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Summary 
 

Multi-scale modeling is currently one of the most active research topics 

in a wide range of disciplines. In this thesis we develop innovative 

hierarchical multi-scale models to analyze the probabilistic strength of fiber 

bundle structures. 

 

The Fiber Bundle Model (FBM) was developed initially by Daniels 

(1945), and then expanded, modified and generalized by many authors. 

Daniels considered a bundle of N fibers with identical elastic properties 

under uniform tensile stress. When a fiber breaks, the load from the broken 

fiber is distributed equally over all the remaining fibers (global load 

sharing). The strength of fibers is assigned randomly most often according 

to the Weibull probability distribution. In chapter 2, we develop for the first 

time an ad hoc hierarchical theory designed to tackle hierarchical 

architectures, thus allowing the determination of the strength of 

macroscopic hierarchical materials from the properties of their constituents 

at the nanoscale. The results show that the mean strength of the fiber bundle 

is reduced when scaling up from a fiber bundle to bundles of bundles. The 

hierarchical model developed in this study enables the prediction of strength 

values in good agreement with existing experimental results. This new ad 

hoc extension of the fiber bundle model is used for evaluating the role of 

hierarchy on structural strength. Different hierarchical architectures of fiber 

bundles have been investigated through analytical multiscale calculations 

based on a fiber bundle model at each hierarchical level. In general, we find 

that an increase in the number of hierarchical levels leads to a decrease in 

the strength of material. On a more abstract level, the hierarchical fiber 

bundle model (HFBM), an extension of the fiber bundle model (FBM) 

presented in this thesis, can be applied to any hierarchical system. FBMs are 

an established method helpful to understand hierarchical strength. 

 

Another extension of Daniels‘ theory for bimodal statistical strength has 

been implemented to model flaws in carbon nanotube fibers such as joints 

between carbon nanotubes, where careful analysis is necessary to assess the 

true mean strength. This model provides a more realistic description of the 

microscopic structure constituted by a nanotube-nanotube joint than a 



 

simple fiber bundle model. We demonstrate that the disorder distribution 

and the relative importance of the two failure modes have a substantial 

effect on mean strength of the structure.  

 

As mentioned, the fiber bundle model describes a collection of elastic 

fibers under load. The fibers fail successively and for each failure, the load 

is redistributed among the surviving fibers. In the fiber bundle model, the 

survival probability is defined as a ratio between number of surviving fibers 

and the total number of fibers in the bundle. We find that this classical 

relation is no longer suitable for a bundle with a small number of fibers, so 

that it is necessary to implement a modification into the probability 

function. It is possible to predict snap-back instabilities by inserting this 

modification in the theoretical expression of the load-strain (F-ε) 

relationship for the bundle, as discussed in chapter 4.  

 

Scrutiny into the composition of natural, or biological materials 

convincingly reveals that high material and structural efficiency can be 

attained, even with moderate-quality constituents, by hierarchical 

topologies, i.e., successively organized material levels. This is shown in 

chapter 5, where a composite bundle with two different types of fibers is 

considered, and an improvement in the mean strength is obtained for some 

specific hierarchical architectures, indicating that both hierarchy and 

material ―mixing‖ are necessary ingredients to obtain improved mechanical 

properties. 

 

In Chapter 6, we consider a novel modeling approach, namely we 

introduce self healing in a fiber bundle model. Here, we further assume that 

failed fibers are replaced by new unstressed fibers. This process has been 

characterized by introducing a self healing parameter which has been 

implemented into the survival probability function of the fiber.  

 

General conclusions of the research efforts presented in this thesis are 

given in chapter 7. This is followed by suggestions for further research and 

a brief outlook.  



 

Chapter 1   

1 Introduction 
 
 

 

 

1.1 Introduction 
 

Multiscale modelling has attracted increasing interest in past years in 

various fields, including solid mechanics. Until the late 1980s, it was widely 

recognized that any experimentally observed size effect on the nominal 

strength of structures was due to statistical reasons, i.e. related to random 

distribution in local material strength, described by the Weibull statistical 

theory.  

 

As is well known, hierarchical structures have special designs with 

specific composition and microstructure morphology. For example, bone, 

shown in Fig. 1.1, is composed of hierarchical structures whose material 

properties change from nanoscale to macroscale.  

 

Thus, these structures must be studied at each individual hierarchical 

level, in order to understand their intrinsic behavior as well as to determine 

appropriate design principles when manufacturing composite materials, 

which are generated using different fabrication technologies.  

 

Hierarchy is an essential concept in order to understand the behavior of 

bio-tissues. At nanoscale, they are essentially material composites based on 

the interdigitation of the collagen, the most prevalent biopolymer in human 

body, and an apatitic mineralite (LeGeros, 1991; Eppell et al., 2001; Cowin, 

2001; Katz, 1976; Katz, 1980). These nanoscale structures organize into 

microscale composites to resist loads, which is one of their primary 

functions (Cowin, 2001; Katz, 1976; Katz, 1980). For example, the 

macroscopic anisotropic properties of femoral cortical bone require that 
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both the haversian microstructure and the appropriate nanostructural 

organization of collagen and apatite (Eppell et al., 2001; Cowin, 2001; Katz, 

1976; Katz, 1980) should provide appropriate macroscopic functions, the 

molecular structures of the collagen and apatite (nanoscale) must organize 

firstly; then, the structures to form the microscopic haversian system, which 

has fiber-like composite material behaviors (Cowin, 2001; Katz, 1976; Katz, 

1980) and the system provides the bone microstructures with the required 

appropriate strength and stiffness (Eppell et al., 2001; Cowin, 2001; Katz, 

1976; Katz, 1980). 

 

 

 
Fig. 1.1 Hierarchical structure of human bone (Ritchie, et. al). 

 

 
 

 

Biological materials suggest a key to design new material with 

outstanding performance. Olson (1997) emphasized the existence of 

hierarchical design and distinguished the examples of top-down and 

goals/means approaches. The combination of bottom-up and top-down 

approaches has been the historical model for design new materials. 

Materials design depends on the process-structure and structure-property 

relations. The process of relating properties to performance is optimized. 

For example, the Ashby charts (Ashby, 1999) identify the existing material 

systems and properties that meet the needs of specific applications. This is 

always an initial step in solving any material design problem, and can be 
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conveniently done by searching for suitable tabulated properties of materials 

(Ashby, 1999), often using combinatorial search methods (Shu et al. 2003). 

Fig. 1.2 presents an example of the hierarchy of computational models. 

 

In recent years, the hierarchical and multi-scale modeling methods for 

composites have attracted much attention. This is related to several factors. 

First, the investigations on microstructure–property relationships of natural 

materials (wood, bones, etc.) suggest that these materials represent 

hierarchical composites with fibrous reinforcement, and that their 

extraordinary properties (high strength, fracture toughness, etc.) are 

attributed to the hierarchical architectures of the materials (Fratzl and 

Weinkamer, 2007; Gao, 2006; Schmahl et al., 2008; Mishnaevsky, 2007).  
 

Secondly, the optimization of composite properties by varying their 

structures at the microscale level is involved. Some properties (e.g., 

stiffness) are improved by increasing the volumetric fraction of hard 

reinforcement in composites, but this degrades other properties (namely 

fracture toughness). The idea to create a new family of materials with 

tailored properties, by controlling different structural elements, such as 

shape and size, at different levels; has been studied in the framework of the 

Japanese ‗‗Synergy Ceramics Projects‘‘ (Kanzaki et al., 1999), which 

presented an example of a ceramic material that has both high strength and 

toughness achieved by a combination of aligned anisotropic grains (at 

microlevel) with the intragranular dispersion of nanoparticles (at nanolevel).  
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Fig. 1.2 Hierarchical structure of intermediate filaments, from the H-bond level (Angstrom 

scale) to the cell level (micrometer scale). (Qin, 2010). 

 

 

Another example of a material with a hierarchical microstructure is a 

‗‗trimodal‘‘ Al-composite, which has been developed by Ye et al., 2005 and 

has excellent properties (e.g. extremely high compressive yield strength). In 

this composite, coarse-grained Al is introduced into the nanocrystalline Al, 

which is reinforced with B4C particles in order to achieve high strength and 

acceptable ductility. In general, multiscale composite design allows to 

improve different mechanical properties of different composites, for 

example fracture toughness in a carbon fiber reinforced epoxy composites is 

improved by 80% (Godara, 2009), and dramatic increases in elastic 

modulus, compressive strength and interlaminar strength of carbon 

fiber/polymer composites are obtained by dispersed carbon nanofibers 

(Iwahori, 2003); fracture toughness of carbon fiber reinforced epoxy/clay 

nanocomposites CFRENCs with the introduction of 4 phr nanoclay in epoxy 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DGodara,%2520A.%26authorID%3D15841559700%26md5%3D18049b2e4c4fdecfdb02e1f80d9fe3d7&_acct=C000058882&_version=1&_userid=2823018&md5=015957afb313b59117f4fb59eaa45d0c
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is increased by 85% (Xu and Hoa, 2008), flexural strength is increased by 

38% due to a small amount of nanoclay (2 phr) added into the epoxy of 

carbon/epoxy composites (Xu and Hoa, 2008). Thus, tailoring material 

properties at different hierarchical levels makes it possible to improve 

mechanical properties of structures. 

 

In order to analyze the effect of the hierarchical structures on the strength 

and mechanical properties, a number of mathematical models have been 

developed. Carpinteri and Paggi (2009) developed a model for a 

hierarchical, fractal grained composite, in which mesograins are composed 

of micrograins. Using a top down approach, rule of mixture and a 

generalized Hall–Petch relationship (for hardness), the authors studied the 

effect of the hierarchical levels on the material hardness and toughness. 

They demonstrated that a hierarchical material is tougher than its 

conventional counterpart, and that the material hardness increases with 

increasing hierarchical levels. Joshi and Ramesh (2007) developed a 

micromechanical model of particle reinforcement in multiscale composites, 

in which at least one phase is a composite at a finer scale. They used the 

multiscale secant Mori–Tanaka method and added subscale terms (in 

particular, grain size, particle size and dispersoid strengthening), and 

computed overall response of the material. Yao and Gao (2007) developed 

self-similar models of hierarchical materials: one was applied to gecko feet 

and the other one to the microstructure of bone. They demonstrated that a 

hierarchical material can be designed to achieve flaw insensitivity, using the 

‗‗fractal bone‘‘ model (i.e. a multiple level self-similar composite structure). 

Gao also demonstrated that a hierarchical material with different properties 

at different length scales can tolerate crack-like flaws. Besides, a series of 

analytical models of hierarchical materials, based on fracture mechanics 

approaches, has been presented by Gao, (2006).  

 

The general conclusion of these works is that the hierarchical structures 

have higher strength and damage resistance than common structures. This 

conclusion is compared with the numerical results from Gómez and Pacheco 

(1997) and with experimental and numerical observations from Newman 

and Gabrielov (1991), where it is shown that clustering and bundling of 

reinforcement in composites leaded to the lower damage resistance (Chapter 

8 from Schmahl et al., 2008; Mishnaevsky et al., 2004; Segurado and 

Llorca, 2006).  
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Based on the fiber bundle model and renormalization methods, and 

another group of models seek to analyze the asymptotic strength 

distributions of fiber bundles (Phoenix and Taylor, 1973;  Phoenix, 1974, 

1975;  Newman et al. 1994; Newman and Phoenix, 2001),  taking into 

account the effects of time dependent behavior of fibers and different load 

sharing rules. A more detailed overview of various fiber bundle models can 

be found in the works by Newman, Phoenix, Hansen, Herrmann, Bazant and 

colleagues (Mishnaevsky, 2007). 

 

An important class of hierarchical structures is the fibrous bundle 

(Schmahl et al. 2008). In general, such a structure consists of fibers, which 

are capable of sustaining the longitudinal stress. The structure properties are 

determined by the constituents‘ properties. Many factors can be adjusted in 

the manufacturing process, but a lack of control in the production gives rise 

to strong fluctuations of the mechanical properties in different samples. 

Generally speaking, a hierarchy of length scales can be identified in fibrous 

materials, which are illustrated in Fig. 1.3. 

  

Technically, an important example of fibrous structure is the fiber 

bundle, which has been widely used for modelling in the field of aerospace, 

automotive and sporting goods. The simplest layout of a fiber is a 

unidirectional bundle, in which fibers are all arranged in parallel. Under 

external loading, fracture first appears at the lowest level, i.e. individual 

fiber fractures. The entire system and its elements experience a gradual 

reduction of stiffness as damage accumulates by nucleation of micro-

damage. Finally, the whole bundle of fibers ruptures, and fails 

catastrophically. Even though the fiber bundle model is simple, it captures 

the essential elements of failure processes in a large number of materials. 

Also, the fiber bundle model is a useful tool for understanding phenomena 

such as creep, and fatigue. 
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 Fig. 1.3 The typical hierarchy ranking from the smallest level to the highest level fiber 

rope. 

 

 

 

Usually, the starting point in the discussion of the failure characteristics 

of fibrous materials is to consider the macroscopic, volumetric-averaging 

loading behavior, which is represented by the stress-strain curve. This curve 

is the representative response obtained by loading a sample, typically by 

exerting a tension force on a long and macroscopically homogeneous 

structure. Three fundamental types of behaviors are usually categorized: a 

linear relation between stress and strain is called linear elastic behavior, 

where the Young‘s modulus completely characterizes the loading behavior, 

which is corresponding to the initial stage of the loading (Fig. 1.4). As loads 

increase, materials enter a nonlinear regime, a process that is called strain-

hardening, and it is typically irreversible in the sense that after unloading, 

the sample will possess a reduced stiffness upon reloading. Other materials, 

however, display a behavior that is perfectly plastic after passing a material  

yield point, where the slope of the stress-strain curve vanishes; the behavior 

may be visualized as tearing apart a piece of chewing gum. This 

classification is also useful in terms of fracture: a brittle material breaks 

before reaching the yield point, whereas a ductile material reaches the 

plastic regime first. 

yarn 

Strand 

Rope  
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Fig. 1.4 Characteristic parts of a load–elongation curve obtained by tensile test (Grishanov, 

1999). 

 

1.2 State of research 
 

Historically, the first appearance of the fiber bundle model can be dated 

back to 1927, when Peires introduced this approach in order to understand 

the strength of cotton yarns (Peires, 1926). Assuming equal load sharing 

after subsequent failure, the first consistent stochastic formulation of the 

model, together with a comprehensive study of bundles of threads was 

presented by Daniels (1945). Early attempts to capture fatigue and creep 

effects led Coleman to propose a time-dependent formulation of the model 

(Coleman, 1956). These first developments have been ensued by intensive 

research in both the engineering (Herrmann and Roux, 1990) and physics 

(LeGeros, 1991; Chakrabarti and Benguigui, 1997) communities. The main 
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scope is pedagogical and is at the same time an overview of fracture 

mechanics for physicists and an introduction to new concepts of statistical 

physics for mechanics engineers, so that nowadays fiber bundle models are 

considered one of the most important theoretical approaches to model 

hierarchical structures.  

 
 
Fig. 1.5 Modes of slip (a) Mode 1 and Mode 2 stretching and twisting respectively. (b) 

Mode 3 rotating. (c)Mode 4 scissoring and mode 5 sawing. (d) Mode 6. 

As mentioned before, FBMs are a useful for modeling fibrous structures 

under tensile loading, where the load is carried by the fibers. Fiber-fiber 

interface mainly determines the load transfer among fibers (Leech, 2002) 

and there are several modes as shown in Fig. 1.5: modes 1 and 2 involve 

axial sliding between fibers due to stretching and twisting; mode 3, rotation 

slip, is an end effect, modes 4 and 5 are scissoring and sawing at crossovers; 
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mode 6 is due to bulk compression or dilation. Fibers distortion was not 

explicitly included, but implicit in the change of packing geometry.  

 

Still, some adaptations are necessary to make the model more realistic. 

The first is to find a way to interpolate between the limiting cases of global 

and local load sharing, which obviously constitute extreme abstractions of 

the finite range interaction present in a real material, such as the model was 

proposed by Hidalgo et al. (2002), where the load shared by the unbroken 

fibers decays as a power law with the distance from a broken fiber. They 

introduced a fiber bundle model where the interaction among fibers is 

modeled by an adjustable stress transfer function that can interpolate 

between the two limiting cases of load redistribution, i.e., the global and the 

local load sharing schemes. This model was subsequently applied to explain 

the size dependence of softwood samples under tension (Dill-Langer et al., 

2003). 

