rotor. In the sequel a similar approach
is followed for the description of a teetering rotor. At the end of the chapter, the develop-
ment of low order models for a two–bladed gimballed rotor is discussed in detail, whereas
a high order model for this configuration is discussed in detail in [78].

In order to develop an approach to helicopter modelling as modular as possible, the
rotor models developed for this analysis share the same inputs and outputs. The same
fuselage model can thus be interfaced with rotor models with different levels of complexity.
Standard inputs for the rotor models are

• linear vHB and angular ωHB speed at rotor hub centre in body reference frame;

• rotor states xr;

• inflow states xλ;

• main rotor commands Θ = (θ0, A1S , B1S )T ;

• rotor configuration data (including lag damper, if required);

• air density and temperature.

Standard outputs for the rotor models are:

• rotor forces F rS and moments M rS in nonrotating shaft reference frame.

• rotor states derivatives ẋr or right hand side of the equation Mrẋr = f(xr) in case
of dynamic coupling between rotor and fuselage states;

• mass matrix of coupled states derivatives Mr if needed;
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3 – Rotor models

• inflow states derivatives ẋλ;

• wake skew angle χ;

• coning βc, longitudinal βlng, and lateral βlat flapping multiblade coordinates, in case
individual blade models are considered.

One of the helicopters whose details and configuration data are more easily available, as
well as the baseline of many studies in rotorcraft aeromechanics (including the present one)
is the UH–60A [15]. It features a single main rotor with articulated blades. The availability
of a rather complete set of data, and a considerable amount of publicly available studies,
including flight tests, made it the ideal choice for the present analysis. Both individual
blade and tip–path–plane models were developed for this vehicle. The following sections
describe in details the derivation of these models.

3.1 Individual blade models

This chapter describes the procedure for the evaluation of blade dynamics together with
forces and moments transmitted by the rotor to the fuselage for an individual blade model.
The procedure is then implemented for the UH-60A rotor, a fully articulated rotor with
coincident flap and lag hinge axes. The same set of equations can be used (with minor
variations) to describe an articulated rotor with a different hinge sequence or a teetering
rotor. An equivalent flap hinge with elastic restraint can be used for representing, with a
coarser accuracy, the dynamic response of a rigid (hingeless) rotor.

A Newtonian approach is adopted, based on the description of a generic blade element
motion, where the blade element speed in blade span reference frame determines the
relative velocity of the airfoil on which the blade element is fixed and as a consequence the
aerodynamic loads. Equations of motion for both blade flap and lag degrees of freedom
are thus derived, together with rotor inertial loads from the acceleration of the generic
blade element.

3.1.1 Assumptions

In the development of the individual blade model for an articulated rotor, the most im-
portant simplifying assumptions are:

1. rotor blades are assumed rigid in the flap and lag direction;

2. blade mass is assumed to be concentrated along the blade span axes;

3. blade torsional degree of freedom is modeled empirically as a dynamic twist affecting
independently each blade;

4. aerodynamic moments developed by the airfoil around the blade pitch axis are ne-
glected;
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3.1 – Individual blade models

5. flap and lag hinges are assumed to be coincident, with the flap rotation following
the lag rotation in the sequence;

6. No pitch–flap couplingKPC is included in the model. Nonetheless the introduction of
pitch–flap coupling has no direct effect on the inertial coupling of rotor and fuselage
equations of motion (its effect is mainly aerodynamic and given by the reduction of
the blade geometric pitch θG when flap is increased);

7. The weight of the blade is assumed negligible and it is thus not included in the flap
and lag equations of motion;

8. Aerodynamic loads on the blade are evaluated by means of blade element theory;

9. The calculation of aerodynamic loads on each blade section is based on quasi–steady
aerodynamics; the only unsteady aerodynamic effect is represented by the dynamic
inflow (see Section 2.4);

10. Compressibility effects on rotor blades are accounted for, when data are available
from wind tunnel testing (e.g. for the UH–60A airfoil a complete database is found
in Ref. [15] for airfoil lift and drag coefficients for −180 deg < α < 180 deg and Mach
number ranging from 0 to 1); if experimental data are not available, Prandtl-Glauert
correction can be used;

11. Dynamic stall effects are not included; static stall is accounted for in the lift and
drag coefficients.

3.1.2 Blade element kinematics

To describe the motion of a generic blade element, the motion of rotor hub is related to
the motion of the helicopter centre of mass first, then the motion of the blade element
with respect to the rotor centre is added. In this process the selection of the correct
reference frames is fundamental in achieving a formulation as compact as possible. The
equations are derived only in vector form. The components are presented only for the
most important variables. The starting points in the description of blade element motion
are the linear (vB) and angular (ωB) velocities of the helicopter in body–fixed reference
frame, where

vB = (u v w)T (3.1)

ωB = (p q r)T (3.2)

To evaluate the linear and angular speed of the hub centre in nonrotating frame, the
position vector rHB of the hub centre in body frame is required,

rHB = (xH yH zH)T (3.3)

Using the transformation matrix LSB from body to nonrotating shaft reference frames
(see section 2.2.4) the linear and angular speed in nonrotating shaft are evaluated as
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3 – Rotor models

vS = (uS , vS , wS)T = LSBv
S
B = LSB

(
vB + ωB × rHB

)
(3.4)

ωS = (pS , qS , rS)T = LSBω
S
B = LSBωB (3.5)

The body frame and the nonrotating frame are both fixed to the fuselage. The only differ-
ence lies in the shaft tilt angles iθ and iφ in the longitudinal and lateral plane respectively.
The relative rotation speed ωS/BB between the two reference frames is equal to zero and
the transformation matrix LSB is constant in time. In the description of blade motion and
rotor force and moments the components of linear and angular motion in the nonrotating
frame are used in place of the components in body frame to save the overhead of the
rotation matrix and radius between centre of gravity and hub centre.

The rotating shaft reference frame shares the same origin with the nonrotating one,
but the relative angular speed between the two frames ωR/SR is determined by the rotor
angular speed Ω. For an anticlockwise rotation of the rotor when seen from above, ωR/SR =
(0,0,−Ω)T . Linear and angular speed in rotating frame are

vR = LRSvS (3.6)

ωR = LRSω
S
S + ωR/SR = LRSω

S
S + (0,0,−Ω)T (3.7)

To evaluate the speed of a generic blade element, the position vector rR,bR with respect to
the origin of the rotating shaft reference frame is defined for a generic blade element. This
vector is characterized by two parts: the first part describes the distance of the flap/lag
hinge from the rotor centre along blade span, whereas the second term accounts for the
radial distance r of the blade element from the hinge in blade reference frame:

rR,bR = (0, e,0) +LRb (0, r, 0)T (3.8)

The speed of the generic blade element in rotating shaft frame is thus given by

vbR = vR + ωR × rR,bR + ṙR,bR (3.9)

Finally, the speed of the blade element in blade span reference frame can be evaluated as:

vb = LbRvbR (3.10)

To determine rotor inertial force, blade element acceleration is required. Among the
reference frames available, the nonrotating shaft is preferred, as it allows to write the
equations in the most compact form. To evaluate the acceleration of the blade element,
as a first step the blade element speed is transformed into nonrotating shaft components:
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vbS = LSRv
b
R (3.11)

Then the acceleration is evaluated as

abS = v̇bS + ωS × vbS (3.12)

The derivation of blade equations of motion requires the blade element accelerations writ-
ten in blade span reference frame,

abb = LbRLRSa
b
S (3.13)

3.1.3 Aerodynamic loads

Equation (3.10) can be modified in order to include the speed of the blade element with
respect to the surrounding air including the effect of the inflow. In this respect, the usual
approach presented in the literature (see for example [17]) is to write the components of
vb in terms of tangential, radial and vertical terms,

vb = UT ib + URjb + UPkb (3.14)

where the components UT ,UR, and UP are

UT = [uS sin(ψ + ζ) + vS cos(ψ + ζ)]− e(rS − Ω) cos ζ
+r
{
ζ̇ cosβ + sin β [pS cos(ψ + ζ)− qS sin(ψ + ζ)]

−(rS − Ω) cosβ}

UR = − [uS cosβ cos(ψ + ζ)− vS cosβ sin(ψ + ζ) + wS sin β]
−e [sin β(qS cosψ + pS sinψ) + (rS − Ω) cosβ sin ζ] + URλ

UP = [−uS sin β cos(ψ + ζ) + vS sin β sin(ψ + ζ) + wS cosβ]
+e [cosβ(qS cosψ + pS sinψ)− (rS − Ω) sin β sin ζ]
+r
[
−β̇ + qS cos(ψ + ζ) + pS sin(ψ + ζ)

]
+ UPλ

(3.15)

The contribution of the inflow to the local velocity components assuming a three–states
triangular inflow model (described in section 2.4) are

URλ = ΩR sin β {−ν0 − ε(νc cosψ + νs sinψ)
−r/R[νc cos(ψ + ζ) + νs sin(ψ + ζ)]}

UPλ = ΩR cosβ {−ν0 − ε(νc cosψ + νs sinψ)
−r/R[νc cos(ψ + ζ) + νs sin(ψ + ζ)]}

(3.16)

When the effects of inflow are included in the vertical and radial speed, the angle of
attack on the blade element can be evaluated as

α = θG + tan−1 UP
UT

; (3.17)
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where the geometric pitch θG at the desired blade element is given by

θG = θ0 +A1S cosψ +B1S sinψ + θtw + θdt; (3.18)

In the most general case blade twist is a nonlinear function θtw = θtw(r) which can be
obtained from lookup tables as a function of blade element radial position. The dynamic
twist (when included in the model) is a function of radial position through a shape function
in the spatial domain and of the generalized coordinate ϕ1, which describe the motion in
time, θdt = θdt(r, ϕ1). The dynamic twist is described in detail in section 3.1.6.

The direction ϕ of the airstream imping on the blade element in blade span reference
frame is given by

ϕ = tan−1 UP
UT

(3.19)

The lift and drag coefficient (CL and CD respectively) are read from lookup tables as a
function of angle of attack α and Mach number. The blade is divided into Ns elements
with width ∆yb and area Sb = c∆yb, which centre is at a distance rk from the blade hinges.
If the elements are all equal, ∆yb = (R− e)/Ns. The aerodynamic loads acting on the kth

blade elements are

FAk =

 1
2ρV

2Sb (−CD cosϕ− CL sinϕ)
0
1
2ρV

2Sb (CD sinϕ− CL cosϕ)

 (3.20)

where V 2 = U2
P + U2

T . The aerodynamic load is assumed to act at the midpoint rk of
the blade element. The total aerodynamic shear forces at the hinge and the aerodynamic
moments about the hinge in blade span frame for the ith blade are given by

FA,ib = ∑Ns
k=1 FAk

MA,ib = (MβA , 0, MζA)T = ∑Ns
k=1 rk × FAk

(3.21)

The force and moments of the ith blade in non rotating shaft can be evaluated as

FA,iS = LSRLRbiFA,ib

MA,iS = LSR [reR × (LRbiFA,ib)]
(3.22)

3.1.4 Inertial loads

The inertia forces are derived integrating blade accelerations in the nonrotating frame, as
described in Eq. (3.12). Shear forces are transmitted to the rotor hub through the hinges.
The components of the inertia forces F IS = FI,xSiS + FI,ySjS + FI,zSkS for each blade
can be evaluated as

FI,xS =
∫ R
e ρb aS,x dr

FI,yS =
∫ R
e ρb aS,y dr

FI,zS =
∫ R
e ρb aS,z dr

(3.23)
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After the computation is performed, the components of the rotor inertia force in nonro-
tating frame for the ith blade are

FI,xS = mb

〈
−u̇S − e

{
cosψi

[
(Ω− rS)2 + q2S

]
− sinψi (ṙS − qSpS)

}〉
+Sb

〈
sin βi

[
q̇S + rSpS − β̈i cos (ψi + ζi)− 2

(
rS − Ω− ζ̇i

)
β̇i sin (ψi + ζi)

]
− cosβi

{[(
rS − Ω− ζ̇i

)2
+ β̇2

i + q2S

]
cos (ψi + ζi)−

(
ṙS − ζ̈i − qSpS

)
sin (ψi + ζi)

}
+2β̇i cosβqS

〉
FI,yS = mb

〈
−v̇S − e

{
− sinψi

[
(Ω− rS)2 + p2

S

]
− cosψi (ṙS + qSpS)

}〉
+Sb

〈
sin βi

[
−ṗS + qSrS + β̈i sin (ψi + ζi)− 2

(
rS − Ω− ζ̇i

)
β̇i cos (ψi + ζi)

]
cosβi

{[(
rS − Ω− ζ̇i

)2
+ β̇2

i + p2
S

]
sin (ψi + ζi) +

(
ṙS − ζ̈i + qSpS

)
cos (ψi + ζi)

}
−2β̇i cosβpS

〉
;

FI,zS = mb {−ẇS − e[ṗS sinψi + q̇S cosψi + (2Ω− rS)(pS cosψi − qS sinψi)]}
+Sb

〈
cosβi

{
−ṗS sin(ψi + ζi)− q̇S cos(ψi + ζi) + β̈i

+2β̇i sin βi[pS sin(ψi + ζi) + qS cos(ψi + ζi)]− sin βi(p2
S + q2S + β̇2

i )
}

+(rS − 2Ω− 2ζ̇i)[pS cos(ψi + ζi)− qS sin(ψi + ζi)]
〉

(3.24)
The main rotor inertial forces include terms which depend on state highest order deriva-
tives. For this reason these terms need to be grouped in an inertial coupling matrix M
(see Section 2.5). As a consequence, Eq. 3.24 can be rearranged in the form

MFI,xẋc = fFI,x
MFI,yẋc = fFI,y
MFI,zẋc = fFI,z

(3.25)

where MFI,i with i = x, y, z is the array which contains the term of the inertial forces
depending on highest order state derivatives and ẋc is the vector which contains the
derivatives of the velocity variables which are inertially coupled. These states are expressed
in body fixed reference frame and the vector of coupled velocity variables for an articulated
rotor with Nb blades is given by

xc =
(
uB, vB, wB, pB, qB, rB, β̇i, · · · , β̇Nb , ζ̇i, · · · , ζ̇Nb

)T
(3.26)

Equation (3.25) and all the following equations in the present section are referred to the
ith blade. No i subscript is included in the formula in order to maintain the notation as
simple as possible. The coupling matrices can be reorganized as follows
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3 – Rotor models

MFI,x =
(
MFI,xV LSB, MFI,xV LSB r̃

H
B + MFI,xωLSB, MFI,xβ , MFI,xζ

)
MFI,y =

(
MFI,yV LSB, MFI,yV LSB r̃

H
B + MFI,yωLSB, MFI,yβ , MFI,yζ

)
MFI,z =

(
MFI,zV LSB, MFI,zV LSB r̃

H
B + MFI,zωLSB, MFI,zβ , MFI,zζ

) (3.27)

The right hand side of the inertia forces fFI,i with i = x, y, z is thus given by

fFI,x = mb

〈
−qSwS + rSvS − e

{
cosψi[(Ω− rS)2 + q2S ] + sinψiqSpS

}〉
+Sb

〈
− cosβi

{[
(rS − Ω− ζ̇i)2 + β̇2

i + q2S

]
cos(ψi + ζi) + qSpS sin(ψi + ζi)

}
+ sin βi

[
rSpS − 2(rS − Ω− ζ̇i)β̇i sin(ψi + ζi)

]
+ 2β̇i cosβqS

〉
fFI,y = mb

〈
−rSuS + pSwS − e

{
− sinψi[(Ω− rS)2 + p2

S ]− cosψiqSpS
}〉

+Sb
〈
cosβi

{[
(rS − Ω− ζ̇i)2 + β̇2

i + p2
S

]
sin(ψi + ζi) + qSpS cos(ψi + ζi)

}
+ sin βi

[
qSrS − 2(rS − Ω− ζ̇i)β̇i cos(ψi + ζi)

]
− 2β̇i cosβpS

〉
fFI,z = mb [−vSpS + uSqS − e(2Ω− rS)(pS cosψi − qS sinψi)]

+Sb
〈
cosβi

{
(rS − 2Ω− 2ζ̇i) [pS cos(ψi + ζi)− qS sin(ψi + ζi)]

}
+2β̇i sin βi [pS sin(ψi + ζi) + qS cos(ψi + ζi)]− sin βi(p2

S + q2S + β̇2
i ))
〉

(3.28)
whereas the components of the mass matrix MFI,ij for i = x, y, z and j = V, ω, β, ζ are

MFI,xV = (mb, 0, 0)
MFI,xω = (0, −Sb sin βi, −Sb cosβi sin(ψi + ζi)− emb sinψi)
MFI,xβ = Sb sin βi cos(ψi + ζi)
MFI,xζ = Sb cosβi sin(ψi + ζi)
MFI,yV = (0, mb, 0)
MFI,yω = (Sb sin βi, 0, −Sb cosβi cos(ψi + ζi)− emb cosψi)
MFI,yβ = Sb sin βi sin(ψi + ζi)
MFI,yζ = Sb cosβi cos(ψi + ζi)
MFI,zV = (0, 0, mb)
MFI,zω = (Sb cosβi sin(ψi + ζi) + emb sinψi, Sb cosβi cos(ψi + ζi) + emb cosψi, 0)
MFI,zβ = −Sb cosβi
MFI,zζ = 0

(3.29)
Inertial moments are generated by the inertial shear forces that the blade transmit to the
hub at the flap/lag hinge, which is placed at a distance e with respect to the hub centre.
Rotor inertial moments M IS = MI,xSiS + MI,ySjS + MI,zSkS in the nonrotating frame
are thus evaluated as

M IS = reS × F IS (3.30)
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3.1 – Individual blade models

where the position of the flap/lag hinge in nonrotating frame is reS = (−e cosψi, e sinψi, 0)T .
As in the inertial force case, the inertial moments contain state derivatives and thus can
be rewritten as  MMI,x

MMI,y

MMI,z

 ẋc =

 fMI,x

fMI,y

fMI,z

 = reS ×

 fFI,xfFI,y
fFI,z

 (3.31)

where  MMI,x

MMI,y

MMI,z

 = reS ×

 MFI,x

MFI,y

MFI,z

 (3.32)

The ith blade inertial forces and moments can be summed up as:

MFI,iẋc = F I,iS = fFI
MMI,iẋc = M I,iS = fMI

(3.33)

3.1.5 Blade equations of motion

The derivation of the blade equations of motion for articulated blades follows the approach
proposed in Refs. [15, 17]. The flap and lag equations of motion are formulated by enforcing
moment balance around the hinges. The applied moments can be divided into aerodynamic
moments (MβA and MζA), inertial moments (MβI and MζI ), hinge spring moments (MβK

and MζK ), and lag damper moments (MβLD and MζLD). The moment balance can be
expressed as

MβA +MβI +MβK +Mβld = 0
MζA +MζI +MζK +Mζld = 0 (3.34)

The expressions for aerodynamic moments are derived in section 3.1.3 whereas lag damper
loads are presented in section 3.1.7. The inertial moments are derived by integrating the
contribution of the acceleration of each differential blade element dr along blade span.
If we define ρb as the linear mass density of the blade and take the acceleration of the
blade element in blade span reference frame abb, as described in Eq. (3.13), the moment of
inertial forces is given by

MβI = −
∫ R
e r ρb az dr

MζI = −
∫ R
e r ρb ax dr

(3.35)

where ax and az are the components of the acceleration abb = axib+ayjb+kb along x and z
axes evaluated in Eq. (3.13). The equations are written including the hinge stiffness term
for the seek of generality. The UH-60A helicopter has no springs in the flap and lead/lag
hinges and as a consequence no contribution of stiffness in the flap and lag equations. The
resulting equation for the flap degree of freedom for the ith blade is:
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Ibβ̈i = Sb 〈cosβi {ẅS + e [ṗS sinψi + q̇S cosψi + 2Ω (pS cosψi − qS sinψi)]}
+ sin βi cos ζi

[
v̇S sinψi − u̇S cosψi − e (rS − Ω)2

]〉
+Ib {ṗS sin (ψi + ζi) + q̇S cos (ψi + ζi)
+ cosβ2

i

[
cos ζi − 2

(
ζ̇i + Ω

)
(qS sinψi − pS cosψi)

− sin ζi2Ω (pS sinψi + qS cosψi)]
− sin βi cosβi

(
rS − Ω− ζ̇

)2
}

−Mβld −MβA −MβK

(3.36)

For the lag degree of freedom one gets

Ib cosβiζ̈i = Sb
{
sin ζi

[
−u̇S cosψi + v̇S sinψi − e (rS − Ω)2

]
+ cos ζi (−u̇S sinψi − v̇S cosψi + eṙS)}
+Ib

{
sin βi

[
2β̇i

(
Ω + ζ̇i − rS

)
− ṗS cos (ψi + ζi) + q̇S sin (ψi + ζi)

]
+ cosβiṙS + 2 cosβi ˙betai [cos ζi (qS sinψi − pS cosψi)
+ sin ζi (pS sinψi + qS cosψi)]}
−Mζld −MζA −MζK

(3.37)
These equations can not be directly used in the simulation, as flap and lag accelerations
depend on the derivative of rigid body velocity variables, that is, flap and lag dynamics
are inertially coupled to fuselage degrees of freedom, as outlined in section 2.5. As in the
previous section dedicated to the inertial forces and moments, the elements of the coupling
matrix here described are referred to the ith blade. A subscript i is omitted for the seek
of conciseness. The flap and lag equation can be cast in matrix form as

Mβẋc = fβ
Mζẋc = fζ

(3.38)

where the coupling matrices Mβ and Mζ are given by:

Mβ =
(
MβV LSB, MβV LSB r̃

H
B + MβωLSB, Mββ , Mβζ

)
Mζ =

(
MζV LSB, MζV LSB r̃

H
B + MζωLSB, Mζβ , Mζζ

) (3.39)

and the state derivative vector is the same as Eq. (3.26).The right hand side of the flap
equations is thus given by

fβ = Sb
[
2Ωe cosβi (pS cosψi − qS sinψi) + sin βi − e cos ζi (rS − Ω)2

+ (−pSwS + rSuS) sin βi cos ζi sinψi + (−qSuS + pSvS) cosβi
− (−rSvS + qSwS) sin βi cos ζi cosψi]
+Ib

[
cosβ2

i − 2 cos ζi
(
ζ̇i + Ω

)
(qS sinψi − pS cosψi)− sin βi cosβi

(
rS − Ω− ζ̇i

)2

− cosβ2
i sin ζi2Ω (pS sinψi + qS cosψi)

]
+Mβld −MβA

(3.40)
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For the lag equation one gets

fζ = −Sb
[
−e sin ζi(rS − Ω)2 − (qSwS − rSvS) sin(ψ1 + ζ1)− (rSuS − pSwS) cos(ψ1 + ζ1)

]
−Ib sin βi

{
2β̇i

(
Ω + ζ̇i − rS

)
+2 cosβiβ̇i [cos ζi (qS sinψi − pS cosψi) + sin ζi (pS sinψi + qS cosψi)]

}
−Mζld +MζA

(3.41)
The elements Mjk of the coupling matrices, with j = β, ζ and k = V, ω, β, ζ for the ith
blade are

MβV = (Sb sin βi cos ζi cosψi, −Sb sin βi cos ζi sinψi, −Sb cosβi)
Mβω = (−eSb cosβi sinψi − Ib sin(ψi + ζi), −eSb cosβi cosψi − Ib cos(ψi + ζi), 0)
Mββ = Ib
Mβζ = 0

(3.42)
and

MζV = (−Sb sin(ψi + ζi), −Sb cos(ψi + ζi), 0)
Mζω = (−Ib sin βi cos(ψi + ζi), Ib sin βi sin(ψi + ζi), Ib cosβi + eSb cos ζi)
Mζβ = 0
Mζζ = −Ib cosβi

(3.43)

3.1.6 Dynamic twist

Together with pilot control (θ0, A1S and B1S ) and built–in twist (θtw), the local feathering
angle θG(r) of the section at station r along the blade span is affected by aerodynamic
loads, that twist the rotor blades. The value of θG is thus given by

θG = θ0 +A1S cosψ +B1S cosψ + θtw + θdt; (3.44)

The dynamic twist θdt is expressed in terms of the product of a shape function times a
generalized state variable as

θdt = ϕ [0.28 + 0.72 sin (ε+ r/R)] (3.45)

The dynamics of ϕ is described in terms of a second order dynamical system, so that
the evolution of θdt is described by two states (twist amplitude and twist rate). The
dynamic twist is driven by the x and z components of the aerodynamic load on the blade
FA:

ϕ̈ (i)
ω2
θ

+ 2ζθ
ωθ

ϕ̇ (i) + ϕ (i) = Kθ

√
F 2
Ax + F 2

Az for i = 1, ..., Nb (3.46)

where
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ζθ = 0.3
ωθ = 23.63
Kθ = −1.17 · 10−5 − 1.72 · 10−8(uB − 51.42)

Kθ is expressed in rad/N and is bounded, to −2.04 · 10−6 ≤ Kθ ≤ −1.17 · 10−5 so that
the twist is always negative. As a consequence, when dynamic twist is accounted for, the
rotor requires more collective pitch to generate a given force compared to the case when
dynamic twist is neglected. To convert the constant Kθ to metric system, and therefor be
measured in rad/N , it must be multiplied by 0.0039.

The dynamic twist equation can be divided into two first order differential equations,
assuming ϕ1 = ϕ and ϕ2 = ϕ̇, Eq. 3.46 can be cast as

ϕ̇1 = ϕ2

ϕ̇2 = ω2
θ

(
Kθ

√
F 2
Ax + F 2

Az − ϕ1
)
− 2ζθωθϕ2

(3.47)

3.1.7 Lag damper

The lag damper model used in the present analysis is taken from Ref. [15]. Figure 3.1
presents the lag damper geometry, the reference frames involved in the analysis as well
as all the main features such as the lag damper attachment points on the hub and blade
sides.

zR=z





yR

ybxb

zb

Ald

Bld

rld ld

bld
dld

ald

xR

y

Figure 3.1. UH-60A Lag damper geometry.

To describe the lag damper, the attention should be focused on the relative motion
of the two attach points: Ald on the rotor hub, Bld on the rotor blade. The present
formulation is based on the peculiar geometry of the UH-60A lag damper, but the same
approach can be used for any helicopter given the knowledge of its geometry.
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For the description of lag damper geometry, a new reference frame, named α, is defined.
This reference frame is centred at the flap/lag hinge (as the blade span one) and is rotated
ζ0 around the z axis with respect to the rotating shaft frame. The rotation matrix LαR
between the rotating and the α reference frames is given by

LαR =

 cos ζ0 sin ζ0 0
− sin ζ0 cos ζ0 0

0 0 1

 (3.48)

The position rc,Aldα of the lag damper attach point on the rotor hub Ald with respect
to the flap/lag hinge in the α reference frame is given by

rc,Aldα = (−dld,−bld, ald)T (3.49)
The position rc,Bldb of the lag damper attach point on the blade Bld with respect to the
flap/lag hinge in the blade span reference frame is equal to:

rc,Bldb = (−rld cos θld, cld, rld sin θld)T (3.50)
where ald, bld, cld, dld, rld, θld are parameters which define the geometry of the lag damper.
The attach point Ald in blade reference frame is evaluated as

rc,Aldb = LbRLRαr
c,Ald
α (3.51)

where its components are

rc,Aldb =

 bld sin(ζ + ζ0)− dld cos(ζ + ζ0)
−bld cosβ cos(ζ + ζ0)− dld cosβ sin(ζ + ζ0)− ald sin β
−bld sin β cos(ζ + ζ0)− dld sin β sin(ζ + ζ0) + ald cosβ

 (3.52)

The vector which connects the two lag damper attach points is evaluated as rBld,Aldb =
rc,Aldb − rc,Bldb and its length is equal to lld =

∥∥∥rBld,Aldb

∥∥∥. As the lag damper force is
proportional to its speed, its deformation speed vBld,Aldb is given by

vBld,Aldb =



bldζ̇ cos(ζ + ζ0) + dldζ̇ sin(ζ + ζ0)− rldθ̇ld sin θld

bldβ̇ sin β cos(ζ + ζ0) + bldζ̇ cosβ sin(ζ + ζ0) + dldβ̇ sin β sin(ζ + ζ0)
−dldζ̇ cosβ cos(ζ + ζ0)− aldβ̇ cosβ

−bldβ̇ cosβ cos(ζ + ζ0) + bldζ̇ sin β sin(ζ + ζ0)− dldβ̇ cosβ sin(ζ + ζ0)
−dldζ̇ sin β cos(ζ + ζ0)− aldβ̇ sin β − rldθ̇ld cos θld;


(3.53)

The absolute speed Vld of the lag damper is given by

Vld = ((rBld,Aldb )TvBld,Aldb )/lld (3.54)
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and is used to evaluate the damping force generated by the lag damper Fld = Fld(Vld).
In the case of the UH-60A a lookup table is used to evaluate the lag damper force as
the relation between Fld and Vld is highly nonlinear. The moment generated by the lag
damper in blade span reference is given by

M ldb = Fld
lld

(rc,Bldb × rc,Aldb ) (3.55)

The components along the flap and lag degrees of freedom needed in Eq. (3.34) are eval-
uated assuming M ldb = (Mβld , 0, Mζld)

T .

3.1.8 Equations summary

Equations (3.22) and (3.33) describe the aerodynamic and inertial forces and moments
of the ith blade expressed in nonrotating shaft. Rotor forces and moments are obtained
adding the contribution of all blades.

F rS =
Nb∑
i=1

(F I,iS + FA,iS ) (3.56)

and

M rS =
Nb∑
i=1

(M I,iS +MA,iS +M ld,iS ) (3.57)

whereM ld,iS is the moment generated by the ith lag damper in non rotating shaft reference
frame and evaluated as M ld,iS = LSRLRbM ld,ib . A similar approach is followed in the
coupling matrix where the effect of all blades is added

MFIS =
Nb∑
i=1

MFI,i (3.58)

and

MMIS =
Nb∑
i=1

MMI,i (3.59)

Finally rotor force and moments in body–fixed frame can be evaluated as

F r = L−1
SbF rS

M r = L−1
SbM rS + rHB × F r

(3.60)

and

MFr = L−1
SbMFIS

MMr = L−1
SbMMIS + rHB ×MFr

(3.61)

Blade flapping and lagging equations (Eq.(3.38)) are already written in a proper ref-
erence frame and need no transformation.
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Assuming xc =
(
uB, vB, wB, pB, qB, rB, β̇i, · · · , β̇Nb , ζ̇i, · · · , ζ̇Nb

)T
, the part of the cou-

pling matrix which depends on the rotor can be assembled using MFr , MMr (Eq. (3.61)),
Mβ, and Mζ (Eq. (3.39)) as

Mrc =



MFr

MMr

Mβi
...
MβNb
Mζi
...
MζNb


(3.62)

This matrix is added to the contribution of the fuselage in Eq. (2.66) to generate the
complete coupling matrix Mc.

When dynamic twist is accounted for, Eq. (3.47) needs to be added to set of equations
which describe main rotor dynamic behaviour.

3.2 Tip–Path–Plane models
The mathematical representation of main rotor behaviour in terms of Tip–Path–Plane
(TPP) variables allows for a time invariant representation of the rotor dynamics. The
equations derived in the sequel describe a fully articulated rotor, but they can also be used
with a few minor modifications to represent teetering rotors (i.e. by setting eccentricity
of the rotor ε = 0, the number of blades Nb = 2 and blade flap angle β2 = −β1). The
development of TPP models is derived from the works of Chen et al. [12, 13, 14], Prouty [8],
and Leishman [10].

3.2.1 Assumptions

The mathematical representation of the main rotor in terms of TPP dynamics explicitly
accounts for inertial coupling of rotor modes with fuselage ones. This is an important
feature, since some rotor modes lie in the frequency range which is characteristic of flight
qualities. The model includes only blade flap degree of freedom. Lag dynamics is thus
neglected, but this is a minor drawback, as it will be demonstrated in Chapters 4 and 5,
since lag dynamics has a minor impact on flight dynamics. In the derivation of the TPP
models the following simplifying assumption are used:

• Rotor blade is rigid in torsion and bending;

• Blade flapping is approximated by means of the first harmonic terms β(t) = a0(t)−
a1(t) cosψ − b1(t) sinψ, where a0, a1, and b1 are TPP states;

• The flapping angle is assumed to be small so that sin βi = βi and cosβi = 1;
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• Aerodynamic loads are evaluated by means of a simple strip theory, where the angle
of attack at the blade element is evaluated analytically as a function of rotorcraft
states, azimuth position ψ and radial position along the blade r;

• The angle of attack is assumed to be small, and a linear relation CL = aα is adopted;

• The reversed flow region is not accounted for;

• Compressibility effects and stall are neglected;

• A dynamic, 3–states inflow is used (see Section 2.4);

• No tip loss (tip loss factor is assumed B = 1);

3.2.2 Generation of model equations

Blade flapping equation is easily derived from Eq. (3.36) dropping the lag degree of freedom
and the lag damper contribution. Note that in the individual blade model the aerodynamic
load on the blade is evaluated numerically with strip theory and lookup tables. Conversely,
the assumption of a simple linear relation between lift coefficient and blade element angle
of attack allows for an analytical evaluation of aerodynamic loads in the case of TPP
models. The load is then integrated over the blade span and averaged over one rotor
revolution.

