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Abstract 

District Heating (DH) is a rational way to supply heat to buildings in urban areas. This 

is expected to play an important role in future energy scenarios, mainly because of the 

possibility to recover waste heat and to integrate renewable energy sources. 

Even if DH is a well known technology, there are open problems to face. Some of these 

problems are related to tendencies to reduce design temperatures, the improvement of 

control strategies, connection of new users to existing networks, implementation of 

energy savings initiatives and the access of multiple heat producers to the same 

network.  

This paper aims to show that exergy is an appropriate quantity for the analysis of DH 

systems and thermoeconomics can be profitably used to improve their design and 

operation. Three possible applications of thermoeconomic theories are presented: 

variation of supply temperature along the heating season, opportunities to connect new 

users, effects of energy savings initiatives in buildings connected with the network. 

 

1. Introduction 

District heating (DH) enables whole communities to benefit from low and zero 

carbon energy sources, including those which cannot easily be installed at the 

individual building level. DH schemes comprise a network of pipes connecting the 

buildings in urban areas, so they can be served from centralized plant. This approach 

allows any available source of heat to be used, including combined heat and power 

(CHP), waste to energy, industrial heat surpluses and renewable sources [1]. By 

providing a way to aggregate a large number of small, inconsistent heating demands, 

DH provides the key to wide scale primary energy saving and carbon reduction in 

whole communities [2].  

The concept of district heating was quite standardized but has evolved in the last 

few years, mainly because of new opportunities that the development of renewable 

energy plants and energy saving techniques have created. Using low-temperature heat 

from industrial waste heat in DH has proven to be attractive from energy and economic 

viewpoints [3]. Furthermore an important aspect of new building development is their 

increasingly high standards of efficiency. In order for DHN to remain an effective 

solution for such developments, reductions in temperature supply should be achieved. 

This allows one to use different sources of locally available waste and renewable heat 

[4] and to reduce the heat losses.  

The role of DH in future renewable energy systems has been evaluated in Lund 

et.al [5]. In the overall perspective, the best solution will be to combine a gradual 



expansion of district heating with individual heat pumps in the remaining houses. Such 

conclusion is valid in the present systems, which are mainly based on fossil fuels, as 

well as in a potential future system based 100 per cent on renewable energy. New 

attractive applications for renewable energy heating technologies are combined solar–

biomass heating systems, both individual systems as well as in combination with 

district heating. Biomass is therefore an optimal form of seasonal storage for solar 

energy and an attractive auxiliary fuel for solar heating systems from renewable energy 

sources in Faninger  et al [6].  

Another option of renewable energy source is geothermal energy. A comprehensive 

analysis and discussion of geothermal district heating systems and applications based 

on  thermodynamic aspects in terms of energy and exergy and performance 

improvement opportunities of three geothermal district heating systems, installed in 

Turkey has been carried out in Ozgener  et al [7]. 

As renewable based district heating involves reductions in supply temperature, this 

generally causes reduction in temperature difference between supply and return pipe 

and therefore larger mass flow rates in the pipes. This means that energy consumption 

for pumping increases. Trade-off between primary energy required for heat production 

and pumping can be investigated through the concept of exergy (see for example [8]). 

Exergy analysis is more significant tool, than energy analysis, for system performance 

assessment and improvement since it allows true magnitudes of the various losses and 

degradations. An application of this concept to geothermal district heating is proposed 

in [9].  

Exergy analysis, pursuing a matching in the quality level of energy supplied and 

demanded, pinpoints the great necessity of substituting high-quality fossil fuels by 

other low quality energy flows, such as waste heat.  Steady-state and dynamic energy 

and exergy analysis of the system are presented and strategies such as  lowering supply 

temperatures from 95 to 57.7 °C increases the final exergy efficiency of the systems 

from 32% to 39.3%. Similarly, reducing return temperatures to the district heating 

network from 40.8 to 37.7 ◦C increases the exergy performance in 3.7%. [10]. 