 

Phoenix and co-workers (Harlow and Phoenix, (1978a, b); Smith and 

Phoenix, 1981; Smith 1981; Phoenix and Smith. 1983; McCartney and 

Smith. 1983; Phoenix, 1983; Phoenix et al. 1997; Phoenix and Beyerlein, 

2000; Mahesh et al., 2002) has investigated this approach in depth and has led 

it to high mathematical sophistication. Important mathematical results have 

been achieved for the statistical distribution of strength in tensioned parallel 

structural systems such as ropes consisting of fibers (or wires) obeying 

Weibull statistical distributions of strength. 

 

Considering localization (Beyerlein and Phoenix, 1997), the effect of the 

matrix between the filaments (Phoenix et al., 1997) and nonlinear behavior 

(Krajcinovic and Silva, 1982), FBMs provided a basis for successful micro-

mechanical models. Extensions of FBMs have been introduced taking into 

account the possible multiple cracking of the filaments by replacing the 

brittle filament failure with a continuous damage parameter (Kun et al., 

2000). 

 

When considering other sources of random behavior besides strength, the 

FBMs must be replaced by a deterministic micromechanical model with 

Monte-Carlo simulation techniques. This approach has been used in 

analyzing the influence of the distribution of the bundle strength for 

different fiber arrangements on the stress concentration around the broken 
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fibers (Ibnabdeljalil and Curtin, 1997). The prohibitive computational costs 

have been reduced by simplified micromechanical models, like break 

influence superposition-based on the shear-lag model (Beyerlein and 

Phoenix, 1996) or the lattice Green‘s function technique adapted to 

composite failure (Zhou and Curtin, 1995). 

 

A fiber bundle model involving all the interaction effects occurring in 

tensile experiments with different specimen lengths paves the way for 

robust modeling of the failure process in the bond layer with cementations 

matrix. At present, fiber bundle models are regarded as a simple but elegant 

method to capture the most significant characteristics shared by disordered 

materials generally and fibrous composites, namely their inherently features, 

anisotropy and dynamical load transfer (Kun et al., 2006), which are the 

features in the breakdown of FRCs. Initially proposed as a model to capture 

the failure behavior of a bundle of fibers in textile yarns, the behavior of 

fiber composites can be described as follows: when a thread of parallel 

single fibers is under an external uniaxial tension, it deforms in a linear-

elastic way until the fibers reach their respective failure thresholds, which 

are randomly distributed; if a fiber fails, the load drops to zero, and has to be 

redistributed to the remaining fibers. This can result in cascades of further 

breaking events. Obviously, fiber bundle models are therefore suitable for 

describing uniaxial composites under tension, and have been applied 

successfully for this loading condition, since the tensile load on a composite 

is sustained almost exclusively by the fibers. 

 

Another important aspect that links composite materials to an advanced 

class of FBMs, i.e. continuous damage fiber bundle models (CDFBM) (Kun 

et al., 2000), is the inclusion of hierarchical failure levels. Experiments have 

revealed that long fiber composites loaded parallel to the fiber orientation 

experience a gradual degradation process so that the macroscopic stress-

strain curve, σ (ε), of the composites develops a plastic plateau and the 

global failure is preceded by a strain hardening regime. 

 

Gücer and Gurland (1962) developed a model for ‗‗dispersed fracture‖ 

for a chain of elements, each of them considered as a fiber bundle. The 

strength of the bundles was analyzed using Daniels‘ theory, while the failure 

of the chain was studied using the weakest-link theory. The theoretical 

predictions of the strength of composites, using this theory, are generally 
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higher than corresponding experimental values. The model of Gücer and 

Gurland was developed further by Rosen (1964; 1965), who studied the 

damage in composite as a failure of chains of bundles with fibers of limited 

(critical) length. Zweben (1962) studied the influence of the stress 

concentration of a broken fiber on its closest neighbors, and demonstrated 

that failure of even a few fibers can lead to the failure of whole specimen. 

Recently, a number of FBM-based models were developed, which take into 

account the roles of the matrix and interfaces, nonlinear behavior of fibers 

and the matrix, and the real micromechanisms of composite failure (2000; 

2002). 

 

Krajcinovic and Rinaldi (2005) used the fiber bundle model (called 

―parallel bar model‖ in their works) to determine damage laws in materials 

taking into account the damage micromechanisms. They carried out 

thermodynamically analysis of the damage evolution in this system. Li and 

Li (2001) considered the tensile response of reinforced concretes using the 

parallel bar model by Krajcinovic and Silva, in which fibers and the matrix 

are connected by parallel series elements. Li and Li (2001) obtained tensile 

stress–strain curves for different volume contents of fibers by using the 

model with two damage parameters (for interfaces and for the concrete 

matrix). 

 

This effect reflects the presence of a hierarchical organization in the 

materials, in which the failure mechanisms at the lower length scales (at the 

scale of fibers) gradually activate the breaking of higher order substructures 

(sub-bundles, bundles, and plies). With fibers embedded in a matrix 

material, the breaking of a fiber causes debonding along the fiber-matrix 

interface in the vicinity of the crack (Phoenix and Beyerlein, 2000). 

However, due to the frictional contact at the interface, the load of failed 

fibers builds up again over a certain length and consequently the broken 

fiber can still contribute to the overall load bearing capacity of the system.  

As a common tool in computational material research, one can observe 

that fiber bundle models address two major challenges: on the one hand, 

they serve as a starting point to develop more realistic models of material 

failure, which comprise a detailed representation of the microstructure of a 

material, e.g. the local stress fields, and their complex transmission. Since 

efficient techniques have been developed to study large scale fiber systems 

through analytical calculations and simulations, FBMs and models based on 
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them allow investigating the influence of microscopic material parameters 

on the macroscopic response of disordered systems. On the other hand, the 

study on damage and fracture in disordered systems has evolved into a 

fascinating branch of statistical physics, where researchers have succeeded 

to find a link between breakdown phenomena, phase transitions, as well as 

critical phenomena in general. To pursue this analogy, there is now ongoing 

research to embed fracture phenomena into the framework of statistical 

physics. 

 

 

1.3 Fiber bundle model applications 
 

Because the uncertainty in current empirical strength predictions for 

hierarchical structures is far larger than in the classical structural analysis, 

statistical approaches offer great promise. One of characteristics for 

hierarchical fiber structures of positive geometry, the statistical parameters 

for structural strength cannot be constant but must be increased with 

increasing structures size. The statistical analysis of structure strength has so 

far been generally considered to be independent of mechanics, but further 

progress requires the cumulative distribution function (cdf) to be derived 

from the mechanics and physics of failure. The structure size effect on the 

modulus of rupture of plain concrete beams as well as other Quasi-Brittle 

materials (such as rocks, composites, ceramics or ice) has explained the 

randomness of the intrinsic material strength in a purely statistical manner 

(Bazant and Planas, 1998). 

 

However, as revealed by the finite element analyses by Hillerborg et al. 

(1976) and Petersson, (1981), the statistical explanation ignores the stress 

redistributions caused by crack propagation prior to the maximum load, and 

the mean observed size effect can be described deterministically by the 

cohesive (or fictitious) crack model. A simple analytical formula based on 

this redistribution was derived by Bazant et al. (1995) and it showed that all 

the important test data matched very well. On an empirical basis, the same 

formula was proposed by Rokugo et al., (1995) and Bazant, (1997). 

 

Traditionally, size effects have been explained by Weibull‘s statistical 

weakest link model (Fisher and Tippett, 1928; Weibull, 1939; 1949; 1951; 
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Epstein, 1948; Freudenthal, 1956; Freudenthal and Gumbel, 1953; Gumbel, 

1958; Saibel, 1969; Weibull, 1956). Its basic hypothesis is that failure 

occurs fail as soon as the material strength is exceeded at one point of the 

structures. In summary, to capture the salient properties of Quasi-Brittle 

cohesive fracture in two or three dimensions expanding the probabilistic 

load-sharing concepts for parallel systems is one of the fiber bundle model 

applications.  
 

 

 
 

Fig. 1.6 Curve of mean size effect for structures failing at macroscopic fracture initiation, 

and its probability distributions for various sizes (Bazant, 2002). 

 
 

Several novel aspects of breakdown phenomena have been revealed by 

the study of FBMs in recent years. The introduction of thermal noise leads 

to the reduction of the strength of materials. And in the presence of 

thermally activated cracking sub-critical crack growth, a finite lifetime of 

materials is observed (Roux, 2000; Scorretti et al., 2001). The healing effect 
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of microscopic cracks has also been addressed by thermodynamic fiber 

bundle models (Virgilii et al., 2007). 

 

A crossover in the avalanche size distribution D (Δ) from the power law 

with exponent 5/2 to another power law regime with a lower exponent 3/2 

has been observed, when the avalanches of fiber failures are only recorded 

in the vicinity of the point of macroscopic failure, i.e., the strength 

distribution of the remaining intact fibers is close to critical (Pradhan et al., 

2005a, b). The connectivity properties of the bundle turned out to play an 

important role in breakdown processes, i.e., considering locally interacting 

fibers of a bundle on the nodes of a Barabasi-Albert network (instead of 

placing them on lattice sites) substantially alters the failure process (Kim et 

al., 2005); these models are closely related to the statistical properties of 

social interactions (da Silveira, 1999). Similarly, a random fuse model on a 

network may be applicable to predict the failure of electric grids (Bakke, 

2006) and has been applied for biological materials (Nukala et al., 2005a, 

b). 
 

The appropriate structural design of tissue engineering scaffolds and 

prosthetic grafts is critical to restoring native functionality thus determining 

the long-term success of the implant. Both cellular biocompatibility as well 

as mechanical compatibility must be considered within the engineering 

approach to tissue design (Wintermantel et al. 2000). Scaffolds and grafts 

with a wide range of properties (e.g., pore size, porosity, strength, elasticity, 

void volume, adaptability, and size) are needed to accommodate the range 

of tissue types currently being engineered, e.g., ligaments, tendons, urinary 

incontinence devices, soft-tissue reinforcement meshes, and blood vessels. 

In developing fibrous grafts for these applications, yarn design has been 

shown to be a major factor in tensile and burst strength, as well as flexure 

rigidity, of higher order constructs such as meshes and superstructures used 

for soft tissue reinforcement (Cosson et al., 2003). 

 

A particular clinical need for advanced yarn design is evident in ligament 

and tendon tissue engineering, as previous failures have forced the field to 

readdress graft and yarn design (Guidoin et al., 2000). The need for 

reducing ligament graft stiffness to avoid the stress shielding of forming 

tissue has long been recognized and explored previously through braided 

designs; however, native tissue properties were not restored (Chvapil et al., 
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1993). These braided prostheses failed due to the lack of biodegradation, as 

well as the geometry and resultant load distribution in the structure. 

Analysis of failed polyester grafts implanted for several years demonstrated 

insufficient and unorganized ingrowth throughout the structures. An 

example of a more appropriate anterior cruciate ligament (ACL) graft 

design was composed of silk wire-rope yarns where a combination of a 

long-term degradable biomaterial and appropriate geometry demonstrated a 

significantly reduced stiffness while maintaining strength (Altman et al., 

2002). 

 

Techniques including braiding, twisting, cabling, texturing, and plying 

have been explored to generate yarns for grafts or building blocks of grafts 

(e.g., weave, or non-woven structure).  

An infinite number of yarns demand an understanding of how each yarn 

behaves mechanically relative to each other. The ability to predict changes 

in mechanics on the basis of changes in yarn geometry (e.g., increasing 

twisting angel or the number of fibers per yarn) will decrease the need for 

significant trial and error testing. However, it is important to note that for 

each specific goal, correlations must be established between the specific 

material of choice, yarn design, and structural design, in order to fully assess 

the impact of the yarn design on final properties. Our theory could be used 

to further understand the impact of yarn design and the methods of analysis 

to extrapolate predictions for specific structural and functional needs in 

tissue engineering. 

 

The hierarchical structure of yarns can be described according to the 

following levels: 

-Bundle: fibers can be maintained in parallel or twisted to one another to 

form a multifiber yarn. 

-Cabled: A bundles of fibers held independently while they can be wrapped 

around each other or paralleled. Each hierarchical level consist of the 

filaments or bundles (Fig. 1.7). 
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Fig. 1.7 Hierarchal organization of a twisted or cabled yarn. Fibers are combined to form 

bundles, bundles to form strands, and strands to form cords. 

Kolařík et al. (1984) presented an application of fiber bundles for 

modeling synthetic tendons. They used Poly (ethylene terephthalate) fibers 

to prepare on a pilot-plant scale by additional drawing of commercial textile 

fibers texturized by false twist. Another example of application of fiber 

bundles in tissue engineering is for the design of synthetic tendons. By the 

varying fiber volume fraction, it is possible to adjust the required 

mechanical properties of these synthetic tendons (Kolarík et al. 1981). 

1.4 The classical fiber bundle model 
In this section, we will outline the main properties of the classical fiber 

bundle model in order to facilitate the comprehension of the modified FBMs 

presented in the subsequent chapters. 

 

To generate a computationally feasible fiber bundle model, a couple of 

simplifying assumptions have to be made (Daniels, 1945; Phoenix, 2000; 

Closter et al. 1997; Pradhan et al., 2003; Cornett 1989; Andersen, 1997): 

The constituent fibers have a perfectly brittle behavior under an incremental 

load, which means they deform in a linear elastic manner until they break at 

their respective failure loads σi, i = 1, . …, N. The Young‘s modulus E is 
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identical for all fibers. The failure process of a single fiber is instantaneous 

and irreversible, so that the load on a broken fiber vanishes (see Fig. 1.8). 

Broken fibers in the classical FBM cannot be restored, i.e. there is no 

healing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.8 Linear elastic loading characteristic of a single fiber, which breaks when its failure 

load σth is reached. 

 

The significance in the construction of the fiber bundle model is the 

range of load redistribution after fiber failure, which obeys the load sharing 

rule. Two extreme cases for the interaction form have evolved as standards, 

and they constitute two sub-classes of fiber bundle models with 

substantially different micro- and macro-behaviors. The first form is global 

load sharing (GLS), sometimes termed equal load sharing (ELS), 

characterized by the fact that the load on a failed fiber is redistributed on all 

intact fibers in the array, regardless of their distance from the failed fiber. It 

reflects the experimental condition of loading a set of parallel fibers 

between two rigid plates, and usually it serves as a starting point for 

investigating more complex variations of this type, since GLS models 

usually can be treated analytically (Pradhan, 2005a; Kloster et al., 1997; 

Pradhan and Chakrabarti, 2003; Sornette, 1989; Hemmer and Hansen, 

1992). 

 

ε 

σ 

 

 

E 
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For the contrary case of local load sharing (LLS), the load of a failed 

fiber is shared equally by the neighboring intact fibers. The load 

redistribution evokes a high stress concentration around failed regions. The 

accompanying correlations set prohibitive limitations towards an analytical 

treatment of this problem (Phoenix and Beyerlein, 2000; Harlow and 

Phoenix, 1978; G´omez, 1993), so that large scale simulations have to be 

employed (Harlow and Phoenix, 1978; Hidalgo et al., 2002; Hansen and 

Hemmer, 1994; Curtin, 1998). The experiment corresponding to this 

situation is the stretching of a bundle of fibers between plates having finite 

compliance (Hansen and Roux, 2000; Batrouniet al., 2002; Delaplace et al., 

1999). 

 

The degree of disorder in a material is modeled by assigning randomly 

distributed failure thresholds  to the fibers, for which the probability 

density is w( ) and the distribution function is W(σth) =  . 

This is very important in modeling heterogeneity and deeply influences the 

overall response of the model: in fact, it is the only component of the 

classical FBM that represents material dependent features.  

Typically, two types of random distributions are employed. The first one is 

a uniform distribution between 0 and 1 with the density and distribution 

functions, which serves as a starting point for analytical solutions. 

  

                 w(σth) = 1,                W(σth) = σth,                                            (1.1) 

 

A distribution with a better physical foundation (Dill-Langer et al., 2003) is 

the Weibull distribution 

 

                       
0

1 exp[ ( ) ]mW





                                                       (1.2) 

where m and σ0 denote the Weibull index and scale parameter, respectively. 

It should be noted that the amount of disorder can easily be controlled by 

tuning the Weibull index m. Some general features of FBMs will be 

mentioned in the following sections, as they are shared by most variants and   

are important in models for the understanding the breakdown of 

heterogeneous materials. 
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Loading on a bundle is usually performed quasi-statically, and can be 

controlled in two substantially different ways: first, if the strain ε of the 

bundle is controlled externally, the stress on single fibers σi at each loading 

stage is determined by σi = Eε; consequently, no load sharing occurs and the 

fibers break subsequently in the order of increasing breaking thresholds. 

Hence, for a given strain ε, only those fibers with breaking thresholds σth
i
 < 

Eε fail, and the intact fibers sustain an equal stress Eε. Then, macroscopic 

constitutive behavior of the FBM can be expressed as: 

 

                                       σ(ε) = Eε [1 − W(Eε)]                                         (1.3) 

 

where [1 − W(Eε)] is the fraction of intact fibers at ε (da Silveira, 1999; 

Sornette, 1989). For the case of Weibull distributed strength values with m = 

2.7 and σ0= 34MPa, the constitutive curve is shown in Fig. 1.9. 