In the tip-path-plane description of rotor dynamics, flapping motion is described by
means of its zero and first order harmonics as

β(t) = a0(t)− a1(t) cosψ − b1(t) sinψ (3.63)
where the TPP states xTPP = (a0, a1, b1)T describe coning angle (a0), longitudinal (a1)
and lateral (b1) TPP tilt angles. The first and second time derivative of blade flapping in
terms of TPP variables are:

β̇(t) = ȧ0(t)− [ȧ1(t) + b1(t)Ω] cosψ −
[
ḃ1(t)− a1Ω

]
sinψ

β̈(t) = ä0(t)−
[
ä1(t) + 2ḃ1(t)Ω− a1(t)Ω2

]
cosψ −

[
b̈1(t)− 2ȧ1(t)Ω− b1(t)Ω2

]
sinψ
(3.64)

In the sequel the explicit dependence on time of TPP states will be dropped for the sake
of conciseness. Time derivatives of TPP states are written in nondimensional form by
scaling them by means of rotor angular speed, so that a′0 = ȧ0/Ω, a′1 = ȧ1/Ω, b′1 = ḃ1/Ω.
Similarly a′′0 = ä0/Ω2, a′′1 = ä1/Ω2, b′′1 = b̈1/Ω2, β′ = β̇/Ω and β′′ = β̈/Ω2. Equations
(3.63) and (3.64) can be rewritten as

β = a0 − a1 cosψ − b1 sinψ
β′ = [a′0 − (a′1 + b1) cosψ − (b′1 − a1) sinψ]
β′′ = [a′′0 − (a′′1 + 2b′1 − a1) cosψ − (b′′1 − 2a′1 − b1) sinψ]

(3.65)

Tip path plane longitudinal and lateral tilt angles can be evaluated with respect to the
nonrotating shaft reference frame or with respect to the hub wind axes. In the evaluation
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3.2 – Tip–Path–Plane models

of inertial forces the equation are more easily written in the nonrotating frame, so that a0S ,
a1S , and b1S describe coning and tilt with respect to the xS and yS axes. Furthermore the
TPP states need to be integrated with time and the integration is done in the nonrotating
shaft frame as the hub wind reference frame rotates with respect to the body reference
frame as a function of the instantaneous value of airstream direction at the rotor hub
centre.

Provided that a 2nd order dynamics will be obtained in the next paragraph for TPP
variables, rotor states in nonrotating shaft frame can be written as

xrS = (xTPPS , ẋTPPS )T =
(
a0S , a1S , b1S , ȧ0S , ȧ1S , ḃ1S

)T
(3.66)

On the converse, aerodynamic forces are more easily written in the hub wind reference
frame. In this case no subscripts are added to identify the TPP states in this frame to
maintain the same notation introduced in Ref. [14]. Rotor states in hub wind reference
frame are written as

xrw = (xTPPw , ẋTPPw)T =
(
a0, a1, b1, ȧ0, ȧ1, ḃ1

)T
(3.67)

The transformation matrix between the two reference frames is given by

xTPPw = L̃wSxTPPS (3.68)

where

L̃wS =

 1 0 0
0 cosβw − sin βw
0 sin βw cosβw

 (3.69)

and βw is the rotation angle between the two reference frame (see Sec. 2.2.4). A similar
transformation is required for the main rotor commands, which are given as inputs to the
rotor model in shaft axes as ΘS = (θ0, A1S , B1S )T . The corresponding values for rotor
commands in hub wind axes are given by Θw = (θ0, A1w , B1w)T where the latter are
evaluated as

Θw = L̃wSΘS (3.70)

3.2.3 TPP equations

Following the simplifying assumption introduced in Sec. 3.2.1 the equilibrium of the blade
around the flapping hinge can be written as

MβA +MβI +MβK = 0 (3.71)

We consider the aerodynamic contribution first, then inertia and hinge elastic moment. As
described in the individual blade model, the angle of attack of a blade element is evaluated
as
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α = θG + tan−1 UP
UT

Some modification and simplification with respect to the individual blade models are intro-
duced. In particular the geometric pitch θG at the considered blade element is evaluated
as

θG = θ0 +A1w cosψ +B1w sinψ + θtw −KPCβ (3.72)

where in this case the blade twist θtw is assumed to be a linear function of the blade
element radial position

θtw = θtwxx (3.73)

where x is the nondimensional radial position of the blade element defined as

x = e+ r

R
(3.74)

Only for a simple linear relation, it is possible to easily derive a fully analytic aero-
dynamic model for average rotor loads. The term KPCβ accounts for pitch–flap cou-
pling. The tangential and vertical components of blade element velocity are obtained
from Eq. (3.15), by dropping the lag degree of freedom. One gets

UT = uS sinψ + vS cosψ − e(rS − Ω)
+r [sin β (pS cosψ − qS sinψ)− (rS − Ω) cosβ]

UP = −uS sin β cosψ + vS sin β sinψ + wS cosβ
+e cosβ(qS cosψ + pS sinψ)
+r
(
−β̇ + qS cosψ + pS sinψ

)
+ UPλ

(3.75)

where UPλ is obtained from Eq. (3.16).
If the components UT and UP of blade element velocity with respect to the air are

transformed into hub–wind axes and written in nondimensional form by dividing by ΩR,
the following expression are obtained:

ŨT = µ sinψ + x (1− r̃S) + r sin β [p̃S cos(ψ − βw)− q̃S sin(ψ − βw)]

ŨP = −µ cosψ sin β + λ cosβ − x(νc cosψ + νs sinψ)
−β′(x− ε) + x [p̃S sin(ψ − βw) + q̃S cos(ψ − βw)]

(3.76)

where ŨT = UT /(ΩR), ŨP = UP /(ΩR), p̃S = pS/Ω, q̃S = qS/Ω, and r̃S = rS/Ω. Enforcing
the small angle assumption on β, the final formulation of the velocity components is
obtained:
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ŨT = µ sinψ + x (1− r̃S)

ŨP = −µβ cosψ + λ− x(νc cosψ + νs sinψ)
−β′(x− ε) + x [p̃S sin(ψ − βw) + q̃S cos(ψ − βw)]

(3.77)

The local angle of attack is evaluated as α = θG + ŨP /ŨT . Due to the small angle
assumption, the vertical force is equal to the lift, so that the infinitesimal vertical force
increment dFAz generated by the blade element dr is evaluated as

dFAz = ρ

2V
2ca(θG + ŨP /ŨT )dr (3.78)

Assuming that the vertical component of the velocity has almost no impact on the velocity
norm, so that V ≈ UT , it is V 2 ≈ (ΩR)2ŨT , so that dFAz becomes equal to

dFAz = ρ

2(ΩR)2ca(θGŨ2
T + ŨP ŨT )dr (3.79)

Finally, the aerodynamic moment around flap hinge can be evaluated as

MβA =
∫ R−e

0
rdFAz = ρ

2(ΩR)2R2ca

∫ 1

ε
x(θGŨ2

T + ŨP ŨT )dx (3.80)

Substituting the expressions for β(ψ) and β′(ψ) expressed in Eqs. (3.65) into equations
(3.77) and (3.80), a representation of aerodynamic moment based on the first harmonic
of the flapping motion is obtained. To evaluate TPP states dynamics it is necessary to
isolate the contribution of the aerodynamic moment on coning, longitudinal and lateral
flapping of the tip path plane, named MA0 , MAc , MAs respectively. These contributions
are evaluated as MAw = (MA0 , MAc , MAs)T , with

MA0 = 1
2π
∫ 2π
0 MβAdψ

MAc = − 1
π

∫ 2π
0 MβA cosψdψ

MAs = − 1
π

∫ 2π
0 MβA sinψdψ

The aerodynamic moments are then written in the nonrotating shaft frame as MAS =
L̃TwSMAw .

For the inertial contribution a similar approach is followed. Starting from Eq. (3.36)
one

• drops the lag degree of freedom,

• enforces a small angle assumption on β,

• substitutes the individual blade flapping β with its 1st harmonic representation.
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Finally, as in the aerodynamic case, the contribution of the inertial loads on con-
ing, longitudinal and lateral tilt angle of the tip path plane is evaluated as M IS =
(MI0 , MIc , MIs)T , with

MI0 = 1
2π
∫ 2π
0 MβIdψ

MIc = − 1
π

∫ 2π
0 MβI cosψdψ

MIs = − 1
π

∫ 2π
0 MβI sinψdψ

If stiffness is introduced in the flap hinges, the hinge spring momentsMKS = (MK0 , MKc , MKs)T
in the nonrotating shaft reference frame is:

MK0 = 1
2π
∫ 2π
0 MβKdψ

MKc = − 1
π

∫ 2π
0 MβK cosψdψ

MKs = − 1
π

∫ 2π
0 MβK sinψdψ

where MβK = KββS = Kβ(a0S − a1S cosψ − b1S sinψ). TPP dynamics can thus be
represented as

M IS +MKS + L̃TwSMAw = 0 (3.81)

As for individual blade model, also TTP states are inertially coupled to fuselage states.
The highest order derivatives of both rotor and fuselage velocity variables are collected in
the inertial coupling matrix MTPP , and equation (3.81) is rewritten in the form

MTPP ẋc = M̄ IS +MKS + L̃TwSMAw (3.82)

where M̄ IS is the portion of the inertial term that does not contain any highest-order
state derivative, whereas the vector of state derivative xc for the TPP model is equal to

xc =
(
uB, vB, wB, pB, qB, rB, ȧ0, ȧ1, ḃ1

)T
(3.83)

The coupling matrix MTPP can be written as

MTPP =
[
MTPPV LSB, MTPPV LSB r̃

H
B + MTPPωLSB, MTPPTPP

]
(3.84)

The aerodynamic contribution in the hub-wind reference frameMAw is usually rearranged
in the form

MAw = −D̃(ȧ0, ȧ1, ḃ1)T − K̃(a0, a1, b1)T + f̃ (3.85)
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3.2.4 Aerodynamic loads

The evaluation of rotor aerodynamic loads follows a similar path, starting from Eq. (3.79),
which describes the vertical force increment due to aerodynamic loads. Two different
contributions lead to the generation of rotor inplane force dFAx = dFAin − dFApr . The
first component is induced drag, which accounts for the projection of the lift coefficient
along the xb axis, such that dFAin = dLUP /UT = dFAinUP /UT . This term, due to the
rotation of the lift direction towards the advancing side of the blade, is equal to

dFAin = ρ

2(ΩR)2ca(θGŨ ŨP + Ũ2
P )dr (3.86)

The second term is profile drag dFApr , that is generated by each blade element. This
second term is given by

dFApr = ρ

2(ΩR)2cδ(Ũ2
T )dr (3.87)

where the profile drag coefficient δ is determined as a function of rotor thrust coefficient
(e.g. for a symmetric blade profile δ ≈ 0.09 + 0.3(6CT /aσ)2).

Main rotor thrust is the total component of the aerodynamic force generated along the
perpendicular to the tip–path–plane, and therefore with a longitudinal a1 and lateral b1
tilt with respect the rotor shaft. Inplane forces are assumed to lie on the tip–path–plane.
Under a small angle assumption their value can be approximated as if they lie on the
plane perpendicular to the rotor shaft. The rotor aerodynamic force along the x and y
directions takes into account both the inplane forces and the projection on the thrust due
to TPP tilt angles. Main rotor aerodynamic force in hub-wind reference frame FAw can
thus be evaluated as

FAw = Nb

2 ρ(ΩR)2Rca

 CX
CY
−CT

 (3.88)

where

CX = 1
Nb
2 ρ(ΩR)2Rca

1
2π

∫ 2π

0

∫ R−e

0

[
dFAzβ cosψ +

(
dFAin − dFApr

)
sinψ

]
dψ (3.89)

CY = 1
Nb
2 ρ(ΩR)2Rca

1
2π

∫ 2π

0

∫ R−e

0

[
−dFAzβ sinψ +

(
dFAin − dFApr

)
cosψ

]
dψ (3.90)

CT = 1
Nb
2 ρ(ΩR)2Rca

1
2π

∫ 2π

0

∫ R−e

0
dFAzdψ (3.91)

The force coefficients can be rewritten as
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CX = 1
2π

∫ 2π

0

∫ 1−ε

0

{
(θGŨ2

T + ŨP ŨT )β cosψ +
[
(θGŨ ŨP + Ũ2

P )− (Ũ2
T δ/a)

]
sinψ

}
dx dψ

(3.92)

CY = 1
2π

∫ 2π

0

∫ 1−ε

0

{
−(θGŨ2

T + ŨP ŨT )β sinψ +
[
(θGŨ ŨP + Ũ2

P )− (Ũ2
T δ/a)

]
cosψ

}
dx dψ

(3.93)

CT = 1
2π

∫ 2π

0

∫ 1−ε

0
(θGŨ2

T + ŨP ŨT ) dx dψ (3.94)

Rotor moments about xw and yw are generated by blade shear loads evaluated at the
flapping hinges, which are located at a distance e from the rotor centre. Rotor torque
around the zw = zS axis is the sum of profile and induced drag. These moments are
expressed in hub wind axes as

MArw = Nb

2 ρ(ΩR)2R2ca

 Cl
Cm
Cn

 (3.95)

where
Cl = 1

Nb
2 ρ(ΩR)2R2ca

ε

2π

∫ 2π

0

∫ R−e

0
−dFAz sinψdψ (3.96)

Cm = 1
Nb
2 ρ(ΩR)2R2ca

ε

2π

∫ 2π

0

∫ R−e

0
−dFAz cosψdψ (3.97)

Cn = 1
Nb
2 ρ(ΩR)2R2ca

1
2π

∫ 2π

0

∫ R−e

0
−r
(
dFAin − dFApr

)
dψ (3.98)

The moments coefficient can be written in terms of nondimensional variables as

Cl = ε

2π

∫ 2π

0

∫ 1−ε

0
−(θGŨ2

T + ŨP ŨT ) sinψ dx dψ (3.99)

Cm = ε

2π

∫ 2π

0

∫ 1−ε

0
−(θGŨ2

T + ŨP ŨT ) cosψ dx dψ (3.100)

Cn = 1
2π

∫ 2π

0

∫ 1−ε

0
x
[
(θGŨ ŨP + Ũ2

P )− (Ũ2
T δ/a)

]
dx dψ (3.101)

Rotor aerodynamic forces and moments can then be transformed into the nonrotating
shaft reference frame,

FAS = LTwSFAw

MAS = LTwSMAw
(3.102)
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3.2.5 Inertial loads

Rotor inertial forces and moments can be evaluated following a pattern similar to that
used for the derivation of inertial terms for TPP equations. In this case Eq. (3.24) is used
as the starting point. After the small angles simplifying assumption is enforced, the loads
are integrated analytically over blade span and averaged over a rotor revolution. Inertial
force F IS and moment M IS are thus expressed directly in nonrotating shaft reference
frame. When stiffness in the flap hinges is added, a moment is transmitted to the fuselage
given by

MKS = (Kβb1S , Kβa1S , 0)T (3.103)

Again, some terms in the inertial force and moment components depend on higher order
state derivatives. Rotor total forces and moments can be written as

MFI ẋc = FAS + F̄ IS

MMI ẋc = MAS +MKS + M̄ IS
(3.104)

where F̄ IrS and M̄ IrS are respectively the terms in the inertial force and moment that do
not depend on highest order derivatives of velocity variables, whereas expressions of the
coupling matrices MFI and MMI are built as follows:

MFI =
[
MFIV LSB, MFIV LSB r̃

H
B + MFIωLSB, MFITPP

]
MMI =

[
MMIV LSB, MMIV LSB r̃

H
B + MMIωLSB, MMITPP

] (3.105)

3.2.6 Equations summary

Equation (3.104) describes the total forces and moments (aerodynamic, inertial, and elas-
tic) that the main rotor transmit to the fuselage, with Eq. (3.105) providing the coupling
matrices in the evaluation of inertial forces and moments. As for the individual blade
model, rotor force and moments in body–fixed frame can be evaluated as

F r = L−1
SbF rS

M r = L−1
SbM rS + rHB × F r

(3.106)

and

MFr = L−1
SbMFIS

MMr = L−1
SbMMIS + rHB ×MFr

(3.107)

Tip–path–plane equations (Eq.(3.82)) are already written in a proper reference frame
and need no transformation. Assuming xc =

(
uB, vB, wB, pB, qB, rB, ȧ0, ȧ1, ḃ1

)T
, the part

of the coupling matrix which depends on the rotor can be assembled using MFr , MMr (Eq.
(3.107)), and MTPP (Eq. (3.84)):
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Mr =

 MFr

MMr

MTPP

 (3.108)

3.3 Improvements of TPP models

Section 3.2 describes in detail the approach for the development of a TPP rotor model that
represents well both articulated and teetering rotors. The simplifying assumptions used
for the development of the rotor model described in section 3.2.1 present some differences
with respect to those used in Talbot et al. [14] and in particular

• a 3-states dynamic inflow is added;

• the rotor is fully inertially coupled with fuselage linear and angular accelerations
(only angular acceleration was considered in the original formulation)

• fuselage yaw angular speed and acceleration are introduced in the analysis

In spite of a more accurate representation of rotor-fuselage inertial interactions, pre-
liminary results obtained with this approach were not satisfactory, when compared to
higher order models. Some modifications have thus been introduced in order to provide a
more reliable representation of helicopter performance and handling qualities by means of
simplified models.

3.3.1 Tip loss correction factor

Due to the different aerodynamic operating conditions experienced by the top an bottom
sides of the helicopter blades, an extremity vortex is released at the blade tip. This vortex
has an effect on the pressure distribution on blade elements close to the wing tip, which
are not able to generate lift, but which generate drag nevertheless. This effect can be
accounted for by introducing a tip loss correction factor (i.e. an efficiency factor). The
tip loss factor B determines the portion of the blade which can generate lift, i.e. it means
that the blade is able to generate lift up to a blade element placed at a distance BR from
the rotor centre. A value B = 0.97 is used as it represents correctly the behaviour of
blades in normal operating conditions. Models based on TPP states representation can
be upgraded by introducing the tip loss factor B. To implement this change, in Eq. (3.80)
the upper limit of integration on dx in Eq.(3.80) should be changed from 1 to B, whereas
in equations (3.92) to (3.94) and (3.99) to (3.101) the upper limit of integration should bu
changed from 1− ε to B − ε.

3.3.2 Compressibility effects on advancing side

Induced drag, and the corresponding portion of induced power, is usually sufficiently well
represented by means of even the simplest inflow model. Conversely, profile drag is often
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significantly underestimated. In their original versions, the evaluation of profile drag
for models based on TPP representation is based on a quadratic relation with the rotor
thrust coefficient, CT . Among many other effects, this assumption does not account for
drag coefficient increase due to Mach number. This effect is particularly relevant on the
advancing blade at high speed and it is one of the effects that limit helicopter maximum
speed. An empirical correction which takes into account the rise of profile drag at high
speed based on compressibility loss [10] is introduced in all the models where rotor loads
are evaluated analytically. With respect to the usual simplified quadratic relation with
thrust, an additional term for profile power coefficient is summed up in the region of the
rotor disk where the local Mach number is greater than Md, the drag divergence Mach
number. The additional term is expressed in the form:

∆CP
σ

= 1
4π

∫ ψ2

ψ1

∫ 1

rdd

(r + µ sinψ)3 ∆CDr dr dψ (3.109)

For the NACA 0012 profile, Prouty suggests [8] the following simple cubic formula for
∆Cd:

∆CD(M) =
{

12.5(M −Md)3 for M > Md

0 otherwise. (3.110)

withMd = 0.74. The values of ψ1, ψ2 and rdd limit the region of the rotor disk represented
in polar coordinates where the local Mach number is higher thanMd. Since the shape of the
region with compressibility losses and the losses themselves can be evaluated analytically
in integral form and averaged over one rotor revolution, the correction is easily introduced
in all the simplified models providing, among other improvements, a much more accurate
estimation of maximum speed.

3.3.3 Bounded rotor lift coefficient

The analytical integration of aerodynamic loads is allowed by the assumption of a simple
linear relation between local angle of attack and blade section lift coefficient, CL. This
assumption has a great impact on performance evaluation, especially in the determination
of ceiling limits, as it will be outlined below.

The use of linear aerodynamics does not allow to account for the presence of a limiting
value for CL at stall, eventually producing arbitrarily large values of lift, whereas the
actual rotor thrust is clearly bounded by blade airfoil stall limits. This oversimplified rotor
model underestimate required power and, even more significantly, ceiling limits are largely
overestimated. This happens because at high altitude, due to the lower air density, rotor
blades are required to operate at higher angles of attack to balance the same helicopter
weight, in the absence of stall limits for the maximum available blade lift coefficient. Two
different empirical approaches are thus developed and compared in the next Section of
Results, in order to provide a better estimate of ceiling limits.

In the first case, rotor maximum lift is associated to the flight condition at which an
estimate of rotor averaged lift coefficient becomes higher than a prescribed threshold. The
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averaged lift coefficient, C̄L is evaluated at 0.75R. After indicating with the symbol αll
the linearity limit for the CL vs α curve (that is, the limit value for the validity of the
linear approximation for Cl), maximum rotor performance in terms of thrust coefficient
are assumed to be reached when the average angle of attack, ᾱ = C̄L/CLα become equal
or greater than 0.95αll. In the absence of more precise information, a reference value
for αll like that valid for the linearity limit for the lift curve of a NACA 0012 airfoil can
be adopted, providing reasonable results. The logic for this first approach is that, when
the linearity limit for the CL vs α curve is approached on average for a blade station
corresponding to the representative section at 0.75R, a large portion of the rotor disk is
working close or beyond stall limits.

The second approach is based on a different, more “local” logic. Let αmax be the peak
value of the angle of attack estimated at 0.75R for the retreating blade. This value can be
analytically estimated from tip–path–plane and control variables. Maximum performance
in terms of either helicopter speed or ceiling are assumed to be reached when αmax exceeds
10% of the stall limit, αst. When the region where the blade work at hight angle of attack
becomes large on the retrating side, the original purely linear model underestimate the
required power and overestimate the thrust produced by the rotor disk, so that an empirical
limit is set for the maximum angle of attack attainable by the representative blade section,
in order to avoid unrealistically high values of CT .

3.4 Equation generation with ordering scheme and symbolic
toolbox

Even if simpler than individual blade models, rotor model developed using TPP states
are described by means of very complex mathematical expression, especially when aero-
dynamic force and moment coefficients are taken into consideration, as can be easily seen
in Ref. [14]. Integration over blade span and averaging over one rotor revolution, as de-
scribed in section 3.2.4, lead to very long equations which include terms with very different
order of magnitude. As an example, aerodynamic forces include terms where the rotor
eccentricity ,ε, a very small number, is present with high exponent, such as ε3 or ε4. Be-
cause of small number elevated at high powers, these terms have a negligible effect on the
evaluation of rotor forces and moments, but, when included in the model, they damage
the computational performance as unnecessary calculations are performed.

A solution to this problem is to write all the equations in the model with a consistent
level of detail. For this purpose, two tasks have been done. First of all a symbolic
toolbox has been developed to write rotor TPP dynamics equations and forces, as described
in section 3.2.4, starting from the kinematic description of the blade element motion.
This tool, based on Symbolic Math Toolbox TM, provides as output the rotor equations
including all terms (no terms are discarded in this process).

Secondly an ordering scheme for all the states, variables and coefficients of both aero-
dynamic and inertial contribution has been developed. Given that all the equations are
written in symbolic form, this tool evaluates the order of magnitude of every term in the
equations, depending on the relative weight provided by the users for every variable. The
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tool identifies the most important terms and discards the unimportant ones. The tool
deletes from the equations all terms whose order of magnitude is less important than a
threshold. The user can select the relative order of magnitude to be included in the mod-
els. The routine, implemented in Symbolic Math Toolbox TM as well, removes from the
equation all terms with lower order of magnitude with respect to the desired one while it
maintains all important terms.

The ordering scheme used for the UH–60A rotor with tip–path–plane dynamics is pro-
posed in table 3.1. All states and parameters are given a relative order of magnitude by
scaling them to a reference value (e.g. the speed are scaled with respect to blade tip speed).
If the variable has the same order of magnitude when compared to the reference value, the
relative order is O(1), if the relative order is lower O(ε) or O

(
ε2
)
etc. This analysis has

to performed on both aerodynamic and inertial terms. For the UH–60A helicopter aero-
dynamic and inertial terms share similar relative order of magnitude (they are therefore
truncated using the same threshold) as the Lock number, which scales aerodynamic terms
on inertial ones, is γ = (ρacR4)/Ib ≈ 8.

This technique has been applied to the model of the UH-60A rotor based on TPP states
representation. The equations reported in the sequel are evaluated using the symbolic
toolbox and the ordering scheme. All the terms whose relative order is O≤

(
ε3
)
are

included in the equations. The other terms are discarded.
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Table 3.1. Articulated rotor ordering scheme.
variable O
angles
θ0 ε
A1w , B1w ε
θtwx ε
a0, a1, b1 ε
sin βw, cosβw 1
angular velocities r.v. Ω
Ω 1
ȧ0, a′0 ε
ȧ1, a′1 ε

ḃ1, b′1 ε
pS , p̃S ε
qS , q̃S ε
rS , r̃S ε

angular accelerations r.v. Ω2

ä0, a′′0 ε
ä1, a′′1 ε

b̈1, b′′1 ε
ṗS , q̇S ,ṙS ε

lengths r.v. R
R 1
e, ε ε

linear velocities r.v. ΩR
uS , vS , wS ε

linear accelerations r.v. Ω2R

u̇S , v̇S , ẇS ε

inertial and stiffness properties r.v. Ω2R

Ib, Sb, mb 1
Kb 1
nondimensional coefficients
KPC 1
λ ε
νs, νc ε
µ ε
δ ε
a 1
B 1
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Table 3.2. Aerodynamic load matrices and components of the TPP dy-
namics equation (Eq. 3.85).

D̃
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−
γ
Ω 2

  (B
4 4
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2B
3

3
ε
+

B
2 2
ε2

)(
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−
r̃ S

)
0
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3 6
−
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2 2
ε
+

B 2
ε2

)µ
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4 4
−

2B
3

3
ε
+

B
2 2
ε2
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1
−
r̃ S

)
0

−
(B

3 3
−
B

2 ε
+
B
ε2

)µ
0

(B
4 4
−

2B
3

3
ε
+

B
2 2
ε2
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1
−
r̃ S

)

  

K̃
=
−
γ
Ω

2

2

                 

K
P
C

[ µ
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B
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−

B 2
ε)

+
−
µ
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2 4
ε
−

B 2
ε2
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−
µ
K
P
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3 3
−

B
2 2
ε)
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−
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)
+

(B
4 4
−

B
3 3
ε)
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−
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)2
]

−
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B
2 4
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−

B
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ε)

+
K
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B
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B 4
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+
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3
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B
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ε2
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−
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−

(B
3 3
−

B
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+
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−
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+
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−
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K
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2
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+
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+
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=
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Ω
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                     θ 0
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−
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−
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B
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3 3
(1
−
r̃ S

)−
B
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+
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−
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−

B
4 4
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S
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µ
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B
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S
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sβ

w
+
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β
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B
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+
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µ
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B
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A
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1
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S
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B
3 3
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r̃ S
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B
3 3
ε)

(1
−
r̃ S

)ν
c

θ 0
[ −µ

(2
B

3

3
(1
−
r̃ S
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B

2 ε
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B
1 w

[ B4 4
(1
−
r̃ S

)2
−

B
3 3
ε(

1
−

2r̃
S
)+

µ
2

3B
2

8

] +
+
θ t
w

[ µ
(−

B
4 2

+
2B

3

3
ε)

(1
−
r̃ S

)] −(
p̃
S

co
sβ

w
+
q̃ S

sin
β
w
)(
B

4 4
−

B
3 3
ε)

(1
−
r̃ S

)+
+
λ
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(−

B
2 2

+
B
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+
ν s

(B
4 4
−

B
3 3
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(1
−
r̃ S
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The components of the inertial contribution M̄ IS to TPP dynamics equation (Eq.
(3.82)) are given by:

M̄ I,xS = −1
2
(
2Kβa0S − 4SbεRrSΩa0S + 2SbεRΩ2a0S + 2Ibr2Sa0S

+2IbΩ2a0S + SbrSuSb1S − SbqSwSa1S − 4IbrSΩa0S + SbrSvSa1S
−SbpSwSb1S + 2Sbg + 2SbqSuS − 2SbpSvS) /Ib

M̄ I,yS =
(
2SbεRrSΩa1S + SbqSwSa0S − SbrSvSa0S − SbεRΩ2a1S −Kβa1S
+2IbrSΩa1S − 2IbΩpS − Ibr2Sa1S − 2SbεRΩpS − 2IbΩḃ1S

)
/Ib

M̄ I,zS = −
(
Ibr

2
Sb1S − 2SbεRΩqS + SbεRΩ2b1S +Kβb1S − 2IbΩȧ1S

−2IbrSΩb1S − 2SbεRrSΩb1S − SbpSwSa0S − 2IbΩqS + SbrSuSa0S ) /Ib
(3.111)

whereas the terms which are proportional to the derivatives of velocity variables in Eq.
(3.84) are

MTPPV =

 −1
2/IbSba1S

1
2/IbSbb1S −1/IbSb

−1/IbSba0S 0 0
0 1/IbSba0S 0

 (3.112)

MTPPω =

 0 0 0
0 1 + 1/IbSbεR 0

1 + 1/IbSbεR 0 0

 (3.113)

MTPPTPP =

 1 0 0
0 1 0
0 0 1

 (3.114)

Rotor aerodynamic force coefficients in shaft axes (Eq. (3.94) for CT , Eq. (3.92) for CX ,
and Eq. (3.93) for CY ) are given by

CT =

(θ0 −KPCa0)
[
B3

3 (1− r̃S)2 + µ2B
2

]
+(B1w −KPCb1)

[
−B2

2 µ(1− r̃S)
]

+θtw
[
B4

4 (1− r̃S)2 + B2

4 µ
2
]

+B2

4 µ(p̃S cosβw + q̃S sin βw) + a′0(1− r̃S)(−B3

3 + B2

2 ε)
+(b′1 − a1)µ(B2

4 −
B
2 ε) + λ(B2

2 (1− r̃S)− 1
2ε

2)
−B2

4 µνs + B2

4 µ(1− r̃S)a1

(3.115)
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CX =

δ
aµ
[
−1

2(1− r̃S) + 1
2ε

2
]

+(θ0 −KPCa0)
[
λµB2 − νs

B3

6 (1− r̃S)− a′0µB
2

4 + (b′1 − a1)(B
3

6 (1− r̃S)− B2

4 ε)
+(p̃S cosβw + q̃S sin βw)B3

6 (1− r̃S)− a1
B3

6 (1− 2r̃S)
]

+(A1w −KPCa1)
[
νcµ

B2

16 − (a′1 + b1)µB
2

16 + (p̃S sin βw − q̃S cosβw)µB2

16

−a0
B3

6 (1− 2r̃S) + b1µ
B2

16

]
+(B1w −KPCb1)

[
−λB2

4 (1− r̃S) + νsµ
3B2

16 + a′0(B
3

6 (1− r̃S)− B2

4 ε)− (b′1 − a1)µ3B2

16

−(p̃S cosβw + q̃S sin βw)µ3B2

16 + a1µ
B2

16

]
+θtw

[
λµB

2

4 − νs
B4

8 (1− r̃S)− a′0µB
3

6 + (b′1 − a1)(B
4

8 (1− r̃S)− B3

6 ε)
+(p̃S cosβw + q̃S sin βw)B4

8 (1− r̃S)− a1
B4

8 (1− 2r̃S)
]

+λ
[
−a1

B2

4 (1− r̃S)− νs B
2

2

]
+a′0

[
νs(B

3

3 −
B2

2 ε)− b′1(
B3

3 −B
2ε) + a1(B

3

2 −
B3

6 r̃S −
5B2

4 ε)
]

+(a′1 + b1)
[
a0(B

3

6 (1− r̃S)− B2

4 ε) + b1µ
B2

16

]
+(b′1 − a1)

[
λ(B2

2 −Bε) + µa1
B2

16

]
+(p̃S cosβw + q̃S sin βw)

[
λB

2

2 + a′0(−B3

3 + B2

2 ε) + a1µ
B2

16

]
+(p̃S sin βw − q̃S cosβw)

[
−a0

B3

6 (1− r̃S)− µb1B
2

16

]
+a0

[
νc
B3

6 (−1 + r̃S)− µa0
B2

4

]
− µ(a1νs + b1νc + 3a2

1 + b21)B
2

16
(3.116)

63



3 – Rotor models

CY =

(θ0 −KPCa0)
[
−νc B

3

6 (1− r̃S) + (a′1 + b1)(B
3

6 (1− r̃S)− B2

4 ε)
−(p̃S sin βw − q̃S cosβw)B3

6 (1− r̃S)− a0µ
3B2

4 + b1
B3

6 (1− 2r̃S)
]

+(A1w −KPCa1)
[
−λB2

4 (1− r̃S) + νsµ
B2

16 + a′0(B
3

6 (1− r̃S)− B2

4 ε)− (b′1 − a1)µB
2

16

−(p̃S cosβw + q̃S sin βw)µB2

16 − a1µ
5B2

16

]
+(B1w −KPCb1)

[
νcµ

B2

16 − (a′1 + b1)µB
2

16

+(p̃S sin βw − q̃S cosβw)µB2

16 + a0
B3

6 (1− 2r̃S)− b1µ7B2

16

]
+θtw

[
−νc B

4

8 (1− r̃S) + (a′1 + b1)(B
4

8 (1− r̃S)− B3

6 ε)
−(p̃S sin βw − q̃S cosβw)B4

8 (1− r̃S)− a0µ
B3

2 + b1
B4

8 (1− 2r̃S)
]

+λ
[
b1
B2

4 (1− r̃S)− νc B
2

2 − a0µ
3B
2

]
+a′0

[
νc(B

3

3 −
B2

2 ε)− a′1(
B3

3 −B
2ε)− b1(B

3

2 −
B3

6 r̃S −
5B2

4 ε) + µa0
3B2

4

]
+(a′1 + b1)