The exergy analysis and the influence of exergy losses on the heat price in 

distributed district heating systems provides a thermodynamic fairer basis for the 

determination of heat price. It also contributes to a lower consumption of the primary 

energy sources on the consumers’ side [11]. 

Thermoeconomics is a branch of engineering combining exergy and economic 

principles [12]. The thermoeconomic analysis of an energy system allows one to 

calculate on a thermodynamic and economic base the cost rate of all the fluxes flowing 

in, out and trough the system, and in particular its products. The cost calculation gives 

as much information as the representation of the system is detailed. This is more 

important as the number of products is high, because in those cases the number of 

components and fluxes, both with physical and productive meaning, are high. 

Thermoeconomics can be used for costing purpose, design improvement, optimization 

and the analysis of operating conditions [13]. 

An exergoeconomic analysis of a district heating network is conducted in Verda et 

al [14]. The analysis aims to determine the optimal configuration of the district heating 

network, i.e. the users that should be connected to the network and those who should be 

heated through alternative systems. The optimization is performed using a probabilistic 

approach based on the calculation of exergetic cost of heat associated to each single user 

connected with the network. It is shown that the disconnection of some small users, 



which are located far from the thermal plant and the use of local condensing boilers 

instead allows one to reduce the unit cost of heat for the entire community. 

This paper aims to propose a thermoeconomic approach for the analysis of possible 

improvements of existing district heating networks. These are related to changes in the 

operating strategies, connection of new users and application of energy savings 

initiatives in buildings connected to the network. 

2. Thermoeconomic analysis of a DHN  

The theoretical considerations are applied to a network, whose possible users are 

constituted by the buildings located close to the area at the moment actually connected 

with the district heating network (DHN). The thermal plant is considered to be in the 

center of this area. 

The topological model of such a system is usually made by using graph theory [15] , 

which is based on the use of two kinds of elements: branches and nodes. Branches 

represent components that transport the working fluid and where the thermodynamic 

processes take place (pipes, heat exchangers, pumps, valves). Nodes represent the 

elements where the branches join together. 

The approach to the thermoeconomic problem that is used in this paper requires the 

definition of a productive structure. The physical structure, where each component is 

characterized by entering and exiting mass and energy flows, is substituted by a 

different structure, where every component is represented in terms of fuels and products 

[16]. Fuel is a flow expressing the amount of resources needed by the component to 

carry out its function, product is a flow expressing the function itself. The products of 

each component are fuels of other components or overall plant products. In modern 

thermoeconomics both fuels and products are exergy flows, eventually separated into 

mechanical, thermal and chemical components [17]. 

Thermoeconomic theories allow one to determine the costs of the productive flows 

(fuels and products of all the components), which can be expressed in thermodynamic 

and monetary units. The solution of the thermoeconomic problem requires to write two 

groups of equations: 

1) the monetary cost balance of every component [18]: 

 

                      (1) 

where     is the cost rate of the jth flow entering (+) or exiting (-) the ith component 

and      the cost rate of the ith component. 

If the exergoeconomic unit cost     is introduced, defined as ratio between the cost 

rate of a flow and its exergy flow rate    : Using: 

                          (2) 

equation (1) becomes: 

                           (3) 

 

2)  auxiliary equations, obtained by evaluating the cost of some flows, in particular: 

- the unit cost of the overall plant resources, equal to 1 if the exergetic costs are 

required or equal to the prices of exergy if the exergoeconomic costs are required; 



- the unit cost of the product of components characterized by different products; 

often this cost is assumed the same for all the products. 

This approach is particularly useful in the case of district heating networks, since 

balance equations can be written in matrix form, using the incidence matrix. This matrix 

is formulated within the graph theory to express system topology. In the case of fluid 

networks this matrix can be used to solve the fluid dynamic and thermal problems [19].  

The application of thermoeconomics to the combined heat and power (CHP) plants 

allows to  calculate the unit costs of electricity (cw) and thermal flow provided to the 

DHN (cT). Those costs depend on the production processes. Moreover, the 

thermoeconomic analysis of the DHN allows one to determine the unit cost of the 

thermal energy flows provided to the end users [20]. 