 

 
 
Fig. 1.9 Macroscopic constitutive behavior of a fiber bundle with global load sharing Eq. 

(1.3) using Weibull distributed strength values σth (m = 2.7 and σ0=34 GPa). 

 

The second type of loading configuration is the stress-controlled case. Here, 

the damage process is more complex, due to the load redistribution 

following a fiber breaking. The load by the remaining fibers, both in the 

cases of GLS or LLS, can result in secondary fiber breaking. These failures 

can then either stop after a certain number of broken fibers, or continue as a 

catastrophic event resulting in the macroscopic failure of the entire system 
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and in this case, all remaining intact fibers are destroyed (Pradhan et al., 

2005a; Kloster et al., 1997; Hemmer and Hansen, 1992; Hidalgo, 2001). 

 

One of the advantages of fiber bundle models are that they allows the 

simple incorporation of statistical and probabilistic effects, easy 

implementation of different probability laws and conditions, and even the 

simulation of complex dynamical patterns of damage evolution in 

composites. The weakness of initial fiber bundle models (which however 

tend to be overcome in recent models) was that the FBM (which is not 

based on continuum mechanics) does not include the strain continuity, 

deformation laws and other basic continuum mechanical laws. Thus, the 

nonlinear behavior of components, interface effects, and multiple cracking 

had to be introduced in the model, using additional assumptions and 

generalizations. 

 



 

Chapter 2 

2 A new hierarchical fiber-bundle 

model theory for the calculation 

of the strength of bioinspired 

nanomaterials 
 

 

2.1 Introduction 
 

In civil engineering ropes made from high-strength synthetic fibers are 

ideal for many applications. For instance, they may be used to replace high 

tensile steel strands, particularly where low weight and corrosion resistance 

are of prime concern. Ropes with parallel components have been identified 

for use in cable-stayed and suspension bridges, prestressed concrete 

structures, prestressed brickwork, cable supported roofs, deep water 

platforms and retaining walls. The individual elements (yarns or bundles) 

are arranged in parallel to the rope axis throughout the entire length. In this 

parallel construction there is little interaction between elements and 

statistics can easily be applied. 

The tensile behaviour of parallel fiber bundles has always been an 

interesting topic for textile researchers. It is well known that the tensile 

properties of a fiber bundle are greatly influenced by those of the constituent 

fibers which form the bundle. Theoretical work has dealt with the 

mechanics of parallel fiber bundles, on the basis of the fact that each fiber in 

the bundle possesses a different tensile behaviour (Neckář and Das, 2006). 

In general, the fiber bundle model is one of the most important theoretical 

approaches to investigate the fracture and breakdown of disordered media, 

extensively used by both the engineering and physics communities.  
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The principal idea underlying statistical models for individual fibers is 

the ―weakest link‖ concept. This was apparently introduced by Chaplin 

(1882; 1880) (see review by Harter, 1950) and further developed by Peirce 

(1926) and Weibull (1939). The connection with the statistical theory of 

extreme values was then exploited by Epstein (1948 a, b), Gumbel (1954) 

and Coleman (1958). Different aspects of the theory, as applied to brittle 

materials, have been investigated by McClintock and Argon (1966), Argon 

(1974) as well as Hunt and McCartney (1979).  

In general, the theoretical model of a fiber bundle consists in a set of N 

parallel fibers with statistically distributed strengths. The sample is loaded 

parallel to the fiber direction and the fibers fail if the load on them exceeds 

their threshold value. An extensive mathematical investigation of failure 

properties of bundles of fibers was first carried out by Daniels (1945). He 

used a stochastic process to study bundles of threads made by a parallel 

construction, which is now generally referred to as the ―classical‖ fiber 

bundle theory, investigating the relation between the strength of a bundle 

and the strength of its constituent threads. The main features of Daniels‘ 

model are discussed in Section 2. 

 

Further, Harlow and Phoenix (1978) proposed the concept of the chain-

of-bundles model for the strength of fibrous structures, to tackle the issue of 

the statistical nature of the strength of an individual filament, the size 

(length) effect on filament strength and the load-sharing mechanism during 

structure breakage. Porwal et al. (2006) also extended Daniels‘ method to 

analyze twisted fiber bundles by incorporating fiber helical paths into their 

model. However, the exclusion of fiber interactions, such as friction and 

lateral constraint, imposes limits to their model. 

 

Research has since gone into more sophisticated models with more 

realistic hypotheses. One such direction of research has been the relaxation 

of the ―equal load-sharing‖ assumption, e.g. to consider random slack of 

fibers (Phoenix and Taylor, 1973) or inter-fiber frictional forces (Smith and 

Phoenix, 1981). Also, much attention has been given to the development of 

models for composite materials when the fibers are embedded in a matrix, 

e.g. see Harlow and Phoenix (1978, 1981 a, b), as well as Smith (1980). 

These models generally focus on the influence of fiber strength, bundle 
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length, bundle size, fiber packing and role of a matrix. For example, a large 

scale Monte Carlo simulation was performed to study the fracture process in 

a fiber composite material, in which fibers are arranged in parallel in a 

hexagonal array and their strengths are given by a two-parameter Weibull 

distribution function (Mahesh et al., 1999); also, dynamic tensile properties 

of Ultra High Molecular Weight Polyethylene (UHMWPE) fiber bundles 

were studied at two strain rates and two temperatures (Huang and Wang, 

2004). 

 

There are various notable statistical strength theories for twisted fiber 

bundles, namely by Phoenix (1979) and Pan (1993). Although using 

different approaches, both have extended Daniels‘ parallel bundle theory. 

Gegauff (1907) was the first to theoretically analyze yarn strength in terms 

of yarn structure. He derived a simple mathematical relationship between 

twist angle and yarn strength. Gurney (1925) extended that relationship by 

taking into account the length and frictional properties of fibers, in addition 

to the twist angle. He argued that in a cotton yarn under tension, there are 

two kinds of forces present, i.e. forces that tend to press the fibers normally, 

and forces that tend to cause slipping. He suggested that when the ratio of 

the forces tending to cause the slipping to the normal forces exceeds a 

certain critical value, which corresponds to the friction coefficient (μ), then 

slipping would occur. He derived expressions for calculating stress 

developed in individual fibers, which take fiber length and coefficient of 

friction into consideration. Hua and Xin (2005), particularly, studied the 

strength of staple fibers using the Weibull distribution. Pan (1993) derived 

and directly applied an orientation efficiency factor to Daniels‘ mean and 

standard deviation, to account for the effect of an average twist. Recent 

attempts to model twisted ropes, including work on impregnated yarns, can 

be found in Porwal et al., (2006), where the strength of an impregnated yarn 

was estimated using an effective shear traction and fiber obliquity factor. 

 

Further improvements to model construction can be achieved, for 

instance, by generalizing the damage law, constitutive behaviour, 

deformation state and interaction law of the fibers (Kun et al., 2007). The 

improvement in performance of high-modulus and high-strength yarns not 

only puts stronger demands on yarn manufacturing processes but also on the 

scientific community to develop more accurate descriptions of the structure 

and properties of filaments composing the yarn.  
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The high variability in strength found in brittle fibers is well described by 

a Weibull distribution function. This variability is due to randomly 

distributed flaws in the fibers. The assumptions generally used in this 

analysis, i.e. the so-called Coleman‘s conditions, are: (1) the filament length 

is constant within the bundle, (2) the stress–strain relationship for a single 

fiber follows Hooke‘s law up to failure, (3) the load released with the 

fracture of one fiber is uniformly distributed among the surviving fibers, and 

(4) phenomena that could lead to premature failure of the fibers are absent. 

The Weibull model was used to describe the intrinsic statistical nature of 

fracture strength and also the relation between material properties and size-

scale (Sybrand van der Zwaang, 1989). The Weibull distribution is widely 

used to describe tensile strength of brittle materials (Coleman, 1958; Peirce, 

1926) such as carbon (Pickering and Murray, 1999) and glass fibers 

(Andersons et al., 2002; Paramonov and Andersons, 2007). Recently, the 

Weibull theory was also used for the analysis of the tensile properties of 

bast fibers such as jute (Loan et al., 2006), hemp (Pickering et al., 2007), 

flax (Zafeiropoulos and Baillie, 2007) and for carbon nanotubes (Pugno and 

Ruoff, 2004, 2006) or carbon nanotube bundles (Pugno, 2006a, 2007a, b).  

 

In this chapter, we develop a new theory, basically the hierarchical 

extension of Daniels‘ pioneering model, and complementary to a recently-

introduced numerical hierarchical fiber bundle model (Pugno et al., 2008). 

This theory allows us to carry out statistical and reliability analysis on 

hierarchical structures, typically bio-inspired materials, in order to estimate 

their statistical parameters of structural response and/or theoretical failure 

probability. Thus, a purely analytical theory can be of great help in a domain 

where time-consuming numerical studies are usually employed. 

 

2.2 Hierarchical fiber bundle theory 
 

A rope, as well as many fibrous biological materials, can be seen as a 

hierarchical ensemble of fibers, organized as schematically shown in Fig. 

2.1: the rope is composed of various strands, in turn composed of yarns, in 

turn composed by fibers. Each can be seen to correspond to a different 

hierarchical level, starting from single fibers (level 0): a bundle of fibers 

corresponds to a yarn (level1), a bundle of yarns corresponds to a strand 
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(level 2), and a bundle of strands corresponds to a rope (level 3). In Fig. 2.1 

―Twisting‖ can be introduced at any level, and in the general case, the 

hierarchical structure can extend over many more levels than those shown in 

Fig. 2.1. This hierarchical arrangement suggests the use of a hierarchical 

procedure to determine higher-level properties only from level 0 constituent 

fiber properties, as discussed below. 

 

 

 

                                        Fig. 2.1 Hierarchical organization of a rope 
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2.2.1 Single level statistics 

 

The strength distribution of a single element composing a fiber bundle is 

assumed to be described by means of a two-parameter Weibull distribution 

W() as: 
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where l is the element length, lc is a characteristic internal length, σ is the 

stress applied in the longitudinal direction, whereas σ0 and m are the scale 

and shape parameter respectively. It is seen that when the fiber length 

decreases, the statistical strength of the element will increase. The mean 

strength < σW > is given by: 
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whereas the standard deviation is: 
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The shape parameter, m, represents the dispersion of the strength. A 

greater m value indicates a small strength variation and when m tends to 

infinity the strength becomes deterministic.  

 

Now, let us consider a bundle made of a very large number, N, of parallel 

elements of Weibull type with equal length, l. Because it is a parallel bundle 

without any twist, we can expect all elements to have the same strain εe = εb 

where εe, εb are the elements‘ and bundle‘s strains respectively. It is evident 

that if all elements had the same strength, the bundle strength would be 

equal to that of its constituents. However, because in reality there is certain 
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dispersion in the strength of the elements, the bundle strength will be 

statistically distributed, too. This problem was first tackled by Daniels 

(1945). In his analysis, it is assumed that when an element breaks, the load it 

was carrying is instantaneously shared equally among all the surviving 

elements. Thus, neither stress concentrations nor dynamic wave propagation 

effects are considered. Based on Daniels‘ analysis, the density distribution 

function for the strength of the bundle approaches a normal form: 
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where < σD > is the mean bundle strength:  
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and θD is the standard deviation of the bundle strength, given by: 
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Note that for m tending to infinity a deterministic strength is predicted.  

 

For a normal distribution, <σD> will be the maximum likelihood estimate 

of the bundle strength. It can be seen, by comparing Eqs. (2.2) and (2.5), 

that due to the element strength dispersion, the mean bundle strength <σD> 

is smaller than the mean fiber strength <σW>. The difference between the 

two will diminish when the shape parameter m tends to infinity.  

2.2.2 Hierarchical extension of Daniels’ theory 

 

The equations in Section 2.1 can be exploited to derive strength 

distributions for hierarchical structures such as that shown in Fig. 2.1. To do 

this, we assume that each hierarchical level can be represented as a bundle 

of fibers, of which each constituent fiber can in turn be represented by a 



Chapter 2- A new hierarchical fiber-bundle model theory for the 

calculation of the strength of bioinspired nanomaterials.                       29 
 

bundle of lower level fibers, and so on. The structure is schematically 

represented in Fig. 2.2. It is reasonable to assume that at each level n in the 

structure the strength of the constituent fibers is Weibull distributed, i.e. is 

described by Eqs. (2.1) - (2.3) with scale and shape parameters σ0n and mn 

and length parameters ln and lcn.  

 

We now exploit the fact that analytical results show a transition of the 

strength distribution function for a fiber bundle from a Weibull to a 

Gaussian form for large values of the number of fibers Nn. Therefore, the 

mean strength <σWn> and standard deviation Wn of the fibers at level n 

should coincide with those calculated using Daniels‘ theory (Eqs. (2.5) and 

(2.6)) applied at level (n-1). Therefore, the Weibull parameters of the 

constituent fibers at each hierarchical level can be determined those at the 

lower level, down to level 0 (single fiber), where the distribution parameters 

are usually known or can be inferred. 

 

Accordingly, we impose: 

 

                                         
  DnWn  1            (2.7) 

 

                                             DnWn  1             (2.8) 

 

thus linking two adjacent hierarchical levels and extending Daniels‘ theory.  

 

The two equations lead to 
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Fig. 2.2 Schematic representation of a hierarchical structure and of the procedure to 

determine the Weibull strength distribution at level n from Daniels‘ theory applied to the 

fiber bundle at level (n-1) 

 

The shape factor mn+1 for level (n+1) can be easily numerically 

calculated from Eq. (2.9), and the scale factor σ0(n+1) can be obtained from 

Eq. (2.10). This procedure can be repeated for each hierarchical level, i.e. 

starting from the Weibull distribution at level 0, Daniels‘ theory can be 

applied to derive the strength at the first hierarchical level, and so on up to 

level n. Notice that this hierarchical procedure amounts to relaxing the 

equal-load-sharing (ELS) hypothesis, because load sharing applies only to 

single fiber bundles. This provides more realistic strength distribution 
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estimations than ―single level‖ estimations, because in real materials some 

form of ―local load sharing‖ takes place. 

 

2.3 Modifications to the hierarchical theory 
 

Clearly, the procedure described in Section 2 can be refined by including 

corrections for various effects, e.g. bundles with a small number of fibers, 

fiber twisting, friction etc. These corrections are introduced below. 

2.3.1 Bundles with a small number of fibers 

 

The asymptotic value <σDn> is independent from Nn, since the number of 

fibers in the bundle is assumed to be large. However, when dealing with 

hierarchical architectures, structures represented by bundles made up of a 

small number of fibers are commonplace (see e.g. Ackbarow 2009), and 

approximations used in Daniels‘ theory could no longer be acceptable. 

Smith (1982) found a way to eliminate the discrepancy between the real 

Gaussian distribution and the Daniels‘ normal approximation, by deriving a 

correction factors that depend on the number of fibers Nn, in order to 

improve the accuracy of the strength estimation for relatively small bundles. 

The improved < )( nN

Dn



> and 
)( nN

Dn


 estimations according to McCartney 

and Smith (1983) are given by: 
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where fNn and gNn are the correction factors for mean strength and standard 

deviation, and C1=0.992 and C2=0.317 are numerical coefficients. 

 

In order to improve these estimations, we can use the hierarchical theory 

outlined in Section 2.2 in the limiting case of a bundle composed of single 
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fiber (in the following we omit the subscript n, as this procedure is valid at 

any hierarchical level). Using Eqs. (2.5) and (2.10) for N=1, and having set 

for simplicity l=lc, we have: 
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Similarly, from Eqs. (2.6) and (2.9) for N=1:  
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To check the validity of these relations, we use numerically calculated 

results using a Hierarchical Fiber Bundle Model (HFBM) previously 

developed by the authors and described in Pugno (2008). Fig. 2.3 illustrates 

the results for f1 and g1 as a function of m in the three cases: 1) Hierarchical 

theory (Eqs. 2.13 and 2.14), 2) McCartney/Smith theory (Eqs. 2.11 and 

2.12), and 3) HFBM simulations. It is apparent that the correction factor 

proposed by McCartney/Smith overestimates the actual value above and 

below m=2, whilst there is an excellent agreement between 1) and 3), thus 

confirming the validity of the proposed hierarchical approach. There is also 

good agreement between 1) and 3) in the case of the correction factor for the 

standard deviation, while the McCartney/Smith value displays an altogether 

different behaviour. 