[
λ(B2

2 −Bε) + µa1
7B2

16

]
+(b′1 − a1)

[
−a0(B

3

6 (1− r̃S)− B2

4 ε) + b1µ
5B2

16

]
+(p̃S cosβw + q̃S sin βw)

[
−a0

B3

6 (1− r̃S) + µb1
5B2

16

]
+(p̃S sin βw − q̃S cosβw)

[
−λB2

2 + a′0(B
3

3 −
B2

2 ε)− a1µ
7B2

16

]
+a0νs

B3

6 (1− r̃S)− µ(7a1νc + 5b1νs − 2a1b1)B
2

16
(3.117)

Rotor aerodynamic moment coefficients in shaft axes (Eq. (3.99) for Cl, Eq. (3.100) for
Cm, and Eq. (3.101) for Cn) are given by

Cl =

(θ0 −KPCa0)
[
−µB2

2 (1− r̃S)
]

+(B1w −KPCb1)
[
B3

6 (1− r̃S)2 + µ2 3B
8

]
+θtw

[
−µB3

3 (1− r̃S)
]

+λµ(−B
2 + ε

2) + νs
B3

6 (1− r̃S) + a′0µ(B2

4 −
B
2 ε)

+(b′1 − a1)(1− r̃S)(−B3

6 + B2

4 ε)− (p̃S cosβw + q̃S sin βw)B3

6 (1− r̃S)− µ2a1
B
8

(3.118)

Cm =
(A1w −KPCa1)

[
B3

6 (1− r̃S)2 + µ2B
8

]
+νc B

3

6 (1− r̃S) + (a′1 + b1)(1− r̃S)(−B3

6 + B2

4 ε)
+(p̃S sin βw − q̃S cosβw)B3

6 (1− r̃S) + a0µ
B2

4 (1− r̃S)− µ2b1
B
8

(3.119)
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Cn =

δ
a

[
1
4(1− r̃S)2 + 1

4µ
2
]

+(θ0 −KPCa0)
[
−B3

3 (1− r̃S)λ+ a′0(B
4

4 (1− r̃S)− B3

3 ε)
+µB3

6 (−(b′1 − a1)− (p̃S cosβw + q̃S sin βw)− a1 + νs)
]

+(A1w −KPCa1)
[
(a′1 + b1)(B

4

8 (1− r̃S)− B3

6 ε)−
(p̃S sin βw − q̃S cosβw)B4

8 (1− r̃S)− µa0
B3

6 − νc
B4

8 (1− r̃S)
]

+(B1w −KPCb1)
[
(b′1 − a1)(B

4

8 (1− r̃S)− B3

6 ε)+
(p̃S cosβw + q̃S sin βw)B4

8 (1− r̃S) + µλB
2

4 − µa
′
0
B3

6 − νs
B4

8 (1− r̃S)
]

+θtw
[
−B4

4 (1− r̃S)λ+ a′0(B
5

5 (1− r̃S)− B4

4 ε)
+µB4

8 (−(b′1 − a1)− (p̃S cosβw + q̃S sin βw)− a1 + νs)
]

−λB2

2 (µa1 + λ)
+a′0

[
λ(−B2ε+ 2B3

3 ) + µa1
B3

3

]
+ a′20 (2B3

3 ε− B4

4 )
+ [(a′1 + b1)νc + (b′1 − a1)νs] (B

4

4 −
B3

3 ε)
+
[
(a′1 + b1)2 + (b′1 − a1)2

]
(−B4

8 + B3

3 ε) + (a′1 + b1)µa0
B3

3
+(p̃S cosβw + q̃S sin βw)

[
(b′1 − a1)(−B4

4 + B3

3 ε) + νs
B4

4

]
+(p̃S sin βw − q̃S cosβw)

[
(a′1 + b1)(B

4

4 −
B3

3 ε)− νc
B4

4 − µa0
B3

3

]
−µa0νc

B3

3 −
B4

8 (ν2
s + ν2

c + p̃2
S + q̃2S)

(3.120)

Rotor inertial forces in Eq. (3.104) are evaluated as

F̄ IS ,x = Sbȧ1S ȧ0S − SbrSa0SΩa1S + SbrSb1S ȧ0S +mbrSvS + SbrSa0S ḃ1S+

+SbrSpSa0S −mbqSwS + 1/2Sba0SΩ2a1S + 2SbqS ȧ0S
F̄ IS ,y = mbpSwS −mbrSuS − Sbḃ1S ȧ0S − 2SbpS ȧ0S − 1/2Sba0SΩ2b1S+

+SbrSqSa0S + SbrSa1S ȧ0S + SbrSa0S ȧ1S + SbrSa0SΩb1S

F̄ IS ,z = SbpSa0SΩa1S − SbqSa0SΩb1S + Sba0SΩḃ1Sa1S − Sba0SΩȧ1Sb1S − Sba0S ȧ
2
0S+

−1/2Sba0S ȧ
2
1S − 1/2Sba0S ḃ

2
1S −mbpSvS +mbqSuS − Sbq2Sa0S − Sbp2

Sa0S+
−1/2Sba0SΩ2b21S − 1/2Sba0SΩ2a2

1S − Sbb1SpS ȧ0S − Sbb1S ḃ1S ȧ0S+
−SbqSa0S ȧ1S − SbpSa0S ḃ1S − SbqSa1S ȧ0S − Sba1S ȧ1S ȧ0S

M̄ IS ,x = 1/2Kbetab1S + SbεRΩqS + 1/2SbεRΩ2b1S + εRSbΩȧ1S+
−1/2εRSbrSqS + ε2R2mbΩqS

M̄ IS ,y = 1/2Kbetaa1S + 1/2SbεRΩ2a1S − SbεRΩpS − εRSbΩḃ1S+
+1/2εRSbrSpS − ε2R2mbΩpS

M̄ IS ,z = −2εRSbΩa0S ȧ0S − εRSbqSΩa1S − εRSbpSΩb1S + εRSbqS ḃ1S
−εRSbΩb1S ḃ1S − εRSbΩa1S ȧ1S − εRSbpS ȧ1S

(3.121)
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whereas the terms in Eq. (3.105) which depend on derivatives of velocity variables are:

MFIV =

 mb 0 0
0 mb 0
0 0 mb

 (3.122)

MFIω =

 0 −Sba0S 0
Sba0S 0 0

0 0 0

 (3.123)

MFITPP =

 −1
2Sba1S −1

2Sba0S 0
1
2Sbb1S 0 1

2Sba0S
−Sb 0 0

 (3.124)

MMIV =

 0 0 0
0 0 0
0 0 0

 (3.125)

MMIω =

 1
2SbεR+ 1

2ε
2R2mb 0 0

0 1
2SbεR+ 1

2ε
2R2mb 0

1
2SbεRa1S −1

2SbεRb1S SbεR+ ε2R2mb

 (3.126)

MMITPP =

 0 0 1
2SbεR

0 1
2SbεR 0

0 0 0

 (3.127)

In the inflow model, the aerodynamic moment around the xw and yw axes are required
in Eqs. (2.56) and (2.57) and are given by:

Clλ =

(θ0 −KPCa0)
[
µ(−B3

3 + B2

2 ε)(1− r̃S)
]

+(B1w −KPCb1)
[
B4

8 (1− r̃S)2 − B3

6 ε(1− 2r̃S) + 3B2

16 µ
2
]

+θtw
[
µ(−B4

4 + B3

3 ε)(1− r̃S)
]

−(p̃S cosβw + q̃S sin βw)(1− r̃S)(B4

8 −
B3

6 ε) + a′0µ(B3

6 −
B2

2 ε)
+(b′1 − a1)(−B4

8 + B3

3 ε−
B2

4 ε
2)(1− r̃S)− λµ(B2

4 −
B
2 ε)

−νs(−1 + r̃S)(B4

8 −
B3

6 ε)−
B2

16 µ
2a1

(3.128)

Cmλ =

(A1w −KPCa1)
[
B4

8 (1− r̃S)2 − B3

6 ε(1− 2r̃S) + B2

16 µ
2
]

+(p̃S sin βw − q̃S cosβw)(1− r̃S)(B4

8 −
B3

6 ε)
+(a′1 + b1)(−B4

8 + B3

3 ε−
B2

4 ε
2)(1− r̃S) + νc(1− r̃S)(B4

8 −
B3

6 ε)
+µa0(B

3

6 −
B2

4 ε)(1− r̃S)− B2

16 µ
2b1

(3.129)
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3.5 Teetering rotors

The aim of this section is to present the mathematical description of a teetering rotor
used in simulation. Teetering rotor is described as a rigid beam, considering the effects of
undersling (δ) and preconing (βp). The description which follows is similar to the approach
followed in the description of the articulated rotor dynamics and it can be used together
with the same description of aerodynamic loads.

For the derivation of the mathematical model of a teetering rotor, three reference
systems are used, represented in figure 3.2: a non rotating shaft reference frame (FS),
a rotating reference frame (FR) and a blade reference frame (Fb). The three references
share the same origin, at the intersection of rotor axis and teetering hinge.

Figure 3.2. Teering rotor reference systems.

The teetering rotor has only two blades. One of the two blades is used as a reference to
evaluate the anomaly ψ between nonrotating and rotating shaft reference frames, and the
teetering (flapping) angle β0, which is assumed positive when the reference blade is over its
unperturbed rotation plane. As the two bladed are cantilevered, β1 = β0 (by definition)
implies β2 = −β0. The notation β0 in place of β is used in order to maintain consistency
with the gimballed rotor model (see section 3.6). The rotating matrix between rotating
and non rotating frames is

LRS =

 sinψ cosψ 0
− cosψ sinψ 0

0 0 1

 (3.130)
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whereas the rotating matrix between rotating and blade frames is

LbR =

 1 0 0
0 cosβ0 − sin β0
0 sin β0 cosβ0

 (3.131)

Two other quantities are used in the description of the rotor: the undersling δ and the
preconing βp which are design features of the teetering rotor. Using the reference frame
defined above, the position of a blade element along the blade span is given by

rR,bb =

 0
r

δ − |r| tan βp

 (3.132)

where −R < r < R. The absolute sign |r| is introduced to take into account that both
blades have a positive preconing. This notation is not used in the following derivations,
but the effects of preconing are taken into account in when writing the equations.

3.5.1 Blade element kinematics

Linear and angular speed in the nonrotating reference system are assumed to be known,
indicated as vS = [uS vS wS ] and ωS = [pS qS rS ], respectively. Similarly to the
articulated rotor, velocity components in the rotating reference system can be written as:

vR = LRSvS (3.133)
and

ωR = LRSΩS − ωR/SR (3.134)
The components of vR and ωR are equal to

vR =

 uS sinψ + vS cosψ
−uS cosψ + vS sinψ

wS

 (3.135)

and

ωR =

 pS sinψ + qS cosψ
−pS cosψ + qS sinψ

rS − Ω

 (3.136)

where ωR/SR = Ω [0,0,1]T is the relative angular speed of the rotating axes with respect to
the nonrotating frame.

The position of the blade element in rotating frame is expressed as:

xR,bR = LRbx
R,b
b =

 0
r (cosβ0 − tan βp sin β0) + δ sin β0
−r (sin β0 + tan βp cosβ0) + δ cosβ0

 (3.137)
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The blade element speed vbR can be written as:

vbR = vR + ωR × xR,bR + ẋR,bR (3.138)

where

ẋR,bR =

 0
β̇0 [−r (sin β0 + tan βp cosβ0) + δ cosβ0]
β̇0 [−r (cosβ0 − tan βp sin β0) + δ sin β0]

 (3.139)

The components of the blade element speed vbR in rotating frame are thus given by

vbR =



uS sinψ + vS cosψ + (−pS cosψ + qS sinψ) [−r (sin β0 + tan βp cosβ0) + δ cosβ0]
− (rS − Ω) [r (cosβ0 − tan βp sin β0) + δ sin β0]

−uS cosψ + vS sinψ +
(
β̇0 − pS sinψ − qS cosψ

)
[−r (sin β0 + tan βp cosβ0) + δ cosβ0]

wS +
(
pS sinψ + qS cosψ − β̇0

)
[r (cosβ0 − tan βp sin β0) + δ sin β0]


(3.140)

Blade element velocity, expressed in blade reference frame is evaluated as

vb = LbRv
b
R (3.141)

where its components are:

vb =



uS sinψ + vS cosψ + (−pS cosψ + qS sinψ) [−r (sin β0 + tan βp cosβ0) + δ cosβ0]
− (rS − Ω) [r (cosβ0 − tan βp sin β0) + δ sin β0]

(−uS cosψ + vS sinψ) cosβ0 − wS sin β0 + (δ − r tan βp)
(
β̇0 − pS sinψ − qS cosψ

)
(−uS cosψ + vS sinψ) sin β0 + wS cosβ0 − r

(
β̇0 − pS sinψ − qS cosψ

)


(3.142)

Blade element accelerations, needed for inertial forces and moments evaluation can be
expressed as follows:

abR = v̇bR + ωR × vbR (3.143)

where its components are:
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(
abR

)
x

= u̇S sinψ + v̇S cosψ + wS (−pS cosψ + qS sinψ)− rS (−uS cosψ + vS sinψ)
+ [−r (sin β0 + tan βp cosβ0) + δ cosβ0] [(−ṗS cosψ + q̇S sinψ)
−2β̇0 (rS − Ω) + rS (pS sinψ + qS cosψ)

]
+ [r (cosβ0 − tan βp sin β0) + δ sin β0]

[
−
(
ṙS − Ω̇

)
+ (pS cosψ − qS sinψ)(

2β̇0 − pS cosψ − qS sinψ
)]

(
abR

)
y

= −u̇S cosψ + v̇S sinψ − wS (pS sinψ + qS cosψ) + rS (uS sinψ + vS cosψ)

+ [−r (sin β0 + tan βp cosβ0) + δ cosβ0]
[
β̈0 − ṗS sinψ − q̇S cosψ

+rS (−pS cosψ + qS sinψ)]
− [r (cosβ0 − tan βp sin β0) + δ sin β0]

[(
β̇0 − pS sinψ − qS cosψ

)2
+ (rS − Ω)2

]
(
abR

)
z

= ẇS + pSvS − qSuS

− [−r (sin β0 + tan βp cosβ0) + δ cosβ0]
[(
β̇0 − pS sinψ − qS cosψ

)2

+ (−pS cosψ + qS sinψ)2
]

+ [r (cosβ0 − tan βp sin β0) + δ sin β0]
[
−β̈0 + ṗS sinψ + q̇S cosψ

+ (2Ω− rS) (pS cosψ − qS sinψ)]
(3.144)

The blade element acceleration written in blade reference system is given by

ab = LbRa
b
R (3.145)

where its components are:
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(ab)x = (arR)x

(ab)y = [−u̇S cosψ + v̇S sinψ − wS (pS sinψ + qS cosψ) + rS (uS sinψ + vS cosψ)] cosβ0

− (ẇS + pSvS − qSuS) sin β0 +
(
β̈0 − ṗS sinψ − q̇S cosψ

)
(δ − r tan βp)

−r
(
β̇0 − pS sinψ − qS cosψ

)2
− (rS − Ω)2 [r (cosβ0 − tan βp sin β0) + δ sin β0] cosβ0

+ (−pS cosψ + qS sinψ)2 [−r (sin β0 + tan βp cosβ0) + δ cosβ0] sin β0
−2Ω (pS cosψ − qS sinψ) [r (cosβ0 − tan βp sin β0) + δ sin β0] sin β0
+rS (−pS cosψ + qS sinψ) [−r (sin (2β0) + tan βp cos (2β0)) + δ cos (2β0)]

(ab)z = [−u̇S cosψ + v̇S sinψ − wS (pS sinψ + qS cosψ) + rS (uS sinψ + vS cosψ)] sin β0

+ (ẇS + pSvS − qSuS) cosβ0 − r
(
β̈0 − ṗS sinψ − q̇S cosψ

)
− (δ − r tan βp)

(
β̇0 − pS sinψ − qS cosψ

)2

− (rS − Ω)2 [r (cosβ0 − tan βp sin β0) + δ sin β0] sin β0
− (−pS cosψ + qS sinψ)2 [−r (sin β0 + tan βp cosβ0) + δ cosβ0] cosβ0
+2Ω (pS cosψ − qS sinψ) [r (cosβ0 − tan βp sin β0) + δ sin β0] cosβ0
+rS (−pS cosψ + qS sinψ) [−r (cos (2β0) + tan βp sin (2β0)) + δ sin (2β0)]

(3.146)

3.5.2 Inertial loads

Moment of inertia loads are calculated integrating acceleration components over rotor
mass increments,

M Ib = −
∫
m
rb × abdm (3.147)

where, given the linear density ρ, the mass increment is defined as dm = ρdr. The mass
moments of inertia are defined as follows:

Ix =
∫
m x

2
bdm =

∫ R
−R ρx

2
bdr

Iy =
∫
m y

2
bdm =

∫ R
−R ρy

2
bdr

Iz =
∫
m z

2
bdm =

∫ R
−R ρz

2
bdr

(3.148)

where xb, yb, and zb are the components of the position vector of the blade element in
blade element reference frame rb = (xb, yb, zb)T . The static moment in the z direction is
defined as:

Sz =
∫
m
zbdm =

∫ R

−R
ρzbdr (3.149)

If the mass distribution ρ(r) along the blade (r) is assumed to be uniform, the moments
of inertia and the static moments are given by
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Ix = mb

[
2
3

(
1 + tan βp2

)
R2 − 2δR tan βp + 2δ2

]
Iy = mb

[
2
3R

2 tan βp2 − 2δR tan βp + 2δ2
]

Iz = 2
3mbR

2

Sz = mb (2δ −R tan βp)

(3.150)

where mb is the mass of a single blade. Substituting Eq. (3.150) into Eq. (3.147) and
performing the integrations, one gets

MI,xb =
(
β̈0 − ṗS sinψ − q̇S cosψ

)
Ix − (−pS cosψ + qS sinψ)2 (IZ − Iy) sin 2β0

2

+ (rS − Ω)2 (IZ − Iy) sin 2β0
2 − 2Ω (pS cosψ − qS sinψ)

[
(Iz − Iy) cosβ0

2 + Iy
]

+rS (−pS cosψ + qS sinψ) (Iz − Iy) cos 2β0
+ {[−u̇S cosψ + v̇S sinψ − wS (pS sinψ + qS cosψ)
+rS (uS sinψ + vS cosψ)] cosβ0 − (ẇS + pSvS − qSuS) sin β0}Sz

MI,yb = − [u̇S sinψ + v̇S cosψ + wS (−pS cosψ + qS sinψ)− rS (−uS cosψ + vS sinψ)]Sz
−
[
−ṗS cosψ + q̇S sinψ − 2β̇0 (rS − Ω) + rS (pS sinψ + qS cosψ)

]
Iy cosβ0

−
[
−ṙS + Ω̇ + (pS cosψ − qS sinψ)

(
2β̇0 − pS sinψ − qS cosψ

)]
Iy sin β0

MI,zb = −
[
−ṗS cosψ + q̇S sinψ − 2β̇0 (rS − Ω) + rS (pS sinψ + qS cosψ)

]
Iz sin β0

+
[
−ṙS + Ω̇ + (pS cosψ − qS sinψ)

(
2β̇0 − pS sinψ − qS cosψ

)]
Iz cosβ0

(3.151)
In the rotating reference frame the moment of inertia is equal to

M IR = LRbM Ib (3.152)

The inertia forces are expressed directly in the rotating reference frame

F IR = −
∫
m
abRdm (3.153)

Performing the integration, the components in a rotating reference frame are thus given
by
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FI,xR = −2mb [u̇S sinψ + v̇S cosψ + wS (−pS cosψ + qS sinψ)− rS (−uS cosψ + vS sinψ)]
−Sz cosβ0

[
−ṗS cosψ + q̇S sinψ − 2β̇0 (rS − Ω) + rS (pS sinψ + qS cosψ)

]
−Sz sin β0

[
−ṙS + Ω̇ + (pS cosψ − qS sinψ)

(
2β̇0 − pS sinψ − qS cosψ

)]
FI,yR = −2mb [−u̇S cosψ + v̇S sinψ − wS (pS sinψ + qS cosψ) + rS (uS sinψ + vS cosψ)]

−Sz cosβ0
[
β̈0 − ṗS sinψ − q̇S cosψ + rS (−pS cosψ + qS sinψ)

]
+Sz sin β0

[(
β̇0 − pS sinψ − qS cosψ

)2
+ (rS − Ω)2

]

FI,zR = −2mb [ẇS + pSvS − qSuS ]
−Sz sin β0

[
−β̈0 + ṗS sinψ + q̇S cosψ + (2Ω− rS) (pS cosψ − qS sinψ)

]
+Sz cosβ0

[(
β̇0 − pS sinψ − qS cosψ

)2
+ (−pS cosψ + qS sinψ)2

]
(3.154)

3.6 Gimballed Rotor

A two–bladed gimballed rotor configuration is being considered in this study as a possible
way for alleviating some of the drawbacks that affect conventional teetering rotors. As to
the authors’ knowledge, such a configuration is novel and original and a limited number
of studies is available for supporting its design.

The rotor configuration considered in this study features (i) a fly–bar with paddles,
(ii) a rigid yoke connected to the shaft by means of a spherical homokinetic hinge, realized
by means of a set of elastomeric springs to improve the handling qualities of the helicopter
at low load factor, and (iii) coning hinges with pitch–coning links.

From the purely mechanical standpoint, this configuration allows one more degree–of–
freedom to the blades in the rotating frame with respect to a conventional teetering rotor,
as the flapping motion around the axis perpendicular to both the shaft and blade axes
is accompanied by a feathering motion around the blade axis itself, this latter rotation
corresponding to the flap angle for the paddles. The pitch angle of each blade thus results
from the combination of a direct command, delivered by a conventional swash–plate, and
the feathering motion of the rotor.

The introduction of coning hinges further increases model complexity, because of the
significant variation of rotor inertial properties associated to blade rotations around coning
hinges. Both ideal frictionless coning hinges and realistic ones, with friction induced by
the centrifugal load, will be considered. Finally, the presence of a pitch–coning link varies
blade pitch as a function of coning angles, a feature introduced in order to alleviate gust
loads. It will be shown that, at the same time, the pitch–coning gain significantly affects
system stability.

The presence of a sustained wobbling motion is the ost relevant characteristic of the
two-bladed gimballed rotor, as already observed in Refs. [23] and [83]. This motion is
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interpreted as the result of the difference in the tip–path–planes described by blades and
paddles, for the rigid rotor case [78]. Moreover, these previous studies demonstrated how
the inertial properties of the feathering axis have a marginal effect on rotor behaviour,
whereas the presence of paddles at the tips of the fly-bar is necessary for stabilizing the
motion and avoid the departures experienced by the rotor in the presence of periodic
forcing terms. These features are basically maintained even in the presence of coning
degrees of freedom, although pitch–coning coupling significantly affects rotor stability.
Relevant differences are present with respect to three–bladed gimballed rotors featuring
coning hinges, where polar symmetry of the inertia tensor gyroscopically stabilize the rotor
and pitch–coning coupling only affect rotor load [84, 85].

The homokinetic rotor hub with elastomeric bearings, represented in Figs. 3.3 and 3.4,
is designed in order to make the hub rotate about its axis with the same angular speed of
the shaft even when they are not aligned, thus making hub angular speed constant. This is
obtained by means of elastomeric bearing assemblies that provide a link between the shaft
and a carrier, and between the carrier and the hub. The mechanism is at the moment
patent pending and it cannot be disclosed. The details of the design are not relevant for
the study of the aeromechanic characteristics of this rotor. In what follows, the joint will
be always represented as a spheric gimbal.

blade

fly-bar	axis

rocker

pitch	horn

hub

shaft

Figure 3.3. Sketch of the KA-2H homokinetic joint.

Two blades and the fly-bar are attached to the hub, the latter perpendicular to the rotor
blades (Fig. 3.5). As outlined above, the blade pitch command has two contributions:

• a direct command from the swashplate (collective θ0 and cyclic θcyc), where θcyc =
θSW cosψ+φSW sinψ corresponds to the inclination of the swashplate about an axis
parallel to the feathering axis of the blade, and θSW and φSW are the longitudinal
and lateral rotations of the swashplate.
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blade

shaft

hub

fly-bar

Figure 3.4. Sketch of the KA-2H homokinetic joint tilted and with a cyclic
command from the swashplate.

• a secondary command (limited to cyclic pitch) due to the inclination of the hub from
the shaft axis: in particular this command θfb is proportional to the rotation angle
of the hub about the blade feathering axis, that corresponds to the flapping of the
fly-bar.

The cyclic command on the blade, defined with respect to the plane perpendicular to
the shaft, is then equal to θb = KHθcyc + (1 −KH)θfb where KH is a fly-bar/swashplate
command ratio. When the swashplate and the hub planes are parallel, the pitch command
gain is 1. This is a typical architecture for teetering rotors, where the secondary command
is simply the fly-bar flapping angle.

Figure 3.5 shows the cyclic command mechanism. With KH = 0.57, a θsw = 10 deg
cyclic command from the swashplate results into a feathering angle of the blade θb = 5.7
deg, when the hub is not tilted. Only when the hub becomes parallel to the swashplate,
the resulting pitch angle of the blade is θb = 5.7 + 4.3 = 10 deg. In this manner the blade
Non-Feathering Plane (NFP) is parallel to the blade TPP.

From a modelling point of view, these characteristics are taken into consideration in
the following way.

1. The condition of constant angular speed must be imposed to the hub axis rather
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fly-bar

hub

swashplate

blade

rocker

mixer

gimbal

swashplate

primary

command

10°

blade

pitch

5.7°

swash plate

primary command

10°

hub secondary

command

10°

blade

pitch

10°

Figure 3.5. Gimballed rotor blade pitch command.
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than the shaft axis, in order to enforce the condition ψ̇H = Ω =const. This was done
using a non-conventional sequence for describing the rotations (2-1-3) from the non
rotating shaft (NRS) to the rotating hub (RH) frames. In the classical approach used
for teetering/articulated rotors ([17, 86]) the rotation about the shaft axis precedes
the flapping rotation of the blades.

2. The homokinetic joint transmits to the helicopter body only the elastic, propulsive
and friction moments. In particular

(a) the torque of the engine Qmot is directed along the hub axis
(b) the elastic moments of the joint lie in the hub plane
(c) the elastic/friction moments due to the blade feathering hinges lie in the hub

plane

3. The inertial and aerodynamic forces are transmitted to the fuselage.

To describe the behaviour of the main rotor, it is necessary to define four reference
systems:

• The shaft coordinate system (or Non Rotating Shaft - NRS) FS {xS , yS , zS} is a non
rotating frame centred on the hub gimbal. In the analysis of the behaviour of the
isolated rotor, this is the fixed (inertial) frame. The system is represented in Fig.
3.6;

• The Non Rotating Hub (NRH) coordinate system FNRH {x′, y′′, zH} has the same
origin of the NRS system (the hub gimbal centre), it is tilted with respect to the
NRS by means of two rotations: a first rotation θH about the yS axis, that brings
xs in x′ and zs in z′, then a rotation about the x′ axis of an angle φH that brings
the ys axis in y′′ and z′ in zH ;

• The Rotating Hub (RH) coordinate system FH {xH , yH , zH} is rotated from the
NRH about the zH of an angle ψ = 90o − ψ̃H in order to have at ψ = 0 the first
blade in the aft position, and ψ increasing with time;

• Blade Span coordinate systems FBSj{xBSj , yBSj , zBSj} with j = 1,2, have their
origins at the root of the jth blade (that does not coincide with the centre of the
joint because of an undersling δ and eccentricity rc of coning hinges) and their yBSj
axis oriented along the blade span, such that it is rotated about the xH axis of a
coning angle ±βc.

Once defined the hub plane angular position, the position of the fly-bar is univocally
defined, since the fly-bar feathering axis is in the hub plane. It is important to note that
in this configuration the blades and the fly-bar are rigidly fixed to the hub, and therefore
they are forced to belong to the same (hub) plane. This is different from the teetering
rotor case, where the flapping dynamics of the blades and of the fly-bar are independent.
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Figure 3.6. Sketch of the gimballed rotor system: rotations and reference frames.
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3.6.1 Individual blade models

The equations of motion of the gimballed rotor with an individual blade approach are
derived in detail in [78]. As in the case of the articulated rotor, the starting point for the
description of the rotor is the position of the blade (or paddle) element. As a difference
with the articulated rotor where the equation of motions are derived with a Newtonian
approach, the gimballed rotor equations of motion were derived in Ref. [78] using a La-
grangian approach. A few simplifying assumptions can be made to alleviate the difficulties
of the study of this novel (and unusual) rotor configuration, representing the dynamics of
a gimballed rotor with reasonable accuracy. In particular it is necessary to describe accu-
rately the rotor inertial loads so that all the nonlinear inertial terms are kept to correctly
represent the wobbling motion.

With this respect, the Lagrangian approach has been selected as it allows to express
the constraints easily, and it is suited for multi-body dynamics description (fuselage, hub,
blades). Thanks to the Lagrangian approach it is possible to modify the model with
additional degrees of freedom, such as coning hinges or feathering dynamics, or other
design variations, with limited effort. In spite of the simplifications, the equations derived
for gimballed rotor dynamics are quite cumbersome. To deal with such complex equations,
a symbolic processor [86] was used to evaluate the inertial term of the equations of motion,
as well as the expression in the general case of the blade element velocity components
needed for the computation of aerodynamic loads, and then automatically generate the
MATLABő code used in the simulation model.

Due to the Lagrangian approach, the position of the blade element is expressed in the
inertial frame [86]. The Lagrangian is composed of a kinetic contribution and a potential
one (which depends only on elastic energy due to stiffness in rotor and feathering hinges
whereas it does not depend on gravitational forces). Aerodynamic loads which determine
the work of external forces on the rotor are evaluated by means of strip theory. To obtain
the kinetic energy of rotor blades (paddles), the position of the blade element (or paddle
element) is differentiated with respect to time and integrated along the blade (paddle)
span.

The main features of this model are

• The rotor blades and paddles are rigidly connected to the hub;

• Lift and drag coefficients of blade sections are in tabular form for −180 ≤ α ≤ 180
deg, and for Mach number between 0 and 0.8;

• Aerodynamic loads are computed by numerical integration over the blade span in
the framework of blade element approach;

• A three–state Pitt-Peters dynamic inflow model (see section 2.4) is used whereas
dynamic stall and unsteady aerodynamics effects are not included;

• Dynamic stall effects are not included, and static stall is considered in the lift and
drag coefficients;

• Tip losses due to 3D effects are neglected;
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• The shaft angular speed is constant, and the model of the propulsive system is not
considered;

• The rotor is homokinetic.

These simplifying assumptions are similar to those used for the articular rotor indi-
vidual blade models, if one acknowledges the minor differences related to the peculiarities
of the gimballed rotor. The individual blade model has been used in a previous work
for performance analysis, stability and handling qualities assessment [87]. In the present
work the individual blade model is used to validate simplified models and to analyse rotor
stability.

3.6.2 Simplified models

The full model provides a reliable description of helicopter behaviour, and its rotor in
particular. Nevertheless the level of detail in the individual blade model does not allow
to easily identify how single rotor configuration parameters affect the resulting dynamic
behaviour. Nor it is possible to define simple linear models to analyse stability as the
time–variant model requires Floquet analysis to evaluate stability regions and modes.

Furthermore the gimballed rotor configuration may include coning hinges with pitch–
coning coupling and friction in the coning hinges. When the coning degrees of freedom are
introduced (together with the difficulties in modelling friction), the individual blade model
leads to an overly complex dynamics with relevant numerical problems due to different
time scales of fuselage and rotor modes, compared to aerodynamic response characteristic
times and the high frequency vibrations induced by the switching of the stick-slip friction
model.

A simplified model of the gimballed rotor has thus been developed in order to analyse
systematically the effect of rotor configuration parameters and of coning hinges. The sim-
plified model has been validated against the full–order model by comparing rotor response,
forces transmitted to the fuselage, and stability characteristics.

The gimballed rotor with coning hinges features a yoke connected to the main rotor
shaft through a spherical joint, that allows two relative angular degrees of freedom for
feathering and teetering, indicated in Fig. 3.7 as γ and β0, respectively. The blades are
connected to the yoke through coning hinges, placed at a distance rc from the rotor axis,
with a geometrical undersling hc with respect to the centre of the gimbal.

The configuration is similar, in some respect, to the teetering rotor mounted on the
Robinson R-22 helicopter, with the major difference that the spherical joint replaces the
teetering hinge, thus allowing one more degree of freedom to the yoke. The isolated
gimballed rotor model will be compared with an equivalent teetering one in terms of
dynamic behaviour and response to controls. A simplified helicopter model is also derived,
that features a vertical translational degree of freedom only (heave motion) with uniform
dynamic inflow, in order to investigate the loads transmitted during a gust encounter and
the effects of the pitch–coning link.