The internal diameter f the various pipes is calculated by first determining the mass 

flow rate in each branch. The mass flow rate is imposed by the thermal requirement of 

each user downstream from that branch: 

                               (4) 

where  is the thermal flow provided to the users (the maximum load is considered 
in design), G the water mass flow rate, h0 and hr the enthalpies of fluid feeding the users 

and returning from the users. The diameter is determined by imposing the maximum 

velocity vmax allowed in the pipes. This value is mainly defined on the basis of 

economic criteria, since friction losses and thus pumping cost depend on the square of 

velocity. On the other hand, a too low velocity would determine a large pipe diameter, 

thus high investment costs. In this analysis a value of 2.5 m/s is considered. The water 

mass flow rate G is expressed as: 

                            (5) 

The purchase cost of the DHN is calculated by considering the contributions of the 

insulated pipes constituting the main network (from the thermal plant to each thermal 

barycenter), the pumps, the special components, such as valves and junctions between 

pipes, the heat exchangers in the buildings and in the thermal plant and the costs for 

installation and special components as well. 

The annual electricity consumption Lp is calculated through the equation (6): 

   
 

  
 dtpvG 
    

        (6) 

where p is the average pump efficiency, G is the water mass flow rate, v is the water 

specific volume (assumed constant) and p the total pressure losses due to pipe friction 

and localized resistances. 

The purchase cost of the insulated pipes is expressed through a polynomial function, 

obtained by interpolating available data: 

  2
2
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where Dint is the internal diameter and L the length of the considered trait, 2 

accounts for the double pipe. The calculated values of polynomial coefficients are: 

a0=28.14 €/m, a1=0.297 €/(mm·m), and a2 =5.01·10-4 €/(mm
2
·m).  



The total cost of the substations (including heat exchangers, pumps, an installation at 

the users)  has been calculated as the function of the heat transfer area, according with a 

general function [21]: 
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where TC0 is the known cost of the device at a specific size, X is a variable selected 

for expressing the component size, Xi is its value for the device whose cost is calculated 

and X0 its reference value. For heat exchangers the variable expressing the component 

size is the heat power. Reference values TC0 and X0 are respectively assumed to be 

8782 € and 150 kW, while =0.7306. 

The total cost of the CHP plant is very dependent on the size. Published prices 

indicate a basic cost of 800 €/kWe for a CCGT in the range of 50-100MWe output. We 

is the peak electric power produced by the power plant as a non-cogenerative plant.  

                                                                                                                     (9) 

There is a cost in producing heat from a CHP plant, because the electric otput of the 

plant reduces, when heat is extracted from the turbine. This lost electricity has a value 

which determines the cost of heat.  

Both capital and operational costs have been amortized. For the first ones a discount 

rate of 5% has been considered. The equivalent annual cost has been computed as: 
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in which TCtot is the total capital cost, d is the discount rate and l is the life of the 

network, expressed in years.(30 years) 

Thermoeconomics applied to the system allows one to calculate the total cost rate of 

the thermal flow supplied to the network. This cost, which is the result of the 

contribution of the steam power plant and of the gas turbine plant, linearly decreases as 

the temperature of the water decreases. The thermal exergy flow provided to the 

network decreases. The influence of the production of thermal exergy on the costs can 

be examined in a simple way considering the plant as a black box and applying the cost 

balance equation to the system, keeping constant the fuel and varying the thermal 

request [22]. 

                                      (11) 

Where   unit cost of the fuel,    e    are the unit costs of electric power and thermal 

exergy;       is the cost rate of the CHP plant,    : exergy of the fuel;     is the amount 

of the thermal exergy produced by the CHP plant; W is the electric power produced by 

the CHP plant. 