 

Numerical HFBM simulations are also used to derive fN and gN, i.e. the 

dependence of the correction factors on the number of fibers N. In the case 

of the mean strength, the power-law dependence on N proposed by 

McCartney/Smith is consistent with HFBM results, and Eq. (2.13) can 

therefore be generalized to: 
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In the case of the correction factor for the standard deviation, the expression 

by McCartney/Smith is inadequate in reproducing results from numerical 

calculations, and therefore the dependence on N is derived from the latter as 

best fit, in the form: 

 
 

1

am b

Ng g N


      (2.16) 

 

where a=0.01, b=-0.05 are the numerically derived coefficients. The comparison 

of the results for mean strength and standard deviation are illustrated in Fig. 2.4 

(McCartney/Smith values are not reported, since the discrepancies are 

considerable).  

 

 

 

Fig. 2.3 Analytically and numerically derived correction factors for a) mean strength and b) 

standard deviation for N=1. 
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Fig. 2.4 Analytically and numerically derived correction factors for a) mean strength and b) 

standard deviation for N>1. 

 

2.3.2  Twisting angle  

 

As mentioned previously, the effect of fiber twisting must also be 

considered. The strength distribution and size-effect for a twisted-fiber rope 

are generally more complicated than for a parallel structure because twisted 

structures are heterogeneous in microstructure. This can be understood by 

envisioning fibers in layers following concentric helical paths about the 

central axis of the fiber bundle, with helical angles varying from zero, for 

the central fiber, to ψs, for fibers at the surface. Under the action of an 

applied load, the stresses or strains sustained by individual fibers differ, 

depending on their helical angle, with respect to the loading direction and 

the angles of the surrounding fibers. In addition, their stresses will depend 

on the actual distribution of neighbouring fiber breaks. 

The most commonly analyzed geometry of a twisted fiber bundle or yarn 

is the one in which the fibers lie in concentric cylindrical layers (Fig. 2.1). 

Within each layer, fibers follow ideal helical paths with the same helical 

angle, but this angle differs from layer to another. In this idealization, fibers 

in different layers must necessarily have different lengths to be strain-free 

and without slack. This implies that between two yarn cross-sections, fibers 
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(other than the central fiber) will have lengths (when straight) equal to their 

helical path lengths, and thus, will be longer than the distance between these 

cross-sections. 

 

In our model, we apply a probabilistic bundle strength model developed 

by Porwal et al. (2006) to the hierarchical structure of a twisted rope, which 

averages the fiber helical paths across the bundle to obtain uniform bundle 

geometry. In doing so, the mean helical angle for the ideal helical structure 

is calculated as: 
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(2.17) 

 

where zn and zkn are the total number of elements in the rope and in the k-th 

concentric layer, respectively; thus
___

 is weighted by the fraction of 

elements in each layer with respect to the total, namely zkn/zn, which 

increases when travelling from the centre to the surface of the bundle.  

 

Let us assume that any level of the hierarchical structure is made up of a 

large number, Nn, of twisted elements of Weibull type. Based on Porwal et 

al. (2006), Eq. (2.1) can be modified as: 
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thus the mean strength, < 
)(


Dn

>, is given by: 
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and the standard deviation,
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
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, is given by: 
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2.3.3  Friction 

 

According to Pan‘s (1993) theory, twisted yarns with friction can be 

treated as a chain of short twisted frictionless fiber bundles of length lcn 

(Fig. 2.3), where the critical length lcn is given by the Kelly and MacMillan 

equation (1986):  
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where μn is the friction coefficient, gn is the local lateral pressure, σbn is the 

tensile stress which causes the element to break and rn is the element radius. 

 

The length of each small bundle, lbn, is geometrically related to the 

critical length of the element by:  
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(2.22) 

 

where ψsn is the helical angle on the surface (at the hierarchical level n).  

 

Accordingly, we calculate the cumulative distribution function of the 

strength of this twisted yarn at any hierarchical level, n, simply by: 
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where ln is the length of the twisted yarns, and σn and mn are the scale and 

shape parameters of short bundles. They can be calculated by applying our 

hierarchical Daniels‘ theory (Eqs. (2.9) and (2.10)), based on the critical 

length, the fiber length and the scale and shape parameters of the single 

fiber, including the twisting angle modification (Eqs. (2.15) and (2.16)). 
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The expected values of the strength and standard deviation of the twisted 

yarn are given by Eqs. (2.2) and (2.3), based on the scale and shape 

parameters in Eq. (2.23). 

 

2.3.4  Chains of bundles 

 

In many cases, standard or hierarchical materials are schematically 

represented in the form of a chain of bundles, rather than simple fiber 

bundles. In this case, the procedure outlined in Section 2.2 can still be 

applied, with the necessary modifications.  

 

The material at level n can in this case be discretized in Nxn fibers in 

parallel (bundles) and Nyn bundles in series (chain). As shown in Fig. 2.5, a 

Nx1 by Ny1 chain of bundles at level 1 becomes a fiber in a Nx2 by Ny2 chain 

of bundles at the next hierarchical level, and so on. The Weibull strength 

distribution for a bundle at level n is given by:  
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We can now use the weakest link theory (Peirce 1926, Paramonov 2007) 

to derive the strength distribution of the chain of bundles as: 
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and the mean strength of the chain of bundles is thus: 
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Fig. 2.5 Schematic representation of hierarchical procedure for chains of bundles  

 

For each bundle of the next hierarchical level (n+1), we can apply Daniels‘ 

theory based on Weibull scale and shape parameters calculated at level n, 

and calculate their mean strength and standard deviation, which will 

correspond to the level (n+1) Weibull mean strength and standard deviation, 

according to our hierarchical theory. The Weibull strength distribution for 

the (n+1)-level chain of bundles can again be determined as for level n by as 

a function of the number of bundles Ny(n+1),  and so on.  

 

2.4  Results 

2.4.1 Size effects 

First, we investigate the size-effects predicted by the theory. The level 0 

fiber properties used here are provided in Table 2.1 (Pan, 1993) with 

consider l=1mm. The strength and standard deviation can be calculated from 

Eqs. (2.2) and (2.3) as <σW0> = 72.4 MPa, θW0 = 37.98 MPa. From the fiber 

properties we predict for the bundle (Eqs. (2.5) and (2.6)) <σD1> = 35 MPa, 

θD0 = 2.161 MPa. By applying the hierarchical theory (Eqs. (2.9) and (2.10)) 

we calculate the shape and scale parameters, m1 and σ1, at the first 

hierarchical level, finding m1 = 18 and σ1 = 50 MPa; then we calculate the 

mean and standard deviation for the second hierarchical level, and so on.  
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Table 2.1. Fiber properties (Pan, 1993). 

Item Typical value unit 

Fiber radius, r0 30 µm 

Characteristic length, lc0 1 mm 

Fiber number, N0 200  

Fiber shape parameter, m0 2  

Fiber scale parameter, σ0 82 MPa 

 

We applied this procedure to the extensive data by Amaniampong and 

Burgoyne (1994), reporting statistical strength of aramid and polyester 

yarns, described by a Weibull distribution, Gumbel distribution, Gaussian 

distribution and log-normal distribution (see Table 2.2), for 4 hierarchical 

levels. For the first and second levels we used N1=N2=30 and for third and 

fourth levels N3=N4=20. 

 

 

Fig. 2.6 Variation of the mean strength bundle as a function of (a) length or (b) number of 

yarns, at the first hierarchical level. 

 

 

The variation of the bundle mean strength with the bundle length and 

number of fibers in the bundle is shown in Fig. 2.6 for the first hierarchical 

level for the first type of fiber described in Table 2.2 (KR145). The strength 

decrease with increasing length/number of fibers can be adequately fitted by 

a power law (included in the Figs.). 
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Table 2.2. Comparison between experimental and present theory for the strength of 

hierarchical fibers (all strengths and standard deviations are given in MPa). 

 

Type 

of 

fiber 

 

Mean and standard 

deviation, fitted by 

a Gaussian 

distribution. (Exp.) 

Parameters of  a 

conventional Weibull 

distribution, fitted by 

the cumulative 

distribution function 

).)(exp(1 1

1

1

m
W






 

(Exp.) 

Parameters of the 

Weibull distribution, 

predicted by our 

model from the mean 

and standard deviation 

of the Gaussian 

distribution.  (Theo.) 

θD0 <σD0> m1 σ 1 m1 σ 1 

KRІ45 220 2477 16 2566 15 2565 

KRІ34 224 2461 15 2554 14 2555 

KRІ24 246 2467 15 2563 13 2564 

KRІ14 221 2520 16 2608 15 2608 

KRІІ45 230 2299 14 2393 13 2392 

KRІІ34 223 2270 13 2365 12 2363 

KRІІ24 166 2384 21 2451 20 2449 

KRІІ14 179 2417 18 2491 18 2492 

PR50 52 920 20 944 21 943 

PR40 57 879 18 904 18 906 

PR30 67 887 16 916 16 916 

PR20 63 909 16 937 17 937 

 

 
 

Figure 3: Comparison between predicted (―Present hierarchical theory‖) and experimentally 

derived (―Experimental‖) shape and scale parameters m1 and 1 for the first-level Weibull 

distribution of various types of fibres (see Table 2) 
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Next, we wish to investigate the influence of the various factors 

considered (number of fibers in the bundle, bundle length, frictional critical 

length, fiber twisting). Figs. 2.7-2.9 show the expected shape and scale 

parameters for the second hierarchical level, by varying the length, number 

of yarns, twisting angle or friction critical length, respectively. Power law 

fits are included in Figs. 2.7 and 2.8.  

 

a) b)

 

Fig. 2.7 Variation of the shape parameter (a) and scale parameter (b) of the bundle as a 

function of number of yarns at the second hierarchical level. 

 

 

 

Fig. 2.8 Variation of the scale parameter 2 of the bundle at the second hierarchical level as 

a function a) of its length and b) of its critical length. 
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We notice that the shape parameter increases with the number of yarns 

but is constant with respect to the fiber length, twisting angle and frictional 

critical length. Finally, the variation of shape and scale parameters is 

evaluated as a function of hierarchical level as shown in Fig. 2.10. The 

decrease in scale parameter implies a decrease in mean strength with 

increasing hierarchical levels. 

 

1200

1400

1600

1800

2000

2200

2400

2600

2800

0 5 10 15 20 25 30 35 40 45

S
c

a
le

 p
a

ra
m

e
te

r 
σ

2
 [

M
P

a
] 

Twisting angle ψ2 (deg.)     
 

Fig. 2.9 Variation of the scale parameter of the bundle as a function of its twisting angle at 

the second hierarchical level. 

 

 

It is important to emphasize that the size-scale effects predicted in this 

section naturally emerge from the theory, without the need of introducing 

best-fit or unknown parameters. Notice the agreement of the values of the 

power exponents when compared to those predicted by different approaches 

(Carpinteri, 1994; Carpinteri and Pugno, 2005; Pugno, 2007 a, c). 
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Fig. 2.10 Variation of shape parameter (a) and the scale parameter (b) as a function of the 

hierarchal level.    
 

2.4.2 Comparison with numerical and experimental results 

 

To check the validity of the proposed approach, we now compare some 

calculations to numerical or experimental results in the literature.  

 

First, we wish to analyse the strength of various chain-of-bundles 

architectures composed of a constant number of fibers. This is a useful study 

when evaluating the influence of structure in hierarchical architectures, 

which is a problem of paramount importance in the study of biological and 

bio-inspired materials. We consider various 128-fiber structures, organized 

in 1 or 2 hierarchical levels, for simplicity. As mentioned previously, this is 

a typical case where correction factors for bundles with a small number of 

fibers are particularly important. For simplicity, in this case we choose to 

neglect the effect of fiber twist or friction. Analytical calculations are 

compared to numerical simulations carried out with the afore-mentioned 

Hierarchical Fiber Bundle Model (HFBM). Level 0 fiber properties are 

σ0=34GPa and m0=3, and the labelling scheme for the considered structures 

is as follows:  

 

(a,b)  Single level chain of bundles: Nx1=a, Ny1=b. 

(a,b);(c,d) 2
nd

 level chains of bundles: Nx1=a, Ny1=b, Nx2=c, 

Ny2=d. 
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Fig. 2.11 Comparison between strength predictions for different first-and second-level, 

128-fiber chain of bundle architectures: values are calculated using McCartney/Smith 

correction factors, hierarchical theory correction factors, and Fiber Bundle Model (FBM) 

numerical simulations. 

 
 

Results are shown in Fig. 2.11 and display considerable agreement 

between analytical and numerical calculations. Furthermore, the correction 

factor introduced in Section 2.3.1 provides to be more reliable than that 

suggested by McCartney/Smith.  
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It is worth noting how the highest strength is achieved in the structures that 

maximize the number of parallel fibers, a fact that is of interest when 

evaluating optimization issues in hierarchical bioinspired materials. 

 

Next, we consider the experiments on Bombyx mori silkworm yarns 

(Horan, 2006) that we compare with our theoretical predictions. In this case, 

too, no best-fit parameters are present since the statistical data for Bombyx 

mori silk (Rigueiro et al., 2006), listed in Table 3, was used to predict the 

mean strength of the strands at different hierarchal levels.  

 

 

 

Fig. 2.12  Hierarchal organization of the twisted cabled yarn. 

 

Table 3. Bombyx mori silk fiber properties (Rigueiro et al., 2006). 

Item Typical value unit 

Fiber length, l0/lc0 1  

Fiber number in bundle, N0 According to level, see Fig.  

2.12 

 

Fiber shape parameter, m0 5.4  

Fiber scale parameter, σ0 402 MPa 
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Strands were labelled as: A (a) x B (b) x C (c), where A, B, C represent 

the number of fibers, bundles and strands in the final structure, respectively, 

and a, b, c are the number of turns per unit length at each hierarchical level. 

This type of structure is illustrated in Fig. 2.12.  

 

The comparison between experimental and theoretical values is 

graphically shown in Fig. 2.13. Theoretical values underestimate slightly the 

real values, however considerable agreement is achieved. In particular, the 

hierarchical theory calculations are able to capture the non-monotonic 

behaviour, i.e. the decrease in Ultimate Tensile Force (UTF) for the highest 

hierarchical structure 4(0) x3(10) x3(9). 
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Fig. 2.13 Comparison between hierarchical model predictions and experimental 

measurements (Horan et al., 2006) for the ultimate tensile force (UTF) of different 

hierarchical architectures. 

 

In addition, a close resemblance of fiber bundle model for modeling the 

biological structures (Erdmann et al., 2004) has recently been discovered. 

 

An interesting example of complex composite hierarchical structure is 

that of bamboo, constituted by nano to micro fibrils which further build up 

macro fibers and bundles, making it strong and tough. According to the data 
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regarding the structure and mechanical properties at each hierarchical level 

given in (Wan et al., 2006), we can determine single fiber Weibull 

parameters m0=2.474 and σ0=1040MPa, and therefore calculate a bundle 

shape parameter of m1=5.681, which is close to the experimental value of 

m1=5.140. This is an example of how the model could also be used to 

deduce material parameters which might be hard to determine 

experimentally. Another example is a tissue used as replacement for ACL, 

i.e. a braid-twist scaffold based on Poly(L-lactic acid) (PLLA) (Freeman et 

al., 2007), our hierarchical theory predicts a mean strength of 40 MPa which 

is close to the experimental value about 46 MPa, and here neglecting fiber 

twisting would yield a further 10% underestimation of this value. In this 

study, a preliminary framework of probabilistic upscaling is presented for 

hierarchical fiber bundle modelling of mean strength across nano-micro-

macro scales. 

  
 

2.5 Conclusions 
A hierarchical model has been presented to predict the strength of 

hierarchal ropes. The proposed procedure can be considered a hierarchical 

extension of the classical Daniels‘ theory. In particular, we assumed that at 

the first level, the fiber strength is normally distributed, and used the related 

mean and standard deviation to calculate the scale and shape parameters of 

an equivalent Weibull distribution with the same mean and standard 

deviation, thus linking two adjacent hierarchical levels. This procedure can 

be repeated at various hierarchical levels, up to the desired final structure of 

interest. Modifications have also been introduced in order to account for 

finite size, twisted configurations and friction. Strong size-effects, e.g. on 

mean strength and Weibull modulus, emerge naturally. Comparison with 

numerical simulations and experiments on hierarchical fibers display good 

agreement. Our theory could be useful for designing high-strength and 

toughness (e.g. bio-inspired) hierarchical ropes. 



 

 

Chapter 3 
 

3 Multimodal Daniels’ theory: an 

application to CNT twisted 

strands 

 
 

 

3.1 Introduction 
 

Research on carbon nanotube (CNT) synthesis and on CNT fibers are 

interdependent, and drive new discoveries in CNT catalysis and growth. 