To generate the rotor model, three equations in vector form are written: one for
the angular momentum balance of the whole rotor, considered as an articulated body,
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Figure 3.7. Gimballed rotor geometry.

the attitude of which is described by means of teetering and feathering angles (β0 and γ)
representing the inclination of the yoke with respect to the rotor shaft around the spherical
gimbal; and two equations for the coning motion of each blade with respect to the yoke,
βi, i = 1,2 being the coning angles. The geometry of the hub-blade assembly and the
position of coning hinges are shown in Fig. 3.8

Hub equations

In what follows, vector quantities are indicated with an arrow when they are not projected
in any particular frame. According to the generalized Euler equations [5], hub motion is
described using the centre of the spherical joint, O, as the pole for moments. Accordingly,
angular momentum balance of the entire rotor is written as

d~hO
dt +mrot~rCM × ~aO = ~mO (3.155)

where external torques ~mO and angular momentum ~hO are referred to O, mrot~rCM is
the static moment of the rotor, ~rCM is the position vector of rotor centre of mass with
respect to O and ~aO the absolute acceleration of the gimbal centre, O. The total angular
momentum of the rotor with respect to O is given by

~hO = I(β1, β2)~ω + ~h
rel

1 + ~h
rel

2

where I(β1, β2) is the inertia tensor which, in the most general case, depends on the time–
varying coning angles, β1 and β2, and ~ω is the hub angular velocity. The relative angular
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Figure 3.8. Gimballed rotor hub-blade geometry with coning hinges.

momentum due to the motion of the i–th blade relative to a reference frame fixed to the
hub, ~hreli , is expressed as

~h
rel

i =
∫ `

0
µ(xb)

[
(~rOC + ~rCP )× ~vrelP

]
dxb (3.156)

where µ(xb) is the linear density of the blade, ~rOC is the position of the coning hinge
with respect to the rotor centre, and ~rCP is the position of the blade element of the blade
element µ(xb)dx with respect to the coning hinge, placed in P , at a distance xb from the
coning hinge along the blade span. The speed of the blade element µ(xb)dx relative to the
hub is thus given by

~vrelP = d~rCP
dt

Moments of Inertia
As outlined above, the inertia tensor of the rotor varies as a function of the coning an-
gles. The inertia of the rotor is the sum of the contributions from central hub, JH =
diag(JHF , JHT , JHP ), flybar Jfb = diag(Jfb, 0, Jfb), (where the fly–bar, aligned with the
teetering axis, is assumed to have negligible inertia around it, its remaining moments of
inertia being approximately equal) and blades. The contributions of the blades around
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teetering, feathering and polar axes are given respectively by

JblT = 2
{
mb(r2C + h2

C) + Ib + Sb [rC(cosβ1 + cosβ2) + hC(sin β1 + sin β2)]
}

JblF = 2
[
mbh

2
C + SbhC(sin β1 + sin β2)

]
+ Ib(sin2 β1 + sin2 β2)

JblP = 2
[
mbr

2
C + SbrC(cosβ1 + cosβ2)

]
+ Ib(cos2 β1 + cos2 β2)

where reference is made to the Nomenclature section for the meaning of the symbols. The
blades also cause the presence of an off–diagonal term in the inertia tensor, equal to

Jblxz = Sb [rC(sin β1 − sin β2) + hC(cosβ1 + cosβ2)] + Ib(sin β1 cosβ1 − sin β2 cosβ2)

Blade equations

Blade motion around the coning hinge is described by means of a vector equation formally
identical to Eq. (3.155)

d~hrelC,i
dt +mb~rCG,i × ~aC,i = ~mC,i (3.157)

where moments are evaluated with respect to the coning hinge, Ci, and a single relative
degree of freedom, βi, is available around the hinge axes, ∓ĵ, parallel to the yH axis of
the hub–fixed frame, FH , where the − sign is used for blade #1, placed on the positive
side of the xH axis.
The relative angular momentum of the i–th blade ~hrelC,i with respect to the hinge Ci is
equal to

~h
rel

C,i =
∫ `

0
µ(xb)

(
~rCP × ~vrelP

)
dxb, i = 1,2 (3.158)

where mb~rCG,i is the static moment of the blade with respect to Ci and

~aC,i = d2~rOC
dt2

is the absolute acceleration of Ci. The relative speed ~vrelP of the mass element µ(xb)dxb in
P , with abscissa xb counted along the blade span, is

~vrelP = ~vP − ~vC,i.

Aerodynamics and controls

The moments of aerodynamic forces around coning hinges, mC,i, i = 1,2, and the corre-
sponding torques around teetering and feathering axes, mF e mT , are expressed following
the same simplifying approach described in Ref. [23], although the presence of aerody-
namic paddles and additional coning degrees of freedom needs to be accounted for. The
lift of each blade is expressed as

Li ≈
1
6ρΩ

2R3c(1± 3µ sinψ)CLααi, i = 1,2
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3 – Rotor models

It is assumed that Li is applied at 0.7R, where the upper and lower signs apply to the first
and second blade, respectively. This convention will be adopted throughout the paragraph.
Rotor inflow and blade drag are not included in the simplified model, as they were shown
to have negligible effects on the dynamic behaviour of the gimballed rotor around the
teetering and feathering axes, which is the focus of the present analysis.

The most relevant variation in the aerodynamic model with respect to that adopted
in Ref. [23] are (i) the pitch–coning coupling, that introduces a variation in blade pitch
as a function of coning angle, and (ii) the variation of blade incidence induced by coning
rates. As a consequence of this latter effect, aerodynamic damping around the teetering
axis, expressed in Ref. [23] simply as −Bω2 (where B = 1.4/6 · ρR4cΩCLα ), is now given
by −B[ω2 − τ(β̇1 − β̇2)], where τ = (0.7R − rc)/(0.7R), rc accounts for the effect of the
eccentricity of the coning hinge.

As for coning dynamics, the aerodynamic forcing term is given by lift acting with a
moment arm equal to 0.7R − rC with respect to the coning hinge. Note that in Ref. [23]
it was not necessary to express the lift of the single blade, but only the lift unbalance
between the two blades of the rotor.

In the presence of a coning rate and pitch–coning coupling, the angle of attack of the
reference section at 0.7R is equal to

αi ≈ θ0 ± θcyc ± ω2/Ω−KPCβi − τ β̇i/Ω + ∆αgi (3.159)

where, together with standard control variables, namely, collective and cyclic pitch, θ0 and
θcyc , the effects of coning rate, β̇i, and pitch–coning coupling, −KPCβi, are accounted for.
Variations of angle of attack due to a vertical gust, ∆αgi , are also considered, assuming that
the two blades may enter the gust at different times, so that, in general, it is ∆αg1 /= ∆αg2 .

The pitch command (considered as the blade rotation around the feathering axis with
respect to the gimbaled yoke) is expressed as

θ = θ0 ∓KH(φSW cosψ − θSW sinψ + γ) (3.160)

where the gain KH gives the swash–plate/blade–pitch command ratio. This is something
similar to what happens in teetering rotors equipped with a fly–bar, with the major differ-
ence that, in the present case, the fly–bar is rigidly connected to the yoke and it directly
drives it by means of its flapping motion.

In order to maintain the validity of the small angle assumption, a reference condition
at hovering is considered and response of rotor is considered only for small values of the
advance ratio, µ = V/(ΩR). At hovering, cyclic pitch commands are close to zero and
each blade provides a constant lift force equal to half of the total weight of the vehicle,
such that

L1 = L2 = 1
6ρΩ

2R3cCLα(θ0 −KPCβh) = W

2 (3.161)

Coning and incidence angles can thus be expressed in the form

βi = βh + ∆βi
αi = αh + ∆αi

i = 1,2
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3.6 – Gimballed Rotor

where
∆αi = ∆θ0 ± θcyc ± ω2/Ω−KPC∆βi − τ β̇i/Ω + ∆αgi

At hovering βi = βh and αi = αh, i = 1,2. Considering flight conditions at low advance
ratio µ, the angular variables remain small and it is possible to express the lift developed
by the blades in the form

Li ≈
W

2 (1± 3µ sinψ) + 1
6ρΩ

2R3cCLα∆αi

It is now possible to evaluate the moments acting on the elements of the gimballed
rotor. Blade coning motion is driven by aerodynamic moment with respect to the coning
hinge

maero
Ci = (0.7R− rC)× Li

whereas the total moment acting on the rotor around the teetering axis passing through
the centre of the spherical hinge is given by

N2 = 0.7R× (L2 − L1) =
= −2.1µWR sinψ − 0.233ρΩ2R4cCLα(θcyc + ω2/Ω) +

+0.1167ρΩ2R4cCLα · [KPC(β1 − β2) + τ(β̇1 − β̇2)/Ω−∆αg1 + ∆αg2 ]

The last term includes the effects of possible aerodynamic load unbalance between the
blades induced by a difference in either their coning motion or variation of local angle of
attack induced by a gust.

The expression of the aerodynamic moment generated by the paddles around the rotor
feathering axis is not affected by the configuration of the coning hinges. In dimensional
terms the expression is

N1 = −0.25ρΩ2R3
fbSfbCLαfb(ω1/Ω)

Rotor equations of motion

After introducing the small angle assumption, such that cosϑi ≈ 1 and sinϑi ≈ ϑi with
ϑi ∈ {γ, β0, β1, β2}, and writing all the equations in terms of the relevant vector compo-
nents, a set of linear ordinary differential equations with periodic coefficients is derived for
describing the motion of the central hub and blades, in terms of feathering and teetering
degrees of freedom, and coning angles, respectively.

Feathering and teetering dynamics are expressed by the equations[
JHF + JFB + 2mbh

2
C

]
ω̇1 = −

[
JFB + (JHP − JHT )− 2mbh

2
C

]
ω2Ω +mHF[

JHT + 2Ib + 2mb(r2C + h2
C) + 4SbrC

]
ω̇2 + (Ib + SbrC)(β̈2 − β̈1) =(3.162)

= −
[
JHF − JHP + 2mb(h2

C − r2C)− 4SbrC − 2Ib
]
ω1Ω− (Ib + SbrC)(β2 − β1)Ω2 +mHT

where mHF = N2 −Kγ and mHT = N1 −Kβ0 are the external aerodynamic and elastic
moments acting around the feathering and teetering axes of the spherical joint.
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3 – Rotor models

The equations for the relative motion of the blades with respect to the yoke are given
by

Ibβ̈i ∓ (Ib + Sbrc)ω̇2 + (Ib + Sbrc)(Ω2β1 ± Ωω1) = mCi (3.163)

where mCi is the total external moment applied around the coning hinge, which may
include, together with the aerodynamic term, contributions from elastic, viscous or dry
friction terms in the coning hinges.

The kinematic model is written in terms of teetering, feathering and coning angles,
namely β0, γ, β1, and β2. Under the small angle assumption, β0 and γ represent the
flapping and feathering rotations of the hub with respect to the rotating shaft–fixed frame
(xR, yR, zR), such that

β̇ = −ω̃2 + Ωγ (3.164)
γ̇ = ω1 − Ωβ (3.165)

The derivatives of the coning angles are simply equal to the coning rates, β̇1 and β̇2.
Note that the inclination of the hub with respect to the direction of the shaft can also

be described by means of the angles u1 and u2 in a non-rotating frame, defined as

ϑH = −β cosψ + η sinψ (3.166)
ϕH = −β sinψ − η cosψ (3.167)

where the angle ϑH is positive when the hub is tilted in the rear direction, while ϕH is
positive when it is tilted to the right.

Finally, a constant rotor angular rate Ω is assumed, so that it is possible to transform
all the differential equations from the time domain into the angular variable ψ by means of
the chain rule for derivatives, such that ẋ = dx/dt = (dx/dψ)(dψ/dt) = x′Ω. For second
order derivatives, it is ẍ = x′′Ω2.

3.6.3 Teetering and rigid gimballed rotors

Teetering rotor models are derived from those representing the dynamics of a fully gim-
balled one by setting feathering angle and rate, γ and ω̇1, equal to zero. The corresponding
equations of motion, easily obtained from Eqs. (3.162) and (3.163) are not reported for
the sake of conciseness.

In a similar way, freezing the coning degrees of freedom, such that βi = βH and β̇i = 0,
i = 1,2, the rigid gimballed rotor analysed in Ref. [23] is recovered, if the centre of mass of
the resulting rigid rotor coincides with the centre of the spherical joint. In this case, after
defining nondimensional angular velocity components as ω̃i = ωi/Ω, i = 1,2, and dividing
for ω̇i by JiΩ2, the equations of motion achieve the compact form

x′ = A(ψ)x+ B(ψ)u

where the state and control vectors are, respectively, x = (ω̃1, ω̃2, γ, β)T and u = (θSW , φSW )T .
The state–matrix of the system is given by
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3.6 – Gimballed Rotor

A(ψ) =


−γfb2 −1 γfb

2 Jµ2 cosψ sinψ − k1 − 2kTKH 0

1 −γb8
γb
8 KH(1 + 2µ2 sin2 ψ) γb

4 µ
2 cosψ sinψ + k2

1 0 0 −1
0 −1 1 0


(3.168)

whereas

B(ψ) =


2kT sinψ 2kT cosψ

γb
8

γb
8

0 0
0 0

 (3.169)

3.6.4 Friction

Due to the centrifugal load, a dry friction term in the coning hinge is introduced. A value
equal to 100 Nm is assumedfor the considered blade mass and coning hinge geometry. The
effects of friction on rotor dynamics and stability will be demonstrated to be significant.
A simple friction model is adopted, letting

mfric
Ci

= −kfrsign(β̇i) (3.170)

where kfr is a friction coefficient that depends on hinge characteristics and centrifugal
force, whereas the sign function is defined as

sign(x) =
{

1 if x > 0
−1 if x < 0

The friction torque is constant in magnitude and it works against the direction of coning
motion. Note that within this simple friction model, stick–slip phenomena are not taken
into account. Moreover, the sudden changes in sign of the friction torque introduce prob-
lems for (i) the numerical integration of the equations of motion and (ii) the evaluation of
inertial loads, especially when the coning motion is close to an equilibrium and β̇i ≈ 0.

A fixed–step integration algorithm was adopted for performing the numerical simu-
lations, with an integration step δψ that resulted into a reasonable CPU time for the
simulations, while maintaining rotor behaviour independent of δψ itself. At the same time
a small “viscous interval” was introduced around the stick condition β̇i ≈ 0, which avoids
non–physical high–frequency variations of inertial forces.

3.6.5 Coupled rotor–fuselage heave motion

In order to investigate rotor loads during gust encounters and the effects of the pitch–
coning coupling, a vertical translational degree of freedom for the fuselage is introduced
(heave motion). Furthermore, a uniform first–order dynamic inflow model was included
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3 – Rotor models

in the model , resulting in a 11th order system, to consider all the time–scales relevant to
the response.

Rotor thrust sustains both vehicle’s weight and its drag, evaluated by means of an
equivalent parasite area. The intensity of the flow impinging on the fuselage is given by
the vector sum of helicopter vertical speed and inflow. Inertial coupling between coning
motion and fuselage vertical displacement is also significant and it is included in the model.
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Chapter 4

Steady–state performance

This chapter and the following one are dedicated to the description of techniques for the
evaluation of rotorcraft behaviour and the analysis of the effects of model complexity
on prediction of performance and handling qualities. In particular the present chapter
presents steady–state performance which can be obtained by means of rotorcraft trim.
Chapter 5 is dedicated to helicopter handling qualities with a focus on linearization and
inverse simulation. A wide set of models with different complexity all representing the
same rotorcraft (the UH-60A “Blackhawk” helicopter) has been developed.

4.1 Reference models for the analysis

A set of models ranging from a medium complexity one to lower order simulators has been
developed in the framework of helicopter performance and dynamic behaviour analysis.
Table 4.1 summarizes the characteristics of all the models considered in the analysis in
form of a test matrix. Line types and markers used for all the plots in chapters 4 and 5
are also reported for each model.

Rotor models of decreasing complexity are listed top–down in the rows from 1 to 9,
whereas fuselage aerodynamic models of decreasing complexity are listed in the columns
labeled A and B. The resulting number of states for the models is indicated in the fourth
column. A combination of letter (A or B) and number identifies each model. A static
model for helicopter at trim is derived from Ref. [5] and it is indicated as Model C at the
bottom of the list. As the simplest model it has no dynamic states as it is based only on
force and moments balance and no equation of motion is written.

Also some of the dynamic models share a strong link with models proposed in literature.
In particular, Model A1 corresponds to the UH-60 “Blackhawk” helicopter model described
in [15]. Minor differences are present in the fuselage aerodynamic model, which was
modified removing a few discontinuities, thus making it able to simulate a wide range of
manoeuvres, including backward flight. Model A6 describes the same helicopter modeled
according to the approach discussed in Ref. [14]. The simplest model, indicated as B9, was
developed according to the guidelines reported in Ref. [11]. These four reference models,
indicated by boldface letters in Tab. 4.1, represent the backbone of the analysis, whereas
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4 – Steady–state performance

intermediate ones will be used in order to highlight the relevance of specific aspects of the
simplifications adopted on performance and handling qualities analysis.

The impact of fuselage aerodynamic model on helicopter performance evaluation has
been taken into due consideration, an analysis often neglected in other studies. The models
have been tested either with a complete fuselage aerodynamic force and moment coefficient
database or with a much simpler model based on parasite drag area. The following sections
presents the models used in the analysis in greater detail, describing the main features
and differences among them.

Table 4.1. Rotorcraft models test matrix (with line–style legend for the plots).

Main rotor Fuselage aerodynamics

Blade dynamics Inflow model No. of
states

From database Parasite area

flap, lag & twist 3 state dynamics 37 A1—�
Articulated flap & lag 3 state dynamics 29 A2 —•

flap only 3 state dynamics 21 A3 —N
coning, lat. &
long. flap coeff.

3 state dynamics 19 A4 - - -H

2nd order TPP
dynamics

coning, lat. and
long. flap coeff.

unif. dyn. inflow 17 A5 - - -�

coning, lat. and
long. flap coeff.

unif. static inflow 15 A6 - - -◦ B6 - - -×

coning, lat. &
long. flap coeff.

unif. dyn. inflow 14 B7 -·-·-·∗

1st order TPP
dynamics

coning, lat. and
long. flap coeff.

unif. static inflow 12 B8 -·-·-·+

decoup. lat. &
long. flap coeff.

unif. static inflow 11 B9 ——�

no dynamics decoup. lat. &
long. flap coeff.

unif. static inflow n.a. C · · · · · ·4

4.1.1 Individual blade models

A first set of 3 rotor models is considered, which features an individual blade dynamic
model. In the most complex version, the model features a full nonlinear description of
fuselage aerodynamics; rigid articulated blades with a dynamic twist model; an accurate
representation of the lag damper; a 3 state dynamic model of main rotor inflow, and
a simple tail rotor model with dynamic uniform inflow. The equation of these models
are developed following the approach described in the articulated rotor, individual blade
description (section 3.1).
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4.1 – Reference models for the analysis

The evaluation of aerodynamic loads on the blades is based on airfoil lift and drag
coefficients given in tabular form for −180 ≤ α ≤ 180 deg and 0 ≤M ≤ 1.

A1: Individual blade with flap, lag, and twist DoFs

The baseline reference model for the present analysis is representative of an articulated
blade, single main rotor transport helicopter, the Sikorsky UH-60. A fully nonlinear
description of fuselage and empennage aerodynamics is coupled with a rotor model which
features rigid articulated blades with an accurate representation of the lag damper. Effects
of blade torsional deformation are included, while blade, shaft and fuselage elastic modes
and engine dynamics are neglected (constant rotor rotational speed is assumed). Power
required from the main and tail rotor is evaluated from the shaft torques in order to
estimate vehicle limiting performance as a function of flight condition and engine expected
maximum available power at the considered altitude.

Aerodynamic loads are obtained by numerical integration in the framework of blade
element theory, where airfoil lift and drag coefficients are given in tabular form for −180 ≤
α ≤ 180 deg and 0 ≤ M ≤ 1, in order to take into account at least approximately the
effects of stall and reverse flow on the retreating blade and those of compressibility on
the advancing blade. Among other minor differences with respect to the original model
described in [15] and [17], the formulation adopted for the evaluation of rotor aerodynamic
loads is based on a conventional definition of the blade element cdyb, lying in a direction
perpendicular to the blade axis yb, with effective velocity and angle of attack evaluated as
the magnitude of the velocity component perpendicular to the blade axis and its inclination
with respect to the blade chord, respectively. Five blade elements were considered for each
blade. No 3-D aerodynamic effects, such as blade–vortex interaction, nor other important
2-D aerodynamic effects, such as circulation hysteresis are included in the model.

The fuselage aerodynamic database is extended by means of an interpolation in spher-
ical coordinates of available data, providing aerodynamic force and moment coefficients in
tabular form for every possible set of values of aerodynamic angles in the range −180 ≤
α ≤ 180 deg and −90 ≤ β ≤ 90 deg.

A 3–DoF dynamic model of main rotor inflow (see section 2.4), and a simple tail–rotor
model with dynamic uniform inflow are assumed. Rotor wake coupling with fuselage and
empennage aerodynamics is considered by means of simple velocity composition and some
empirical coefficients [15], but no rotor wake distortion is included in the model. In this
respect, the rotor model is a Level 1.4 model, as far as blade dynamics is concerned, while
it is an intermediate model between Level 1 and 2 for the evaluation of aerodynamics
loads on the blades. Fuselage aerodynamic model is represented by a database of force
and moment coefficients depending on aerodynamic angles αf and βf .

In compact form, the reference model is defined by a set of 37, time variant, nonlinear
ordinary differential equations

ẋ = f (x,u, t)
y = g (x) (4.1)
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where the helicopter state vector can be partitioned as follows:

x = (xf , xr, xλ)T

where xf = (u, v, w, p, q, r, φ, θ, ψ)T collects fuselage rigid body states, xr = (xTr1 ,x
T
r2 , ...,x

T
rNb

)T ,

with xri =
(
βi, β̇i, ζi, ζ̇i, ϕi, ϕ̇i

)T
, lists rotor flap, lag and twist angles and their derivatives

for all the blades, and finally the vector xλ = (ν0, νc, νs, ν0tr)T features main rotor and tail
rotor inflow states. The control vector u = (θ0, A1S , B1S , θ0tr)

T contains pilot commands
on main rotor collective, lateral and longitudinal cyclic pitch and tail rotor collective pitch.
Finally the reference model output vector y contains all the output variables needed for
the guidance and inverse simulation step. The choice of a suitable set of output variables
will be discussed in Chapter 5.

A2: Individual blade with flap and lag DoFs

Model A2 is obtained from model A1 by removing blade twist degrees of freedom while
keeping every other aspect of the original helicopter model, including, in particular, the
inflow model and blade airfoil and fuselage aerodynamic coefficients. Only the equivalent
blade torsional stiffness is no longer necessary, so that the overall amount of information
necessary for developing this models is not significantly reduced, the major savings being
related to the reduction of system order, from 37 to 29 state variables for model A2.
Compared to model A1, only the rotor state is different so that xri =

(
βi, β̇i, ζi, ζ̇i

)T
. The

dynamic twist has a very limited impact on performance evaluation apart from generating
a constant shift in main rotor collective. For this reason Model A2 will not be used in
the steady–state performance analysis as its results almost perfectly overlap those derived
from Model A1.

A3: Individual blade with flap DoFs

Model A3 is obtained from model A1 by removing blade twist and lag degrees of freedom
while keeping every other aspect of the original helicopter model, including, in particular,
the inflow model and blade airfoil and fuselage aerodynamic coefficients. The equivalent
blade torsional stiffness and lag damper data are no longer necessary, the latter repre-
senting a significant simplification of the blade model, when one acknowledges the level
of detail necessary for a complete description of the lag damper. Moreover, major savings
in terms of computational time are obtained from to the reduction of system order, from
37 to 21 state variables and the reduction of the coupling matrix. Model A3 rotor state
vector is xri =

(
βi, β̇i

)T
4.1.2 2nd order TPP dynamics

A more compact representation of rotor dynamics is obtained in terms of rotor flapping
coefficients (Chapter 3.2). In this case the flap angle of each blade is expressed in terms
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of a Fourier series expansion, truncated at the fundamental frequency Ω,

β(ψ) = a0 − a1 cosψ − b1 sinψ

where, coning, longitudinal and lateral flapping coefficients represent “global” rotor state
variables, xr = (a0, a1, b1)T , and the individual blade model is lost. Assuming small flap
angles and linear aerodynamics, a second order dynamics for xr is obtained in the form
(see Eq.(3.85)):

MTPP ẍr + D̃ẋr + K̃xr = f̃(t) (4.2)

Under these assumptions, rotor loads are evaluated analytically, in terms of average
values over one revolution for forces and moments transmitted to the rotor hub. With
respect to the original rotor model developed by Chen [12], a more accurate rotor inflow
model is assumed, featuring a triangular induced velocity distribution (Model A4), which
is then simplified into a uniform dynamic inflow model (A5) and a uniform, quasi–steady
one for both main and tail rotors (A6), as in the original version. The number of states
thus decreases from 19, for model A4, to 17 for A5 and only 15 for A6.

At the latter level, the effects of different fuselage aerodynamic models is also consid-
ered, where in the absence of a complete set of wind–tunnel experiments, only parasite
area estimate (B6) is available. This aspect does not affect the number of dynamic states,
but only the amount of information necessary for building the vehicle model.

4.1.3 1st order TPP dynamics

An even simpler representation of rotor dynamics is obtained by neglecting inertial cou-
pling between rotor and fuselage. This is equivalent to assuming that, starting from the
rotor model described in Section 3.2, the term MTPP ẍr in Eq. (4.2) is negligible with
respect to the others, so that rotor response can be modeled as

ẋr = D̃
−1 [

f̃(t)− K̃xr
]

(4.3)

where only aerodynamic coupling between lateral and longitudinal flapping coefficients
and the effects of forward speed on rotor response are thus retained in the model. Only
the simplest fuselage aerodynamic model and uniform main rotor inflow are considered in
this framework, featuring either a dynamic variation of induced velocity as a function of
thrust coefficient (Model B7, with 14 states) or a quasi–static one (12th order model, B8).

In the simplest model B9, equivalent to that described in Ref. [11], decoupled first–
order dynamics for lateral and longitudinal flapping coefficients is assumed. Time–constants
are held fixed over a wide portion of the flight envelope, and a correction for low values
of the advance ratio is included in order to simulate the so–called rotor dihedral effect at
low speed [11].

In the analysis of steady–state conditions, a 2nd order model and its equivalent 1st

oder one provide the same results. In fact trim conditions are evaluated by forcing to zero
rates and accelerations of tip–path–plane variables together with derivatives of fuselage
states. As the tip–path–plane states velocity are required to be equal to zero, the same
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trim result is obtained by a 2nd and 1st order TPP models based on the same assumptions.
For this reason no 1st oder model is included in the performance analysis, whereas they
are used extensively in the section that deals with handling qualities.

4.1.4 Static models

Model C (i.e. Level 0 complexity) is based on Bramwell’s analysis of helicopter performance
[5]. This approach does not allow to derive a dynamical model (no equations of motion
are written), but helicopter equilibrium conditions are evaluated balancing forces and
moments acting on the fuselage. Forces and moments generated by the rotor are expressed
as a function of attitude angles, collective and cyclic pitch, and flapping angles which
are described by means of first-order harmonic approximation. The major simplifying
assumptions are related to the description of the main rotor, where blade element theory
is adopted for estimating main rotor thrust and inplane force. Fuselage drag is evaluated
assuming a constant parasite fuselage area independent of aerodynamic angles and flight
condition. Lateral trim (i.e. lateral cyclic pitch and roll attitude), is evaluated after the
longitudinal variables are set to their equilibrium conditions, by balancing roll moments
and lateral forces, taking into account the sidewise projection of rotor thrust, tail rotor
thrust (which is calculated as to compensate main rotor torque) and the projection of
gravity acceleration along the pitch axis. The configuration data required for Model C are
reported in Tab. A.2. It should be noted how a few parameters are sufficient, in this case,
to obtain information on helicopter expected performance and command travel, within
the simplifying assumptions discussed here. Note also that, for a conventional, articulated
blade helicopter, this simple model is expected to perform relatively well, in spite of these
simplifying assumptions.

4.2 Trim techniques
One of the objective of the work is to analyse the effect of model complexity on steady–state
performance evaluation, as a consequence a trim technique is required for each model used
in the analysis. Among all models described in table 4.1, Models A1 and A3 represent
individual blade models, Models A4, A6 and B6 TPP models, and finally Model C an
example of simple descriptions for preliminary performance evaluation. This section is
dedicated to the solution of the trim problem, while the following collects the performance
results evaluated on the basis of all the models.

As outlined by Peters and Barwey [28], the word trim may undergo different interpre-
tations when dealing with its application to a helicopter. In what follows, the problem of
trimming a helicopter model will be considered as the determination of a set of controls
that result in a steady flight condition with prescribed properties (in terms of velocity, rate
of climb and turn rate) at least in an average sense. Even in the framework of this par-
ticular definition, the problem of helicopter trim remains strongly coupled with rotorcraft
modeling level.

The definition of a suitable set of mathematical conditions to be enforced also depends
on the model but, in general, two sets of equations are always present in the formulation
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of a trim problem: (i) a set of requirements for enforcing a steady flight condition and (ii)
a set of trim constraints for enforcing the desired flight conditions.

4.2.1 Algebraic trim

When individual rotor blade dynamics is not included in the model (Models A4, A6, and
B6), TPP orientation and rotor loads averaged over a rotor revolution are analytically
determined as functions of flight condition and main and tail rotor control settings. In
this case the trim problem can be formulated in a form very similar to the fixed–wing
aircraft case, where the equations of motion for fuselage and rotor variables are cast in
the form of a set of nonlinear ordinary differential equations,

ẋ = f(x,u) (4.4)

where x = (xTF xTR)T , xTF = (u, v, w, p, q, r, φ, θ, ψ)T are fuselage states, xTR are rotor states
and u = (θ0, A1s, B1s, θ0TR)T are control variables. As an example, in Model A4, where
the rotor is described by 2nd order TPP dynamics and 3-states inflow, the rotor state
vector is equal to xTR = (ȧ0, ȧ1, ḃ1, a0, a1, b1, ν0, νc, νs)T

The steady–state condition requires that state and control variables at trim, xe and
ue, satisfy the equilibrium conditions

f(xe,ue) = 0 (4.5)

whereas the trim constraints require that

u2
e + v2

e + w2
e = V̄ 2 (4.6)

ue sin θe − ve sinφe cos θe − we cosφe cos θe = ¯̇h (4.7)
(qe sinφe + re cosφe)/ cos θe = ¯̇ψ (4.8)

where the bar denotes desired values of variables at trim. In a steady-state coordinate
turn the rate of turn (which is enforced by Eq. (4.7)) can be related to angular velocities
as ¯̇ψ2 = ω̄2 = p2

e + q2e + r2e . Since there are 11 equations and 13 unknowns, two additional
conditions are required for closing the problem. Note that this is a minor difference with
respect to the fixed wing aircraft where the yaw angle ψ can always be assumed 0 at
trim, without loss of generality. In particular either the heading or the yaw angles can be
assumed equal to 0 without loss of generality. For the helicopter case one constraint is
derived from the relation between yaw, sideslip and heading angles. The simplest approach
is to assume the heading angle equal to 0. This is equivalent to assuming the projection of
the velocity vector on the horizontal plane as reference direction. The yaw angle, counted
with respect to this reference direction, is maintained among the trim variables, providing
the information on the misalignment of the vehicle longitudinal axis with respect to the
direction of motion. A further trim condition is still required to close the problem. Several
alternatives are possible, the most common ones being flight at zero sideslip (ve = 0) or
zero roll angle (φe = 0) for rectilinear flight or zero lateral acceleration in a steady turn
(that is, a requirement for a coordinated turn). Different choices are also interesting, such
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4 – Steady–state performance

as minimum control effort or minimum power, etc. When the zero sideslip condition is
enforced, due to the relation between the Euler and aerodynamic angles, roll angle can be
evaluated as [88]:

tanφe = sinψe cos γ̄
sin θe cosψe cos γ̄ + cos θe sin γ̄

It is possible to exploit kinematic relations at equilibrium in order to solve analytically
at least some of the equilibrium and trim conditions, thus reducing the order of the alge-
braic system to be solved. In this way the number of unknowns can be reduced to 6 [6].
This means that only ψe and θe plus the 4 control variables are left as unknowns, to be de-
termined from the equilibrium conditions for force and moments equations, u̇ = v̇ = ẇ = 0,
and ṗ = q̇ = ṙ = 0.

For steady rectilinear flight, these latter conditions are equivalent to the equilibrium
of external force and moments acting on the helicopter fuselage. Bramwell [5] proposes
an analytical procedure for evaluating trim conditions by enforcing equilibrium in the
longitudinal plane first and then along the lateral axis. This approach was used to evaluate
trim conditions for Model C. On the converse, when TPP and inflow states are included in
the model (Models A1 to B6), an equilibrium is obtained when the time derivatives these
states are equal to zero, together with fuselage force and moment equilibrium conditions.
The resulting set of algebraic equations is solved numerically by means of a Newton-
Raphson scheme.

If the model features rotor blade dynamics, a steady–state flight condition is periodic
in nature. In this case, two different approaches have been followed in the evaluation of
trim conditions: a novel trim technique based on rotor shooting with average forces and
moments equilibrium on the fuselage and full–order periodic–shooting for the complete
helicopter model.

4.2.2 Nested trim

In order to enforce a rotor periodic equilibrium, each blade and inflow variable is required
to achieve the same conditions after one revolution. If one neglects the small variations of
fuselage rigid–body variables, the values of vB and ωB become constant and the effects of
fuselage acceleration on blades dynamics are thus neglected. In such a way it is possible to
identify rotor steady states by means of a shooting algorithm, where the blades equations
of motion are numerically integrated from a given set of initial conditions that are adjusted
until the periodicity conditions are satisfied [17].

Remembering that, for a correctly balanced rotor, all the blades follow the same tra-
jectory at steady state, the shooting problem for a single blade is solved over a whole
revolution or for the whole set of blades over a fraction 2π/Nb of a revolution [26], where
the periodicity conditions are substituted by the requirements that each blade at the end
of the 2π/Nb integration period achieves a final state equal to the initial condition of the
following one. This condition is expressed in mathematical term by the equations:
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4.2 – Trim techniques

xR(ψ0 + 2π/Nb) = PNbxR(ψ0) ; ẋR(ψ0 + 2π/Nb) = PNbẋR(ψ0)
(4.9)

where PNb is the Nb ×Nb permutation matrix

PNb =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1
1 0 0 . . . 0 0


and xR represents either the flap, lag or twist states.