The average value of the exergoeconomic unit cost of the products is: 

                                                   (12) 

where cchp unit cost of the heat produced by the power plant 



The influence of the production of thermal exergy on the costs can be examined in a 

simple way considering the district heating network as a black box and applying the 

cost balance equation to the system, varying the thermal request of the district heating 

network, the pumping and the thermal exergy required by the users. 

                                                                (13) 

Where Ψpump  is the amount exergy due to pumping in the DHN; ΨDHN : the 

amount of exergy required by the DHN; ΨHD : the amount of  exergy required at the 

users, in the substation;      : cost rate of the district heating network. 

The exergy efficiency of the DHN is determined as: 

                                         (14) 

Where    is the exergy efficiency of the network. 

3. Results and discussion 

The DHN considered as the application of thermoeconomic analysis is located in a 

small town in Piedmont, Italy. The end users are residential and public buildings, up to 

a total of about 26 MW of thermal power. The extension of the network is about 20 km. 

The analysis has been carried on by using different conditions during the heating 

season. The water temperature in the supplying network is about 90°C, while in the 

return pipes is about 60°C. Load variations are mainly controlled by operating on the 

water mass flow rate. A heat exchanger located in each building operates the connection 

between the main network and the building distribution system. Water circulation 

through the network is obtained by means of pumps located at the thermal plant. 

The thermal plant is assumed to be constituted by a cogenerative combined cycle 

and some boilers. Cogeneration is obtained through a steam extraction at about 1.28 

bars from the turbine, which feeds a heat exchanger. The remaining requests are 

covered by means of boilers.  

Steady state analysis has been carried out in order to understand the exergetic 

behavior of the district heating supply. The secondary side operates under given 

conditions, i.e mass flow rates remains constant while temperature is adjusted as the 

function of the outdoor temperature. The main variable is the thermal energy input from 

the primary side. In this analysis seven different outdoor temperatures during the 

heating period are considered. As the outdoor temperature increases, the power 

delivered in the heat exchanger at the user substation decreases, as well as the supply 

and return temperature at the secondary side. 

Three different analyses are performed: 1) change in the control strategy involving 

variable supply temperature; 2) analysis of additional potential users that may be 

connected to the district heating network in order to consider what it the effect of their 

characteristics on the economic cost of heat; 3) effects of energy savings initiatives 

applied to users. 

3.1 Low temperature supply 

Primary supply temperature is varied for the seven different operating conditions, in 

order to check the exergoeconomic cost of the heat demands of the users. Tref is the 

absolute value of the outdoor temperature during the heating period. This should not be 

assumed as constant in the analysis.  



As consequence of the lower temperature of the water is the chance of a larger heat 

exchange, as the difference in the pinch point temperature is assumed constant. In this 

way the steam turbine has to supply a thermal energy flow to the network lower than in 

design conditions, so the amount of electric power produced by the system increases. 

Fig. 1. shows the cost rate of the thermal energy flow supplied to the users for 

different supply temperatures of DHN, varying the outdoor conditions. Three control 

strategies are considered: constant supply temperature (90 °C), which is the reference 

strategy; variable supply temperature in the range between 80 °C and 90 °C; variable 

supply temperature in the range between 70 °C and 90 °C. Variable temperature means 

that when the outdoor temperature increases, the supply temperature can be decreases. 

The curve corresponding with the last strategy presents lower costs.  

 

Figure 1. Average exergetic cost of heat with different supply temperature 

 

To explain such behavior, Fig. 2. shows the process formation of the average cost of 

heat supplied to the users for supply temperatures of DHN of 70°C, varying the outdoor 

conditions. The average cost of heat increases as the outdoor temperature decreases 

mainly because of the increase in the component due to the heat production. The reason 

is that the component related to heat losses remains almost constant, while the amount 

of heat supplied to the users decreases significantly (because of the reduction in the heat 

request). In the case of higher temperatures (i.e. the other control strategies) the effect of 

heat losses is clearly much larger. In contrast, the contribution due to pumping is very 

small, which suggests that an increase in water mass flow rate flowing in the network 

does not affect the cost significantly.  

