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via Campi 213a, 141100 Modena, ltaly

(Received 25 November 1997; accepted for publication 26 June) 1998

We describe an analytical method to calculate the strain field and the corresponding band gap
modulation induced in a quantum well by a surface stressor of arbitrary shape. In this way, it is
possible to engineer the confinement potential of different strained nanostructures based on
patterned heterojunctions. Band gap modulations up to 130—-140 meV are predicted for suitably
designed [I-VI/IlI-V and llI-V/llI-V heterostructures. @998 American Institute of Physics.
[S0021-897€98)02219-1

I. INTRODUCTION ful and flexible for the design of new strain induced nano-

] ] ] structures.
Low-dimensional structures have attracted interest for

their optical and transport properties and for their applica-
tions to electrical and optoelectronic devices. The fabrication
technology plays a crucial role in the determination of thell. MODEL
des!red quantization .phenomena. SO. far, Sev eral ways of pro- The pattern of stressors is treated as a thin film having a
ducing laterally confined structures in semiconductors have g .

! . nonplanar surface,, whose profile is described by the equa-
been proposet.Most of them rely on material processing

which induces sample damage, or on the difficult control ofﬂon

the self-organized growtﬁAn alternative technique for lat- y—tf(x,z)=0, )
eral quantum confinement is based on band gap modulation . o i
induced by strain gradients across a quantum Well. wheref is periodic function such that 1<f(x,z)<1 andt

The idea is to design and realize a proper pattern oi?‘ thg maxim_um amplitude. pf .the profile modulation. The
free-standing stressors to generate a strain field whose intefi™ iS deposited on a semi-infinitey£0) planar substrate
sity and modulation are such that lateral confinement is ob€0Ntaining a quantum well at a given depth under the film-
tained in a quantum well a few nanometers below the Sur'go-substr'at'e interface. Thg problgm is s.olved within the lin-
face. To engineer such a strain field, the shape, distributiorfa" lasticity theory of an isotropic continuum. _
and dimension of the stressors must be determined according T N0 body forces are present, an isotropic continuum
to the prediction of the elasticity theory. This optimization Satisfies the equilibrium equations and the compatibility con-
procedure is usually pursued numerically by using finite-ditions:
element techniquéswhich are quite accurate but require re- (1+1)V2g+ VVTracd o) =0
iterated computations for any change of the structural param- V.o=0 ' (2
eters. The exact analytical solution of this elasticity problem '
is known only for very few and simple stressor shapés. whereV is the transpose of the gradient vecl v is the
general, approximations are introduced by simplifying thepoisson’s ratio, andr is the stress tensor, respectively.
boundary conditions or by using a series expansion method. The boundary conditions are given by the requirement

In this article, we show that accurate analytic solutionsthat no net force acts upon the free surfatethat is
can be found when the amplitude of the relevant Fourier

components of the surface profiléhe stressor patterpare 0=0V[y—tf(x,2)]=oy—toVf, )
much smaller than the corresponding wavelengths. A methogya ey is the unit vector along the positiyedirection.

is presented which aIIovys the solution (_)f the elasticity prob- ¢ { is small compared to the period of the functifn
lem for any surface profile, thus becoming extremely powery g the two directions, it is reasonable to look for a solu-
tion of the elasticity equationdEgs. (1) and(2)] having the
3E|ectronic mail: mazzer@osfime.unile.it form of a series expansion:
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* A basic solution of Eq.2) satisfying the requirement
a(x,y,2)= 2, t*¢'(x,y,2). (4)  that the stress field tends to zero fprtending to — is
=0 uniquely given by

For the same reason, the stress fields at the free surface

[y=tf(x,z)] can be expanded in series around0, to ob- W(X,y,z)=exgdi(nkx+ mp2 +Quny1(S+yT), @®
tain Qnm= Vn?k?+m?p?,
e 5 () whereS and T are 3 by 3 matrices whose coefficients are
1 ’ o independent ok, y, andz and depend linearly on three free
= —_tBta B v Y
olx.tf(x,2),2] ﬁzo 0;0 B! e (x2) ayP K parameters¢,, C,, andcs, to be determined by means of