Once rotor blade periodic motion is known, average inertial and aerodynamic loads
transmitted via the rotor hub to the helicopter fuselage are evaluated. The problem of
fuselage trim is thus rephrased exactly in the same form as that outlined in the pure
algebraic trim in the previous subsection, requiring force and moment equilibrium plus a
proper set of trim conditions [89]. In this way a nested trim algorithm is derived where, at
the inner level, the current value of rigid–body states and control variables is adopted for
determining rotor blade periodic motion, while at the outer level, the unknowns related
to rigid–body states and controls are varied until the average loads satisfy the required
equilibrium. The resulting set of shooting (for rotor states) and algebraic trim conditions
(for fuselage states) are solved by means of a numerical technique, such as the Newton–
Raphson method. The approach was tested on Model A1 and results tested against a
full–order model shooting.

4.2.3 Periodic trim for full-order model

In those cases when a detailed analysis of the trim condition is sought, it is necessary to
take into account the coupled periodic variation of all fuselage, rotor and inflow states.
The shooting technique can be applied to the whole set of ordinary differential equations
representing rotorcraft dynamics. In order to solve for the 4 control variables while setting
the desired trim flight condition, 4 additional constraints need to be enforced. Because of
the time–varying nature of the problem, these trim conditions are enforced in an average
sense, in the form ∫ 2π/Nb

0

(
V̄ −

√
u2 + v2 + q2

)
dψ = 0 (4.10)∫ 2π/Nb

0

[¯̇h− (u sin θ − v sinφ cos θ − w cosφ cos θ)
]
dψ = 0 (4.11)∫ 2π/Nb

0

[ ¯̇ψ − (q sinφ+ r cosφ)/ cos θ
]
dψ = 0 (4.12)∫ 2π/Nb

0

[
sinφ− ψ̇

g
(u cosφ+ w tan θ)

]
dψ = 0 (4.13)
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4 – Steady–state performance

Equation (4.13) represents the additional trim condition with a requirement for zero
average lateral acceleration ay. For a desired turn rate ¯̇ψ /= 0 this condition results into
a requirement for a coordinated turn, whereas for ¯̇ψ = 0 a zero average value of the yaw
angle is requires. For steady rectilinear flight at advance rations µ = V̄ /(ΩR) < 0.1, Eq.
(4.13) is replaced by∫ 2π/Nb

0
[sinφ(sin θ cosψ cos γ̄ + cos θ sin γ̄)− cosφ sinψ cos γ̄] dψ = 0 (4.14)

that is, a requirement for zero average sideslip angle [17].

4.3 Validation
In the development of helicopter mathematical models, the validation phase is a funda-
mental step to assess the validity of the approach. Unfortunately flight data or even wind
tunnel test data are available only for a limited set of helicopter, while most of the informa-
tion is proprietary. As an example Yeo et al. [90] compare the results of the CAMRAD/II
comprehensive analysis software with the flight test results obtained by means of the UH60
airload project [91] during which an extensive flight–testing campaign was conducted. For
the present work, model A1 is compared with flight test data published in [92] and used
as a reference also in [17]. Trim data in level flight are evaluated for a helicopter mass
of 6,600 kg and at an altitude of 5400 ft. The results are also compared with a model
developed in Flightlab [36] with a similar level of complexity (no dynamic twist).

Figure 4.1 compares the command required to trim the helicopter. Main rotor collective
and longitudinal cyclic pitch show a very good agreement between model developed for
this analysis, Flightlab and flight test, meaning that the longitudinal behaviour is well
represented. Lateral behaviour is less well described, as can be seen for the lateral cyclic
pitch and the tail rotor in particular. As can be seen in figure 4.2 a different trimming
approach has been used for model A1 and for the model analysed in Flightlab. Model
A1 trim enforces zero roll angle when µ > 0.1, conversely Flightlab trim requires nonzero
roll angle even at high advance speeds. For this reason, as well as differences in the tail
rotor model, lateral direction commands show some disagreement at low to medium speeds
between the models and flight tests.

Finally figure 4.3 represent necessary power as a function of advancing speed. Al-
though Model A1 and Flightlab tend to underestimate power requirement at high speed,
the results are nevertheless close to flight tests. Given its ability to correctly represent
command, attitude as well as power, model A1 will be used in the sequel as a reference
to evaluate the ability of lower order models to provide a reliable estimate of helicopter
steady–state behaviour.

4.4 Maximum performance in steady flight conditions
Limiting performance (maximum speed, ceiling, rate of climb and rate of turn) are obtained
from the determination of the flight conditions where power required at trim matches the
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Figure 4.1. Validation of UH–60A commands evaluation for a 6,600 kg fuselage mass at
5400 ft altitude: model A1 (—), Flightlab (- - -), flight test ( o ).
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Figure 4.2. Validation of UH–60A attitude evaluation for a 6,600 kg fuselage mass at 5400
ft altitude: model A1 (—), Flightlab (- - -), flight test ( o ).

maximum available power. Available power is evaluated as a function of sea level maximum
power and altitude. No correction for helicopter speed is introduced and all data are for a
standard atmosphere temperature (15◦C at sea level). Required power is evaluated adding
main rotor and tail rotor power absorption plus a 5% margin for secondary power system
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Figure 4.3. Validation of UH–60A required power for a 6,600 kg fuselage mass at 5400 ft
altitude: model A1 (—), Flightlab (- - -), flight test ( o ).

and transmission losses.
The flight envelope is evaluated by merging data on maximum speed in level flight

at increasing altitude with ceiling limits determined at different flight speed. Ceiling is
evaluated as the maximum altitude at which the helicopter is able to sustain level flight at
the desired speed. Maximum rate of climb (ROC) and rate of turn (ROT) are evaluated
at various flight velocities ranging between hover and maximum speed. Trim in turning
flight is determined assuming a coordinated turn condition (that is, zero average lateral
acceleration, āy = 0).

In the evaluation of trim conditions, individual blade models (namely, Models A1 and
A3) require a shooting algorithm and a complete set of data for the considered helicopter.
Data from Ref. [15] were used for the Sikorsky UH–60 helicopter, in the present analysis.
The shooting technique is applied over a fraction 2π/Nb of rotor revolution with averaged
trim conditions [17] . The corresponding performance limits are regarded as the most
accurate estimate of the UH–60 operational envelope, on the basis of the available model.
These data are compared with flight test results found in the literature [92].

The trim algorithm with nested shooting and averaged rotor loads [89] is also tested
on Model A. The results are compared with those obtained for the full–order shooting
method, in all the considered flight conditions. A very good agreement between the results
is obtained, either when command travel or maximum performance are compared.

The algebraic conditions corresponding to the definition of steady state flight for Mod-
els A4, A6, and B6 are determined by enforcing that all time–derivatives of rotor, inflow
and fuselage states are equal to zero (see Eq. (4.5), and that horizontal and vertical speeds
and rate of turn are equal to prescribed desired values (Eqs. (4.6) to (4.7)). The algebraic
Model F provides an analytical approach for the determination of steady rectilinear flight
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4.4 – Maximum performance in steady flight conditions

conditions [5], and, as a consequence, it does not allow for the analysis of trim conditions
in turning flight. Data for performance in steady coordinated turns are thus evaluated for
Models A1 to B6 only.

Limiting performance are determined by means of an algorithm which starts from a
reference level flight condition. The parameter under analysis (speed, altitude, ROC, or
ROT) is then increased and trim conditions evaluated until the required power Pr exceeds
the available one, Pa(h). A secant method is then used to evaluate the limit value of the
considered performance index, where required power exactly matches the available power,
that is, Pr = Pa, within a prescribed relative tolerance ε. In the present analysis a value
of ε = |Pr − Pa| = 10 HP was selected, equal to 0.4% of the maximum available power at
sea level Pmax,SL.

4.4.1 Steady level flight

Figure 4.4.a shows the UH–60 estimated flight envelope in the h− V plane for a reference
Aerial Recovery Mission. The three models based on individual blade description predict
the same flight envelope. Models based on analytically evaluated rotor loads are able to
correctly predict maximum speed and ceiling up to a speed of about 40 kt. On the contrary
they fail in the prediction of ceiling for medium to high speed. The simplified analytical
model based on Bramwell description is able to correctly predict the flight envelope only at
low speeds, while it greatly overestimates ceiling at medium to high advance ratios as well
as maximum speeds. The ceiling limit in hover and at low speed is dominated by induced
power, which all models are able to describe thanks to the presence of uniform inflow
state. To improve the predictive capabilities of simpler models several different approaches
have been used as described in par 3.3. When a 0.95 rotor CL limit is enforced, only a
limited improvement in the prediction of ceiling is achieved. In order to provide a better
performance estimation a second technique has been used. As described in figure 4.4.b,
enforcing the limit on the retreating blade provides a much better performance estimation
at medium speed. In all cases the effect of the lateral and longitudinal inflow coefficient
is marginal (model A6 compared to model A4), while the aerodynamic description of
the fuselage has an impact on the maximum speed evaluation (model B6 compared to
model A6 ). More in general simpler aerodynamic models tend to overestimate maximum
performance.

Figures 4.5 to 4.8 represent the behaviour of the helicopter in advancing trimmed
flight. Commands, attitude, rotor states as well as required power are plotted for a
light configuration flying at 5400 ft. Full-order model trim is evaluated with roll attitude
depending on advance ratio, as described in Sec. 4.2.3 and represented in Fig. (4.6). At
low speed roll attitude needs to compensate disequilibrium of forces in the lateral plane
through rotation of the gravity vector with respect to FB. At higher speed roll attitude
is set to zero, while sideslip becomes a trim variable as the vertical tail is able to generate
the lateral force needed to guarantee lateral equilibrium. This trim approach is used for
all models excluding the nested trim approach and Bramwell’s approach, where roll angle
is determined by forces equilibrium .

Figure 4.5 describes command excursion: collective pitch, lateral and longitudinal
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Figure 4.4. Flight envelope (V –h plane) for a design Aerial Recovery Mission [15] (a) with
no CL limit, (b) with CL limit enforced for the retreating blade: A1 (�—), A1 nested
(. · · · ), A3 (N—), A4 (H - - - ), A6 (◦ - - - ), B6(× - - -), C (4 · · · ).
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4.4 – Maximum performance in steady flight conditions

pitch, tail rotor collective. The evaluated collective pitch is similar for all the models.
The difference between model A1 and A3 is given by the absence of the dynamic twist
in model A3 while the absence of the lag degree of freedom has a limited effect. Collec-
tive pitch in model A1 is therefore higher to compensate the dynamic twist of the blade.
Model B6 provides a slightly different solution due to the simpler fuselage mode which
takes into account only fuselage aerodynamic drag while lift, lateral forces and moments
are neglected. Longitudinal pitch B1s is correctly evaluated by all the models and trim
techniques. Discrepancies between the models are more evident in lateral pitch A1s. Al-
though for longitudinal variables trim evaluated for model A1 with full shooting technique
and with nested algorithm provides the same results, it is not possible to enforce the zero
roll angle for the nested algorithm. As a consequence there is a small difference between
lateral commands given by the different trim roll angle (see figure 4.6). Model A4 is able
to evaluate lateral command quite precisely, on the contrary model A6 present some sig-
nificant differences given the absence of lateral and longitudinal inflow states. The absence
of a 3-states inflow has a detrimental effect on the ability of correctly describe the off-axis
behaviour of the rotorcraft. Model B6 lateral cyclic pitch and tail rotor collective are quite
far from the actual value especially at medium to high speeds because of the simplified
fuselage model. Model C successfully evaluates longitudinal controls (main rotor collective
pitch and longitudinal cyclic pitch), while significant errors are present in the evaluation
of lateral controls (lateral cyclic pitch and tail rotor collective pitch). In particular, the
oversimplified tail rotor model provides a greatly overestimated tail rotor collective pitch.
This error is due, at least partially, to the particular configuration of the UH–60 helicopter
that features a large tail rotor cant angle, so that tail rotor thrust significantly couples
equilibrium conditions in the longitudinal plane and in the lateral direction. This coupling
is neglected in model C which evaluates lateral states trim only after the longitudinal trim
is solved, thus preventing also the enforcement of the requirement on zero roll angle at
high advance ratios.

Figure 4.6 represent the helicopter attitude in forward flight. The roll angle differences
of models A6 and B6 compared to A4 at low speeds are given by the simpler inflow model.
Pitch angle is very similar for all the models except for model B6 because of its fuselage
model.

Rotor states in advancing flight are represented in Figure 4.7. Model A1 with nested
trim provides a higher coning due to the discarded inertial coupling between rotor states
and fuselage states compared to the full shooting algorithm. All models are within a 0.5
degrees error band, with the exceptions of models B6 and C at high speed. The longitudinal
tilt β1c of the TPP is similar for all models, while the lateral tilt β1s is affected by both
the inflow model and the fuselage aerodynamic description. In general, model based on
individual blade dynamics show a smaller variation in lateral TPP position than models
based on TPP dynamics and analytically evaluated loads.

Total required power for trimmed flight is represented in figure 4.8. Models A1 to
A6 provide the same results thanks to the nonlinear correction of profile drag coefficient
used in model A4 to B6. Model B6 underestimate required power because of it simpler
aerodynamic model. Model C uses a constant profile drag coefficient over the entire speed
range. Such approach, while maintaining the model as simple as possible, has the drawback

103



4 – Steady–state performance

15

20

25

θ 0 [d
eg

]

−4

−2

0

A
1s

 [d
eg

]

0

5

10

B
1s

 [d
eg

]

0 50 100 150 200
10

15

20

25

v [kt]

θ 0T
R
 [d

eg
]

Figure 4.5. Commands for a Design Mission-Troop [15] at 5400 ft altitude: A1 (�—), A1
nested (. · · · ), A3 (N—), A4 (H - - - ), A6 (◦ - - - ), B6(× - - -), C (4 · · · ).

of overestimating power requirement at low speeds and underestimating it a high speed,
where nonlinearities in profile drag emerge.

4.4.2 Climbing flight

In spite of the large error in the definition of the flight envelope, the simplified models
are sufficiently accurate in evaluating rate of climb at all speed range, as demonstrated
in Fig. 4.9, where the maximum rate of climb for the heavier configuration at sea level
is represented. This is due to the fact that while ceiling is limited by nonlinearities
in the CLα and CDα relations which are not included in simpler models, rate of climb
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Figure 4.6. Attitudes for a Design Mission-Troop [15] at 5400 ft altitude: A1 (�—), A1
nested (. · · · ), A3 (N—), A4 (H - - - ), A6 (◦ - - - ), B6(× - - -), C (4 · · · ).

is mainly dominated by induced power. Since models A4 to B6 have quite accurate
descriptions of induced power, they are able to correctly predict ROC performance. Model
B6 provides lower accuracy due to the limitations of a pure drag aerodynamic description
of the fuselage. On the contrary major differences are clearly visible in model C which
significantly underestimates the climb performance of the helicopter at low speed, while
it overestimate maximum speed. Among many other reasons, the major assumption that
affects the result is the constant fuselage parasite surface, assumed independent of flight
condition (on the contrary the direction of the wind impinging on the fuselage varies
substantially with the speed and rate of climb). Another critical aspect is the simple inflow
model adopted by this model. In its original formulation it does not take into account the
vertical component of velocity in body axes and therefore provides much underestimated
results for the climb performance. A more realistic result has been obtained by introducing
a more accurate inflow model in the model description, taking into account the reduction
of the inflow speed at increasing rate of climb, even though the climb performance is still
underestimated due to the poor modelling of fuselage drag.

4.4.3 Turning flight

The maximum turn–rate at sea–level is reported in Fig. 4.10. In nonsymmetrical maneu-
vers, including turning flight, the structure of the main rotor downwash impinging the
fuselage and tail surface is very complex. The description of these phenomena requires
a more comprehensive model (e.g. featuring a free-wake description). Nevertheless the
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Figure 4.7. Coning and TPP inclination for a Design Mission-Troop [15] at 5400 ft altitude:
A1 (�—), A1 nested (. · · · ), A3 (N—), A4 (H - - - ), A6 (◦ - - - ), B6(× - - -), C (4 · · · ).

model is able to catch some nonsymmetrical characteristics of turning performance. As
illustrated in Fig. 4.10, the helicopter performance is very similar in both right and left
turns. Figure 4.11 describes power requirements for coordinated turns at increasing rate
at a speed of 100 kt. Models based on individual blade dynamics predict a slightly better
performance in left turn, while models based on analytically loads predict a better perfor-
mance on right turns (especially A6 and B6 models). In general simpler models tend to
overestimate turning performance of the rotorcraft (which on the present analysis are only
based on total necessary power). This is due to the much simpler representation of the
blade operating conditions (i.e. the correct analysis of the local angle of attack and as a
consequence of the lift and drag coefficient) which can be accurately described only using
an individual blade approach. Nevertheless model A4 is able to represent quite precisely
required power on low to medium turn rates as shown in figure 4.11.
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Figure 4.8. Required power for a Design Mission-Troop [15] at 5400 ft altitude: A1 (�—),
A1 nested (. · · · ), A3 (N—), A4 (H - - - ), A6 (◦ - - - ), B6(× - - -), C (4 · · · ).
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Figure 4.9. Maximum Rate of Climb for a design Aerial Recovery Mission [15] at
(a) sea level, (b) 2240 m: A1 (�—), A1 nested (. · · · ), A3 (N—), A4 (H - - - ),
A6 (◦ - - - ), B6(× - - -), C (4 · · · ).
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Figure 4.10. Maximum Rate of Turn for a design Aerial Recovery Mission [15] at
(a) sea level, (b) 2240 m: A1 (�—), A1 nested (. · · · ), A3 (N—), A4 (H - - - ),
A6 (◦ - - - ), B6(× - - -), C (4 · · · ).
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Figure 4.11. Power required for a 100 kt turn at sea level. Aerial Recovery Mission
configuration [15] : A1 (�—), A1 nested (. · · · ), A3 (N—), A4 (H - - - ), A6 (◦ -
- - ), B6(× - - -), C (4 · · · ).
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4.4.4 Effects of truncation due to ordering scheme

The previous analysis aimed at highlighting the effects of model complexity on performance
evaluation. A similar approach is here used to analyse the effects of an ordering scheme
(i.e. the equations are written including terms only to a prescribed level of detail, using
the symbolic tool for the automatic generation of aerodynamic and inertial equations in
a TPP formulation) on the evaluation of rotorcraft performance. For this reason, the
approach described in section 3.4 was followed. Three different versions of model A4 were
generated truncating the equation at the 2nd (i.e. all terms which satisfy < O

(
ε2
)
are

included), 3rd and 4th order, respectively. The possibility of considering only the 1st order
terms is ruled out by the fact that such approach would include only main rotor collective
pitch while lateral and longitudinal flap as well as commands would be excluded from the
analysis. At the same time the equations which include 4th order terms are sufficiently
detailed so that adding higher order terms would not provide any significant change in the
results. Model A4 is used as a reference for the analysis.

Figure 4.12 represents command required to trim the helicopter at increasing speeds
in level flight. Truncating terms to 2nd order provides a very poor estimation of lateral
command and an overestimation of collective pitch. As higher order terms are discarded,
the lateral–direction description is poor due to the importance of higher order terms in
the description of off-axis behaviour. This can be seen even better in figure 4.13 where
the attitude is pictured and in figure 4.14 where the rotor states in multiblade coordinates
are represented. If the model is limited to 3rd order terms the behaviour is very similar
to model with higher order terms with the exception of higher speeds where the advance
ratio µ plays a more important role.

All models provide a similar description of required power in level flight, as repre-
sented in figure 4.15. This leads to comparable results in the evaluation of maximum
climb performance at sea level, as in figure 4.16, even if models with less terms tend to
underestimate performance. A similar behaviour can be seen in figure 4.17 where the flight
envelope with no correction of maximum CL is represented as evaluated with the three
models. As a conclusion the introduction of 4th order terms provide more reliable results
only at very high speeds, while in all flight conditions, truncation to 3rd order is able to
correctly represent the helicopter behaviour in steady–state conditions.

4.4.5 Discussion

The trim results of full-order model obtained with complete shooting and nested trim
with averaged rotor loads show a very good agreement in all trim conditions despite the
slightly different roll angle. Since the nested algorithm is faster, it can replace the full–
order shooting in all test cases here proposed. Although removing blade lag and twist
degrees of freedom the results of helicopter performance estimation show a very good
agreement with full-order model and the trim routine is faster, the model still requires the
almost complete set of configuration data.

Models bases on TPP dynamics with the improvements described in section 3.3 provide
a good estimate of the helicopter performance in straight flight at a computational cost one
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Figure 4.12. Commands for a Design Mission-Troop [15] at 5400 ft altitude: model A4
with equations truncated at 2nd (—), 3rd (- - -), and 4th (· · · ) order terms.
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Figure 4.13. Attitudes for a Design Mission-Troop [15] at 5400 ft altitude: model A4 with
equations truncated at 2nd (—), 3rd (- - -), and 4th (· · · ) order terms.

to two orders of magnitude lower than full order models, though the TPP description and
the linear aerodynamic formulation do not allow for a precise description of blade behaviour
in the complex environment of turning flight, leading to overestimation of performance.
Comparing the results of the different model, a uniform inflow degrades the evaluation
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Figure 4.14. Coning and TPP inclination for a Design Mission-Troop [15] at 5400
ft altitude: model A4 with equations truncated at 2nd (—), 3rd (- - -), and 4th

(· · · ) order terms.
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Figure 4.15. Required power for a Design Mission-Troop [15] at 5400 ft altitude: model
A4 with equations truncated at 2nd (—), 3rd (- - -), and 4th (· · · ) order terms.

of off-axis behaviour, while the description of fuselage aerodynamic forces by means of
parasite drag area leads to overestimation of rotorcraft performance. The results of the
lowest order Model C, which is based on separate longitudinal and lateral trim and a very
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Figure 4.16. Maximum Rate of Climb for a design Aerial Recovery Mission [15] at sea
level: model A4 with equations truncated at 2nd (—), 3rd (- - -), and 4th (· · · ) order terms.
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Figure 4.17. Flight envelope (V –h plane) for a design Aerial Recovery Mission
[15] with no CL limit: model A4 with equations truncated at 2nd (—), 3rd (- - -),
and 4th (· · · ) order terms.

limited set of parameters, are reliable only for maximum speed and rate of climb, while
the estimation of lateral variables needs a significant improvement.
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Chapter 5

Handling qualities

5.1 Stability analysis
The evaluation of flying qualities of an helicopter requires the determination of several
different properties, among them static and dynamic stability (in particular the long-
period roots), control displacements, force gradients, transient response characteristics,
control coupling, control sensitivity [7].

In this chapter some aspects of the static and dynamic stability characteristics are
analysed, with particular attention to how the main rotor dynamics affect the stability of
the helicopter. The results are then analysed with reference to the specifications for light
helicopters CS-27 [93], that give reference values for the frequencies and dampings of the
modes.

The stability analysis of the main rotor and helicopter dynamics were undertaken
following different approaches. The purposes are

1. to investigate the accuracy of approximate solutions comparing them to the solutions
for the nonlinear time-periodic system associated to the complete helicopter model
(obtained through the Poincaré map analysis), and

2. to propose a guideline for the interpretation of the results of the complete helicopter
model analysis thanks to the formulation of models of reduced order with uncoupled
dynamics, and approximate solutions.

For these purposes, it is necessary to provide some tools to evaluate the stability of
periodic systems. to this end, a widely used method is the Floquet Transition Matrix
method, based on the Floquet-Liapunov Theory [63, 94]. Another possible solution is the
use of Poincaré maps [95].

For the analysis of the main rotor stability the adopted tools are:

1. Classical eigenstructure analysis of the simplified linear model of the main rotor
obtained neglecting the harmonic terms in the rotating frame equations or through
harmonic balance methods in the non-rotating frame. This analysis is carried out
with the aim of providing a first approximation of the eigenvalues. Since it deals with
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very basic equations of motion, the eigenvalues can be calculated semi-analytically to
analyse the influence of parameters on frequency and damping of main rotor modes.
The analysis was undertaken both in the rotating and the non-rotating frames to
determine the frequencies and damping of single-blade and TPP modes. In the
hovering condition this approach gives reference points for the study of the periodic
system, as the solutions obtained using this technique and the Floquet analysis
should coincide.

2. Floquet analysis of the linear time-periodic rotor model. This is an intermediate
step between linear analysis and Poincaré maps as Floquet analysis gives a reference
solution (of a linear time-periodic system) to interpret the results of the Poincaré
map.

3. Poincaré map analysis of the complete nonlinear rotor model. This is the most
complete and accurate methodology, since it takes into account all the nonlinearities
of the model, including inflow states. However, the frequency of the characteristic
modes cannot be determined univocally [63]. To this end the frequencies obtained
are compared using the methods 1. or 2. The Poincaré map was determined for
the rotor states xr, with and without the inflow states. Inflow states dynamics were
investigated separately.

When the whole helicopter model was considered, two different approaches were used
for the stability analysis:

4. The linearization of the quasi-static model of the helicopter degrees of freedom [96].
Using this method, the rigid-body rotorcraft modes (frequency and damping) are
easily determined. Among other aspects, the coupling of longitudinal and lateral
dynamics of the helicopter are analysed as an important factor for the evaluation of
handling qualities [6].

5. The Poincaré map analysis of the complete helicopter model is the most accurate
method also in this case. It provides information regarding the stability of the roots
of the complete system. However the linearized Poincaré map does not allow to
determine univocally the frequencies of the roots so that the identification of the
characteristic modes is far from trivial.

A complete analysis of this activities is the main purpose of [78], from which part of
this chapter is inspired.

5.1.1 Rigid gimballed rotor for model validation

As a first step, validation of the simplified model is carried out using a full nonlinear,
single–blade simulation model of the gimbaled rotor with blades rigidly connected to the
hub [78] formulated without small angles assumptions or linearizing techniques in order
to analyse the rotor behaviour in a variety of motions not limited to small perturbations.

Assuming no coning angle, no twist and no undersling of the blades, Fig. 5.1 shows
a comparison of the hub response (in the u1-u2 plane) to a cyclic command θSW = 5◦ in
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hovering with K = 3,610 Nm/rad, as obtained from the simplified and complete models,
with the trim value of the rotor thrust T = 6,400 N. Rotor data in both cases are shown
in Table 1.
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Figure 5.1. Comparison of the simplified (linear) and general (nonlinear) rotor model
responses to a longitudinal cyclic command θSW = 5 deg; µ = 0, K = 3,610 Nm/rad.

It is apparent that the rotor responses obtained from the two models are in good agree-
ment in spite of the large value of the considered cyclic command. In forward flight, the
description of the rotor behavior by means of the simplified model becomes less accurate
even for relatively small advance ratios, mainly because of the effects of the nonuniform
inflow. This is illustrated in Figs. 5.2 where the response of the tilt angles u1 and u2 to
a step variation µ = 0.05 of the advance ratio from hovering is reported. The significant
differences in the two solutions visible in Fig. 5.2.a for a rather low advance ratio are
due to the non–uniform inflow in the general model, whereas the response is again very
similar when a uniform inflow is assumed (Fig. 5.2.b). If on one side this last result rules
out the possibility of adopting the simplified model for a realistic simulation of the full
vehicle, on the other one its capability of capturing the fundamental aspects of the motion
is demonstrated.

Origin of the wobbling motion

As stated previously, one of the most relevant characteristics of the two–bladed gimballed
rotor is the onset, in most operating conditions, of a wobbling motion of the rotor hub,
which corresponds to a precession motion of the hub axis with respect to the shaft axis. The
simplified model (Eqs. (3.164)–(3.165)), provides some physical insight into the system
that allows for understanding how the wobbling motion is triggered by the periodic loads
in the presence of a cyclic pitch command or forward flight condition.

A steady–state condition for the rotor with a constant tilt angle with respect to the
shaft axis (that is, without wobbling motion) requires ω̃1 = ω̃2 = 0. To this end, the
moments N1 and N2 need to be constantly zero, which is not true in general, as these
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Figure 5.2. Comparison of the simplified and general rotor model responses to a perturba-
tion of the advance ratio µ = 0.05; K = 3,610 Nm/rad (a) general rotor model with 3–states
inflow model, (b) general rotor model with uniform inflow.

terms represent periodic forcing functions.
With reference to Eq. (3.168), assuming a forcing term along the feathering (xH)

axis (Fig. 3.7) N1/(I1Ω2) = A cosψ, the resulting periodic motion at steady–state is
ω̃′1 = −ω̃2 = (A/2) cosψ and ω̃′2 = ω̃1 = (A/2) sinψ. This means that the angular speed
components ω̃1 and ω̃2 continue to oscillate with constant amplitude A/2 and phase ∆ψ =
π/2, thus resulting in a precession motion of the hub axis, namely the wobbling. A similar
argument holds for a periodic forcing term around the flapping, N2/(I2Ω2) = B cosψ as,
given the system linearity, the perturbed motions can be superimposed.
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5.1 – Stability analysis

When considering the effects of cyclic commands in hovering (µ = 0) with zero angular
velocity of non–rotating frame (p̄ = q̄ = 0) and zero stiffness of the feathering hinges
(KT = 0), all higher–order harmonic terms are zero and the first two equations in system
Eq. (3.168) become

ω̃′1 = −ω̃2 −
γfb
2 ω̃1 −KPCγ (5.1)

ω̃′2 = ω̃1 + γb
8 [KH(φSW cosψ

−θSW sinψ + γ)− ω̃2] +KPCβ (5.2)

With K = 0, the steady-state solution is

β = −φSW sinψ − θSW cosψ (5.3)
γ = −φSW cosψ + θSW sinψ (5.4)

that gives constant hub tilt angles u1 = θSW and u2 = φSW , as obtained by substituting
Eqs. (5.3) and (5.4) into Eqs. (3.166) and (3.167), with the blade tip-path-plane (TPP)
parallel to the swash–plate.

Figure 5.3 shows the system response as function of rotor revolutions in the two con-
sidered circumstances following a longitudinal cyclic command. In the ideal case with
K = 0,the hub angular position achieves a constant value (Fig. 5.3.a), while in Fig. 5.3.b
the flapping (continuous line) and feathering (dotted line) angles show a sinusoidal oscil-
lation in quadrature, and the longitudinal (continuous line) and lateral (dotted line) tilt
angles of the TPP, u1 and u2, become constant in a time interval corresponding to 15 revs,
the time–constant being approximately proportional to the fly–bar inertia I1.

On the converse, when K /= 0, the TPP angles u1, u2 have periodic variations (Fig.
5.3.c) that prevent the system from achieving a constant equilibrium as the elastic moment
about the feathering axis induces a nonzero ω̃1 rate that triggers the wobbling motion. In
other words, in this case no equilibrium can be established about the feathering axis due
to the effect of the periodic elastic moment as, also, the moment of inertia is minimum
and the aerodynamic moment of the paddles is small. As far as the equilibrium about
the flapping axis is concerned, note that the aerodynamic moment is orders of magnitude
higher than the moment due to hub stiffness.

In order to gain some further insight in the wobbling motion characteristics, the feath-
ering and flapping angles can be expressed as

β = −a1 cosψ − b1 sinψ (5.5)
γ = c1 sinψ − d1 cosψ (5.6)

to introduce the longitudinal a1, c1, and lateral b1, d1 flapping angles of, respectively,
blade and fly–bar TPP’s. When Eqs. (5.5), (5.6) are substituted into Eqs. (5.1), (5.2)
written in terms of γ and β, application of the harmonic balance method [27] yields a set
of differential equations for the TPP flapping degrees of freedom.

Figure 5.4 shows the responses to a 10 deg longitudinal cyclic command (already
illustrated in Fig. 5.3 considering hub flap and feathering angles) in terms of TPP flapping
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coefficients. It is worth to observe that after a few rotor revolutions, the orientations of
the two planes carved out by blade and paddle tips become constant in spite of the
sustained wobbling oscillations in the case with nonzero hub stiffness. As a consequence,
the thrust vector direction is constant and, as a further observation, wobbling motion can
be interpreted as a 2/rev oscillation of the hub plane between the blade and paddle TPP’s,
the amplitude of which depends on the relative orientation of the two TPP’s. For K = 0,
when the wobbling motion subsides at steady–state, the TPP’s of blades and fly–bar are
parallel to the swash–plate (a1 = c1 = θSW = 10 deg, b1 = d1 = φSW = 0). In the case
K /= 0, the fly–bar TPP mainly flaps to the left (c1 = 0.5 deg, d1 = −2.2 deg) while
the blade TPP is flapping backward (a1 = 6 deg) and to the left (b1 = −1 deg), and the
wobbling amplitude is about 6 deg.

When a the response to a step variation of forward speed is considered, Fig. 5.5 shows
that the wobbling motion develops even for K = 0 as the moment equilibrium on the
feathering axis is now unbalanced by the periodic variation of the aerodynamic moment
of the paddles.

As for the effect of the KH ratio, a lower KH determines a reduction of the limit cycle
amplitude together with a minor effectiveness of the command because the time constant
of the rotor response is increased and, in the situation with nonzero K, the hub rotation
is smaller for the same cyclic command amplitude.

As shown in Fig. 5.6, the effect of the feathering hinge stiffness on the evolution and
amplitude of the wobbling motion is negligible for the nominal value KT = 150 Nm/rad
(the situation with KT = 0 corresponds to the dotted line in Fig. 5.3.a). Increasing the
value of KT determines a reduction of the limit cycle amplitude together with a major
effectiveness of the command at hovering.