Exergy losses which occurs during the transport of thermal energy to the users 

indicate that this loss is large and primarily dependent on the temperature of the hot 

water. Therefore it is worth to decrease the operating temperature when possible. 
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Figure 2. The process formation of the average cost of heat 

 

These aspects can be analyzed considering the exergy efficiency of the network, 

calculated within the equation (14). This parameter decreases as the outdoor 

temperature increases, as it can be  seen in the table (1). The energy efficiency of the 

DHN remains constant as the supply temperature decreases, but the exergy efficiency 

increases as the supply temperature in the primary side at the heat exchanger at the users 

substations decreases.  

 

Table 1. The exergy efficiency of the DHN 

The overall benefit of the three strategies can be analyzed considering the frequency 

of each operating condition during the heating season. The average annual exergetic 

cost of heat would be 0.123 €/kWh in the case of constant operating temperature, 0.118 

€/kWh in the case of the possible reduction up to 80 °C and 0.115 €/kWh in the case of 

possible reduction up to 70 °C. This is a conservative evaluation, since the heat demand 

has been considered on the 24 hours per day. In DH networks, the heat demand is 

typically between 6 a.m. to 10 p.m. while in the night hours the network operates 

without supplying heat to the users. As thermal losses occur also during night operation, 

a reduction of the operating temperature would be even more profitable. 

 

3.2 Connection of additional users 

The marginal cost is often defined as the cost to produce the last unit of product. In 

energy systems with several production plants, the plant with the highest operational 

cost is the one that produces the last unit of DH [23]. Marginal costs are used in 
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thermoeconomics for the optimization of energy systems. Major contributions in this 

field came from the work developed by prof. El Sayed [24-25]. Here the concept of 

marginal cost is used to examine potential effects on an existing network obtained by 

connecting additional users. Two quantities are considered to characterize an additional 

user: the distance from the main network and the design thermal power required by the 

user. 

The calculated marginal costs can be viewed as short-range marginal costs. A cost 

function C(q) is a function of the amount of produced quantities q, which tells us what 

is the cost for producing q units of output [26]. We can also split total cost into fixed 

cost and variable cost as follows:  

                                                                                                               (15)          

 In the short-run, with no change in investment capital, that is to say, FC =const.  

The Average total cost can be written as a function of total cost divided by  the 

quantity. In our case the quantity is represented by the exergy request from the users.  

                                          (16) 

As it can be seen in the figure (3), the average total cost decreases as the thermal 

request of the users increases, and it increases as the distance of the users from the main 

DHN pipe increases. 

 

Figure 3. The average total cost as a function of thermal request and the  

delta distance variation from the existing DHN configuration 

 

The marginal cost can be written as the derivative of variable costs: 

                                                                    (17) 

Marginal costs related to the connection of an additional user are shown in figure (4). 

As the distance from the main network increases, at constant thermal request of the 

additional user, the marginal costs increases for all the flow temperature supply. This is 

due to the exergy losses during transportation and the investment cost. This is 

particularly evident when the thermal request of the additional user is small. The high 

costs are due to the effect of the user on the water pressure, which must be increased for 



the entire water mass flow rate exiting the thermal plant. At lower supply temperature 

(70-90°C), the marginal cost curve presents lower values in comparison to the other 

temperature supply. 

 

Figure 4. Marginal costs as a function of thermal request of the users and  

the delta distance from existing configuration DHN. 

 

3.3 Energy savings 

 

Last analysis refers to the implementation of energy savings initiatives. In this case 

an area of buildings with a total thermal request of about 42 MW has been considered. 

A ratio of 62% of the users are connected with the DHN, and the remaining users has an 

alternative heating supply system (gas boilers). Figure 5 shows the average exergetic 

cost of heat for the whole area, i.e. users connected with the network and those who are 

not connected. This is examined for the three control strategies previously considered. 