Many of the key advances in CNT synthesis led immediately to new results 

in fiber production. Various synthesis techniques can produce either shorter 

nanotubes (including arc-discharge, laser oven, high-pressure CO 

conversion (HiPco), fluidized bed Chemical Vapor Deposition (CVD)) or 

longer nanotubes (substrate growth CVD, catalytic gas flow CVD). 

The Weibull distribution has been widely used to describe the strength of 

brittle materials (Danzer, 1992; Sigl, 1992; Junget et al., 1993; Helmer et 

al., 1995;  Peterlik, 1995). It is now well-known that a Weibull distribution 

of strength values necessarily arises, if the distribution of defects obeys the 

following three conditions: (Danzer, 1992; Danzer and Lube 1996) (1) the 

defects are independent from each other, i.e. they are not interacting; (2) the 

material obeys the weakest-link hypothesis; i.e. the weakest link causes 

failure of the whole structure; (3) a critical defect density can be defined, 

and the size of a critical defect is uniquely related to the strength. 
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The strength of a fiber is an extreme-value property, depending only on 

the strength of the weakest link. This is the basis of the so-called weakest 

link theory of brittle materials, which has been extensively discussed in the 

literature (Phoenix, 1975; Kasa and Saito, 1979; Hitchon and Phillips, 

1979). The most well-known one is due to Weibull (1951). The importance 

of weakest link theories is twofold: first, the theories are experimentally 

statistically verifiable and secondly, they provide a mechanism for 

extrapolating fiber strength to experimentally inaccessible gauge lengths.  

 

Carbon fiber strength distributions have been analyzed with single modal 

distributions, even though in many cases the measured distributions were 

clearly multimodal. Accordingly, we here extend the Daniels‘ theory 

(Daniels, 1945) to multi-modal failure. As an example, we apply the theory 

to predict the strength of CNT twisted strands and of the related CNT-CNT 

junctions, complementary to previous analyses (Pugno and Ruoff, 2004; 

Pugno and Ruoff, 2006; Pugno, 2006b; Pugno, 2007 a,b). 

 

3.2 Multimodal Daniels’ Theory 
 

Daniels (1945) considered Z parallel fibers with given cross-sectional 

area, linear elastic constitutive law and single modal Weibull distribution. 

Tensile strength distributions have more than one mode of failure are now 

considered in extending the Daniels‘ theory. The presence of several modes 

in the strength distribution implies the existence of several distinct types of 

strength-limiting defects in the fiber structure. Accordingly, we consider a 

multi-modal Weibull distribution for each fiber. For a multi-modal 

distribution, the probability function is given by: 

 

            1 21 ( 1 1 1 )nW W W W                    (3.1) 

 

where W1(σ), W2(σ) ….., Wn(σ) are the statistical probabilities of each modal 

failure.  

The probability density for the strength of a fiber is illustrated in Fig. 3.1. In 

a bundle, the fibers with strength larger than the applied stress, P, sustain 
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the stress. On other hand, the fibers with the strength lower than P, will 

break and the stress of broken elements becomes zero.  

 

 

 

 

 

 

 

Fig. 3.1 Probability density for the strength of each fiber in the bundle. 

 

Assuming Wi(σ) of Weibull type, the cumulative probability function is thus 

given by: 
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where l is the fiber length, l0i is the characteristic length, σ is the stress 

applied in the longitudinal direction, whereas σi and mi are the scale and 

shape parameters respectively. 

 

Accordingly, the probability density is 
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Fig. 3.2 shows the stress condition of the bundle. If R is the current number 

of surviving fibers in the bundle, then assuming the Equal Load Sharing 

(ELS), the average stress of the bundle is defined as 
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R

P
Z

                                               (3.4) 

 

where P is the stress sustained by the survival fibers. 

 

 

 

 

 

 

 

 

 

 

 

                                         Fig. 3.2 Stress condition of the bundle. 

The maximum value of  gives the strength of the bundle. Hence the 

strength of the bundle is obtained from . 

The ratio of the number of sustain fibers R to the total number of fibers Z, 

when Z is high and when fiber failures are equally probable events, is (Figs. 

3.1 and 3.2) 

 

                                                  d   
P

R
w

Z
 



                                           (3.5) 

and, considering Eq. (3.3), becomes: 

Survival elements 

Broken  elements 

P 

P 

P 

Bundle with total Z elements; 

R  survival elements 

Average bundle stress:  
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The maximum value of  is given by: 
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This equation can be solved numerically yielding Pf , which gives the mean 

strength of the bundle as: 
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The standard deviation of the strength is predicted to be 
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           (3.11) 

 

Eqs. (3.10) and (3.11) for n=1 correspond to the results of the classical 

single modal Daniels‘ theory.  

 

3.3 An application to carbon nanotube ropes 
 

CNTs are an extremely interesting type of material due to their unique 

one dimensional structure, and their excellent mechanical properties 

(Dresselhaus et al., 2001; Bratzel et al., 2010). To exploit their excellent 

physical properties at a macroscopic level, it is desirable to create CNTs 

with macroscopic length. However, it has been very challenging to grow 

arbitrarily long CNTs (Cheng et al., 1998). An alternative approach is to 

create long nanotube structures with many of them aligned into continuous 

yarns or ropes (Liu, et al., 2000; Jiang, et al., 2002; Zhang, et al., 2004; 

Zhang, et al., 2005; Shanov, et al., 2006). 

 

Due to the high-strength constituent CNTs and their twisted 

nanostructure, CNT yarns can potentially be made much stronger and 

tougher than Kevlar. When the twisted yarn is pulled, the CNTs attempt to 

straighten, invoking a locking mechanism used to make ropes stronger. 

CNTs have a finite length, l, but twisting prevents a bundle of CNTs (much 

longer than l) from falling apart. Like most advanced fibers, it has been 

shown that CNT strength can also be described by a Weibull distribution: 

(Barber et al., 2006; Pugno and Ruoff, 2004, 2006) 
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where l0 is the length of the individual CNT, σ is the applied fiber axial 

stress, m and σ0 are the Weibull shape and scale parameter, for a given fiber 

length l.  

 

The mean strength < σW > is given by: 
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whereas the standard deviation is: 
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The situation can additionally turn out to be still more complex, if the 

strength distribution is not unimodal. Moreover, bimodal Weibull 

distributions were observed for carbon (Helmer et al., 1995) and silicon 

carbide fibers (Lissart and Lamon, 1997) and for certain ceramics 

(Orlovskaja et al., 1997). 

 

Experimentally, (Zhang et al., 2004; Zhang et al., 2006) CNT yarns are 

peeled off from the super-aligned arrays, thanks to a strong binding force 

between the fibers. Also, the bundles were joined end to end forming a 

continuous yarn, Fig. 3.3. Intrinsic nanotube fracture, and nanotube sliding 

at the fronts suggest a bimodal failure. Accordingly, Eq. (3.12) becomes: 
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               (3.15) 

where σCNT, mCNT are the scale and shape parameter of single carbon 

nanotube whereas σp, mp are the scale and shape parameters of the peeling 

joint failure. 
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The hierarchical structure of CNT strand is shown in Fig. 3.3. It starts 

from level 0, a CNT fiber; this fiber consists of carbon nanotubes connected 

together end by end. We consider level 1 as a bundle of parallel CNT fibers. 

In level 2, a CNT strand, is a twisted bundle of CNT yarns. We model this 

complex hierarchical structure with our theory. 

         

 
 

 
Fig. 3.3 Hierarchical twisted strand CNT model. 

 

By differentiating Eq. (3.15), the probability density function is derived as 
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where αCNT = (1/σCNT)
m

CNT and αp = (1/σp)
mp

.  

 

Accordingly,  
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By substituting Eq. (3.15) into Eq.(3.4), the average stress of CNT yarn is 

calculated as 
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The maximum value of  is given by: 
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i.e.: 
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Eq. (3.21) can be solved numerically to obtain Pf ; by substituting Pf into 

Eq. (3.18), the strength of CNT yarn, σyD, is finally calculated: 
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whereas the standard deviation, θyD, of the strength is 

 
2 1(σ )  

1 exp( ( )

exp( )

pCNT

pCNT

myD m
yD CNT CNT p pf fmm

CNT CNT p pf f

Z
N P N P

N P N P

  

 


 

    
   

  
 

       (3.23) 

 

where Z is the number of the CNT fibers in the CNT yarn, level 1. 

 

In the case of a hierarchical rope (Gautieri et al., 2011) we can use our 

recently developed theory (Pugno et al., 2011), implying: 



Chapter 3- Multimodal Daniels’ theory: an application to CNT twisted 

strands.                                                                                                         57 
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where σyW and θyW are the mean strength and standard deviation of the CNT 

yarn in the Weibull form; σyD and θyD are the mean and standard deviation of 

CNT yarn in Daniels‘ form. 

From Eqs. (3.22) and (3.23), we deduce: 
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where my is the shape parameter of the CNT yarn and can be calculated 

numerically. Then σ0y, the scale parameter of the CNT yarn, can be 

calculated as: 
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where ly is the length of the CNT yarn. 

According to Daniels‘ theory, the mean strength and standard deviation, 

σst and θst, of the CNT strand (level. 2), based on the shape and scale 

parameter of the CNT yarn, are predicted to be:  
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where K is the number of yarns inside the CNT strand. 
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The most commonly analyzed geometry of a twisted strand is the one in 

which the yarns lie in concentric cylindrical layers. Within each layer, yarns 

follow ideal helical paths with the same helix angle but the angle differs 

from layer to layer. In this idealization, yarns in different layers necessarily 

must have different lengths to be strain-free yet without slack. This implies 

that between two strand cross-sections, yarns will have lengths when 

straight equal to their helical path lengths, and thus, will be longer than the 

distance between these cross-sections. 

 

Let us consider that any level of the hierarchical structure of CNT strand 

is made of a large number, K, of twisted CNT yarn of Weibull type. Based 

on Porwal et al. (2006), the mean strength,
)(

 st
, is given by:

 

                                                        


2
)(

cosst
st

                                                      
        (3.31) 

whereas the standard deviation, 
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st

, becomes: 

                                     


2
)(

cosst
st

                                              (3.32) 

 

3.4 Characterizing the nanotube-nanotube joint 
 

Interfacial strengths between carbon nanotubes (CNT) in contact were 

studied by using atomic mechanics by Li, et al. (2010). These results are 

important and may thus be used as a basis for explaining the observed 

tension strengths of CNT bundles and films that are mainly bonded by van 

der Waals interactions and the mechanical behaviors of composite materials 

with highly concentrated CNTs. 

 

Now, we calculate the scale and shape parameters of the junctions 

between carbon nanotubes in the yarn, shown in Fig. 3.3. We apply a 

reverse process, from the experimental data, which allow us to extract these 

two values. The mean strength and standard deviation of dry-draw CNT 

strand are 0.35 GPa and 0.023 GPa respectively (Zhang et al., 2008) (level 

2). The scale and shape parameter of CNT are σCNT = 34 GPa and mCNT ≈ 

2.7 (Pugno and Ruoff, 2006). The characteristic number of CNT fibers in a 
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yarn is of the order of 100 and NCNT≈ NP = 500. Accordingly, solving Eqs. 

(3.21), (3.22) and (3.23) we deduced mp=3.86 and σp= 3.36 GPa. These two 

parameters play a fundamental role in characterizing the statistical 

properties of the CNT fiber, yarn and strand. Figs. 3.4-3.5 show the effect of 

mp and σp on the overall performances, suggesting that our model is a new 

useful tool for design CNT strands. 

 

 

 

 

 

 

 

                                                                      

 

 

 

 

 

 

 

 

 
Fig. 3.4: Variation of CNT yarn‘s (a) shape parameter, (b) scale parameter, (c) mean 

strength and (d) standard deviation of, with shape parameter of the connection between 

carbon nanotubes in yarn. 
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Fig. 3.5: Variation of CNT yarn‘s (a) shape parameter, (b) scale parameter, (c) mean 

strength and (d) standard deviation, with scale parameter of connection between CNTs in 

yarn.  

 

3.5 Conclusion 
The density of joints between CNTs decreases with the CNT length. These 

joints are defects because the intermolecular interaction between CNTs at 

the joints is much weaker than the chemical bonds within a single molecule. 

Decreasing the density of joints should yield CNT yarn with higher tensile 

strength. Thus the producing super long carbon nanotubes (with defect 

density less than proportional to CNT length) is crucial in this context. 
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Chapter 4 

4 Catastrophic failure of nanotube 

bundles, interpreted with a new 

statistical nonlinear theory. 
 

 

 

4.1 Introduction 
 

In fibers of quasi brittle materials, such as carbon or glass, the strength is 

normally limited by the most severe defect present and, for a set of 

apparently similar fibers, the strength distribution can often be represented 

by a two-parameter Weibull function (Weibull, W. 1939). For a large 

number, N0, of fibers (e.g.  in a bundle) the number of surviving fibers (Chi 

et al., 1984), under an applied stress σ and unit length, is given by 

 

                              ])(exp[
0

0

m

s NN



                                   (4.1) 

where σ0 is the scale parameter of the Weibull distribution and m is the 

shape or flaw distribution parameter and is a constant of the fiber material: a 

large value of m indicates fibers with a uniform distribution of strengths or 

defects, while a small value of m describes fibers with a large variation in 

strengths or defects. From Eq. (4.1), if a Weibull distribution is an 

appropriate experimental description for a given set of fibers, then the data 

plotted as ln(ln(Ns/N0)) against lnσ will give a straight line whose slope 

yields m. The fracture stresses are usually found by testing large numbers of 

individual fibers; this process is time-consuming. 
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Accordingly, Chi et al. (1984) discussed the determination of single fiber 

strength distribution from a fiber bundle tensile test. They developed a 

simple method for determining the parameters of the Weibull distribution 

function based upon the analysis of tensile curves of fiber bundles.  

 

 Xiao et al. (2006) measured the stress–strain curves of four single walled 

carbon nanotube (SWCNT) bundles. Worth noticing are the numerous stress 

drops, large and small, that appear on the stress–strain curves at nearly 

constant strain. These drops, presented in all the tested samples, are 

indicative of sub-bundle failures. The strength of a single fiber was assumed 

to follow the two parameter Weibull distribution. A theoretical expression 

of the load-strain (F-ε) relationship for the bundle was derived. Then, the 

two parameter of the Weibull distribution were calculated. The analysis 

reported in (Xiao et al. 2006), was however able to catch the mean response 

of the bundle but not observed catastrophic behavior; accordingly, we 

propose here a modification of the classical Weibull statistics able to predict 

the observed snap-back instabilities. 

 

 

4.2 Theory 
 

The following hypotheses are assumed in the present analytical work:  

(1) The distribution of the single fiber strength, under tension follows the 

two-parameter Weibull distribution W(σ), i.e.  
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 (2) The applied load is distributed uniformly among the surviving fibers at 

any instant during the bundle tensile test (mean field approach). 

 

(3) The relation between applied stress and strain for single fiber, which 

obeys Hooke‘s law up to fracture, is: 
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                                              (4.3) 
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where Ef  is the fiber young‘s modulus. We will relax this hypothesis in the 

second part of the chapter. 

Eq. (4.2) may be written in an alternative form: 
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where R(ε) is the probability of survival under a strain ε. W(ε) is the failure 

probability of a single fiber under strain no greater than ε, ε0 is the scale 

parameter of the Weibull distribution, and can be given by: 
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At an applied strain ε the number of surviving fibers in a bundle, which 

initially consists of N0 fibers, is: 
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The last relation is valid only for large number of fibers and we try to add 

an effective and simple mathematical modification to satisfy this relation 

with small number of fibers. Then we start our correction for single fiber. 

For single fiber, N0=1with unit length, the surviving fibers will take form: 
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The mean strength of single fiber based on Weibull distribution is given by: 
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The strain corresponding to breaking point, can be obtained: 
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                                               fE/*                                           (4.9) 

 

 

Fig. 4.1: The relation between the force and the Strain for the carbon nanotube, CNT, 

breaking mode. 

 

 

The corresponding force are given as follows; 

 

                                               

*

*

             <

0                 >

A
F

  

 


 


                            (4.10) 

 

where A is the cross-sectional area of fiber.  

 

 

From Eq. (4.10), the surviving function of single fiber is given by: 

 

                                            

*

*

1                       

 0                          
sN

 

 

 
 


                     (4.11) 

 

From Eq. (4.7), we are interested to know the survival value at ε=    

Force 

Strain 

Fmax 
Fiber Breaking 
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])(exp[)(
0

*
m

sN



                                         (4.12) 

From Eq. (4.8) and (4.9), Eq. (4.12) can be written as: 

                                     
1

exp[ ( (1  )  ) ]m

sN
m

                                       (4.13) 

 

In order to support our point of view, the curve in Fig. 4.2 shows a relation 

between Ns and m where N0=1, m=1 in atomistic scale and it is raised by the 

hierarchical statistical model to m=10 to 50, representing the Weibull 

modulus on the structural scale. From Eq. (4.11), which takes form of a step 

function, we recommend using integer function specially round integer in 

Eq. (4.13), to give Ns=1. 