Y=o (5)  the boundary conditions at the surfages 0. This gives the

freedom to write the term3+yT) as a linear combination
where the derivatives of the stress fields on the right han@f matrixes,§j](n,m) and T[j](n,m) (j={1,2,3), such

side are calculated 3t=0. that
By using the series expansion in E@), Eq. (3) be-
comes g1](n,my=x
o w 5w S 2](n,my=y. (9)
1 o' ~ =5
> > - thref(x2)f ;ﬁ y q3)(mmy=2
=0 o B! Y= ly=o With this choice, the forces acting upon the plagyes 0,
have the simple form:
. . 1 +a+1 &B()'<a)
2 2w T VIS0 © wi,_o=exi(nkx mpa] (e cz.co)
=exfgi(nkx+mp2]c, (10

This is a power series which makes it possible to find the
boundary conditions on the plang=0, at any order irt.
Hence, by requiring that all the coefficients of the power
series are zero a recursive formula is found which provides
an explicit form for the boundary condition to be satisfied by
the functionso{(x,y,z).

At the zeroth order, Eq6) gives

osh W/A=-0.01 { h/A=-0.05

o'9(x,02)y=0, (78

which implies that the zeroth order stress is uniform in space,
i.e., it is a constant tensoa{®). Then, at the first order we
get

P (x,02)y=0"Vf, (7b)
and, finally, fora=2: 08 . .
h/A=-0.1 WAa=0.5
o'Y(x,02)y 06t
a—1 —_
Pgla=B| o
=¢T<al)(X,0,2)Vf—[ > f(X,Z)'B(T y 2
=1 y y=0 2;0_2
1 gBgla—B-1) ) =
- Vfll. (7C) 00} L |
B b T T T
B,
The advantage of this method is that the boundary con- o
ditions now involve the stress on the plages 0. This makes . © . «
it possible to search for a basic solution of the elasticity o 2 1o KR 1

equations[Eqg. (2)] having the form of a normal mode
exfi(nkx+mp32] multiplied by a function ofy. Then, thanks FIG. 1. Comparison between the stress field calculated exestilid line)

: ; " . and approximatelydashed lingat various distance-{ h) from the interface
to the linearity of the boundary conditiofiq. (7)], the gen for a rough surface which can be mathematically described by a cycloid

e_ral 50|Utior_] of the problem is found simply by using a Fou-yth periodic cusps. The relation between widthand periodicity(\) of the
rier expansion method. cycloid ist/\ =10%.
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as it can be easily verified. The expression of the matrixe$or any surface profile. In fact Eq7b) shows that the solu-

Sj1(n,m) andT[j](n,m) are reported in the Appendix. tion is found simply by calculating the Fourier transform of
Now, the solution of the elastostatic probldiq. (2)], the surface-profile gradieny, f.
with boundary conditions given by Ed7), is straightfor- Figure 1 shows the stress field calculated with our

ward. Consider a surface profilgx,z) which is periodic method and the one calculated exactly by Gaal® for a
alongX andz directions, the period being2k and 2/p surface profile which can be mathematically described by a
respectively, and leN,k and N,p be the maximum wave cycloid. The comparison clearly shows that our calculation is
vectors(multiples of the fundamentaksandp) in the Fourier — quite accurate even at the first order approximation for a
expansion of the profile along the two directions. wide range of values of the amplitude to wavelength ratio.

The recursive formula for the boundary conditidi&s;.  Moreover, our model can be used to evaluate the stress field
(7)] is such that the maximum wave vectors involved in thefor arbitrary stressor shapes and covers the vast majority of
Fourier expansion of the right hand side of the equation ixases which have not been solved exactly so far.
proportional toa. This gives, fora=1,

IIl. RESULTS AND DISCUSSION

aNy  aN,
a9 (x,02)y= E c(n,m,@)exgi(nkx+mp2)]. The most immediate application of our model is to de-
—aNXn—aNZm termine how the electronic band structure in a quantum well,
(11 located a few nanometers below the free surface, can be