 

 

Figure 5. Weighted average cost of heat  
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Figure 6. shows that introducing energy savings in the buildings, the weighted 

average cost of heat (weighted for the frequency of the outdoor temperature during the 

heating season) decreases as the ratio of the energy savings increases. At the same ratio 

of energy savings in the buildings, the weighted average cost of heat decreases as the 

supply temperature at the primary side of heat exchangers at the users decreases. 

 

 

Figure 6. Weighted average cost of heat  

The implementation of energy savings initiatives allows one to connect more users 

to the district heating network, which is a good design options in urban areas with 

existing saturated networks, i.e. networks which have already reached the maximum 

capacity (at least in some areas). 

Conclusions 

The use of thermoeconomics for the analysis of district heating systems allows one 

to obtain some useful information for the plant design and management. In this paper 

these aspects have been examined, considering three possible uses of thermoeconomics. 

The temperature of water flow feeding the network has been assumed as an 

operating parameter. It has been shown how this parameter influences the whole system 

operation conditions, as the products, electricity and heat supplied to the users depend 

on it. Heat losses need to be reduced and this can be achieved by means of lower 

temperature supply, which also extends the scope for using different sources of locally 

available waste and renewable heat. 

In the calculation of marginal costs, a basic presupposition here is that, optimal 

prices from a societal point of view should equal short-range marginal costs (SRMC) of 

DH generation. In a such complex thermoeconomic analysis, measures for the exergy 

loss reduction should also play a role. They can thus be taken as a point of departure 

when determining the district-heating tariff. Rather, prices can be set to reflect marginal 

costs, and a fixed charge can be set to cover investment costs. The utilities also has a 

fixed price element in the tariff. Using these prices based on SRMC and a fixed charge 

should be able to bring about a close to optimal resource-allocation. 

Finally this paper shows that there are potential advantages in introducing energy 

savings initiatives in buildings connected to district heating networks, mainly related to 
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the possible reduction in operating temperatures and the possibility of connecting new 

users to the DHN, which is a cost effective solution for the community.   

Other problems are still open in district heating. In particular, the link between 

quality of heat and its price should be considered in order to properly consider the 

characteristics of the producers and users. In the near future it is expected that multiple 

producers are allowed to supply heat to district heating networks, similar to what 

happens with electricity producers in the case of the electric grid. Not only the amount 

of heat they may produce is important, but also its quality. Exergy is an effective way to 

measure quality. Moreover, users characterized by local heating systems working at 

lower temperatures should be considered in a different way than users requiring the 

same amount of heat, but at higher temperature. As an example, users with radiant 

panels may be theoretically connected to the return network and use low grade heating. 

This is generally a big benefit for the energy system, since the returning temperature 

decreases and a more effective heat recovery is obtained in the thermal plant. 

It should be possible to encourage a more rational use of heat by implementing a 

fairer pricing policy, which would take into account not only the quantity but also the 

quality of this heat. Such a pricing would be based on the exergy losses. This factor 

allows us to determine a heat price, which takes into account the heat exergy value or 

the quality of the heat. 



Nomeclature 

DHN: District heating network  

: is the thermal energy flow  

 : the water mass flow rate  

h : enthalpy of the water 

    : internal diameter of the pipe 

     : max velocity of the mass flow rate in the pipes 

 : density of the water 

p: is the average pump efficiency 

ν: is the water specific volume (assumed constant) 

p the total pressure losses due to pipe friction and localized resistances. 

TCtot: is the total capital cost 

d: is the discount rate 

l: is the life of the network, expressed in years 

c: average unit cost of heat  

 F : is the thermal exergy flow ; 

      : cost rate of the CHP plant 

     : cost rate of the district heating network 

   : Exergy efficiency of the network 

Tref : is the absolute value of the average outdoor temperature during the heating 

period 5°C 

    : function cost of the quantity q 

  : Total cost, wich includes investments and operational cost 

  : fixed cost, investments costs 

  : variable cost 

   : average total cost 

  : marginal cost 

SRMC : short run marginal cost 

Tsupply: flow temperature supply in the primary side at the user’s substation heat 
exchanger 
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