As far as the influence of hinge stiffness on wobbling is concerned, it is apparent that
the elastic moment along the feathering axis is proportional to θc and acts in the sense
of reducing the relative orientation of the non-feathering–plane (NFP) and the fly–bar
TPP. Therefore, a reduction of the wobbling amplitude due to a restrain action of the
pitch hinges can be obtained only in the circumstances, such as hovering, when the angle
between NFP and blade TPP is small, while in all the other operating conditions (i.e.
advancing flight) the stiffness increases the relative orientation of blade and fly–bar TPP’s
with the already cited effect of increasing the amplitude of hub oscillatory motion.

Stability Analysis of the rigid configuration

The periodic terms in the state–matrix A (Eq. (3.168)) depend on forward speed so
that the system achieves a time–invariant form in hovering. In this circumstance Eqs.
(5.1)-(5.2) can be re–written in terms of flapping and feathering angles. Keeping only the
homogeneous terms, the governing equations become

β′′ = −γb8 β
′ − (1 +KPC)β − γb

8 (KH − 1)γ

γ′′ = −γfb2 γ′ − (1 +KPC + 2kTKH)γ − γfb
2 β

(5.7)
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Table 2 shows the modal characteristics of this system for K = 0 and for K = Knom =
3,610 Nm/rad,

Table 5.1. Eigenvalues of the uncoupled system with and without paddles at fly–bar tips.
a) Fly–bar Lock numb. γfb = 0 K = 0 Knom

Natural frequency ωn/Ω
Flapping

√
1 + k2 1. 1.003

Feathering
√

1 + k′1 1. 1.282
Damping coefficient ζ
Flapping γbl

16 /
√

1 + k2 0.261 0.260
Feathering γfb

4 /
√

1 + k′1 0. 0.
b) Fly–bar Lock numb. γfb = 0.53 K = 0 Knom

Natural frequency ωn/Ω
Flapping

√
1 + k2 1. 1.004

Feathering
√

1 + k′1 1. 1.281
Damping coefficient ζ
Flapping γb

16/
√

1 + k2 0.255 0.254
Feathering γfb

4 /
√

1 + k′1 0.147 0.115

when small coupling terms are neglected for the sake of simplicity and k′1 = KPC+2KTKH .
Two configurations are considered: Case a (reported on the top portion of Tab. 2), when
no aerodynamic paddle is present and the resulting fly–bar Lock number is 0; Case b
(reported below), when paddles are present and γfb = 0.53. For γfb = 0 the damping of
the feathering motion vanishes, so that a weakly stable system is obtained at hovering.
This means that, as already observed in [23] and [83], a regressive motion would be induced
on the rotor by the periodic aerodynamic load in forward flight. This characteristics
strongly supports the need for the presence of paddles, which thus perform and important
stabilizing action for the two–bladed gimbaled rotor, without affecting the characteristics
of the flapping mode.

The dynamic analysis of the system supports the interpretation of the effect of hub
stiffness on command response illustrated in Figs. 5.3 and 5.4. For K = 0. flapping
and feathering modes are both at resonance so that, as already observed, the blade and
fly–bar TTP’s are both tilted backward. When the stiffness K takes its nominal value,
the feathering frequency is increased and this motion, when represented in terms of TPP
position, lags flapping by 77 deg, which turns out in the observed lateral flapping of the
fly–bar TPP (Fig. 5.4). This means that, when the motion is referred to a single angular
variable ψ, such that ψfb = ψ + π/2, γ lags β of 167 deg, which corresponds to what is
observed in Fig. 5.3.

Note also that the sustained wobbling motion at steady–state induces a not negligible
variation of the cyclic pitch command, with a 60% reduction of amplitude and a 9 deg phase
delay with respect to the situation with K = 0. As a consequence, if on one side flapping
frequency remains close to unity as K is varied (the unit circle corresponding to ωn/Ω = 1
is shown in the figures), feathering frequency increases significantly with stiffness, due to
the low inertia of the fly–bar, if compared with elastic moments, as demonstrated also by
Figure 5.7. A similar effect on feathering eigenvalues is obtained by increasing the stiffness
of the feathering hinges KT . Figure 5.8 shows the eigenvalues for KT varying from 0 to
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150 Nm/rad, for the nominal value of K. Again, flapping eigenvalue presents a negligible
variation.

Increasing the inertia of the fly–bar leads to the variation of two parameters of the
system: the fly–bar Lock number γfb = 2ρafbSfbR3

fb/I1 that decreases the damping of
the feathering mode, and the elastic terms, k′1 = (K+2KTKH)/(Ω2I1), that decreases its
natural frequency, resulting in significant variations for the feathering eigenvalue, as shown
in Fig. 5.9. Also in this case only minor variations are observed on the flapping eigenvalue,
but I1 plays a significant role on TPP response to an angular velocity component.

In forward flight the eigenvalues of the linear, time–varying system Eq. (3.168) are
determined using Floquet theory [94]. As usual, the state–equation is integrated over
one period for each independent initial condition to obtain the Floquet Transition Matrix
(FTM). Natural frequencies and damping ratios of the system modes are then obtained
by taking the logarithm of the FTM eigenvalues, where use is made of the eigenvalues
computed in the hovering condition to identify the origin of the curves. All the roots,
reported in Fig. 5.10, are stable in the considered range of the advance ratio, µ, where the
eigenvalues of the feathering mode remain complex, their frequency approximately given
by ω/Ω = 1.25, while those relative to flapping become real for µ > 0.18..

5.1.2 Gimballed and teetering rotors with coning hinges

In this section the behaviour of the gimballed rotor is compared to that of an equivalent
teetering rotor, with and without the coning degrees of freedom. The stability of the rotor
is analysed first, for different pitch–coning coupling and in the presence of dry friction in
the coning hinges. Response to swashplate commands and gust disturbances are presented
to highlight the peculiar behavior of the gimballed rotor.

Stability analysis

The impact of rotor configuration on rotor stability is here considered, and in particular
the presence of coning hinges (CH), their location, pitch–flap coupling coefficient, damping
or friction in the hinges. Table 5.2 collects the eigenvalues in hover of the basic rotor
configuration.

Table 5.2. Eigenvalues for KPC = 1.36 and kfr = 0.

Gimballed rotor Teetering rotor
with coning

0.1339± 2.3686i 0.1254± 2.3545i
−0.1871± 1.2464i −0.1871± 1.2460i
−0.3745± 0.8357i −0.3758± 0.8605i
−0.1263± 0.9642i

without coning
−0.2170± 0.9740i −0.2179± 0.9760i
−0.1187 ± 0.9623i
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Both the gimballed and the teetering rotor without CH are stable, nevertheless the
introduction of the coning degree of freedom with a high pitch–coning coupling leads
both configurations to instability. The first oscillatory mode in both the gimballed and
teetering rotors is unstable and it excites all states which lies in the plane perpendicular
to the coning hinges (i.e. β0, β1 and β2). This mode is an anti–symmetric coning, where
the blades exchange energy through the mechanical link represented by the teetering hub,
with coning rotations β1 and β2 of opposite phase and β0 in quadrature.

The rotor becomes stable if the pitch–coning coupling gain is sufficiently reduced
and/or some form of dissipation in the coning hinges is introduced. Figure 5.11 shows
the root–loci of when the pitch–coning coupling varies from KPC = 0 to the nominal
value, KPC = 1.36 (blue line). The imaginary axis is crossed for KPC ≈ 0.4 and the rotor
remains unstable for larger values of KPC . When a viscous damping term proportional
to the coning speed (Mvsci = −cvscβ̇i) is introduced for KPC = 1.36, the system turns
stable again, for cfric > 0.15. On the converse, the feathering mode for the gimballed rotor
is always stable and almost unaffected by the presence of coning hinges (the feathering
pole, −0.1263 ± 0.9642i, being very close to that obtained for blades fixed to the hub,
−0.1187 ± 0.9623i) or the introduction of viscous damping (see Fig. 5.11).

The actual gimballed rotor does not features dampers, yet the high centrifugal load
leads to the presence of dry friction in the coning hinges, that dissipates energy. This type
of hard nonlinearity prevents the system from being linearized and, as a consequence, a
stability analysis based on the eigenvalues is no longer available. Nonetheless, it is possible
to identify a minimum value for kfr which guarantees stability, on the basis of a Poincaré
mapping approach: a perturbed state for the rotor is considered as the initial condition and
the perturbation after a rotor revolution is evaluated by means of numerical simulation. If
the norm of the perturbation after one revolution is smaller than the initial one the rotor
is stable. Figure 5.12 shows the minimum level of friction in the coning hinges in order to
guarantee stability as a function of the pitch–coning coupling. The nominal value of the
friction kfr = 100 Nm satisfies the stability condition for KPC = 1.36.

5.1.3 Isolated rotor response

The behavior of gimballed and teetering rotors with and without CH is compared. The
same set of initial conditions is considered in all the simulations, with the vehicle at trim
in hover, rotor thrust balancing vehicle’s weight and assuming cyclic pitch commands
close to zero. A periodic forcing term is introduced assuming a step variation of advance
ratio (µ = 0.1) and cyclic pitch, where the latter command is chosen in order to trim the
helicopter at the corresponding speed. Figures 5.13 reports the resulting behavior of the
rotor with dry friction in CH and no stiffness in hub teetering and feathering hinges.

The presence of the feathering degree of freedom allows the gimballed rotor to tilt
almost exactly in the direction commanded by the swashplate, if no stiffness is present in
the spherical gimbal, a negative value indicating forward tilt. A minor difference between
no–feathering–plane and tip–path–plane is present, due to the aerodynamic periodic term.

The hub tilt angle, seen in the non–rotating frame, presents oscillations of small am-
plitude. As a consequence the in–plane rotor load oscillations (aerodynamic and inertial
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force components perpendicular to the shaft axis) remain small. On the converse, the tee-
tering rotor presents a more intense oscillation. The presence of CH in both the gimballed
and teetering rotor leads to marginal variations in the behaviour of the system.

When a stiffness K = 7219 Nm/rad is introduced in hub teetering and feathering
hinges, the gimballed rotor is no longer capable of tilting the hub exactly in the direction
of the no–feathering–plane (Fig. 5.14), an equilibrium condition being no longer available,
as discussed previously. Both hub and blades present a periodic behaviour. The shape of
the oscillations of coning angles and rates is a consequence of the friction in the coning
hinges, with intervals during which friction keeps β̇i close to zero (stick phase). As for the
rest, the behaviour resembles that of the rigid rotor with cantilevered blades considered
in the previous section. The impact of CH in the case of response to commands and loads
transmitted in forward flight is thus limited.

5.1.4 Gust response of the isolated rotor

The presence of CH and pitch–coning coupling is motivated by a better gust response
which should limit the peak load transmitted to the fuselage during a gust encounter, and
provide inherent stability to the rotor, as discussed in [[84]]. At the same time it must be
recognized that the rigid blade model considered in the previous section would excessively
penalize the configuration with no CH, as blade flexibility and torsional deformation (not
accounted for in the model) would induce a significant coupling between local incidence
and effective blade coning.

Figure 5.15 describes the behavior of a rotor in hover with longitudinal cyclic pitch
which experiences a severe vertical gust. In the first 0.6 s the rotor responds to the 5◦
longitudinal cyclic command. The tip–path–plane of all rotor configurations (evaluated
for ψ = 0, π for a1 and for ψ = π/2,3π/2) tilts in the same direction of the swashplate.
Rotors with coning hinges presents a longer settling time before reaching the equilibrium
value due to the blade coning motion.

During gust penetration both blades move upwards and the coning angle a0 reaches a
higher equilibrium position, when an inertially fixed isolated rotor is considered. At the
same time the pitch–coning coupling reduces the steady state value of the rotor vertical
forces, if compared with a rotor with no CH.

5.1.5 Gust response with heave motion

Figure 5.16 compares the gust response in hovering for an isolated rotor with that obtained
for the simplified fuselage–rotor model, featuring a vertical translational degree of freedom,
described at the end of the Section on “Rotor Models”. In both cases a fully gimballed
rotor is considered.

When fuselage heave motion is included in the model, the helicopter accelerates in the
direction of the gust as shown in Fig. 5.17. The relative speed of the helicopter with
respect to the surrounding air mass reduces the variation of the angle of attack generated
by the gust.
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The gimballed rotor with CH presents a better gust response from both an aerodynamic
and a dynamic standpoint. On one side, the variation of pitch angle induced by the pitch–
coning coupling reduces the angle–of–attack variation and, as a direct consequence, the
peak load. At the same time, the vertical load on the fuselage is reduced, when part of
the aerodynamic load excites the coning response.
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Figure 5.3. Response to a longitudinal cyclic command θSW = 10 deg.
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Figure 5.17. Fuselage and inflow states response to 0.2 s step gust. Rotor with friction
and KPC = 1.36 (—), rotor without coning (· · · ).
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5.2 Agility potential

As discussed in [43], inverse simulation is a very powerful tool for the analysis of rotorcraft
agility potential. In particular, as handling qualities for modern helicopter are determined
by means of ADS-33 standard [62], the evaluation of the rotorcraft behaviour in perform-
ing the required Mission Task Elements (MTE) by means of solution of inverse problems
provides most of the most important information on agility potential. If on the one side
the importance of technique such as inverse simulation and trajectory optimization [61]
and [56] for agility potential evaluation is established, on the other hand a limited at-
tention was devoted to the analysis of the effects of modelling issues on solution of these
problems. These aspects are particularly relevant for the helicopter case, where model
complexity can differ significantly depending on the approach chosen for representing ve-
hicle dynamics. Different models of the same rotorcraft may result in a sizable different
computational burden, sometimes even preventing the applicability of an algorithm be-
cause of the characteristics of the model itself. At the same time, and more important for
the present study focused on the application of IS to the evaluation of helicopter HQ’s,
different models can provide significantly different inverse solutions for tracking the same
manoeuvre, and this fact clearly poses some problems, if the inverse solution is derived
with the objective of evaluating manoeuvring and agility potential of the vehicle.

5.2.1 Inverse Simulation algorithms

The subject of this section is the analysis of the effects of different choices in deriving a
helicopter model suitable for flight dynamic studies on the results obtained from inverse
simulation algorithms (IS). The objectives are:

1. to analyse the origin of the discrepancies between inverse solutions obtained from
different models of the same vehicle, while performing a given task

2. to evaluate the uncertainty on command laws necessary to realize a specified flight
task associated to a certain vehicle model.

The first objective requires the identification of those critical situations in which a given
model fails to provide a reliable inverse solution for the considered task, whereas the
definition of an uncertainty interval is a parameter of paramount importance for the de-
velopment of robust control laws (e.g. stability and command augmentation systems that
equips modern rotorcraft).

Quite obviously, differences are now expected when determining command travel dur-
ing an aggressive manoeuvre by means of IS. The reliability of the result needs thus to
be carefully analysed, particularly if the methodology is used in the framework of a pre-
liminary design phase or handling quality assessment. Aim of this section is to perform a
complete qualitative and quantitative analysis of the inverse solutions obtained for a set
of manoeuvre tasks by means of different models of the Sikorsky UH–60 “Black Hawk”
articulated blade single main rotor helicopter, described in section 4.1. Time–histories for
control and state variables are compared, in order to identify the origin of discrepancies
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on the basis of a physical interpretation of the model characteristics. Metrics are then de-
fined that quantify the confidence in the predicted control action with respect to a baseline
helicopter model, used as a reference for the analysis. This provides a measure of con-
trol action uncertainty, an information of paramount importance in developing rotorcraft
control systems.

The results obtained from the IS of the complete baseline model (Model A1) will be
compared with those obtained for increasingly simpler models (A2 to B9), in order to
identify whether and in which cases the predicted command travel and flight condition
necessary for tracking the desired manoeuvres significantly differ from those obtained
for the reference model. In particular, simpler rotor, inflow and fuselage aerodynamic
models will be considered. As for the rotor, blade twist and lag degrees of freedom will
be removed first from the individual blade model in order to reduce model order. Further
simplifications are then obtained by considering rotor dynamics in terms of first harmonic
flapping coefficients (coning, longitudinal and lateral). Main rotor inflow model is reduced
from the classical Peters–Ha 3 state model with triangular velocity distribution to a single–
state uniform dynamics and, finally, a quasi–static uniform inflow model, where inflow
velocity is determined together with rotor thrust coefficient solving momentum balance
equation by means of an iterative scheme [12]. Tail rotor inflow is always considered as
uniform, featuring a single inflow velocity variable driven by tail rotor thrust, unless main
rotor inflow dynamics is neglected, in which case also tail rotor inflow is assumed as quasi-
steady. Also fuselage aerodynamic modelling is considered as amenable to simplification.
In models Bs the force and moment database in tabular form is substituted by an estimate
of parasite areas along the three–body axes. This will allow to highlight the relevance of
fuselage aerodynamic model on the determination of the control action.

Main rotor collective (θ0) and lateral and longitudinal cyclic pitch (A1S and B1S ) and
tail rotor collective (θ0tr) are used as control variables for all the models. In this way
the inverse solutions obtained for each one of the five considered tasks can be compared
by analysing the difference in the control action on all the control channels, once the
inverse solutions for the considered manoeuvre tasks are available. A global merit func-
tion is obtained from the root–mean–square (RMS) of the difference between the control
displacement of the considered model and the control action for the reference one. The
control action is always considered in terms of control displacement from the initial trim
condition, inasmuch as different models may provide slightly different absolute command
position and state variables at trim. Although marginal, this initial difference would be
integrated over the whole duration of the manoeuvre, thus providing a bias to the metrics
adopted for evaluating model reliability.

The global merit function is analysed in both absolute terms (RMS of the command
activity difference) and relative ones (by scaling the RMS value of the difference with
respect to the RMS of the control action). In the latter case an interesting index is obtained
in terms of percentage of control action intensity, the reliability of which is partially
compromised for those control channels along which control activity is less intense. In
such a case, the (small) scaling value would result in high values of the average error
with respect to the reference control action, that is, a (totally apparent) lack of reliability
for the less important control action in the considered manoeuvre. This aspect makes the
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relative metric sometimes harder to interpret, inasmuch as the RMS of the total command
travel (i.e. command action intensity) needs to be accounted for. As a consequence, also
the RMS of the difference between the considered control actions needs to be considered
for a complete and reliable analysis. The effect of manoeuvre intensity is accounted for by
considering three different levels for each of the considered tasks (low, medium and high),
where the level is modified increasing or decreasing one of the manoeuvre parameters (i.e.
height variation in the hurdle–hop and pop–up manoeuvres, lateral displacement of vehicle
centre of mass - CoG - in the slalom and lateral repositioning, manoeuvre time in the 180
deg turn), thus making the task more or less demanding.

As a further contribution, an uncertainty window for the control action is determined.
This is done by evaluating the factor ki for the RMS such that, given the control action
on the i–th command channel, ui(t), its reference value, uri (t), and the resulting RMS
of the difference, σi, at least 90% of control activity of the reference signal lies between
ui(t)−kiσi and ui(t)+kiσi. In such a way it is possible to obtain a quantitative evaluation
of control uncertainty of the current helicopter model with respect to the reference baseline
model. Such a technique could be extended to comparisons with actual flight tests, when
available.

Three typical manoeuvres are considered first,[58, 97] in order to highlight major differ-
ences in command sequences for different tasks: (i) a longitudinal hurdle-hop; (ii) a slalom
manoeuvre and (iii) a lateral repositioning. Reference values taken from HQ requirements
are considered for the manoeuvre intensity parameters (that is, vertical or lateral CoG
displacement or manoeuvre time) in the medium intensity tasks. Low and high intensity
manoeuvres are obtained by decreasing or increasing such reference values by approxi-
mately 30%. The IS method adopted for the analysis is an integration method directly
derived from the local optimization technique presented in Ref. [54]. The obtained results
allowed for the determination of the RMS of the difference in the control action for all the
considered helicopter models and the corresponding value of ki for each manoeuvre.

The reliability of the findings is further investigated by analysing two more manoeuvres,
a pop–up–pop–down manoeuvre and a 180 deg fast turn, again considering three different
intensity levels. The resulting control action are shown to lie within the confidence levels
derived from the previous test cases, thus demonstrating that the technique provides a
valid method for the quantitative evaluation of uncertainty on control activity for the
various helicopter models.

In the following paragraph a brief description of the numerical scheme adopted for
solving the IS problem will be provided. The results obtained on the considered test cases
for the different models will then be compared and discussed, in order to identify those
models that provide a reasonable estimate of the required control action and HQ potential,
while keeping model complexity (and consequently the overall amount of information
necessary to develop it) down to a minimum level. After that, a technique for a faster
solution of inverse simulation problems based on complex models which maintains a high
level of reliability reducing the computational cost is provided.
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5.2.2 Integration algorithm

Among other methods, the inverse simulation problem is solved by means of an integration
algorithm [53, 54] as it provides the best compromise between computational cost and
commonality (i.e. the possibility of using the same technique with all models). Assuming
that helicopter dynamics is represented in terms of a system of n nonlinear ordinary
differential equations in the form

ẋ = f(x,u) ; y = g(x) (5.8)

where a dot indicates the time derivative, x ∈ Rn is the state vector, u = (θ0, A1S , B1S , θ0tr)T ∈
Rm is the vector of m = 4 control variables (main rotor collective, lateral and longitudinal
cyclic pitch coefficients, and tail rotor collective), and y ∈ Rp is the vector of tracked
output variables.

Once an output time history, ydes(t), is available (i.e. a manoeuvre profile like those
required by ADS–33 specifications [62]), equations of motion are integrated from an initial
condition xI = xk at time tk over a time interval ∆t for a piece–wise constant value u?k
of the control variables. The resulting value yF = g(xF ) of the output variables at time
tF = tk+1 = tk + ∆t is thus a function yF = F (xk,u?k) of the (given) initial state xk and
of the (unknown) constant control action, u?k.

Control variables can then be determined in such a way that yF matches the value of
ydes at time tF , that is, the inverse problem can be stated in terms of a set of p algebraic
equations in the form

F (xk,u?k) = ydes(tF ) (5.9)

with m unknowns. When m = p, the problem is nominal and, if well posed, it can be
solved by means of standard numerical techniques, such as Newton–Raphson (NR) method
[53]. If m > p the problem is redundant, as in many aeronautical applications for fixed
and rotary–wing aircraft, when 4 controls are available for tracking 3 trajectory variables.

Hess & Gao [53] solved this problem by use of the so–called Moore–Penrose pseudo–
inverse during NR iterations, which results into the minimum–norm control vector that
solves the problem. A more general approach was proposed by De Matteis et al. [54], where
an optimization problem was solved in order to enforce, together with the constraints
on trajectory variables, relevant properties to the inverse solution by defining a suitable
merit function to be minimized locally at each time step of the inverse simulation. As an
alternative, an additional constraint can be enforced in order to obtain a nominal inverse
problem. In particular in the thesis the additional constraints zero lateral acceleration or
zero sideslip are used.

A further problem relevant for aeronautical applications of IS integration methods is
represented by undesirable oscillations in the control action or even instabilities in the
inverse solution, discussed in some details in Refs. [43, 98, 99, 100]. These problems are
related to the presence of transmission zeros, uncontrolled states and possible difficulties
in the correct numerical evaluation of Jacobian matrix J = ∂yF /∂u

?
k for the output

variables. These issues can be circumvented, at the cost of increasing the computational
burden, by solving the inverse problem stated by Eq. (5.9) over a longer time–horizon,
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that is, choosing t?F = tk +N∆t > tk+1, that is, the piece–wise constant control action is
propagated for a longer time interval in order to allow for uncontrolled dynamics to settle
down. The initial condition xk+1 for the next step is then evaluated at time tk+1 [54].

As a variation to a standard integration method, a different definition of the algebraic
system is adopted, where, rather than solving Eq. (5.9) in terms of the actual value of the
tracked variables at time tF , their increments over the time step between tI and t?F are
required to be equal. Equation (5.9) is thus replaced with

∆y = F (xk,u?k)− g(xk) = (5.10)
= ydes(tF )− ydes(tI) +K [ydes(tI)− g(xk)]

where the additional term in square brackets multiplied by a gain K avoids that the actual
solution “drifts” away from the desired path because of the incomplete implementation
of the considered step during the forward propagation, as outlined above. This term
also enforces asymptotic convergence on the tracked variables when they achieve a steady
value. By some simple manipulation, Eq. (5.10) can be rearranged as

F (xk,u?k) = ydes(tF ) + (K − 1) [ydes(tI)− g(xk)]

where for K = 0 the additional term [ydes(tI)− g(xk)] disappears and one simply requires
that the increment of the actual output variables at the end of the whole inverse simulation
step ∆t = tF−tI equals the increment for the desired variation of y. Note that whenK = 1
the inverse simulation scheme delivers a solution that exactly tracks the desired value of
ydes at time t?F . An intermediate value between 0 and 1 usually provides reasonable inverse
solution for the considered application. A value K = 0.3 was used for producing all the
results discussed in the sequel.

5.2.3 Test manoeuvres

The inverse simulation algorithm is tested, for all the different models briefly described in
the previous Section, on 5 different manoeuvres:

(i) hurdle–hop

(ii) slalom manoeuvre

(iii) lateral repositioning

(iv) a pop–up–pop–down manoeuvre

(v) fast turn

Most of the analysis is based on manoeuvres (i) to (iii), that are used for the determi-
nation of the effects of model simplifications on the inverse solution and for the evaluation
of model reliability metrics. Manoeuvres (iv) and (v) are used for validating the results
obtained for the determination of the uncertainty on the control action.
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Manoeuvres (i), (ii) and (v) start from a horizontal trim flight condition (the first one
being a purely longitudinal manoeuvre) and are performed at constant speed, whereas the
lateral repositioning and the pop–up–pop–down manoeuvres, (iii) and (iv), require the
recovery of a hover condition after a lateral and a vertical displacement, respectively.

In the first case a purely longitudinal manoeuvre is considered, with a commanded
altitude variation given by

∆z = 0 for t ≤ t0, t ≥ t0 + T

∆z = ∆h
16

{
9 cos

[
2π(t− t0)

T

]
+

− cos
[
6π(t− t0)

T

]
− 8
}

for t0 < t < t0 + T

In the second case, the helicopter is required to perform a sequence of 4 turns, in order
to follow a lateral path defined by the equation

∆y = 0 for t ≤ t0, t ≥ t0 + T

∆y = ∆Y
27
√

3

{
32 sin

[
2π(t− t0)

T

]
−20 sin

[
4π(t− t0)

T

]
+

+2 sin
[
8π(t− t0)

T

]}
for t0 < t < t0 + T

The third manoeuvre starts from a hovering condition that needs to be recovered after
a lateral displacement of YF = 120 m, where the lateral coordinate is expected to vary as

y = 0 for t ≤ t0

y = YF
16

{
8 + cos

[
3π(t− t0)

T

]
+

−9 cos
[
π(t− t0)

T

]}
for t0 < t < t0 + T

y = YF for t ≥ t0 + T

The data used for specifying the three manoeuvres are reported in Tab. 5.3. Note that
the parameters for manoeuvres (ii) and (iii) are defined according to the standards set by
ADS–33 requirements [62]. On the converse, manoeuvre (i) is not one of those specified
in [62], but it is nonetheless one of the classic test–cases adopter in the literature on IS.
A graphical representation of the desired variation of the relevant trajectory variables for
the three manoeuvres is also reported (Fig. 5.18).

Commands necessary for tracking the desired manoeuvres will be represented in the
following sub–sections in terms of main rotor collective, longitudinal and lateral cyclic
pitch and tail rotor collective, by means of the percentage of the total available travel.
A variation between 0 and 1 is considered for main rotor collective pitch, while ranges
of variation between -1 and 1 are assumed for the other commands. Attitude variables
(i.e. roll, pitch and yaw angles) and rotor states (in terms of multi–blade variables, when
individual blade models are considered, or first harmonic flapping coefficients, when TPP
dynamics is adopted) will also be analysed. On the converse, trajectory variables will not
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Table 5.3. IS manoeuvres test matrix.

Manoeuvre Initial Manoeuvre attributes: Value UnitVelocity Duration Parameter Low Medium High
Test cases
Hurdle Hop 30 m/s 20 s ∆h 20 30 40 m
Lateral reposit. 0 m/s 16 s ∆y 90 120 150 m
Slalom 35 m/s 13 s ∆y 9 15 21 m
Validation
Pop-up-pop-down 0 m/s 10 s ∆h 6 9 12 m
Fast turn 30 m/s Tm Tm 18 15 12 s
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Figure 5.18. Geometry of the desired trajectories.

be shown, as far as the IS algorithm successfully tracks the desired trajectories, in all the
considered test–cases.

The IS algorithm adopts a piece–wise constant control over a time step ∆t = 0.2 s.
For the individual blade models (A.1 to A.3) N = 3 is used, so that the inverse simulation
problem is solved over an interval ∆t? = t?F − tI = 0.6 s. For all the other models (A.4 to
C.9), N = 2 is chosen, resulting in an inverse simulation time–step ∆t? = 0.4 s. In all the
considered cases a gain K = 0.3 in Eq. (5.10) is selected.
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5.2.4 Model reliability metrics

Model reliability is evaluated on the basis of two metrics: (i) a global measure of the
performance of lower order models in determining the control action when compared with
the inverse solution of a more complete, higher order one used as a reference, and (ii)
an estimate of the uncertainty on the command, that is, the identification of an interval
centred around the command time–history of the simplified model that includes most of
the control action derived for the reference baseline model. Both metrics will be based on
the definition of suitable root–mean–square (RMS) values of relevant signals.

As far as the uncertainty window is concerned, the objective is to derive an estimate
of its size from a given set of reference manoeuvres, where the inverse solution of the
reference model is known, in terms of parameters related to control activity for the lower
order model only. In this way it will be possible to use it in the form of a confidence interval
for different manoeuvres without any a priori knowledge on a reference solution of any
kind. On the converse, the determination of model global performance, which evaluates
the discrepancies with respect to the reference solution, is available only in the presence
of the latter.

The knowledge of the expected uncertainty for all the command lines is a piece of
information of paramount importance in the derivation of closed–loop robust control laws.
At the same time, the approach discussed in the sequel can be easily extended to the
comparison of model inverse solutions with actual flight tests.

Global performance index

Command activity intensity ¯̄ui for the i-th command line (e.g. i = 3 lateral cyclic for a
hurdle–hop manoeuvre represented in figure 5.19.a) is evaluated as

¯̄u2
i = 1

Tm

∫ Tm

0
u2
i (t) dt (5.11)

where ui represents the variation of the command from the initial trim condition. As a
consequence the values of command equilibrium have no influence on the evaluation of
command activity intensity. Command intensity ¯̄ui is determined for all command lines
u = (θ0, A1S , B1S , θ0tr)T .

Model A1 is used as a reference for the current analysis, that is, the results uri (t) of
the inverse simulation problem for model A1 are used as reference signals. The quantity
σi, defined as the RMS of the difference of the two command signals, ui(t) and uri (t),

σ2
i = 1

Tm

∫ Tm

0
[ui (t)− uri (t)]2 dt (5.12)

represents a measure of how well the model under analysis is able to capture the behaviour
of the reference one on each command line (Fig. 5.19.b).

The value of σi may vary significantly for different command lines and manoeuvre
tasks, as simplifying assumptions at the basis of each model may have a different impact
on its ability to represent the system command response for different levels of the required
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Figure 5.19. Comparison of control displacements: (a) RMS of command ui; (b)
RMS of the difference ui−uri ; (c) uncertainty interval; (d) RMS of reference command
outside of uncertainty interval.

control activity when flying in different flight conditions. A nondimensional ratio is thus
defined, σ∗i = σi/¯̄ui, which represents the relative accuracy in the control action obtained
by scaling the RMS of the error on the i–th command signal with respect to the RMS
of the considered command, ¯̄ui, which is a rough measure of control activity. Clearly,
a low value of σ∗i indicates that the simplified model is capable of correctly reproducing
the behaviour of the reference system. On the converse, higher values indicate either the
presence of a very large peak in the error for a certain portion of the manoeuvre or a
global inability of the simplified model to capture the physical behaviour of the system,
at least in the considered task.

Determination of the uncertainty window

The second step of the procedure is the determination of the uncertainty window kiσi by
means of an iterative process, starting from a reasonable first guess for ki. Figure 5.19.c
represents the uncertainty interval of size kiσi around the model command for ki = 1. It
is possible at this point to evaluate the portion δi (t) of the reference command that lies
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outside of the ui±kiσi interval centred around the considered command trim history, that
is

δi (t) =


ur (t)− [u (t)− kiσi] if ur (t) < u (t)− kiσi
0 if u (t)− kiσi < ur (t) < u (t) + kiσi
ur (t)− [u (t) + kiσi] if ur (t) > u (t) + kiσi

(5.13)

The root mean square of the signal

ε2i = 1
Tm

∫ Tm

0
δ2i (t) dt (5.14)

represents at this point a global measure of the portion of the reference signal ur (t) that,
lying outside of the ±kiσi window (5.19.d), is not correctly represented by ui (t).

Given the above mentioned definitions, the value ki is evaluated for each command line
in all the test manoeuvres considered, in such a way that the ratio τ = εi/σi is equal to a
given threshold, τmax. It is clear that, by setting τmax = 0, one requires that the reference
signal uri (t) lies entirely within the uncertainty window, in which case its amplitude would
be simply given by

kiσi = max
t∈[0,Tm]

[ui (t)− uri (t)]

without the need for any iterative procedure. But the use of an uncertainty window that
contains all the reference command control activity results into an excessively conservative
estimate of the uncertainty that may unfairly penalize a relative good modelling approach
because of a slight below average performance on a small time interval, whereas most of
the manoeuvre is correctly represented. A value of τmax = 0.1 is selected for the present
analysis, such that at least 90% of the reference control activity lies within the uncertainty
window, a value that, in the authors’ opinion represents a reasonable compromise between
reliability of the results and conservativeness. Larger values of τmax will result into smaller
uncertainty interval that may fail to correctly point out those critical situations in which a
model is not able to capture the actual control action over a limited yet significant portion
of the manoeuvre.

