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Engineering the strain field for the control of quantum confinement:
An analytical model for arbitrary shape nanostructures
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via Campi 213a, I41100 Modena, Italy

~Received 25 November 1997; accepted for publication 26 June 1998!

We describe an analytical method to calculate the strain field and the corresponding band gap
modulation induced in a quantum well by a surface stressor of arbitrary shape. In this way, it is
possible to engineer the confinement potential of different strained nanostructures based on
patterned heterojunctions. Band gap modulations up to 130–140 meV are predicted for suitably
designed II–VI/III–V and III–V/III–V heterostructures. ©1998 American Institute of Physics.
@S0021-8979~98!02219-1#
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I. INTRODUCTION

Low-dimensional structures have attracted interest
their optical and transport properties and for their appli
tions to electrical and optoelectronic devices. The fabricat
technology plays a crucial role in the determination of t
desired quantization phenomena. So far, several ways of
ducing laterally confined structures in semiconductors h
been proposed.1 Most of them rely on material processin
which induces sample damage, or on the difficult control
the self-organized growth.2 An alternative technique for lat
eral quantum confinement is based on band gap modula
induced by strain gradients across a quantum well.3

The idea is to design and realize a proper pattern
free-standing stressors to generate a strain field whose in
sity and modulation are such that lateral confinement is
tained in a quantum well a few nanometers below the s
face. To engineer such a strain field, the shape, distribut
and dimension of the stressors must be determined accor
to the prediction of the elasticity theory. This optimizatio
procedure is usually pursued numerically by using fini
element techniques4 which are quite accurate but require r
iterated computations for any change of the structural par
eters. The exact analytical solution of this elasticity probl
is known only for very few and simple stressor shapes.5 In
general, approximations are introduced by simplifying t
boundary conditions or by using a series expansion meth

In this article, we show that accurate analytic solutio
can be found when the amplitude of the relevant Fou
components of the surface profiles~the stressor patterns! are
much smaller than the corresponding wavelengths. A met
is presented which allows the solution of the elasticity pro
lem for any surface profile, thus becoming extremely pow

a!Electronic mail: mazzer@osfime.unile.it
3430021-8979/98/84(7)/3437/5/$15.00
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ful and flexible for the design of new strain induced nan
structures.

II. MODEL

The pattern of stressors is treated as a thin film havin
nonplanar surface,S, whose profile is described by the equ
tion

y2t f ~x,z!50, ~1!

wheref is periodic function such that21, f (x,z),1 andt
is the maximum amplitude of the profile modulation. Th
film is deposited on a semi-infinite (y,0) planar substrate
containing a quantum well at a given depth under the fil
to-substrate interface. The problem is solved within the l
ear elasticity theory of an isotropic continuum.

If no body forces are present, an isotropic continuu
satisfies the equilibrium equations and the compatibility c
ditions:

H ~11n!“2s1“̃“Trace~s!50,
“–s 50,

~2!

where“̃ is the transpose of the gradient vector“, n is the
Poisson’s ratio, ands is the stress tensor, respectively.

The boundary conditions are given by the requirem
that no net force acts upon the free surface,S, that is

05s“@y2t f ~x,z!#5sŷ2ts“ f , ~3!

whereŷ is the unit vector along the positivey direction.
If t is small compared to the period of the functionf,

along the two directions, it is reasonable to look for a so
tion of the elasticity equations@Eqs.~1! and ~2!# having the
form of a series expansion:
7 © 1998 American Institute of Physics
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s~x,y,z!5 (
a50

`

tas~a!~x,y,z!. ~4!

For the same reason, the stress fields at the free su
@y5t f (x,z)# can be expanded in series aroundy50, to ob-
tain

s@x,t f ~x,z!,z#5 (
b50

`

(
a50

`
1

b!
tb1a f ~x,z!b

]bs~a!

]yb U
y50

,

~5!

where the derivatives of the stress fields on the right h
side are calculated aty50.

By using the series expansion in Eq.~5!, Eq. ~3! be-
comes

(
b50

`

(
a50

`
1

b!
tb1a f ~x,z!b

]bs~a!

]yb U
y50

ŷ

2 (
b50

`

(
a50

`
1

b!
tb1a11f ~x,z!b

]bs~a!

]yb U
y50

¹ f 50. ~6!

This is a power series which makes it possible to find
boundary conditions on the plane,y50, at any order int.
Hence, by requiring that all the coefficients of the pow
series are zero a recursive formula is found which provi
an explicit form for the boundary condition to be satisfied
the functionss(a)(x,y,z).