 

 

Fig. 4.2: Surviving fiber, N0=1, vs. shape parameter. 

 

For more clarification, here we have two methods to calculate the maximum 

force for single fiber: one method is mean strength divided by cross 
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sectional area and the other is using the survival probability with integer 

correction.   

Here we take a single carbon nanotube as an example. The parameters of 

CNT used in calculation are: m=2.7, σ0=34 GPa,  E=1060 GPa,       

A=1.43x10
-18

m
2
. 

 

From Eqs. (4.8) and (4.9), we find: <σ>≈30.06 GPa, Fmax ≈ 4.3x10
-8

 N and 

ε
*
=0.028 

 

By inserting round integer function into Eq. (7), it will be given by: 

                                   

                                                0

int[exp[ ]]

m

sN




 
  

    

                         (4.14) 

and the applied tensile load, F, is expressed as:                     

                                     ]])([exp[int)(
0

mEAF



                            (4.15) 

  
Fig. 4.3 Force-strain curves single CNT with and without integer correction. 
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From Eq. (4.15), Fmax=4.1x10
-8

N and * 0.027  . The results from the 

two methods have a good agreement. From Fig. 4.3, the constitutive 

behavior of single CNT, which characterizes by brittle fracture, take place 

by employing integer correction function.  

 

Fig. 4.4 Survival functions of single CNT, Ns vs. Strain.  

For more supporting, we use another scale parameter, σ0=44 GPa and fix 

other parameters. By utilizing Eqs. (8) and (9), then we get:  

<σ>≈39.2 GPa, Fmax≈5.6*10
-8

N and * 0.038  . 

From Eq. (4.15) with integer Fmax=5.46x10
-8

 N and * 0.037  . 
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Fig. 4.5 Force-strain curves single CNT with and without integer correction. 

 

Fig. 4.6 Survival functions of single CNT, Ns vs. Strain.  

The effect of integer modification for two cases i) N0=2 and ii) N0=3 is 

shown in Figs. 4.7, 4.8 and 4.9. 
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Fig. 4.7 Force-strain curves CNT bundle for N0=2. 

 

Fig. 4.8 Force-strain curves CNT bundle for N0=3. 
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Fig. 4.9 Force-strain curves CNT bundle with for N0=1, N0=2 and N0=3. 

Also for large number of fibers in a bundle, the number of surviving fibers 

must be integer so that: 

                                            ]])(exp[[Int)(
0

0

m

s NN



                       (4.16) 

The introduction of the integer function in Eq. (4.16) is mathematically 

trivial but has remarkable physical implications, as we demonstrate. 

The last expression is then related to the applied tensile load, F, by;                     

                                      ]])(exp[[Int)(
0

0

m

f NAEF



 

                   

(4.17) 

where A is the cross section area of the single fiber. Then, if  A, Ef, N0, m 

and ε0 are known, the curve of load vs. strain can be drawn. 

The experimental procedure to determine the probability of the single 

fiber strength from the experimental test of a fiber bundle was explained in 

detail in (Xiao et Al., 2006; Chi. et al., 1984). Empirical determination of 
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the initial slope of the load-strain curve, S0, in uniaxial tension, can be 

derived by the following equation (Cowking et al., 1991;  Mili et al., 2008): 

                                                
00 ANES f                                          (4.18) 

4.3 Experiments on CNT bundles 
 

We apply the model to carbon nanotube (CNT) bundles. The structure of 

CNT yarn or bundle, at micro scale, has two levels of hierarchy: (I) 

individual CNTs at the fundamental level and (ІІ) sub-bundles, of 

aggregated CNTs. These sub-bundles form a continuous net, with a 

preferred orientation along the longitudinal axis of the yarn (Tran et al., 

2009). Fig. 4.10 shows a model of CNTs pulling process from an array. 

According to recent studies (Iijima, et al., 1993; Bethune, et al. 1993), CNTs 

usually form sub-bundles containing up to 100 parallel CNTs; these have 

been described as nano-ropes. When pulling the CNTs from an array, it is 

the van der Waals attraction between CNTs which makes them joined end to 

end, thus, forming a continuous yarn. 

 

 

Fig. 4.10 Pulling yarn model of CNTs spinning process (Zhang et al., 2006). 

 

The computational model (Qian et al., 2002) and the experiments of 

CNTs (Ajayan et al., 2000) suggest that the breaking of bundles arises from 

sliding rather than breakage of individual CNTs. It was furthermore noted 
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that the sliding of CNTs along the axial direction caused a corrugation. The 

mechanical properties of the yarn depend on the interaction of CNTs in 

bundles, itself depending on the degree of condensation (or packing) of 

CNT bundles in the yarn structure. 

The failure mechanism of CNT-yarns is not yet clearly explained. Thus, 

here, mathematical modification is made to explain the mechanism of CNT-

yarn failure in a simple way. In a CNT yarn, we assume that it consists of a 

number of bundles connected in series and each bundle consists of sub-

bundles (aggregated CNTs), and we call the sub-bundle fiber.  

 
Fig. 4.11 The translation of fiber bundle to yarn. 

 

A schematic diagram of the configuration of a bundle in the weakest part 

of a yarn is presented in Fig. 4.11. The weakest part has minimum number 

of sub-bundle, and it causes stress concentration. The weakest part will 

break when the tensile force acting on a fiber is greater than its breaking 

load. After breakage of certain number of fibers in the weakest portion, the 

stress on surviving fibers increases, and it causes the rupture of the yarn 

faster. 

 

From the experimental force-strain curve in Fig. 4.12, we can see the 

failure behavior of the yarn, as the authors (Xiao et. al., 2006) noted in their 

previous work, the numerous kinks or load drops, are indicative of sub-

bundle failures.  
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Fig. 4.12 Force-strain curves for a SWCNT bundle. The dots are the experimental results, while 

the solid line is our nonlinear prediction whereas the dashed line is the prediction of the linear 

model. 

4.4 Non linear elastic constitutive law 
 

If the number of sub-bundles is nb and the number of individual CNTs 

inside each one is nn, then the total number of CNTs in the bundle is given 

by: 

                                     nbnnN 0                                              (4.19) 

From Eq. (4.10) we can rewrite Eq. (4.8), assuming only sub-bundle failure 

(the integer function applies only to nb), as: 

                               ]])(exp[[Int)(
0

m

bnf nnAEF



 

                      

(4.20) 
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In Fig. 4.13 different responses, by varying nb are plotted. Assuming non-

linearity (Chi et. al. 1984), Eq. (4.20) becomes: 

                     ]])(exp[[Int)1()(
0

m

bnf nnAEF



                   (4.21) 

where α is the coefficient of non-linearity, expected to be (Pugno et al., 

2006): 

                                              
B

f

k

aE 


3

                                           (4.22) 

where kB is Boltzmann‘s constant, a
3
 is the volume of a lattice unit cell and 

  is the thermal expansion coefficient. Non-linearity must be considered in 

the case of large strains. Fitting the experimental data (Xiao et al. 2006) 

with the theoretical prediction of Eq. (4.12), we found that nb=12 gives the 

best fit. Furthermore, in agreement with (Wang et al., 2009), we found that 

α=3 gives the best fit (in (Xiao et al. 2006) α=6 was used).   

 

Fig. 4.13 Force-strain curves for bundle with nb=10 or nb=10000. 
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In particular, Fig. 4.12 shows the theoretical-experimental comparison. The 

present model, is in close agreement with the observed experimental 

behavior.  

 

When we calculated the slope of each load drop, we found that it is 

negative and becomes higher in modulus by increasing the strain. These 

load drops, corresponding to a catastrophic failure of the bundle, suggest 

larger brittleness by increasing the strain. This tendency is also predicted 

theoretically by our statistical treatment, see Fig. 4.14. 

 

Fig. 4.14 Variation of load drop slop with strain. 

4.5 Conclusion 
The catastrophic failure of the nanotube bundle can be predicted by the 

proposed simple modification (the introduction of the integer function) of 

the Weibull distribution, including a nonlinear elastic constitutive law. We 

expect the validity of this approach for different types of bundles and not 

only for the relevant case of CNT bundle. 
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Similar treatments could be introduced in different nanotube statistics 

(Pugno and Ruoff. 2006), not only for the strength but also for the stiffness 

(Pugno, 2007e) or even adhesion (Pugno, 2007d; 2008).  



 

Chapter 5 

5 Investigating the role of 

hierarchy and fiber mixing on 

the strength of composite 

materials. 
 

  

 

5.1 Introduction 
 

Biological materials are hierarchically structured, beginning at the 

smallest scale with mineral particles, nano-fibers or platelets, which are 

embedded within a protein matrix. Hierarchical structuring can applied up to 

7 levels of hierarchy (Launey et al., 2010) in bone and dentine, where the 

largest structural elements reach length scales of millimeters. Detailed 

descriptions of the hierarchical structures of several biological materials, 

such as shells, bone, teeth, sponge and spicules can be found in recently 

published review articles (Chen et al., 2008; Meyers et al., 2008; Fratzl and 

Weinkamer, 2007). 

 

 Due to the hierarchical structure, there is a variety of designs, by 

changing the arrangement of the components at different hierarchical levels. 

In the case of bone, for example, the variability at the nanoscale is in the 

shape and size of mineral particles, at the micronscale in the arrangement of 

mineralized collagen fibers into lamellar structures and at the macroscale in 

the porosity and the shape of the bone. The mechanical properties of bone 

strongly depend on all these parameters (Currey, 2003, 2002). A collection 

of textbooks on the relation between hierarchical structure and mechanical 

properties is given in the references (Currey, 2002; Thompson, 1992; 
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Mattheck and Kubler 1995; Vincent,  1990; Wainwright et al. 1982; Niklas, 

1982). Moreover, a number of recent review articles can be referred 

(Jeronimidis, 2000;  Ashby, 1999; Gibson et al. 1995; Jeronimidis and 

Atkins, 1995; Weiner et al. 2000), (Fratzl, 2003; Mattheck and Bethge, 

1998; Vincent, 1999), (Launey et al., 2010; Weiner and Traub, 1992; 

Weiner and Wagner, 1998; Rho et al., 1998; Currey, 1999;  Mann and 

Weiner, 1999). 

 

Biological materials differ fundamentally from most of man-made 

materials in hierarchical way. The complexity of these materials is further 

increased because of the distribution of different chemical compositions, as 

the degree of mineralization, fluid content, and the resulting variation in the 

type and density of internal interfaces. This architecture arises from a 

multitude of different constituents already at the molecular level, including 

mainly various organic molecules, such as proteins or sugars, but also 

inorganic matter, mostly in the form of calcium-based minerals (Weiner et 

al. 2003). 

 

This hierarchy and functional grade imply that the mechanical properties 

of such materials are also different at different length scales. The highest 

level of hierarchy in biological materials can be either the whole organism, 

such as a single bone of a vertebrate or an appendage segment of an 

arthropod. These functional units as a whole have ideal mechanical 

properties for their individual purposes, which are optimized for the 

occurring loads. The overall mechanical properties of a functional unit 

rarely reflect the bulk properties of their constituents, but depend on their 

hierarchical and functional grading architectures. 

 

In fact, all stiff biological materials are composites with smallest 

components in the size-range of nanometers. In some cases (e.g. plants or 

insect cuticles), a polymeric matrix is reinforced by stiff polymer fibers, 

such as cellulose or keratin. Even stiffer structures are obtained when a 

(fibrous) polymeric matrix is reinforced by hard particles, such as 

carbonated hydroxyapatite in bone or dentin. The general mechanical 

behaviors of these composites are quite remarkable. In particular, they 

combine the two behaviors which are quite contradictory, and essential for 

the function of these materials. Bones, for example, need to be stiff to 

prevent bending and buckling (or strong to prevent crushing), and they must 
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also be tough, since they should not break catastrophically even when the 

load exceeds the normal range. How well these two conditions are fulfilled 

becomes obvious in the (schematic) Ashby-map in Fig. 5.1. Proteins 

(collagen in bone and dentin) are tough but not very stiff. Mineral, on the 

contrary, is stiff but not very tough.  
 

 
Fig. 5.1: Stiffness and toughness of proteins and mineral (hydroxyapatite and calcite), as 

well as a few natural protein-mineral composites and artificial materials. 
 

As for the model of the behaviors (e.g., strength and toughness) of 

nanotube-based composites, starting from the properties and volume 

fractions of the constituents can be seen in (Bosia et al. 2010). 

 

The rupture of disordered materials has recently attracted much 

technological and industrial interest and has been widely studied in 

statistical physics. It has been suggested by several groups that the failure of 

a disordered material subjected to an increasing external load shares many 

features with thermodynamic phase transitions. 

 

Also, sudden catastrophic failure of structures due to unexpected fracture 

of their components is a concern and a challenging problem of physics as 

well as engineering. The dynamics of the materials failure shows interesting 

properties and hence there has been an enormous amount of study on 

breakdown phenomena (Herrmann and Roux, 1990; da Silveria, 1999; 

Zapperi et al. 1999). The complexity involved in fracture processes can 
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often be suitably modeled by grossly simplified models. A very important 

class of models of material failure is the fiber bundle model (FBM)  

 

(Daniels, 1945; Coleman, 1958; Krajcinovic and Silva, 1982; Sornette, 1989 

a, b; Moukarzel and Duxbury, 1994; Harlow and Phoenix, 1978; Smith, and 

Phoenix, 1981; Phoenix et al. 1997; Phoenix and Raj, 1992; Beyerlein and 

Phoenix, 1996; Curtin, 1991; Curtin, 1993; Zhou and Curtin, 1995), which 

has been extensively studied in the past years.  

 

This model consists of a set of parallel fibers having statistically 

distributed strengths. The sample is loaded parallel to the fiber direction, 

and the fibers fail if the load exceeds their threshold value, the load carried 

by the broken fiber is redistributed among the surviving ones. Among the 

several theoretical approaches, one simplification that makes the problem 

analytically tractable is the assumption of global load transfer, which means 

that after each fiber breaking, the stress is equally redistributed on the 

surviving fibers, neglecting stress enhancement in the vicinity of failed 

regions (Daniels, 1945; Coleman, 1958; Krajcinovic and Silva, 1982; 

Sornette, 1989 a, b; Moukarzel and Duxbury, 1994; Harlow and Phoenix, 

1978; Smith, and Phoenix, 1981; Phoenix et al. 1997; Phoenix and Raj, 

1992; Curtin and Takeda, 1998). The relevance of FBM is manifold: in spite 

of their simplicity, these models capture the most important aspects of 

material damage, and due to the analytic solutions, they provide a better 

understanding of the fracture process. Furthermore, they serve as a basis for 

more realistic damage models.  

 

In this chapter, we try to give an answer to the following question: 

How does hierarchy affect the strength of a structure?  

Only few engineering models explicitly considering the complex structures 

are presented in the literatures (Zhao et al. 2009; Gao, 2006; Pugno, 2006; 

Pugno and Carpinteri 2008). In other words, ―is it possible by varying the 

hierarchical structure and mixing different material components to optimize 

the mechanical behavior of a material/structure?‖. To answer these 

questions, we introduce an analytical theory for hierarchical composite 

FBMs with different fiber types in the case of ELS.  

 

The chapter is structured as follows: in Section 2, we present the 

analytical procedure to calculate the strength of hierarchical fiber bundle 
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architectures, both in the case of single-phase and composite materials; in 

Section 3, we present results of calculations, together with comparisons with 

numerical simulations to validate the procedure; finally, conclusions and 

outlook are given. 

  

5.2 Theory 

5.2.1  Composite fiber bundle with mixed Weibull distribution 

 
Mixture Weibull distribution is one of the new studies which has been 

used a lot recently in statistical research articles and its applications are very 

common in reliability studies. In this section, we study composite fiber 

bundle, which is composed of two types of fibers with a designated 

percentage of each type. The classical Daniels‘ theory (Daniels, 1945) is 

applied on fiber bundle which has single type of fibers. Here, we apply it on 

the composite fiber bundle. 

 

The probability that a structure subjected to a stress σ will fail when   

           01 02

01 02

( )   (1 )) 1 (1exp( ( ) exp ) ( ( ) )
m m

W x x
 

 
                 (5.1) 

where x is the mixing parameter and, m01, σ01, m02 and σ02 are the Weibull‘s 

shape and scale parameters of the first and second type of fibers. The 

subscript 0 denotes the zero level and subscripts 1 and 2 denote the types of 

fibers in the bundle. 

By applying Daniels‘ theory (Daniels, 1945; Coleman, 1958), the mean 

stress is expressed as: 

                   01 02
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                  (5.2)                                

where P is the stress sustained by surviving elements. 