Thanks to Egs(9) and(10), the solution of the elasticity properly tuned to introduce additional degrees of confine-
problem at the ordew is reduced to the calculation of the Ment for electrons and holes. In fact a lateral confinement

Fourier coefficients(n,m, ). In fact, potential is induced by the stressors in regions of the quan-
tum well where compressive hydrostatic stress is released or

aNy aN, 3 where tensile hydrostatic stress is produced. Being analyti-

o'Y(xy,2)= E n 2 mz ¢j(n,m,a){gj1(n,m) cal, the results of the calculation provide a straightforward
—aly —alz =1 recipe for the design of quantum wires and quantum dots
+yT[j1(n,m)rexd i (nkx+mp2) + Qpmy}- having the desired electro-optical properties. In this section,

our model is applied to the calculation of the hydrostatic
(12 stress induced by long rectangular stresggrging rise to
In conclusion, the solution of the original elasticity prob- quantum wiresand square boxeguantum dots
lem is obtained recursively by calculating the Fourier trans-  For a periodic array of long stressors having a trapezoi-
forms of the expression on the right hand side of @jand  dal section, the major and minor bases being give layd
by substituting the obtained coefficients into E#j2). b, the first-order hydrostatic stress is given byy=to§§,)
The calculation of the first-order solution is quite simple +..., wheret is the maximum thickness of the layer and

| |

k
1+e?—2eky 006{5 (B—2x)

k
1+e?—2eky co{z (B+2x)

2(1+v)og
Oy = 3m(B—b) 9 K K ’ (13
1+e?9—2eY cos{i (b—2x) ) 1+e”9—2e9 cos{E (b+2x) )
|
wherev is the Poisson ratio of the substrate, is the misfit " T
stress between the film and the substrate, ler@#/T, T Thy =~ g To(1+ 1) X {xy (D[ dy(=X,2) + $y(x,2)]
being the period of the stressor array. It is immediately seen
that, fory=0, the first order hydrostatic stress exhibits sin- Xy (DY (=X, =2) + dy(X, = 2) ]+ xy(X)
gularities forx= *=B/2 andx= *b/2, that is at the corners of X[ dy(—2,X)+ by(2,X) ]+ xy(—X)
the stressor. These singularities are an expected consequence
of the presence of corners when the problem is solved within X[¢y(=2 =X+ ¢y(z.=X) ]}, (14)
the linear elasticity theory. However, they are integrable, i.e.yith
the displacement field is a continuous function, and they do
not affect the shape and the magnitude of the stress field L,+u
dy(u,v)= :
underneath the center of the stressor where the effect of y VL w2+ (L, +v)2+y2
strain confinement is studied. L 4y (15
In the case of a regular matrix of rectangular boxes, the Xy(u)= B —
first-order expansion of the hydrostatic component of the V(Ly+tu)+y
stress field is given by, =to{))+...., where whereL, andL, are the dimensions of the stressor box. As
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hI= - 6.5nmm FIG. 4. Three-dimensional plot of the OD electron density corresponding to
the ground energy stat&€0) and the lowest excited leveh& 1), which
is degenerate in this structure.

AE_ (eV)

ceeding the critical thickness for pseudomorphic growth
(~40 nm). After the growth, the Zn§,Se g layer is pat-
terned to get 300-nm-wide stripes with 30 nm separation.
- . o o, ® The maximum band gap modulation is obtained for a 3-nm-
X (nm) wide quantum well buried below a GaAs barrier of 5 nm.
o _ Since the strain in the ZR$Se, g layer, before pattern-
FIG. 2. () Schematic diagram of the stressed wire and substrateand ina. is uniformlv tensile. lateral quantum confinement in the
conduction band modulation at the center of QW. g _y e = q . . .
quantum well is obtained in the regions just below the voids
between the stressors. The quantum well experiences a strain

in the previous case, this function exhibits singularities ondradient resulting in a nearly parabolic lateral potential well
the planey=0. It is easy to see that the stress diverges ann%F'g' 2. The maximum modulation in conduction band
the border of the box where, however, the displacement field Ecvax IS @bout 130 meV and the width of the lateral con-
is continuous. Finally, in the region occupied by the quantund NN potential is approximately equal to the distance be-

well the stress is minimum just under the center of the!Ween stressors. _ -
Stressor. Another interesting example is shown in Fig. 3, where a