5.2.5 Qualitative analysis

The main objective of a qualitative analysis is to correlate differences in the results with
simplifying assumption at the base of each model. Such analysis is conducted on the three
test manoeuvres, comparing the behaviour of all models.

Manoeuvre i: Hurdle–hop

Figure 5.20 represents the trajectories achieved by means of the inverse simulation algo-
rithm. All models are able to track the desired trajectory with great precision. The lateral
error, allowed in the integration approach with correction factor, is smaller than 0.3 m
after a 22s manoeuvre.
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Figure 5.21 depicts the command travel required for performing the hurdle–hop ma-
noeuvre for all the considered models, the most relevant aspects of the manoeuvre ap-
pearing to be almost independent of the model, if not for the initial trim state, which is
significantly affected by the inflow model. Figure 5.22 plots the command displacement
from trim value and thus annihilates differences at trim among the models. In this re-
spect, differences are particularly evident in the lateral cyclic pitch time–history, where
two groups of solutions are clearly visible: the individual blade models (A1 to A3), to-
gether with model A4, featuring the 2nd order TPP dynamics with triangular inflow on
one side, and the models featuring uniform inflow (from A5 to B8).

The only minor difference in the first group of solutions (A1 to A4) is represented by θ0,
affected by the presence of the dynamic twist model which causes a 3% variation of main
rotor collective pitch with respect to those models where a blade torsional degree of freedom
is not present. This difference is hardly visible on the reported results and appears as truly
negligible with respect to the command travel required for the manoeuvre. Similarly, a
slight variation on commands is also apparent when fuselage aerodynamic moments are
dropped (models B), a difference particularly evident on longitudinal cyclic pitch, where
command values are shifted by almost 5%, but command travel is practically unaffected.
If command displacement from trim value was reported instead of the absolute command,
the first 9 models (A1 to B8) would provide almost identical results. The only exception
is represented by model B9 which exhibit significant differences. In particular, a smaller
command displacement from trim is apparent forA1S and θ0tr , due to the fact that in–plane
rotor forces are neglected, according to the elementary rotor model formulation reported in
[11]. This fact clearly demonstrate that, even for this relatively simple, purely longitudinal
manoeuvre, the most elementary model misses important aspects of the required control
action, thus harming a correct analysis of vehicle manoeuvre potential.

A similar trend is apparent also for attitude (Fig. 5.23) and rotor variables (Fig. 5.24).
The time–histories are almost identical for all these variables and attitude angles all lie
within ±1 deg from the solution for the most complex model, A1. As for rotor variables,
only model B9 presents a few more significant variations with respect to the trend identified
on the basis of the other models. Some differences, from the quantitative point of view, are
visible on the coning angle, βc, for individual blade models (continuous lines in Fig. 5.24),
which show wider variations in response to rotor loads changes along the manoeuvre. This
means that TPP models underestimate coning angle variations. This could be detrimental,
when a pitch–flap coupling is considered, but in the present case tan δ3 = 0, and this
difference does not affect significantly rotor manoeuvre loads. As far as every other aspect
is concerned, the two classes of rotor models provide very similar results. A few minor but
systematic differences on flapping coefficients are also apparent between 2nd and 1st–order
TPP models and on lateral flapping coefficient, β1s , in relation to the inflow model, a
difference that is compensated by the slight variation in rotor cyclic pitch, as outlined
above, in order to provide the correct load for performing the desired manoeuvre.

As a general limitation for the validity of the results, it should be noted that a negative
peak value of collective pitch is required during the descent phase (Fig. 5.21), which means
that the manoeuvre cannot be completed at constant speed without violating a constraint
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Figure 5.20. Achieved trajectories in hurdle-hop manoeuvre.

on command travel. Finally, figure 5.25 depicts power requirement during the hurdle-
hop manoeuvre. All models but B9 are able to provide a realistic estimate of necessary
power. The low peak in the collective pitch is matched in this case with a negative power
requirement.

Manoeuvre ii: Slalom

A second set of test–cases is considered for a more complex, three–dimensional slalom
manoeuvre. The command travel required around all control axes is quite large for all
the considered models, which shares most of the qualitative features, but quantitative
differences on control effort are rather significant, as it is evident from the plots reported
in Fig. 5.26, where results for the 3 reference models A1, A6, and B9 are reported, together
with those obtained for models A4 and B6. The other individual blade models exhibit a
behaviour very close to that shown by A1.

If one drops model B9, that as for the hurdle–hop manoeuvre exhibits major differences
with respect to all the other test cases, the control on lateral cyclic pitch appears similar
for all the models, although the individual blade model requires significantly less command
travel for performing the required turns. Differences are even more dramatic for the other
commands: model A4 follows relatively well the command profile for θ0, but control
activity on longitudinal cyclic pitch and tail rotor collective is significantly more intense
for models A4 to B6, if compared with A1. This is at least partially due to the need
for a stronger filtering action on the command law obtained by the IS algorithm, when
an individual blade model is dealt with, in order to avoid the insurgence of command
oscillations, but it is also related to the effects of nonlinear dynamic terms not included in
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Figure 5.21. Total command travel time-histories in hurdle-hop manoeuvre.

the simplified TPP linear dynamic models and the related evaluation of rotor loads and
inertial coupling terms.

As can be seen in figure 5.27, rotor states dynamics is very similar for all the model for
the coning degree of freedom βc while strong difference emerge for model B8 and B9 when
longitudinal and alteral tilt are considered. As for attitude variable, roll and yaw angles
(also not reported) show very similar variations, with differences limited to less than 2
deg for φ, over variations as high as ±50 deg, and less than ±1 deg for ψ over variations
between −12 and 14 deg. On the converse, sizable differences are present on the pitch
angle θ (Fig. 5.28), where differences as high as 5 deg are present, which are equivalent
to the whole amplitude of the motion around the pitch axis. From this discussion it is
apparent that, when more aggressive tasks are considered, the role of higher order terms
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Figure 5.22. Command displacement from trim time-histories in hurdle-hop manoeuvre.

in rotor dynamics has a sizable effect on the simulated manoeuvre.

Manoeuvre iii: Lateral Repositioning

The last manoeuvre considered is the so–called lateral repositioning. The command travel
on A1S and B1S is reported in Fig. 5.29 (the variation of main and tail rotor collective
pitch is not represented as it is similar for all the models, with the usual exception of
model B9, which follows the qualitative behaviour, but misses the correct amplitude of
the command travel required). Major differences are visible on cyclic pitch commands,
A1S and B1S , and lateral and longitudinal flapping coefficients, βlng and βlat (also not
reported for the sake of conciseness). If, on the one side, differences in terms of required
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Figure 5.23. Attitude time-histories in hurdle-hop manoeuvre.

command travel remain rather limited, on the other one the qualitative trend shown by
command and rotor state variables is significantly affected by the main rotor inflow model,
where a triangular distribution at the peak lateral velocity close to 20 m/s clearly causes
a significant variation on rotor loads that need to be compensated by a proper lateral and
longitudinal control action, in order to keep a purely lateral velocity and constant fuselage
heading.

In this latter situation, also the fuselage model appears to play a more significant
role than in the previous cases. It is clear from Fig. 5.30, where roll and pitch angles are
reported, that neglecting fuselage aerodynamic moments results into a significant difference
in the attitude variables during the manoeuvre, up to 5 deg for φ and 4 deg for θ. Such a
difference was not apparent in the previous two manoeuvres, when the flow impinges on the
fuselage with small sideslip angles at high speed and most of the fuselage is outside of rotor
wake. On the converse, when aggressive, lateral manoeuvres are dealt with, all the features
of the flowfield around the fuselage play a more crucial role, especially considering the fact
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Figure 5.24. Rotor states time-histories in hurdle-hop manoeuvre.

that the manoeuvres starts and ends in a hover condition passing through a relatively high
lateral speed, as high as 20 m/s in the considered case, where rotor wake impinges on the
fuselage for a large portion of the manoeuvre and large variations of both aerodynamic
angles, α and β are expected.

5.2.6 Quantitative analysis

As stated before, different “intensities” are considered for each manoeuvre. Together with
the standard cases, defined according to HQ requirements or after similar manoeuvre
examples found in the literature (and considered as medium tasks), less demanding (low
intensity) and more demanding (high intensity) test cases were defined by decreasing or
increasing the difficulty of the manoeuvre, by properly tailoring the manoeuvre parameter
(e.g. the vertical or lateral displacement to be achieved during the manoeuvre or the
manoeuvre time prescribed to complete it).
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Figure 5.25. Required power in hurdle-hop manoeuvre.

After the evaluation of the uncertainty on each command line, two more manoeuvres
are considered, a vertical pop–up–pop–down and a fast 180 deg turn, in order to validate
the results obtained, by verifying that the uncertainty levels determined on the basis of
the previous three manoeuvres correctly bracketed the control action for these additional
tasks. For the latter one, the performance parameter that rules manoeuvre difficulty is the
time required to complete the 180 deg turn, Tm, which makes the task more demanding
when smaller values are considered.

A total of 3 tests for each of the 5 manoeuvres for as many as 10 helicopter models of
various complexity (see Tab. 4.1 ) have been analysed, summing up a total of 150 test cases.
90 of these tests are used for the determination of the global model reliability metrics for
the 4 command channels, σi, i = 1, 2, 3, 4, and the corresponding uncertainty intervals,
kiσi according to the procedure outlined in the previous paragraph. The remaining 60
tests are used with the purpose of validating the obtained results, as discussed above.

5.2.7 Determination of the model reliability metric

By considering the results obtained from the IS of the 90 test cases, the values of the rel-
ative accuracy in the control action, σ∗i , defined in the previous paragraph, are computed.
A selection of these data, for models A4, A6, B6, B8 and B9 is reported in Tab. 5.4. It
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Figure 5.26. Command travel in slalom manoeuvre.

is possible to observe that these values present a sizable variation, over the various test
cases, also for the same command channel, whereas a single, reference value for globally
quantifying the performance of the considered model would be highly desirable.

Starting from these rough data, a single reference value, σ̂i, that represents a global
index for the RMS of the error over the whole set of tests, is selected as

σ̂i = σ̄i + 0.25[max
i

(σ∗i )− σ̄i]

an empirical value between the average value σ̄i of σ∗i over the different manoeuvres and
the worst case, represented by the maximum value of the scaled RMS. The values of σ̂i,
reported in the last column of Tab. 5.4, are highlighted in boldface characters. Their choice
is necessary in the attempt of providing a single value for the amplitude of the uncertainty
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Figure 5.27. Rotor states time-histories in slalom manoeuvre.

window in the form ±kσ̂i, at the next step of the procedure, when the uncertainty needs
to be scaled with respect to control activity RMS, ¯̄ui. In such a way it is possible to
provide an estimate of the uncertainty window for any given level of control activity, an
important information in the synthesis of robust control laws (e.g. control and stability
augmentation systems, SCAS).

In the choice of σ̂i, a few cases appear as critical, inasmuch as they were affected by
a clear inadequacy of the considered model in representing a particular manoeuvre, as
already reported in the previous section. In particular, for the lateral repositioning task,
reduced–order rotor models and, even more seriously, simplified fuselage aerodynamic
models clearly cause a significant loss in overall simulation model reliability, with values of
σ∗i that become as high as 3 or 4 for the longitudinal cyclic pitch, that is, the RMS of the
error on this command channel is 3 or 4 times the value of the RMS of the control activity.
If these data are dropped in the definition of σ̂i, the data reported between parentheses
in the last column are obtained, in the same range of the other values, at the expenses of
limiting the validity of the results, as not all the manoeuvres are included in the definition
of this corrected reference value of the RMS of the error.
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Figure 5.28. Attitude time-histories in slalom manoeuvre.

5.2.8 Definition of the uncertainty window

The following step in the analysis is the identification of the uncertainty interval for the
given control action, as discussed in the previous paragraph. Table 5.5 reports the values
of ki to obtain a confidence level equal to 90% of the RMS of the error ui−uri , considering
the same models at the basis of the results reported in Tab. 5.4. Again, a compromise
between the average value and the reported worst cases (e.g. longitudinal cyclic pitch and
tail rotor collective in a low–intensity hurdle–hop) is needed, where one should remember
that the values, scaled with respect to the RMS of the control displacement, are penalized
for those command lines less important for the considered task. Following an approach
similar to the reliability metrics, the final value is evaluated as

k = k̄ + 0.25[max
i

(ki)− k̄]

where k̄ is the average value of ki. The value k = 2.1 obtained with such approach is used
for all models and commands lines in the rest of the analysis. With this choice, somewhat
arbitrary but practically effective, a single parameter can be used to characterize the
uncertainty level on all command lines, once a reference value σ̂i for the RMS of the error
with respect to the reference command signal is known.

Once a uniform value for the parameter k is chosen for all the considered tests, as
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Figure 5.29. Command travel in lateral repositioning manoeuvre.

indicated above, a target window for the command, ui(t) ± (kσ̂i)¯̄ui, is easily obtained
for any control law, ui(t), and its corresponding RMS, ¯̄ui. Most of the command signal
of the reference model, that is, approximately 90% of the error with respect to uri (t), is
now expected to lie within this interval. As a matter of fact, Fig. 5.31 demonstrates that
this holds for three of the four command lines for lateral repositioning manoeuvres of
increasing intensity, with a strong violation for the longitudinal cyclic pitch, as expected
from the analysis of the previous data, inasmuch as a smaller uncertainty window was
selected. Note that model A4 performs definitely better than all the other ones, thus
confirming that fuselage and inflow models play a crucial role in this manoeuvre for the
correct representation of off–axis response.

It should also be noted that, when the RMS of the violation of the considered target
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Figure 5.30. Attitude time-hystories in lateral repositioning manoeuvre.

window for the time–histories of the control variables is scaled with respect to the RMS of
the command, ¯̄ui (Fig. 5.32), relatively small figures are obtained also for model A6, with
less than 10% of the reference command signal lost outside of the uncertainty window. On
the converse, model C6, with the same rotor and inflow models, but simplified fuselage
aerodynamics, is not correctly bracketed, that is, the uncertainty is higher than what
indicated by the proposed procedure.

Good results in the definition of the uncertainty window are obtained for the hurdle–
hop and the slalom manoeuvre as shown in Fig. 5.33 and 5.34, with the exceptions of
the longitudinal cyclic pitch in the first case and main rotor collective in the latter one,
where the choice of a single value of k results in an overoptimistic prediction of the uncer-
tainty interval. The interpretation of the slalom results is relatively straightforward, being
related to a very aggressive, lateral–directional manoeuvre, with minor displacements of
the collective command, whereas the major errors in the tail rotor channel are related
to the difficulties in correctly representing a very aggressive manoeuvre with lower–order
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Table 5.4. Model accuracy metrics (σ∗i ) for the 9 test manoeuvres.

1.20.5410.4830.4591.2321.1901.1411.2371.3621.446C9

0.70.4480.4130.3990.5760.6000.6420.3790.3690.375C8

0.70.4000.3730.3620.5690.5930.6360.4490.4680.493C6

0.70.4000.3710.3610.8430.9021.0220.4650.4720.475A6

0.60.3960.3770.3790.9010.4250.9600.2780.2390.209A4

21 m15 m9 m150 m120 m90 m40 m30 m20 m

∧∧∧∧

σσσσ
i

slalom (SL)lateral repositioning (LR)hurdle hop (HH)

LATERAL CYCLIC

0.40.7210.8021.2020.1680.1580.1530.1440.1450.142C9

0.40.5590.6140.9180.1370.1210.1100.1250.1250.122C8

0.40.5390.6210.9550.2550.2370.2090.1910.1840.178C6

0.40.5420.6260.9580.2510.2430.2220.1850.1790.174A6

0.10.2190.1600.1630.0490.0530.0440.1190.1180.118A4
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COLLECTIVE

0.50.9140.6560.5430.2940.3360.3600.2300.2380.296C9

0.50.9130.6210.5640.3140.3660.3910.1180.1390.143C8

0.40.8360.4710.3980.2870.3330.3730.1300.1400.152C6

0.40.7560.3770.2760.2150.2890.4090.1170.1410.146A6
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2.2 (1.2)0.5490.4020.3242.5433.3864.5500.4620.4420.407C9

1.8 (0.7)0.4050.3230.2451.8042.4733.5540.5580.5260.458C8

1.6 (0.7)0.3310.2560.1791.6912.3483.4030.5910.5510.465C6

0.5 (0.5)0.3270.2500.1760.4160.5030.6480.2720.2450.258A6

0.3 (0.3)0.3940.3220.2720.2680.0920.2230.2700.2360.203A4
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σσσσ
i

slalom (SL)lateral repositioning (LR)hurdle hop (HH)

LONGITUDINAL CYCLIC

simplified models.

5.2.9 Validation manoeuvres

As a further proof of the validity of the approach, two more manoeuvres were considered for
testing how well the uncertainty intervals defined on the basis of the previous test cases
could capture the performance of each model on different tasks. For the pop–up–pop–
down manoeuvre (Fig. 5.35) the uncertainty defined on the basis of different manoeuvres
correctly captures the reference model control activity on all the command channels with
the exception of the longitudinal cyclic pitch. But this fact, rather than being related
to the quality of the simplified models, is caused by the small value of the RMS of the
command time–history during a purely vertical manoeuvre, with minor longitudinal cyclic
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Table 5.5. Factors ki for the definition of the uncertainty interval.
  hurdle hop (HH) lateral repositioning (LR) slalom (SL) 
  20 m 30 m 40 m 90 m 120 m 150 m 9 m 15 m 21 m 

A4 1.484 1.538 1.531 1.658 1.704 1.652 2.623 2.636 2.531 

A6 1.447 1.664 1.653 1.763 1.843 1.931 1.834 1.930 2.240 

C6 1.565 1.603 1.592 1.750 1.688 1.666 1.863 1.963 2.308 

C8 1.529 1.622 1.603 1.883 1.994 1.913 2.050 2.295 2.736 

C
o
ll

ec
ti

v
e 

C9 1.775 1.873 1.860 1.682 1.905 1.979 2.064 2.279 2.636 

A4 1.851 1.746 2.397 1.691 1.625 1.747 1.859 1.824 1.920 

A6 1.624 1.734 1.749 1.707 1.687 1.602 1.947 1.959 2.037 
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Figure 5.31. RMS of command lying outside of the target region for lateral repositioning
manoeuvre: values scaled w.r.t. σi .

pitch displacements.
Something less trivial takes place with the fast 180 deg turn (Fig. 5.36), that provides

excellent results for the collective and longitudinal cyclic pitch, not so good results for tail
rotor collective and very poor ones for the most important command line, that is, lateral
cyclic pitch. The analysis of the time–histories proves that this fact is related to a sort of
bias on these command lines between different models during the quasi–steady portion of
the turn. It is for this reason that in this case the most aggressive manoeuvre provides
better results, because of its more dynamic nature.
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Figure 5.32. RMS of command lying outside of the target region for lateral repositioning
manoeuvre: values scaled w.r.t. ¯̄uri .
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Figure 5.33. RMS of command lying outside of the target region scaled w.r.t. ¯̄uri
for a hurdle–hop manoeuvres.
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Figure 5.34. RMS of command lying outside of the target region scaled w.r.t. ¯̄uri
for a slalom manoeuvres.
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Figure 5.35. RMS of command lying outside of the target region scaled w.r.t. ¯̄uri for for
pop–up–pop–down manoeuvre.
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5.3 MPC algorithm
The integration algorithm presented in the previous section is able to solve the inverse
problem even with individual blade models. Nevertheless the iterative solution for the
inverse simulation step based on an individual blade model has a high computational cost,
leading to a slow solution to the problem. A new algorithm based on a Model Predictive
Control (MPC) scheme for the solution of the inverse simulation problem for rotorcraft
dynamics is proposed. The complex model which needs to be analysed is substituted in
the inverse simulation scheme by a lower–order model that requires a significantly shorter
CPU time to solve the inverse problem. The control action evaluated for the low–order
model is then propagated forward in time on the most complex, high–order one.

The present section aims at demonstrating that Model Predictive Control (MPC)
can also reduce the computational burden and alleviate the numerical issues that affect
the inverse solution of high–order, individual blade helicopter models. The combined
use of a high–order accurate model for forward simulation with a low–order one for the
determination of the control action by means of the solution of an IS problem reduces the
computational cost significantly.

In Model Predictive Control [101] the evaluation of the control law usually results from
the solution of a finite horizon open-loop optimal control problem, using the current state
of the plant as the initial state. The optimization yields an optimal control sequence and
the first control in this sequence is applied to the plant which is then integrated until the
next control step, when the same procedure is repeated. Usually, the control objective
requires to follow a user defined trajectory y(t) = ydes(t), where ydes(t) is the desired
evolution for the components of the vector of tracked outputs. The optimization problem
is aimed at minimizing a stage cost based on the difference between real and desired output
variables as well as on control activity during each time step plus a terminal cost evaluated
at the end of the integration, that is, at time tF = tk + T (where T is the length of the
receding horizon).

The reference model used for the analysis is Model A1 described in section 4.1.1. In
the present analysis two lower–order models are used to test the technique, Models A4
and B8. Model A4 is described by a 19 elements state vector x̃ which can be partitioned
in the form x̃ = (x̃f , x̃r, x̃λ)T , with the same fuselage rigid body and inflow states, x̃f
and x̃λ as model A1 (see section 4.1.1), respectively. Rotor states represent first order flap
harmonic coefficients and their derivatives, that is x̃r =

(
ã0, ˙̃a0, ã1, ˙̃a1, b̃1,

˙̃b1
)T

, where ã0,
ã1, and b̃1 are coning, longitudinal and lateral flapping coefficients, respectively.

The dynamics of the simplified model is thus defined by means of a set of 19 nonlinear
time–invariant ordinary differential equations, in the form

˙̃x = f̃ (x̃, ũ)
ỹ = g̃ (x̃) (5.15)

where ũ =
(
θ̃0, Ã1S , B̃1S , θ̃0tr

)T
is the command vector and ỹ is the output vector. Note

that the states, commands and outputs of the model used for the inverse simulation step
are defined by symbols with a˜ in order to underline the fact that, in general, they may
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assume different values with respect to their counterparts in the reference models due
to the difference in modelling level and tracking error of the output variables during the
procedure.

The MPC–IS scheme is also tested by solving the IS step for a minimum–complexity
model (Model B8), where further simplifying assumptions are used in order to drop inflow
states and some rotor variables [11]. In particular, main and tail rotor inflow is assumed
uniform and quasi–steady. The values for the inflow non–dimensional velocity parameters,
ν0 and ν0tr , are determined at each time step by means of a simple iterative procedure
based on momentum theory. Fuselage aerodynamic description is based on parasite drag
area, thus dropping the aerodynamic database used for Models A1 and A4. Finally, a
first–order dynamics is assumed for rotor states, namely coning, longitudinal and lateral
flap coefficients.

The dynamics of this lowest–order model is thus described in terms of just 12 state
variables. The state vector is partitioned in this case as x̂ = (x̂f , x̂r )T , where x̂f =(
û, v̂, ŵ, p̂, q̂, r̂, φ̂, θ̂, ψ̂

)T
represents as usual fuselage states and x̂r =

(
â0, â1, b̂1

)T
repre-

sents rotor states. Note that a “hat” symbol is used for indicating Model B8 state and
control variables, in order to mark the difference with respect to the corresponding ones
for Models A1 and A4.

As anticipated above, the proposed model predictive control scheme allows for the eval-
uation of the solution of an inverse simulation problem for a complex rotorcraft model,
starting from the solution of the inverse simulation step obtained for a lower–order, sim-
plified model of the same vehicle. In this numerical scheme, indicated as MPC-IS in what
follows, the complex model is used only in the forward simulation step, which is by far
the computationally least demanding. A great amount of time and computational burden
can be saved if a lower–order model is used in the inverse simulation step, which requires
the numerical solution of a set of non–linear conditions on rotorcraft output at the final
time of the discretization interval by means of an iterative procedure [46, 53]. A simple
guidance scheme is sufficient for avoiding that the models drift away from the prescribed
flight path. All the elements (helicopter models, IS algorithm and guidance scheme) will
be presented in this Section together with the overall architecture of the MPC-IS scheme.

The approach for the solution of the inverse problem is described in Fig. 5.37. Three
major blocks are at the basis of the architecture of the algorithm. The forward simulation
block performs the forward simulation of the reference Model A1. The inverse simulation
block evaluates the command increment ∆u that achieves the desired increment ∆y?
for the tracked output variables on the basis of either Model A4 or B8. Finally, the
guidance block generates the desired output increment ∆y? for the inverse simulation
block, based on the desired trajectory ydes(t) plus a correction ∆yguid that takes into
account differences between the actual output function y of the reference Model A1 and
ydes(t) at the beginning of the time step tk.

The IS problem is solved by means of an integration algorithm. In a standard in-
verse simulation approach [97], once a desired variation with time ydes(t) of the output
is prescribed (i.e. a manoeuvre profile like those required by ADS–33 specifications [62]),
helicopter equations of motion are integrated from an initial condition xI = xk at time
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Figure 5.37. Architecture of the MPC–IS scheme.

tk over a time interval T for a piece–wise constant value u?k of the control variables. The
resulting value yF = g(xF ) of the output variables at time tF = tk + T can thus be
represented in terms of a function yF = F (xF ,u?k) of the (given) initial state xk and of
the (unknown) constant control action, u?k. The unknown control vector, u?k, is evaluated
iteratively by means of some suitable numerical approach (Newton–Raphson [97], local
optimization [54], etc), until yF matches the desired output at the final time, ydes(tF ).
The control action is then propagated forward in time for only a fraction ∆t = T/N of
the inverse simulation time interval [97].

In this latter respect, a proper choice of the receding horizon T and time–step ∆t
is crucial, in order to obtain adequate numerical performance and, at the same time, a
feasible and reasonable inverse solution. The selection of T and N results from a trade-off
between computational time and stability of the method. A short integration time may
excite uncontrolled dynamics and lead to an unstable or highly oscillatory response of
the system, both of which should be discarded as poor and/or impractical solutions of
the inverse problem. The value of T must thus be sufficiently large, in order to allow
non–minimum–phase response to settle down, but if N is large, large fractions of the
time–history from the IS solution are dropped in the forward simulation step, and the
computation time becomes obviously longer.

Note that this approach is common practice in Model Predictive Control, where the
receding horizon used for the forward prediction of system behaviour and evaluation of
control activity is usually 3 to 10 times the controller time step [101]. In the routine
developed for the present work the integration time T is selected so that T = N∆t, with
N = 3 and ∆t = 0.2 s for all the results proposed in the next Section. Similar results are
obtained with N = 5, with a corresponding increment of approximately 66% in terms of
CPU time, whereas N = 2 results into an unacceptable solution for the inverse problem,
during critical phases of the most aggressive manoeuvres.

The approach described above becomes even more demanding from the computational
point of view for individual blade models featuring as many as 37 states, such as Model A1
for the present analysis. The resulting computational time becomes considerably high,
also on modern CPUs, and a problem of uncontrolled states and non–minimum phase
response can harm the convergence of the scheme and/or the practical feasibility of the
command law, in the presence of large amplitude oscillations. In order to reduce the
computational burden, the inverse problem is here solved on the basis of a lower–order,
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simplified helicopter model. Some changes to the inverse simulation integration method
are required in order to achieve robustness and, more in general, better performance.

Assuming that Model A4 is used for the inverse solution of vehicle motion, at every
time step tk the inverse simulation block evaluates the control action ũ?k, that achieves the
desired variation ∆y? = ∆ydes+∆yguid at the end of the IS step, that is, for tF = tk +T ,
where ∆ydes = ydes(tk + T ) − ydes(tk) and ∆yguid is determined by the guidance block,
on the basis of the difference between the output of Models A1 and the desired one at
time tk.

As in any other IS algorithm, the value ỹF = g̃(x̃F ) of the output variables for the
simplified model at time tF = tk + T depends on a known initial state x̃k at time tk
and on the unknown control action, ũ?k, assumed piece–wise constant. As usual, control
variables are determined in such a way that the increment of the output variables obtained
at the end of the IS step matches a given desired value, ∆y?. The value of the control
increment ∆ũ is then passed to the forward simulation as command displacement from
trim condition, assuming ∆u = ∆ũ. From the knowledge of the initial condition for
state variables at time tk and controls at trim, u0, the forward simulator integrates the
equations of motion for Model A1, assuming a constant value of the control variables,
u = u0 + ∆u, over a time step equal to the simulation step ∆t = T/N .

A perfectly analogous scheme is easily implemented if Model B8 is used instead of
Model A4 in the IS algorithm. But prior to implement this IS scheme, a few issues
need to be properly taken into account: (i) the choice of constrained output variables, (ii)
initialization of the IS step, and (iii) definition of a guidance logic. The first issue is typical
of all aeronautical applications of IS schemes, whereas the remaining two characterize the
development of the MPC–based IS scheme.

5.3.1 IS problem constraints

When the number of control variables, m, is equal to the number of the constrained
output variables, p, the problem is nominal and, if well posed, it can be solved by means
of standard numerical techniques, such as Newton–Raphson (NR) method. If m > p
the problem is redundant, as in many aeronautical applications for fixed and rotary–wing
aircraft, when 4 controls are available for tracking 3 trajectory variables. The redundancy
can be either exploited in order to minimize at every time–step a desired objective function
[54] or, as an alternative, a further constraint can be added to make the problem nominal
[97]. The additional constraint provides the manoeuvre with desired characteristics, such
as nose pointing (when a value to either the yaw or the sideslip angle is assigned) or zero
lateral acceleration, that results into the execution of coordinated turns only. In the next
Section, additional constraints, that depend on the type of manoeuvre considered, are
added to the basic velocity tracking task.

As a further issue, if the helicopter must follow a prescribed trajectory, the flight task
element can be enforced by setting as constraints at every time step either the inertial
position, or the inertial velocity components or the inertial acceleration, as discussed
in Ref. [45]. Choosing the acceleration components as constraints makes the problem
numerically more stable, but at the same time it may lead to large drift from the desired
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trajectory, as the system integrates twice the error on the considered constraints, whereas
setting the position as desired variables may lead to instability in the algorithm. Inertial
velocity components were thus chosen as the baseline desired output to be tracked by
means of the inverse simulation technique.

5.3.2 Initial conditions and MPC–IS scheme initialization

All the manoeuvres dealt with in the next Section start from a given flight condition in
forward flight. In order to start the MPC–IS algorithm it is thus necessary to provide both
models with the correct initial trim condition. Model A1, based on an individual blade
approach, is inherently time variant and oscillations in every state variable are expected
at a frequency equal to (or multiple of) blade rotational speed, Ω, assumed constant in
the sequel. As a consequence trim conditions cannot be enforced in an algebraic way by
simply setting to zero all states derivatives as with fixed wing aircrafts. A periodic trim
needs to be found by enforcing a periodicity condition on all the states in the form

x (t) = x (t+ 2π/Ω)

for a constant value of the controls, u0. The values of control variables are chosen so as to
determine (on average) a desired flight condition, defined in terms of airspeed, V , climb
rate, ḣ, and heading angle, χ (or turn rate, ψ̇). The mean value of states over one rotor
revolution

xi0 = Ω
2π

∫ t+2π/Ω

t
xidt (5.16)

is used for defining the state variables at trim. Several techniques can be found in the
literature for solving the problem of helicopter periodic trim. In particular harmonic
balance, periodic shooting, autopilot techniques have been proposed over the years and
compared in Ref. [28]. In the present work, a periodic shooting approach derived from the
work by McVicar and Bradley [26] is used for trimming Model A1.

Models A4 (or B8) is trimmed in the same flight condition. In this second case a set
of nonlinear time–invariant ordinary differential equations, Eq. (5.15), describes vehicle’s
dynamics, so that the helicopter model can be trimmed by means of algebraic tools, simply
enforcing the condition

f̃ (x̃0, ũ0) = 0

where x̃0 and ũ0 are the state and control variables at trim.
Since each model generates in general slightly different values for state and control

variables at trim for the same flight condition, the variations of states and controls from
their trim values is used during the simulation, rather than their absolute values, as far as
the latter are biased by this slight initial difference. This difference, integrated over time,
would result in a significant drift between the models used in the MPC-IS scheme. By
means of this elementary procedure, the initial difference between equilibrium states for
the two models has no impact on the evaluation of the dynamic behaviour of the vehicle.

In what follows, the symbols ∆u = u−u0 will indicate control variable increments with
respect to the considered reference trim condition for Model A1. Similarly, state vector
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increments for Model A1 are defined as ∆xr = xr−xr0 , ∆xf = xf −xf0 , ∆xλ = xλ−xλ0

for rotor, fuselage and inflow states, respectively. Similar definitions hold for Models A4
(e.g. ∆ũ = ũ − ũ0) and B8 (e.g. ∆x̂ = x̂ − x̂0) as well. Note that each model has a
different vector of rotor states. This characteristic affects the IS scheme, and it will be
discussed in detail in the following subsection.

Since a reduced order model (either A4 or B8) is adopted for the IS step, both states
∆x (tk + ∆t) and output variables y (tk + ∆t) achieved at the end of the simulation step
for Model A1 are (hopefully only slightly) different from their counterparts for the IS
step, ∆x̃ (tk + ∆t) and ỹ (tk + ∆t), determined on the basis of a simplified model. These
discrepancies need to be taken into account when the initial conditions for the simpli-
fied model at each initial time tk are defined and the control objectives for the IS step
prescribed. The second issue will be dealt with in the next subsection.