 

The maximum value of  is given by; 
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                                            (5.3) 
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namely: 
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Eq. (5.4) can be solved numerically to obtain Pf and Pf is the value 

producing maximum mean strength as: 

         <σD>              (5.5) 

and the standard deviation θ of the strength is: 
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        (5.6) 

where Nx is the number of fibers in the bundle.  

 

5.2.2  Composite fibers bundle with mixed elastic modulus and mixed 

Weibull distribution 

 

When considering fiber bundles with two fiber types, it is also necessary 

to consider the case in which they have different elastic modulus E1 and E2,. 

Here, we use the force-displacement, see chapter 4, to obtain the mean 

strength of the composite bundle.  

 

For simplicity, the relationship between applied stress and strain for single 

fiber obeys a linear elastic relationship up to fracture and a displacement 

controlled experiment is considered: 

                                                           
 fE                                        (5.7) 

where Ef is the fiber‘s elastic modulus.  

  

As discussed in part 4.2, at applied strain ε, the tensile load, F is given by;                     
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where A is the cross section area of the single fiber and N0 is the total 

number of fibers in the bundle. In structural engineering, the force and the 

displacement satisfy: 

                                                          F=KΔL                                             (5.9) 

where K is the structural stiffness and ΔL is the corresponding displacement. 

By considering the strain, ε= ΔL/L and from Eq. (5.8) the stiffness of fiber 

bundle is expressed by: 
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                            (5.10)                                   

In the case of two types of fibers (Fig. 5.2), which have different elastic 

moduli with different Weibull distribution, the force is given by: 

                                                   1 2F K K L                                      (5.11) 

where K1 and K2 are the stiffness of first and second type of fibers, 

respectively. 

 

Fig. 5.2 Schematic of mixed fiber bundle. 
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where E1f and E2f are elastic modulus of the first and second types of fibers; 

N01 and N02 are the numbers of each type of fibers, respectively. 

Thus, the mean strength of the bundle can be expressed as 
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Fmax is the maximum force, and it is calculated from Eq. (5.12) by 
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Eq. (5.15) can be solved easily and ε which gives maximum force is 

obtained. 

5.2.3  Hierarchical composite fiber bundle 

 

Here, we will introduce another model called a hierarchical composite 

fiber bundle. This type of bundle consists of different levels. By this model, 

we investigate the influence of hierarchy role on random fiber bundle.    
 
The hierarchical Daniels‘ theory (Pagno et al. 2011) can also be applied to a 

composite bundle of mixed fibers as shown in Fig 5.3. In this case, the first 

level has bundle of mixed fibers and by applying our hierarchical fiber 

bundle theory (part 2.2), we can calculate shape and scale parameters, m11, 

σ11, m12 and σ12 of the two different bundles in first level. 

 



Chapter 5- Investigating the role of hierarchy and fiber mixing on the 

strength of composite materials.                                                              85 
 

 

As shown in Fig. 5.3, we have two different composite bundles in first 

level, and this composite bundle constructs the second level. Thus Eqs. (5.5) 

and (5.6) is expressed in general hierarchical form as: 
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where Pnf is the value of Pf at hierarchical level n. The standard deviation, θ, 

of the strength is 
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where Nn is the total number of bundles in level n. 
 

 

Fig. 5.3 Schematic of hierarchical composite bundle. 

5.2.4 Chain of bundles under equal load sharing 

We succeed to equivalent the composite bundle as single element 

described by Weibull distribution with scale and shape parameter σ11 and 

m11 respectively as mentioned in the previous part. In this case, we apply the  

 

1
st
 level with 

m11, σ11 

2
nd

  level m21, σ21: 

mixed of two types 

of level  1  1
st
 level with 

m12, σ12 
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Previous process in chain of bundles with mixed fibers, as shown in Fig. 

5.4. In the model, the chain of bundle is divided into three sublevels, i.e. the 

first chain of bundle: 

 

1-Sub-level (01) is the single fibers in level 1. 

2-Sub-level (11) is the bundle of fibers in level 1. 

3-Sub-level (21) is the chain of bundles in level 1.  

 

where the first number represents the sublevel and the second number is the 

level of hierarchy. 
 

 

 

Fig. 5.4 Schematic representation of the composite fiber bundle model at the 1st level of the 

hierarchical chain of bundles structure. 

 

Here, we extend the model to application in chain of Ny statistically 

independent bundles with Nx fibers in each bundle as shown in Fig. 5.4. 

  

We use the weakest link theory to treat this model, the probability of the 

chain of bundle model, first hierarchical level, is given by; 

                               ))(exp(1)( 11

11

11

m

yNW



                                 (5.18) 

where Ny1 is the number of bundles in the chain. m11, σ11 are the shape and 

scale parameter of each composite bundle of the first level.  For each 

bundle, of the second chain of bundles, we apply Daniels‘ theory to  

Ny1 

σ11,m11 

Nx1 

σ12,m12 

Level 1 Level 2 Level n 

Ny2 

Nx2 

Nyn 

Nxn 
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calculate m12 and σ12. The probability of chain of bundles in level 2 is given 

by; 

                                    12
2 2

12

( ) 1 exp( ( ) )
m

yW N





                             (5.19) 

5.3  Results and applications 

5.3.1  Model: multi scale fiber bundle model with hierarchical load 

sharing 

 
In this section, we use our hierarchical extension of Daniels‘ theory, as in 

chapter 2, in the analysis of the hierarchical effect on the strength of the 

structures. Let us consider a hierarchical fiber bundle model as shown in 

Fig. 5.5.  

 

Fig. 5.5 Schematic of multi-scale (two levels) fiber bundle model. 

 

In the following, designations: N represents total number of fibers, 

number of hierarchical levels is denoted by i=1, 2… M, number of elements 

in each hierarchical level is denoted by K=K (i). (i.e., the number of fibers 

in the second level bundle, Fig. 5.5). To illustrate the adopted hierarchical 

load sharing rule, we consider a three levels structure as an example. In this 

case, the load is transferred from the upper elements of the hierarchical 

  

2nd level: bundle 
of bundles 

0 level of single 
fiber 

1st level: bundle 
of fibers 
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structure (corresponding to the ‗‗bundles-of-bundles-of-bundles-of-fibers in 

a three level structure) to all lower elements of the material (fibers, in this 

case). The load is shared equally by all the sub-elements of a given higher 

level element (as long as they are intact). For example, when one fiber 

breaks, the load will be redistributed to all fibers in the same bundle but not 

all the fibers in the whole structure, and also when bundle totally failed the 

load will redistributed on the bundles in the same levels. In other words, if 

the strength of a given fiber is less than the applied load, the fiber fails and 

the load is redistributed on the remaining fibers in the same bundle. After all 

the fibers in the bundle fail, the higher level element is considered as failed, 

the load is distributed among all the remaining elements in the same higher 

level (‗‗bundle of bundles‘‘), and so on. This means we have Equal Load 

Sharing, ELS, in each hierarchical level, separately, so we call it 

Hierarchical Load Sharing.    

 

Explain nomenclature 

 

Fig. 5.6 Schematic of different levels of fiber bundle models. 
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Fig. 5.7 Strength vs. Hierarchical level structure (a) N=8 and (b) N=16. 

 

 

Fig. 5.8 Strength vs. Hierarchical level structure with N=128. 
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We start with a very simple example. We have four different hierarchical 

structures made up of N=8 fibers are compared, with one to three 

hierarchical levels. The single level structure is made of eight parallel fibers 

(indicated as ―8‖). Two different double-level structures are considered: two 

bundles of four fibers (indicated as ―4,2‖), and four bundles of two fibers 

(indicated as ―2,4). Finally, the third level structure is composed by two 

bundles made of two bundles of two fibers (indicated as ―2,2,2‖). These 

structures are schematically shown in Fig. 5.6. 

 

Fig. 5.9 Mean strength vs. different hierarchical structure, for (a) k (1) = 8, (b) k (2) =k(3) 

=k (4) = 4. 

 

 

The level 0 fibers are assigned random Weibull distributed strengths, 

using carbon nanotube (CNT) properties: σ0 = 34 GPa and m = 2.74 (Pugno 

and Ruoff; 2006). 

 

Results in Fig 5.7a, b show that the lowest hierarchy level structure has 

the highest strength. Also, the strongest of the two double-level structures is 

that with the highest number of fibers in parallel (highest lower-level k). The 

latter would therefore seem to be the required condition for optimizing 

strength, i.e. the highest possible number of lower level elements set in 

parallel. This is confirmed by results in Fig. 5.8 relative to various 128-fiber  

arrangements, ranging from single-level (128 fibers in parallel) to 4-level 

structures. Again the highest strength is achieved by 128 fibers in parallel, 

then with two 64-fiber bundles, and so on. The influence of the number of 

(a) 

 

(b) 
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hierarchy levels on the mean strength is next evaluated again for structures 

with the same total number of fibers N. In Fig. 5.9a, structures having the 

same number of elements (fibers) at the lowest level are compared, i.e. 

k(1)=8, with N=160, as well as with the corresponding level 1 structure 

(k(1)=160) for reference. Once again a strength decrease is found from 1
st
 

level to 4
th

 level structures, indicating that increasing hierarchy leads to 

decreasing strength. The same tendency is found when keeping constant the 

number of elements at the highest hierarchical level, as shown in Fig. 5, for  

 

N=320. In Fig. 5.9b the comparison is between four different structures with 

k(M)=4, whilst in Fig. 5.10 the mean strength is plotted vs. number of 

hierarchical levels for three different values of k(M). 
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Fig. 5.10 Mean strength vs. the number of hierarchical levels. 

 

The observation that the increase in the number of hierarchical levels 

leads to the lower strength of materials corresponding to the results of 

Gomez and Pacheco (1997) and Newman and Gabrielov (1991). However, 

it is in contrast with the observations that many natural materials, built as 

hierarchical fibrous composites, have extremely high strength.  
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Therefore, we expect that, the hierarchical theory alone isn‘t enough to 

investigate the relationship between hierarchy and strength of nature 

materials. 

 

5.3.2  Composite fiber bundle  

Next, we wish to apply the theory outlined in section 5.2 and evaluate the 

influence on the mean strength of composite fiber bundles of the chosen 

Weibull parameters for the two types of fibers involved.  
 

 

 

 Fig. 5.11 Variation of mean strength vs. scale parameter of first type of fibers. 

In the first example, shown in Fig. 5.11, the mean composite bundle 

strength is calculated for varying σ01, m01 and m02 values, setting σ02 =0.01 

MPa, and a linear dependence is highlighted. As expected, the variation of 

m1 has an effect on the results in a manner which is proportional to the 

mixture ratio x, i.e. its effect increases with x, and increasing m1 values yield 

an increase in mean strength. Also; we study the behaviour of mixed bundle 

with σ02=0.1MPa. A linear behavior is also found between mean strength 

and mixture ratio as shown in Fig. 5.12. But this is not constant behaviour in 

all mixed bundles, we can see different behaviours of mean-strength versus. 

x curve with σ02=10 MPa as shown in Fig. 5.16.   
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Fig. 5.12 Variation of mean strength vs. mixture ratio of first type of fibers with a) m1=2, b) 

m1=3 and c) m1=4. 

m1=4, m2=2 

(a) 

(c) 

m1=2, m2=2 

(b) 
m1=3, m2=2 
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Fig. 5.13 variation of mean strength vs. shape parameter of first type of fibers. (a) x=0.1  

(b) x=0.3 (c) x=0.5 (d) x=0.7. 

 

In Fig. 5.13, we have four cases with different mixture ratio. In Fig. 

5.13(a), the variation of mean strength approximation is too small with σ01 

between 10 to 80 MPa. In general, the mean strength increases with m1. The 

diversion between curves increases with mixture ratio. With increasing x, 

Fig. 5.13(b-d), the mean strength increases in regular form. 

5.3.3 Comparison between rule of mixture and our model 

Another issue of interest is the comparison between the results obtained 

with the present model (application of Daniels‘ theory to a composite 

 

 

 

(b) 

(c) (d) 

 

(a) 
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bundle) and those obtained using a rule of mixtures approach. In the latter, 

the mean composite bundle strength RM  is calculated by using Daniels‘ 

theory to separately obtain the strengths 
D,1  and D,2  relative to 

bundles composed of 100% of first and second types of fibers, respectively, 

and then combining the two values using the relation: 

 

  DDRM xx ,2,1 1       (5.20) 

 

where x is the volume fraction of the first bundle. Figure 5.15 illustrates the 

discrepancy RMD    between the mean bundle strengths 

calculated using the two approaches for 02=0.1 MPa, m01=4, m02=2 and 

various values of 01. Clearly,  is zero for x=0 and x=1, but the discrepancy 

is not negligible for intermediate x values. This is due to the fact that when 

adopting a rule of mixtures approach, unrealistic load redistribution, Fig. 

5.14, is assumed among the different types of fibers as damage progresses in 

the composite bundle. 

                 Fig. 5.14 Schematic of equivalent rule of mixture applied on composite bundle. 
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In composite bundle, if one fiber breaks, the load will be redistributed to 

all surviving fibers (two types). But when using the rule of mixtures, each 

bundle is treated as isolated unit. This means the load carried by the broken 

fiber will be redistributed to surviving fibers of the same type of broken 

fiber. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.15 Difference between rule of mixture vs. mixture ratio and Daniels‘ theory vs. 

mixture ratio.  

5.3.4  Comparison with numerical results 

To validate the proposed approach, we now compare some analytical 

calculations with numerical results, (which was carried out with the Fiber  

 

 
 

 
 

(a) (b) 

(c) (d) 
m1=6, m2=2 

m1=2, m2=2 
m1=4, m2=2 

m1=8, m2=2 
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Bundle Model (FBM) (Pugno, 2006)). First, we wish to analyse the mean 

strength of various bundles composed of different types of fibers. As an 

example, we consider a mean strength calculation for a varying mixture 

ratio x and Weibull parameter σ01, for σ02=10 MPa, m1=2, m2=2. The mean 

strength of all composite bundles is calculated analytically using the 

procedure described in Section 5.2 and compared to values obtained through 

numerical simulations. Results are shown in Fig. 5.16 and display 

considerable agreement between analytical and numerical calculations. 

 

 

Fig. 5.16 Comparison between mean strength predictions for mixed fiber bundle where: 

σ02=10MPa. ―theo‖ stands for theoretical predictions, and FBM numerical simulations.  

 

 

m1=2, m2=2 

m1=8, m2=8 
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The comparison between analytical and numerical results is extended to 

various different cases of composite bundles composed by fibers with 

different Weibull parameters and for various mixture ratios. 

 
 

Table 5.1 Comparison between theory and FBM for different cases of composite 

bundle. 

Case 

σ01 σ02 m1 m2 x Mean 

strength 

(Theo.) 

Mean 

strength 

(FBM) 

1 20 10 2 4 0 5.506 5.523 

2 20 10 2 4 1 8.577 8.676 

3 20 10 2 4 0.5 6.07 6.133 

4 50 10 2 4 1 21.44 21.672 

5 50 10 2 4 0 5.506 5.533 

6 50 10 2 4 0.5 10.78 10.917 

7 10 0.01 2 4 1 4.3 4.329 

8 10 0.01 2 4 0 0.0056 0.0049 

9 10 0.01 2 4 0.5 2.14 2.173 

10 10 0.01 2 4 0.7 3.0017 3.021 

 

  

Fig. 5.17 Comparison between theory and FBM for different mixed cases. 

bundle. 
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Table 5.1 shows some different cases of composite bundle with different 

Weibull parameters. Here, mixture ratio equal to 0 and 1 means that the 

bundle is consisted of single type of fibers, even fist type or second type. 

We use mixture ratio equal to 0.5 in all cases except last case has x=0.7. We 

calculate the mean strength by Eq. (5.5) for all cases of bundles and 

compare it with numerical simulation. Fig. 5.17 shows the results in table 

5.1, but we prefer to put it into histogram form to show clearly the 

agreement between the theoretical prediction and numerical simulation. 

Also, a good agreement has been found in different cases about elastic 

modulus as in table 5.2.  

 
 

Table 5.2 Comparison between theory and FBM for different cases of different 

elastic modulus in composite bundle. 

 
N1, N2 m1 m2 σ01 

MPa 

σ02 

MPa 

E1 

MPa 

E2 

MPa 

Mean Strength  

(MPa) 

FBM mean 

strength (MPa) 

500 2 3 4 4 10 20 1.642 1.51±0.05 

500 3 6 50 400 300 800 125.4 122.94±4.35 

500 2 4 40 20 110 200 9.506 8.857± 0.226 

 

 

From table 5.2 we conclude that our model (part 5.2.2) is valid to treat 

composite bundle  with different elastic modulus. 
 