In general, the stress field modulation in the quanturnquamum dot(QD) is obtained with a GaAs/Ga gAs
well can be increased by increasing the aspect ratio of thggantum well stressed by d-ﬁ%FAS square F’Oxes- The
stressor provided that the critical thickness for the generatioffliCkness of the 19Ga, ,As layer is 3 nm that is less than
of misfit dislocations is not exceedéd. the critical thickness for pseudomorphic growth. The size of
Our results show that, at the first order, the stress field"€ I.3G%.7AS stressors is 1815x 3 n?. In this case, the
decreases exponentially as the distance from the stressor ifiv@in in the InGaAs layer, before processing, is uniformly
creases. At the same time the stress gradient increases as figfnPressive with a mismatch 6f2.1% with respect to the
distance from the stressor decreases. This means that therd@AS substrate. This means that lateral confinement occurs
a trade off in choosing the most convenient location of thdust under th.e stressors rather than between them as in t.he
quantum well bearing in mind, also, that the well cannot be®@S€ of_ tensile stress. In fact, the quantum well hydrostatic
too close to the free surface to avoid image-charge effects £XPaNsIion due to the stressors has a maximum at the center
In the following we report the results of the optimization Of the square box, whereas it decreases towards the edges
procedure for two prototype low-dimensional structures. AsVhere a slight compression occurs.
a first example we discuss a heterostructure consisting of a /S results in a box-shaped well for electrons. The
Ing /Gay AS/GaAs quantum well and barrier covered by Maximum modulation in conduction banllE gy is now
ZnS, .S 5 Stressors. The thickness of the ZpSa, 5 layer, about 140 meV and the width of the well is gpproxmately
whose mismatch with respect to GaAs+i<.1%, is chosen the same to the size of the stressors. For this structure, the

in order to get the maximum strain modulation without eX_single—particle energies and the associated eigenfunctions are
calculated by solving numerically the Schinger equation

in the envelope function approximation by means of a plane-
wave expansiofl. Figure 4 shows a plot of the electron

y . . . .
Ty Gag, As  stressor z charge density corresponding to_ the first three electronic lev-
/1——74 els. The center of the stressor is locatekat0 andz=0.
7, The ground state exhibits a single maximum at the center of
H=’$ : 2L, I:xGa N the stressor, while the excited states exhibit an increasing
0.2 0.8

number of maxima. It is evident that the electrons are con-

D
Wl fined laterally in the quantum we(QW). The energy split-
GaAs Substrate ting between the ground state and the first excited level is 40
meV which is larger than the thermal energy at room tem-
FIG. 3. Schematic diagram of the stressed dot and substrate. perature.
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IV. CONCLUSIONS 0

1)+
0

0
In summary, we have developed a new and simpleg3]=| 0
method to calculate analytically the stress field induced in a 0
guantum well by a stressor of arbitrary shape. The method
allows one to engineer the strain distribution and the corre- ( 2vm3p3 0 nk(QZ,—2vm?p?)

= O O

|
3
Qnm

sponding band gap modulation. Low-dimensional structures 0 0 0
can easily be designed to get nearly parabolic lateral confin-

ing potentials with a band gap modulation as high as 130— K(Qan—2vm?p?) 0 2mp(Qi,+vn?k?)
140 meV and an interband splitting of about 40 meV. Due to

its flexibility and simplicity this method is well suited for

engineering a vast range of nanostructures, for instance by[1]= 0 T[2],

electron beam lithography, having the desired structural and nm

electro-optical characteristics.

n’k® . nkmp
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The explicit expression of the six matrixes appearing inT[3]= mp T[2].
Eq. (12) is the following: Qnm

1 . . .
0 0 i The determinant of [2] is equal to zero and it is easy to see
g1i]=|1 0 0|+ that T[2]2=0
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