As for the initial conditions, the ideal choice of setting x̃I = xk for Model A4 (or
x̂I = xk, when Model B8 is adopted in the IS scheme) is ruled out by the fact that the
two state vectors contain different sets of variables. Moreover, some of the states would
not be accessible to direct measurements, if the algorithm is implemented as an MPC
controller for an actual vehicle, rather than an off–line inverse simulation method for a
complex helicopter model. For this reason, the issue of state initialization for Models A4
(or B8) at the beginning of every IS time step tk needs to be properly addressed. Note that
for the forward simulation, the states at the beginning of the k–th step are obviously given
simply by the values assumed at the end of the previous one, xIk = x(tk) = x(tk−1 +∆t).

For the inverse simulation step, on the converse, the initialization of states must rely
(at least partially) on the knowledge of the states of the reference model which is integrated
forward in time, in order to prevent a drift between the two models and consequent loss
of control when implementing the control action derived from the simplified model on
the full–order one, which is flying a different condition. Two options are here considered.
In the first case as much information as possible is passed from the complete model to
the reduced order one. In what follows, this technique will be referred to as full state
initialization, inasmuch as initial conditions for all the simplified model state variables are
derived from the knowledge of the state for Model A1 at the end of the previous time–step
∆t. In particular, increments for fuselage and inflow variables are evaluated and the initial
states for the inverse simulation step are given by

x̃f (tk) = x̃f0 + [xf (tk)− xf0 ] (5.17)
x̃λ (tk) = x̃λ0 + [xλ (tk)− xλ0 ] (5.18)

where xf0 and x̃f0 are the values at trim of rigid body states for reference and inverse
models, respectively, and xf (tk) is the vector of rigid body states at the end of the previous
forward integration step. Similarly xλ0 and x̃λ0 represent inflow states for the reference
and inverse models, and xλ (tk) is the reference model inflow state at the end of the
previous forward integration step.

As for rotor states, coning, longitudinal and lateral flapping coefficients at time tk are
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evaluated by means of multiblade coefficients:

βc (tk) = 1
Nb

Nb∑
j=1

βj (tk)

βlng (tk) = − 2
Nb

Nb∑
j=1

βj (tk) sinψj (5.19)

βlat (tk) = − 2
Nb

Nb∑
j=1

βj (tk) cosψj

where Nb is the number of blades. Provided that the time derivatives of multiblade coeffi-
cients can be analytically derived from Eq. (5.19), and letting β =

(
βc, β̇c, βlng, β̇lng, βlat, β̇lat

)T
,

the initial condition for rotor states is defined as

x̃r (tk) = x̃r0 + [β (tk)− β0] (5.20)

A second technique is also analysed, based on the hypothesis that only rigid body
states xB of the reference model are truly observable, as it would happen in a real-time
application of the algorithm in the form of an actual MPC scheme. This technique will be
referred to as partial state initialization in the sequel. In this case the same displacement
of fuselage states from their values at trim is assumed for the initial condition at time tk of
the simplified model, as prescribed by Eq. (5.17), whereas inflow and rotor states are not
updated from the corresponding values obtained for Model A1 at the end of the previous
forward integration interval. In this respect, inflow and rotor states are assumed as not
observable and therefore they are initialized with the value achieved at the end of the last
inverse simulation run x̃r/λ(tk) = x̃r/λ(tk−1 + ∆t) for the simplified Model A4.

Note that, when Model B8 is adopted in the IS block, an equivalent definition for its
initial conditions at each time tk is easily derived by dropping inflow states and substituting
the˜with a .̂ Also remember that, in this second case, a first–order dynamics is assumed
for flapping coefficient, so that, from the definition of x̂r = (â0, â1, b̂1)T , only the current
values of multiblade coordinates derived from Eqs. (5.19) are necessary, whereas their
derivatives are not necessary.

On one side, the choice of selecting rigid body states only as observable states maintains
a link to Model Predictive Control procedures. In fact, if a real system replaces the forward
simulation model, only some states would be observable. In particular linear and angular
velocities as well as attitude variables are usually available from GNC sensors and as a
consequence they can be fed to the inverse model in the above mentioned routine, that acts
like a controller for the plant. Rotor and inflow states are in general not subject to direct
measurement, and therefore no feedback of their actual value from the controlled plant
can be provided to the inverse simulation model in a realistic scenario. At the same time,
and more importantly in the present off–line inverse simulation framework, partial state
initialization seriously challenges the robustness of the MPC-IS algorithm, so it allows one
to fully assess the capabilities of the method.
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5.3.3 Desired output

When a standard IS scheme is adopted, where the same vehicle model is used for the
solution of the inverse problem and for forward propagation of the control action, the fact
that the inverse model follows the desired variation of the outputs, ydes(t), is sufficient
for obtaining a successful inverse solution. This is no longer true for the MPC-IS scheme,
where the output variables y (tk + ∆t) for Model A1 achieve different values with respect
to those obtained at the same time instant for the simplified model (either A4 or B8)
during the solution of the IS step and, as a consequence, they are different from the
desired output ydes (tk + ∆t).

Several reasons contribute to this difference, as (i) the constraint on the output is
exactly enforced during the IS step for the simpler model only, (ii) the control action
is propagated for just a fraction of the receding horizon T , so that the actual output
is evaluated at a time tk+1 /= tk + T and, finally, (iii) the output variable increment
required over the IS step for the simplified model, ∆y? = ∆ydes + ∆yguid, includes the
contribution ∆yguid generated by the guidance term required for limiting the drift between
the two models, so that ∆ydes = ydes(tk + T )− ydes(tk) /= ∆y?.

Letting the actual increment achieved by Model A4 at time tF be defined as ∆ỹ =
ỹF − ỹI = g̃(x̃F )− g̃(x̃k) = F̃ (x̃k, ũ?k)− g̃(x̃k), the inverse problem can again be stated
in terms of a set of algebraic equations in the form

F̃ (x̃k, ũ?k)− g̃(x̃k) = ∆y?. (5.21)

Note that, as a further variation with respect to a standard IS method, a different
definition of the algebraic system is adopted in this work, where, rather than directly
enforcing the constraints in terms of actual desired values for the tracked variables at time
tF , their increments over the time interval T between tI and tF are required to be equal.
The guidance term included in the definition ∆y? updates the desired output variables
increment by means of a function of the error exhibited by the reference model at the end
of the previous forward simulation step, that is, the desired output ydes for the following
step tk+1 = tk+∆t is corrected as a function of the forward simulation output y (tk + ∆t)
at the end of the k–th step.

A simple proportional guidance scheme is adopted, where

∆yguid = K [ydes(tI)− g(xk)]

such that

∆y? = ∆ydes + ∆yguid = [ydes(tF )− ydes(tI)] +K [ydes(tI)− g(xk)] (5.22)

The additional guidance term avoids that the actual solution “drifts away” from the de-
sired path, but it also enforces asymptotic convergence on the tracked variables when
they achieve a constant value, during steady–state flight segments (e.g. at the end of a
manoeuvre).

For both partial and full state initialization techniques, fuselage states for the simplified
model are always updated to their actual values achieved by Model A1 at the end of the

169



5 – Handling qualities

forward simulation step, ∆t. Thus, it is g̃(x̃k) = g(xk), and it is possible to rearrange
Eqs. (5.21) and (5.22) in the form

F̃ (x̃k, ũ?k) = ydes(tF ) + (K − 1) [ydes(tI)− g(xk)]

This formulation for the IS problem constraints allows one to highlight the following
facts. For K = 0 the guidance term disappears and one simply requires that the increment
of the actual output variables at the end of the whole inverse simulation step T = tF − tI
equals the increment for the desired variation of ydes over the same interval, without taking
into account the initial error. In this case the error on the output slowly grows during the
manoeuvre. If a value K = 1 is used, the second term between square brackets, multiplied
by K−1, disappears. The lower order model is thus required to exactly follow the desired
variation with time of the output, that is, the IS scheme no longer works on the desired
output increment. At the same time no information on the error on the tracked variables
for the more complex model is available at the beginning of the IS step. This causes the
inverse solution to rapidly diverge. An intermediate value between 0 and 1 need to be
found which is optimal for the considered application. In the test cases reported in the
next Section a value of K = 0.3 was adopted throughout.

5.3.4 Test cases

The approach described in the previous Section is demonstrated in this paragraph for a
hurdle–hop and a slalom manoeuvres, described in greater details in section 5.2.3. Both
manoeuvres, performed at constant speed, show the effectiveness of the MPC–IS approach
on aggressive maneuvering tasks.

Trim conditions for Models A1 and A4 (or A1 and B8) are evaluated for initializing
the procedure. Then, following the approach described in the previous Section, the inverse
solutions based on the simplified models (either A4 or B8) are calculated for the two ma-
noeuvres using inertial velocities as desired output variables, plus an additional constraint
introduced to make the IS problem nominal. The condition ψ = 0 is enforced for the
longitudinal hurdle–hop, that results in a constant nose–pointing during the manoeuvre.
A1 constraint on zero lateral acceleration, ay = 0, is introduced for the execution of the
slalom manoeuvre by means of coordinated turns.

For each manoeuvre, three solutions are compared. The reference one, based on a
standard integration method for the individual blade model (IS Model A1), is represented
in the figures by the dashed line. A second solution, represented by means of dotted
lines, is obtained for the same problems by inverse simulation of the simplified model (IS
Model A4 or B8); finally, a continuous line is used to represent state and control variables
obtained from the solution of the same inverse problems by means of the novel MPC–IS
approach. In all the figures, commands are scaled with respect to their maximum travel.
In particular main rotor collective θ0 varies between 0 and 1, whereas longitudinal and
lateral cyclic pitch and tail rotor collective are scaled between −1 and +1.
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5.3.5 MPC–IS with IS step based on Model A4

In the first set of solutions discussed, Model A4 is used as the simplified, low order model
for the inverse simulation step for the MPC-IS technique. When full state initialization of
the inverse problem is adopted, as much information as possible from the complete model
is provided to the simplified one at the end of each simulation step, and the results of the
MPC–IS scheme perfectly match the inverse solution obtained with an integration method
based on Model A1 alone. Only results produced by means of partial state initialization,
with update limited to fuselage rigid body states, are presented in the sequel, as this
technique challenges the robustness of the new IS scheme.

Figure 5.38 represents the projection on the X–Z inertial plane for the trajectory
during a hurdle–hop (lateral displacements in the Y direction are negligible). All the
three techniques evaluate a feasible solution that tracks the desired trajectory with great
precision for this aggressive manoeuvre. A small delay is barely visible, especially in the
final part of the manoeuvre, for the MPC-IS solution. In this case, during the fast descent
phase, differences between the Models A1 and A4 used for forward and inverse simulation,
respectively, become more significant and the guidance term modifies the desired output
of the IS problem for keeping the helicopter on the desired path. This introduces a minor
delay in the tracking of the trajectory variables, which, nonetheless, remains satisfactory.
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Figure 5.38. Hurdle–hop trajectory (—: MPC-IS; - - - IS for Model A1; · · · IS for Model A4).

In spite of the trajectories being almost identical in the three cases, more significant
discrepancies between the solutions are apparent in the time–histories of the control action
and the corresponding state variables. These differences are related to both the numerical
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technique and the effects of the simplifying assumptions at the basis of the simplified
model. Figures 5.39 and 5.40 compare the time histories for the controls in terms of
absolute position and displacement from trim, respectively. Initial and final differences at
trim between the IS for Model A1 and the MPC-IS on one side, and the IS for Model A4
on the other one, are clearly visible in Fig. 5.39. The difference on main rotor collective
is related to the fact that Model A4 neglects rotor blade dynamic twist, and a bias in θ0
is present. Other effects are analysed in more detail in Ref. [97], focused on the effects of
helicopter modelling technique on the results obtained from inverse simulation.

This initial bias is removed, when command displacements from trim is considered
(Fig. 5.40). In this case the variation of collective pitch is identical in the three cases.
The inverse solution of Mod. A4 shows more significant differences on the other command
channels, namely A1S , B1S , and θ0tr . These differences are again related to the different
rotor model employed, especially during the initial and final transient phases, when linear
aerodynamics for rotor blades provides a worst approximation for the forces developed by
the rotor in ascending and descending flight.

Like command travel, all state variables and required power (not reported in the fig-
ures) evaluated by means of the MPC-IS technique remain very close to those obtained
from the computationally more demanding solution of the inverse problem by means of
the integration method applied to Model A1. Command time histories match almost per-
fectly those obtained for the IS of Model A1. Minor differences are present only for a
short interval at the beginning of the descent phase, when some higher frequency oscilla-
tions in longitudinal pitch angle and angular velocity in the IS results for Model A1 are
smoothed by the MPC–IS technique. In the latter solution the transition to horizontal
flight is slightly more gradual, thanks to the effects of the guidance term generated for
tracking the velocity variables in the presence of errors introduced by the use of different
models in the forward and inverse simulation steps. A marginally less accurate tracking
of the velocity variables thus results into an overall more regular control action.

Figures 5.41 to 5.44 represent the results obtained for the slalom manoeuvre described
at the beginning of the Section. Again, as clearly shown in Fig. 5.41, where the projec-
tion of the trajectory in the X–Y plane is reported, the solution evaluated by means of
the MPC–IS approach provides an inverse solution that correctly tracks the prescribed
manoeuvre. Variation of altitude during the manoeuvre is negligible. Also in this second
test–case, the conventional integration method provides a feasible solution to the inverse
problem that follows the desired trajectory, when applied to both Models A1 and A4,
but this time differences in the corresponding command time histories and resulting state
variables are more significant.

Differences between controls obtained from the inverse solution of Models A1 and A4,
clearly apparent in Fig. 5.42, are related to the type of rotor model implemented in the two
cases. As a consequence, the complex coupling of longitudinal and lateral dynamics of a
slalom manoeuvre generates significant discrepancies, especially on the cyclic pitch control
channels, A1S andB1S . In spite of these differences between the two inverse solutions, when
Models A1 and A4 are implemented independently in a conventional IS scheme, the use of
the inverse solution obtained from Model A4 in the MPC–IS scheme provides an evolution
of the control variables that follows the same trend of the inverse solution for Model
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Figure 5.39. Command travel time–histories during a hurdle-hop manoeuvre (—: MPC-IS;
- - - IS for Model A1; · · · IS for Model A4).

A1 alone. This means that differences between the models are correctly compensated
by the updating process of the initial conditions for rigid–body fuselage states and the
guidance term introduced in the definition of the desired output for the IS step. Little
differences on maximum command travel are visible, as lower peaks for cyclic pitch and tail
rotor collective are present. Discrepancies become smaller when a full–state initialization
technique is adopted, but, as a difference with respect to the longitudinal manoeuvre
considered previously, they do not disappear. For an aggressive slalom manoeuvre, the
smoothing action of the guidance term on the evolution of the tracked variables plays a
more significant role, resulting in a reduction of the peaks on command displacement from
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Figure 5.40. Command displacement from trim during a hurdle-hop manoeuvre (—:
MPC-IS; - - - IS for Model A1; · · · IS for Model A4).

the initial trim values.
It should be remembered that the guidance logic corrects the drift from the desired

trajectory adding a correction term that is determined at the end of the IS time step ∆t
and acts on the following one. This means that the correction is enforced with a small
delay. The effect of this delay, together with the discrepancies between the responses of
Models A1 and A4 when partial state initialization is adopted, are at the basis of this
small, yet evident discrepancy in the inverse solution. If only fuselage rigid body states
for Model A4 are updated to the values achieved by Model A1 at the end of the step, the
control action determined during the IS step needs to account for a settling time for those
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Figure 5.41. Slalom trajectory (—: MPC-IS; - - - IS for Model A1; · · · IS for Model A4).

states (i.e. TPP and inflow states) that are not correctly updated.
The selection of the gain in the guidance logic, set to K = 0.3 in the present study,

represents a tradeoff between numerical robustness in the evaluation of the solution and
the need to limit as much as possible deviations from the desired trajectory. When the
selected gain is too high, the MPC–IS scheme encounters difficulties in the convergence
to the solution and some numerical oscillation may arise. A value K = 0.3 allows for
a limited drift from the desired solution (barely visible in the trajectory plots) and a
reasonable difference in the control action, according to the analysis presented above.

The variation of Euler angles (shown in Fig. 5.43) and that of angular rates (not
reported in the figures) are again very similar for all the three solutions, but the MPC–IS
approach and the inverse solution of Model A1 by means of a conventional integration
method provide an evolution for helicopter attitude where differences smaller than half a
degree are present. Roll and yaw angles follow exactly the same patterns. The only visible
difference in Fig. 5.43 is on the pitch angle, and mainly for a matter of resolution, given
the limited range of the variable. Again, differences on the inverse solution obtained from
Model A4 within the IS step of the MPC–IS algorithm are successfully compensated by
the initial condition updating scheme and the guidance term adopted.

Inverse simulation schemes can be used to evaluate the feasibility of a given manoeuvre,
in terms of command travel and required power. Limiting performance are obtained by
challenging the vehicle model on more demanding tasks (e.g. increasing the required
displacement of the gates from the centerline, for the slalom manoeuvre), until a limit
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Figure 5.42. Command travel for a slalom manoeuvre (—: MPC-IS; - - - IS for
Model A1; · · · IS for Model A4).

on maximum command travel or maximum available power is violated. The feasibility of
the control action is readily available from the inverse solution, whereas the constraint on
available power requires an estimate of power absorbed by main and tail rotors, taking into
account gearbox efficiency and an estimate of on–board system power requirement. More
reliable estimate of manoeuvre feasibility or limiting performance are obviously obtained
from more accurate models. In this respect, Fig. 5.44 shows that the linear aerodynamics
assumed for the main rotor in Model A4 provides a significantly different estimate of
required power during the slalom manoeuvre, whereas the estimate of power required
based on the MPC–IS solution is similar to the results obtained with the integration
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Figure 5.43. Roll, pitch and yaw angles during a slalom manoeuvre (—: MPC-IS; - - - IS
for Model A1; · · · IS for Model A4).

method based on Model A1 alone. This means that the two solutions, although obtained
by means of different numerical approaches, provide consistent estimate for manoeuvre
feasibility and limiting performance for the considered test–case in terms of both command
travel and necessary power.

5.3.6 MPC–IS with IS step based on Model B8

As demonstrated above, the MPC–IS approach based on Model A4 represents adequately
all the main features of the inverse solution for the considered flight tasks. The approach
is then tested using a minimum complexity model (Model B8) for the IS step. Figure 5.45
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Figure 5.44. Required power during a slalom manoeuvre (—: MPC-IS; - - - IS for
Model A1; · · · IS for Model A4).

presents the control action for the hurdle–hop manoeuvre based on Model B8. The solu-
tion of the inverse problem with integration method based on Model B8 presents relevant
differences, especially for longitudinal and lateral commands, if compared with the solution
for the same task obtained from Model A1 by means of the same IS integration method
(indicated by means of dashed and dotted lines in Fig. 5.40, respectively). These differ-
ences, due to the simplifying assumptions at the basis of the derivation of of Model B8
listed in the previous Section, are described in detail in Ref. [97].

The MPC–IS approach is again capable of evaluating a feasible command action that
tracks well the desired trajectory, also when partial state initialization is adopted, as in the
example shown. Similar results are obtained for the slalom manoeuvre. In both cases max-
imum command travel on all commands and necessary power are precisely estimated and
the MPC–IS approach. No difficulties in converging to the inverse solution is encountered,
even when very aggressive manoeuvres are dealt with, in spite of the differences between
Model B8, used for the IS step, and Model A1, adopted for the forward propagation of
the control action.

5.3.7 Computation effort

The computational burden necessary for the solution of an inverse problem depends on
the solution scheme and on the complexity of the model. Table 5.6 presents the CPU
times (in seconds) for the solution of a hurdle–hop and a slalom manoeuvre, based on

178



5.3 – MPC algorithm

−0.2

0

0.2
θ 0

−0.1

0

0.1

A
1s

−0.2

0

0.2

B
1s

0 5 10 15 20

−0.2

0

0.2

t [s]

θ 0T
R

Figure 5.45. Command displacement from trim during a hurdle–hop manoeuvre (—:
MPC-IS using Model B8 in the IS step; - - - IS for Model A1; · · · IS for Model B8).

models written in Matlab and running on a 1.6 GHz CPU. Together with total CPU time,
also a percentage of a reference CPU time is provided in Table 5.6, using as a reference
(100%) the time required for solving the IS problem by means of a conventional integration
method applied to Model A1. In all the solutions, a time step ∆t = 0.2 s and a receding
horizon equal T = 0.6 s are used.

CPU time is quite obviously proportional to the duration of the manoeuvre, 20 s for
the hurdle–hop and 13 s for the slalom, but it depends also on the complexity of the control
task, where more challenging ones require more iterations for converging during critical
flight phases. When comparing the time saved by using the MPC–IS approach, there is a
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Table 5.6. Computational time for the solution of the inverse problems (CPU at 1.6 GHz).
IS A1 IS A4 IS B8 MPC A1+A4 MPC A1+B8

Hurdle–hop CPU-time (s) 3992 1230 1114 1274 1148
% 100 30.8 27.9 31.9 28.8

Slalom CPU-time (s) 2506 876 831 937 857
% 100 35.0 33.2 37.4 34.2

6% difference between the hurdle–hop and the slalom manoeuvre, where the advantage of
using a lower order model is apparently greater for the hurdle–hop. This is due to the fact
that the integration method based on Model A1 encounters difficulties in the convergence
to an inverse solution during the descending portion of the manoeuvre. In the slalom
manoeuvre, Model A1 always converges to the inverse solution in few iterations, and as a
consequence the computational time saved by using Models A4 or B8 becomes smaller.

The solution of the IS problem by means of an integration method based on Model A4
is approximately 3 time faster than the solution of the same problem based on Model A1.
Using the MPC–IS approach the computational burden is almost identical to the inverse
simulation problem based on the simple model, as the forward simulation performed with
Model A1 requires a relatively small amount of CPU time, when it remains outside of the
iterative process at the basis of the solution of the inverse problem. As a consequence it is
possible to evaluate a correct and accurate inverse solution for Model A1, as demonstrated
above, at a cost only slightly higher than the (significantly less accurate) inverse solution
based on the simplified model only.

Note that, when Model B8 is used, only marginal improvements in terms of compu-
tation time are achieved, if compared with the MPC–IS solution based on Model A4, in
spite of the reduced number of states (12 instead of 19) and the simpler main rotor and
fuselage aerodynamic models. This happens because on one side a computationally ex-
pensive iterative process is necessary at every simulation step for evaluating main and tail
rotor inflow; at the same time, the computational cost of the integration scheme remains
high, in spite of the simplified model dynamics, because more iterations are required for
converging to a solution for the IS step, when an initial condition obtained from a different,
more complex model is used. In this respect, the use of a minimum complexity helicopter
model does not appear to be justified by the modest gain in terms of CPU time.
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Chapter 6

Conclusions

The research activity presented in this thesis is characterised by several goals in the frame-
work of studies related to helicopter flight mechanics, with a strong common denominator:
the development of low order mathematical models for the evaluation of rotorcraft perfor-
mance and handling qualities. The identification of a minimum–complexity model suitable
for a given analysis task is validated by comparing the results obtained for simplified mod-
els with those derived on the basis of more complex and reliable ones.

The analysis includes articulated, teetering and gimballed rotors. Helicopter models
featuring these different classes of rotor configuration have been developed using both in-
dividual blade dynamics and tip-path-plane dynamics. A technique for the development
of low–order models is presented and discussed. An ordering scheme approach was devel-
oped, based on a symbolic math–manipulation toolbox, that allows for including in the
equations only the most relevant terms, up to a determined order of magnitude.

With this objectives in mind, several models of the same helicopter configuration were
tested with different trim techniques in order to evaluate how model complexity and trim
approach affect the evaluation of rotorcraft limiting performance in forward, climbing and
turning flight. Helicopter models with individual blade dynamics are used as a reference to
test simpler models based on TPP dynamics, linear aerodynamics with lower order inflow
states and simpler fuselage aerodynamics.

The trim results for a complete individual–blade helicopter model obtained with shoot-
ing of the full–order system of dynamic equations and those derived by means of an original
nested trim algorithm with averaged rotor loads show a very good agreement in all trim
conditions, if not for a small difference in roll angle. This is a minor price to pay in front
of the improved numerical efficiency of the nested algorithm, that can thus replace the
full–order shooting method in all of the test cases here proposed. Significant savings in
computational time, particularly relevant when a complete analysis of the vehicle flight
envelope is pursued, are obtained also removing blade lag and twist degrees of freedom.
The results in terms of estimation of helicopter performance are hardly affected by this
further simplification. Note that a complete set of configuration data (geometry, inertia,
airfoil and fuselage aerodynamic data, etc.) is still required, so that the details needed for
the study is still considerable, with the only, but significant, exception of the lag damper,
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that represents a relatively complex element in the model, which is dropped together with
the lag degree of freedom.

Models bases on TPP dynamics can provide a good estimate of the helicopter perfor-
mance in straight flight at a computational cost between one and two orders of magnitude
lower than that required for full order models, once the effects of compressibility, retreat-
ing blade stall and overall maximum rotor thrust coefficient are properly addresses. In
spite of these refinement to the TPP model, the linear formulation for the rotor aerody-
namic model does not allow for a precise description of blade behaviour in the complex
environment of turning flight, leading to a significant overestimate of limiting performance
in terms of expected maximum turn rate. Comparing the results obtained from the vari-
ous models, a uniform inflow causes a degradation in the evaluation of off-axis behaviour,
whereas a simplified description of fuselage aerodynamic forces by means of parasite drag
area leads to an overestimate of rotorcraft performance. The results derived from static
models at trim, based on separate longitudinal and lateral trim and a very limited set
of parameters, are reasonably accurate only for maximum speed and rate of climb. On
the converse, the estimation of lateral variables needs to be improved in order to provide
reliable indications, even at a preliminary design stage.

Helicopter handling qualities are assessed in terms of both stability and agility po-
tential. The latter is estimated by means if inverse simulation of prescribed manoeuvres.
The stability and dynamic behaviour of a novel two–bladed gimballed rotor configuration
are analysed first, and compared to a more conventional equivalent teetering rotor. A
simplified model of the gimballed rotor is developed in order to highlight the physical
mechanisms governing its peculiar behaviour, and, in particular, the sustained wobbling
motion exhibited in forward flight. In this respect, one should note that thrust vector di-
rection is constant in spite of wobbling, as blade TPP does not oscillates at steady-state.
Use of a fly-bar with aerodynamics paddles is necessary to damp the feathering motion of
the hub. At the same time the usual effect of the stability bar, which is expected to im-
prove rotorcraft pitch and roll damping derivatives, is limited when the hub is restrained
by elastomeric springs, adopted in order to improve control power when flying at zero-g.
Hub stiffness demonstrates a relevant effect on the amplitude of wobbling motion as well,
and, in particular, on the steady–state response to commands through the frequency of the
feathering motion and the related phase shift. The latter induces a significant reduction
of the longitudinal tilt of the blade TPP together with a lateral response to a longitudinal
pitch command.

The presence of coning hinges and a high pitch-coning coupling makes the system
unstable, when ideal, frictionless hinges are considered. The rotor is stabilized by means
of a sufficient amount of dissipation, due to either viscous damping or dry friction in
the coning hinges. In this respect, the friction generated in the coning hinges by the
high centrifugal load is expected to be largely sufficient to this end in all considered
flight conditions. Command and gust response of gimballed and teetering rotors with
and without coning hinges have been then compared. The presence of coning degrees
of freedom has a marginal effect on both the gimballed and teetering rotors response to
commands and steady state behaviour. On the converse, coning hinges provide a significant
load alleviation during gust encounters, an effect which is increased when a pitch-coning
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coupling mechanism is included.
Inverse simulation is used as a tool to analyse the agility potential of rotorcraft. The

analysis shows how rotor model, inflow dynamics and fuselage aerodynamic model influ-
ence the results obtained from the inverse simulation of a prescribed set of test manoeuvres.
The analysis highlights how, in the simplest cases, only minor differences are exhibited
by the various models, so that also the simplest ones are expected to provide reliable in-
formation on command travel and state evolution during the manoeuvre. Conversely, for
more demanding tasks, simpler models may not correctly reproduce relevant phenomena
in critical flight regimes, thus harming the validity of the results. In particular, a hurdle-
hop longitudinal manoeuvre is well captured by most of the considered models, whereas
a more aggressive lateral slalom is not well represented, when an individual blade model
is not available. In this respect, one should note that, from the numerical standpoint,
individual blade models pose a serious challenge to inverse simulation algorithm, that are
required to be carefully tailored in order to properly address issues such as those related
to uncontrolled states and non–minimum–phase behaviour. At the same time, fuselage
aerodynamic models is shown to play a crucial role in low–speed tasks, such as a lateral
repositioning, when a large variation of aerodynamic angles is expected.

A method for the quantitative determination of the accuracy in the definition of the
control action for a given series of flight tasks by means of inverse simulation of a certain
rotorcraft model is proposed. A technique for deriving an uncertainty interval that cap-
tures a reference control action obtained from a more accurate helicopter model is derived,
that provides an indication for uncertainty levels on the control action. The results show
that the technique adequately measures the capability of each simplified helicopter model
in properly capturing (or failing to do so) the characteristics of the control action for a
given flight task, within a prescribed level of confidence, defined in terms of percentage
of the control action of the reference model for the same task left outside of the assumed
uncertainty interval. These figures can be easily adopted in order to provide an estimate
of the expected reliability of HQ performance prediction obtained from simple, low-order
models, together with an estimate of control uncertainty in the synthesis of robust stability
and control augmentation systems. It should be noted that the technique can be easily
extended to the comparison of inverse simulation data with experimental flight test data,
when available.

Since the solution of inverse problem with individual blade models has a considerable
computational cost and poses several numerical difficulties, a novel approach to the solu-
tion of inverse simulation problems for helicopter aggressive manoeuvres based on a model
predictive control scheme is proposed. The approach significantly reduces the computa-
tional burden required by the inverse simulation of a complex nonlinear helicopter model
by using a lower–order model in the inverse simulation step. In this framework, the stan-
dard integration approach to the solution of the inverse simulation problem is modified
introducing an update scheme for the initial conditions of the simplified model at the end
of the forward simulation step, performed on the more complex one. A simple guidance
law avoids the build-up of errors while tracking the prescribed variation of the output
variables.

The approach is tested on two manoeuvres used for the analysis of rotorcraft handling
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qualities, namely a hurdle–hop and a slalom. The results show that the MPC inverse sim-
ulation approach solves the considered inverse problems with good convergence character-
istics, generating accurate trajectories that almost overlap the desired one. Time–histories
for controls, state variables, and required power are very similar to those generated by a
standard integration algorithm applied to the same problem, at a fraction of the computa-
tional cost necessary for obtaining the inverse solution directly on the complete helicopter
model that, in the MPC-IS scheme, is used only for the forward-integration step. The ap-
proach is tested also for a minimum complexity helicopter model. Tracking performance
are still adequate, but only a marginal gain in terms of computational time is obtained.
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Appendix A

Helicopter configuration data

This chapter collects the important configuration data for the rotorcraft used in this study.

A.1 UH-60A
Table A.1 collects the UH–60A configuration data for the individual blade models, while
table A.2 collects terms used in lower order model.
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A – Helicopter configuration data

Table A.1. UH-60A geometric and mass data [15]. Data between brackets are for the
heavier configuration used for envelope, maximum ROC and ROT evaluation.

Fuselage mass m 7257.5 (9185.2) kg
moments of inertia Ixx 6316.8 (11310) kg m2

Iyy 52215.0 (56678) kg m2

Izz 49889.0 (48627) kg m2

Ixz 2551.6 (2497.9) kg m2

Main rotor number of blades Nb 4
radius R 8.18 m
chord c 0.53 m
blade mass mb 116.5 kg
blade first moment Sb 385.7 kg m
blade flap moment of inertia Ib 2050.8 kg m2

hinge eccentricity e 0.38 m
forward tilt iθ 3 deg
lateral tilt iφ 0 deg
blade pitch/flap coupling δ3 0 deg
rotor speed Ω 27 rad s−1

position in FB rS [0.3,0,−2.3] m
Tail rotor number of blades Nbtr 4

radius Rtr 1.68 m
cant angle Γ 70 deg
blade pitch/flap coupling δ3tr 35 deg
rotor speed Ωtr 124.6 rad s−1

position in FB rtr [−9.7,0.3,−2.5] m
Horizontal tail surface Sht 4.18 m2

position in FB rht [−8.8, 0,−0.46] m
Vertical tail surface Svt 3.00 m2

position in FB rvt [−8.70− 1.2] m

Table A.2. UH-60A simplified model aerodynamic data
Fuselage parasite area SFusCD0 3.5 m2

Main rotor solidity Nbc/(πR) 0.082
airfoil lift slope CLα 5.7 rad−1

rotor drag coefficient δ 0.013
Tail rotor solidity Nb,trctr/(πRtr) 0.188
Horizontal tail horizontal tail volume ratio Vht 0.26

tail lift slope CLα,ht 3.93 rad−1
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A.2 – K4A-2H

A.2 K4A-2H
Table A.3 collects the most important rotor and fuselage configuration parameter for the
K4A-2H gimballed rotor.

Table A.3. K4A-2H rotor and fuselage parameters

rotor angular rate Ω 53 rad/s
rotor radius R 3.8 m
blade chord cb 0.23 m
fly–bar radius R2 1.45 m
fly–bar root cut-out R1 1.15 m
paddle chord cfb 0.25 m
blade lift curve slope CLα 5.7
hub stiffness K 3,610 Nm/rad
pitch hinge stiffness KT 150 Nm/rad
primary command ratio KH 0.57
blade inertia Ib 87.7 kg m2

blade static moment Sb 17.7 kg m
blade mass mb 10.75 kg
hub feathering inertia JHF 0.088 kg m2

hub teetering inertia JHT 0.195 kg m2

hub polar inertia JHP 0.23 kg m2

fly–bar inertia Jfb 5.012 kg m2

fuselage mass mf 650 kg
fuselage parasite area CDf 5.28 m2
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