5.3.5 Hierarchical composite bundle 

 

To illustrate the possible variations in the mechanical behavior of a 

hierarchical composite bundle, we consider some specific examples. First, 

let us analyze the case of a bundle with two types of fibers, Fig. 5.18, and a 

mixture ratio of x=0.5, with σ01=10 MPa, σ02=0.01 MPa , m01=2, m02=3 and 

N=480. In the non hierarchical case, i.e. in the case of a level 1 bundle with 

all 480 fibers in parallel, the expected mean strength, according to the 

calculation procedure in section 2.2, is <σ>=2.14 MPa. 
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Fig. 5.18 Composite fiber bundle of two types of fibers. 

 

Here, to investigate the effect of hierarchical arrangement on the bundle 

strength we study the combination between hierarchical theory and 

composite fiber bundle by applying our hierarchical bundle theory (Pugno, 

et al. 2011). In this section, we develop a model of hierarchical composite 

bundle where the first level is a bundle of single type of fibers (fiber 

bundle), but in the second level we have mixed bundle (composite bundle of 

bundles) as shown in Fig. 5.19. 

 

One possibility for creating hierarchical architectures with this set of 

fibers is to form single-fiber bundles at level 1 and mixed bundle types at 

level 2. For example, we can build two types of level 1 bundles, the first one 

consisting of two fibers of the first type (σ01=10 MPa and m01=2), the 

second of 5 fibers of the second type (σ02=0.01 MPa and m02=3), and create 

a level 2 structure composed of the resulting 120 bundles of the first type 

and 48 of the second type. The chosen nomenclature for this type of 

structure is  
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[(2,5);(120,48)]. From the application of our hierarchical fiber bundle model 

we get: σ11=8 MPa, σ12=0.007 MPa, m01=2.4, m02=5.2, and a mean strength 

for the 2
nd

 level bundle of 2.56 MPa, which is larger than the above non-

hierarchical level 1 bundle.  

 

 

Fig. 5.19 Schematic of composite bundles of bundle. 

 

By comparing this result with previous mean strength, we can see an 

increase in mean strength. This results is very interesting, because 

application of hierarchical theory alone leads to decrease in structure 

strength; but when it is combined with composite bundles structure, we 

obtained improvement in the mean strength. Maybe this combination 

between hierarchy and composite is the first key point to investigate the 

relationship between hierarchical structure and strength increase in nature 

materials. Also, this model could be used to design new bio-inspired 

materials.  

 

 

 

 

Level 1 with 

m11, σ11 

 

Level 1 with 

m12, σ12 
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This strength increase is obtained through various other configurations, 

as documented in Fig. 5.20. The general tendency is that the greatest 

strength increase is obtained by grouping strong fibers in small bundles and 

weak fibers in large bundles at level 1. Clearly, the load redistribution 

during specimen failure in this type of configuration favours an 

enhancement of the resistance to damage progression. 

 

This may lay the foundation for a new engineering paradigm that 

includes the design of structures and materials starting at the molecular 

level, from bottom-up, to the macroscale, to create new materials and 

structures that mimic and exceed the properties found in biological analogs. 
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Fig. 5.20 Mean strength vs. hierarchical structure of composite bundle of bundle. 
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5.4 Conclusion  

We have shown here that with different structural arrangements, different 

combinations of strength and hierarchical structure can be achieved. This 

finding is the most important result of the case studies put forth in this 

chapter: it illustrates that the conflict between strength and hierarchy can be 

resolved by introducing composite as an additional design variable. This 

provides important insight into structure–property relationships in materials. 

Overall our analysis illustrates that the introduction of hierarchies is the key 

to control material properties. Applying this insight to the design of 

materials will allow an extended use of hierarchies in bioinspired or 

biomimetic synthetic materials at nanoscale. 



 

Chapter 6 

6 Modeling the self-healing of 

biological or bio-inspired 

nanomaterials 
 

 

6.1 Introduction     

     
 

Biological systems have the ability to sense, react, regulate, grow, 

regenerate, and heal. Recent advances in materials chemistry and micro- and 

nano-scale fabrication techniques have enabled biologically inspired 

materials systems that mimic many of these remarkable functions. Self-

healing materials are motivated by biological systems in which damage 

triggers a site-specific, autonomic healing response. Self-healing has been 

achieved using several different approaches for storing and triggering 

healing functionality in polymers. There are different models for the 

prediction of the fatigue behavior of self-healing polymers (Maiti and 

Geubelle, 2005; Koussios and Schmets, 2007; Jones and Dutta, 2010).  

Other classes of synthetic materials can undergo healing processes, which in 

mechanics are basically the mechanisms leading to the recovery of strength 

and stiffness after damage. However, most synthetic materials require 

outside intervention such as the application of heat or pressure to initiate 

and sustain the healing process. For example, Ando et al. (2001; 2002 a, b, 

c) have shown the healing capability of sintered ceramics while exposed to 

high temperatures (1000 °C). 

 

In addition, supramolecular materials naturally feature so-called 

«reversible» (non-permanent) intermolecular bonds, in contrast with 

polymers derived from traditional chemistry, which are based on so-called « 

irreversible » (permanent) bonds. This reversibility feature imparts a natural 
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capacity to self-heal: cracks or breaks occurring in supramolecular materials 

can be repaired simply by putting the fractured surfaces back together and 

applying light pressure; the material nearly recovers its initial strength 

without the need for bonding or heating. 

 

Too model in general self-healing materials, fiber bundle models can be 

used. A large number of non-healing models exist for fiber bundles (e.g. - 

Chi et al., 1984; Xiao et al., 2008; Cowking et al., 1991; Mili et al., 2008). 

In contrast, according to the author‘s knowledge, there is no model for the 

prediction of the tensile behavior of self-healing fiber bundles except 

Carmona (2006) and Kun (2006). This model is the aim of the present 

chapter. 

6.2  Theory 

6.2.1 Engineering self healing parameter 

 

For a large number, N0, of fibers in a bundle, the number of surviving 

fibers Ns0, under an applied strain ε, is given by: 

 

])(exp[
0

00

m

s NN



                              (6.1) 

where ε0 and m are the scale and shape parameters of the Weibull flaw 

distribution. 

The fraction of broken fibers is given by: 

 

                           0
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0
N
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                              (6.2) 

and in case of self-healing:              

                                              

0

0

0 N

NN

N

N shbh
h


                              (6.3) 

where Nsh is the actual number of surviving fibers in the presence of self-

healing. 
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Note that Eqs. (6.2) and (6.3) resemble the definition of an engineering 

strain (
0

0

l

ll 
  ). 

We introduce the parameter λ, as the ratio between the number of broken 

fibers with self-healing, Nbh, and the number of broken fibers without 

healing Nb0: 
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sh

b

bhh

NN

NN

N

N




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


                          (6.4) 

 

Finally, we introduce the healing parameter η, as: 

 

00

01
s

sh

NN

NN




                                (6.5) 

Note that when η=1 we have Nsh=N0, whereas for η=0, Nsh =Ns0. 

 

6.2.2  True self healing parameter 

 

We now introduced the true parameter 
*

h  as: 
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* lnlnln
d
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N

N
NN
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N sh
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N

N

h
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                      (6.6) 

 

in analogy with the true strain ( ). 

In absence of healing it becomes: 

 

                                                   0

0*

0 ln
N

N s                                             (6.7) 

 

From Eqs. (6.4) and (6.5), the true self-healing parameter is given by: 
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0
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The introduction of the true self-healing parameter of Eq. (6.8) is needed 

in order to take into account the variation of the total number of fibers 

induced by the self-healing (similarly to the true strain that is accounting for 

the length l variation). 

 

From Eq. (6.1) we immediately derive: 

 

))((ln
00

ms

N

N




                             (6.9) 

 

By substituting Eq. (6.9) into Eq. (6.8) we find: 
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and thus: 

 

]))(1exp[(
0

0

m

sh NN



                     (6.11) 

 
The introduction of the self-healing into Eq. (6.11) generalizes the classical 

Weibull (1939) approach, Eq. (6.1). 

 

The last expression is related to the applied tensile load, F, by:    

                  

                                             
0

0

( ) [ exp[( 1)( ) ]]mF AE N


  


            (6.12)  

where A is the cross sectional area of the single fiber and E is its Young‘s 

modulus. Then, if A, L, E, N0, m and ε0 are known, the curve stress vs. strain 

can be obtained: 
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eq
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6.3  Results and discussion 
 

As an example we apply our calculation to carbon nanotube (CNT) 

bundle with strength randomly assigned, ε0 = 0.04 and m0 ≈2.7, based on the 

nanoscale Weibull distribution (Pugno and Ruoff 2006). Fig. 6.1 shows the 

mechanism of the self-healing of a carbon nanotube. Self-healing of CNTs 

may accelerate the development of the CNT apace-elevator mega cable 

(Pugno, 2006; Pugno et al. 2008; 2009). 

 

 

 
 

 

Fig. 6.1 Carbon nanotube self-healing mechanism (Prof. B. Yakobson‘s talk). 

 

In Fig. 6.2, the stress–strain response is predicted for a bundle with 

different values of the healing parameter, η, from 0 to 1, while all the other 

parameters in Eq. (6.13) are kept constant. When increasing the self-healing 

parameter, both the maximum stress, see Fig. 6.2, and the strain at which the 

maximum stress is reached, increase. (This can also be seen in Fig. 6.7, 

where the ratio between the maximum stress with healing and maximum 

stress without healing is increasing in monotonic way with healing 

parameter increasing.) For a self-healing parameter equal to 1, the bundle 

will be unbreakable. Fig. 6.3 shows the variation of the number of survival  
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fibers as a function of the applied strain, with different values of the healing 

parameter.   

 
Fig. 6.2 Stress-strain response by varying the self-healing parameter. 

 

 
Fig. 6.3 Survival fibers, Nsh≡N vs. strain, by varying the healing parameter. 
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Fig. 6.4 shows two different type curves. The upper curves represent the 

stress-strain curves of Fig. 6.2 and the lower curves are the rates of variation  

of the number of survival fibers in the bundle, by varying the applied strain 

and for different self-healing. The maxima of the lower curves represent the 

points at maximal failure rate of the bundle. From Fig. 6.4 we can see that 

the strains at which the maximum stress is reached, , are lower than the 

strains at the maximal failure rate, , as specifically reported in Fig. 6.5. 

 

 
       Fig. 6.4 Stress or rate of survival fibers vs. strain by varying the healing parameter. 
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Fig. 6.5 Strains corresponding to maximum stress or failure rate vs. healing parameter. 

The area under the stress-strain curve is the total dissipated energy 

density (in our calculations we assumed that the bundle is fractured when 

the stress is 1% of its maximum).  

 
Fig. 6.6 Dissipated energy density with self-healing normalized to the non healing case vs. 

healing parameter. 
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In Fig. 6.6 the ratio between the dissipated energy density with and 

without healing is reported and clearly increases with increasing the self-

healing parameter. 

 

The ratio between the strains corresponding to the maximum stresses 

with and without healing εmax,h and εmax,0 respectively and the ratio between 

the related maximum stresses σmax,h and σmax,0 respectively are reported in 

Fig. 6.7: both these ratios increase by increasing the healing parameter. 

 
Fig. 6.7 Dimensionless maximum stress and related strain vs. healing parameter. 

 

 

 

6.4 Conclusion 

 
The presented simple self-healing fiber bundle model is able to quantify 

the increments of the mechanical performances induced by the self-healing. 

Applications to design a new class of bio-inspired nanomaterials are 

envisioned.  



 

Chapter 7 

7 General Conclusions 

 

7.1 Conlclusion  
 

In this study, an analytical model for the statistical strength of 

hierarchical bundle structures is developed to extend Daniels‘ theory. This 

extension is used to investigate the effect of hierarchy on the bundle mean 

strength. The outcome of this analytical investigation allows the evaluation 

of the mean strength of different hierarchical architectures. 

 

We have proposed several models of hierarchical fiber bundles. Various 

specific applications were considered:  

1- Hierarchical fiber bundle (bundle of bundle of fibers).  

2- Hierarchical structure composed of CNT fibers (Analysis of the 

statistical size effect on CNT bundle strength through a weakest link 

model). 

3- Hierarchical composite fiber bundle (bundle constituted of different 

types of fibers). 

 

The adopted approach, i.e. a so-called Hierarchical Fiber Bundle Model 

(HFBM), is used in the analysis of the strength of different hierarchical 

structures of fiber bundles. Usually this type of problem is analyzed by 

means of phenomenological models. Our model is very efficient in 

describing some specific hierarchical architectures. In general, the fiber 

bundle model allows the simple incorporation of statistical and probabilistic 

effects, where as phenomenological models usually do not include basic 

continuum mechanics laws.  

 

Here, the main theoretical models can be used with the engineer, rather 

than the statistician, in mind. As shown in chapter 2, this model is able to 

predict the strength of a hierarchical fiber bundle at any hierarchical level 

and results may be used and compared with experimental data. The 
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hierarchical fiber bundle model can be used to design synthetic bundles 

based on bio-nanofibrils which have promising mechanical properties.  

 

We have also shown that, extending Daniels‘ theory using a bimodal 

Weibull distribution provides the means to predict the strength of CNTs 

yarns. The interfacial and CNT yarn strength are described by a statistical 

Weibull distribution. The basic result of the model indicates that the mean 

strength and standard deviation of CNT yarns increase with increasing 

interfacial Weibull parameters. The variable CNT-CNT joint strengths 

studied here will ultimately need to be considered in strength models for 

structural of CNT yarns. 

   

 

We have also presented a self-consistent analytical procedure to calculate 

the strength of hierarchical fiber bundles constituted by two (or more) types 

of fibers. We have demonstrated how hierarchy alone is insufficient to yield 

strength enhancement, and how an increase in strength can be obtained 

through a suitable choice of fiber distributions at different hierarchical 

levels. In other words, the key to an improvement in the mechanical 

performance in general of multi-scale materials would seem to lie in 

hierarchical structuring of multi-components. This result can be of great 

interest, first as a mean to interpret and further investigate the exceptional 

mechanical performance of biomaterials, and secondly as a strategy to 

design and fabricate new bio-inspired materials with desired tailor-made 

properties. The theory and analytical procedures outlined in this work can 

provide a useful tool in this field. 

 

Another important contribution presented in this thesis is the extension of 

the fiber bundle model for the study a self healing. The process is studied by 

allowing the possibility for fractured fibers to be substituted by intact ones. 

This model makes fiber bundles promising candidates for the understanding 

of the biofibrils, and possible benefits of further insight in this field can 

hardly be exaggerated. The analysis given in this chapter is for a single level 

problem, and it is clearly desirable to extend the analysis to a hierarchical 

level. 
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In conclusion, in this thesis, several types of for hierarchical bundle 

structures have been proposed and analyzed, and the mean strength of the 

corresponding structures have been explored through analytical calculations 

and some numerical simulations. It will be interesting to see further 

experimental efforts directed in this field.  

 

7.2 A perspective 
 

What is the future of the fiber bundle model? This study has shown that 

ability to extend fiber model for a hierarchical structure, which can be 

helpful to design strong and tough new materials. Quite a few efforts have 

also been undertaken for the unification of the existing statistical models of 

fracture, and their embedding into the formalisms of statistical physics, and 

remarkable progress has been made in the recent years. In this respect there 

are two extensions to FBM that can be implemented with moderate effort. 

First, our introduction of analytical correlations for mean strength and 

hierarchical levels can be extended to investigate the mean strength of 

hierarchical fibrous composite structures. Secondly, placing fiber bundle 

elements on the nodes of networks while retaining their disordered 

properties and dynamical rules could be a fascinating field to study, and a 

similar effort has recently been undertaken employing the random fuse 

model (Bakke et al., 2006). This could lead to a better understanding for the 

failure modes of electrical grids, or computer networks. 

 

An increasing interest in bionic design of materials based on structures of 

natural biomaterials has led to the nanomechanical characterization of 

biomaterials. This might inspire future materials design as well as 

manufacturing and assembly strategies, not limited to the nanoscale. For 

example, using universal patterns to the fullest extent and creating diversity 

at the highest hierarchical level, in order to match client-specific 

requirements, could reduce production costs, delivery times and increase 

product quality. It has been suggested that the complexity of engineered 

systems is converging with that of biological systems. For example, a 

Boeing 777 has 150,000 subsystems and over 1000 computers, which are 

organized in networks of networks. Consequently, a better understanding of 

how nature designs and manages complexity will enable to maintain 

engineered complexity under control or even reduce it. 
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Finally, the fiber bundle model can be used as a tool for understanding 

phenomena such as creep and fatigue, as well as used to describe the 

behavior of fiber reinforced composites or modeling e.g. network failure, 

traffic jams and earthquake dynamics. 
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