At the zeroth order, Eq.~6! gives

s~0!~x,0,z!ŷ50, ~7a!

which implies that the zeroth order stress is uniform in spa
i.e., it is a constant tensor,s(0). Then, at the first order we
get

s~1!~x,0,z!ŷ5s~0!
“ f , ~7b!

and, finally, fora>2:

s~a!~x,0,z!ŷ

5s~a21!~x,0,z!“ f 2F (
b51

a21

f ~x,z!bS ]bs~a2b!

]yb U
y50

ŷ

2
1

b!

]bs~a2b21!

]yb U
y50

“ f D G . ~7c!

The advantage of this method is that the boundary c
ditions now involve the stress on the plane,y50. This makes
it possible to search for a basic solution of the elastic
equations@Eq. ~2!# having the form of a normal mod
exp@i(nkx1mpz)# multiplied by a function ofy. Then, thanks
to the linearity of the boundary conditions@Eq. ~7!#, the gen-
eral solution of the problem is found simply by using a Fo
rier expansion method.
Downloaded 03 Jul 2012 to 192.167.204.100. Redistribution subject to AIP 
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A basic solution of Eq.~2! satisfying the requiremen
that the stress field tends to zero fory tending to 2` is
uniquely given by

H C~x,y,z!5exp@ i ~nkx1mpz!1Qnmy#~S1yT!,

Qnm5An2k21m2p2,
~8!

whereS and T are 3 by 3 matrices whose coefficients a
independent ofx, y, andz and depend linearly on three fre
parameters,c1 , c2 , andc3 , to be determined by means o
the boundary conditions at the surface,y50. This gives the
freedom to write the term (S1yT) as a linear combination
of matrixes,S@ j #(n,m) and T@ j #(n,m) ( j 5$1,2,3%), such
that

H S@1#~n,m!ŷ5 x̂
S@2#~n,m!ŷ5 ŷ
S@3#~n,m!ŷ5 ẑ.

. ~9!

With this choice, the forces acting upon the plane,y50,
have the simple form:

Cŷuy505exp@ i ~nkx1mpz!#~c1 ,c2 ,c3!

5exp@ i ~nkx1mpz!#c, ~10!

FIG. 1. Comparison between the stress field calculated exactly~solid line!
and approximately~dashed line! at various distance (2h) from the interface
for a rough surface which can be mathematically described by a cyc
with periodic cusps. The relation between width~t! and periodicity~l! of the
cycloid is t/l510%.
license or copyright; see http://jap.aip.org/about/rights_and_permissions
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3439J. Appl. Phys., Vol. 84, No. 7, 1 October 1998 Mazzer et al.
as it can be easily verified. The expression of the matri
S@ j #(n,m) andT@ j #(n,m) are reported in the Appendix.

Now, the solution of the elastostatic problem@Eq. ~2!#,
with boundary conditions given by Eq.~7!, is straightfor-
ward. Consider a surface profilef (x,z) which is periodic
along x̂ and ẑ directions, the period being 2p/k and 2p/p
respectively, and letNxk and Nzp be the maximum wave
vectors~multiples of the fundamentalsk andp! in the Fourier
expansion of the profile along the two directions.

The recursive formula for the boundary conditions@Eq.
~7!# is such that the maximum wave vectors involved in t
Fourier expansion of the right hand side of the equation
proportional toa. This gives, fora>1,

s~a!~x,0,z!ŷ5 (
2aNx

aNx

n (
2aNz

aNz

mc~n,m,a!exp@ i ~nkx1mpz!#.

~11!

Thanks to Eqs.~9! and~10!, the solution of the elasticity
problem at the ordera is reduced to the calculation of th
Fourier coefficientsc(n,m,a). In fact,

s~a!~x,y,z!5 (
2aNx

aNx

n (
2aNz

aNz

m(
j 51

3

cj~n,m,a!$S@ j #~n,m!

1yT@ j #~n,m!%exp@ i ~nkx1mpz!1Qnmy%.

~12!

In conclusion, the solution of the original elasticity pro
lem is obtained recursively by calculating the Fourier tra
forms of the expression on the right hand side of Eq.~7! and
by substituting the obtained coefficients into Eq.~12!.

The calculation of the first-order solution is quite simp
ee
in
f
e

th
.e
d

fie
t

th
th
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for any surface profile. In fact Eq.~7b! shows that the solu-
tion is found simply by calculating the Fourier transform
the surface-profile gradient,“ f .

Figure 1 shows the stress field calculated with o
method and the one calculated exactly by Gaoet al.5 for a
surface profile which can be mathematically described b
cycloid. The comparison clearly shows that our calculation
quite accurate even at the first order approximation fo
wide range of values of the amplitude to wavelength ra
Moreover, our model can be used to evaluate the stress
for arbitrary stressor shapes and covers the vast majorit
cases which have not been solved exactly so far.

III. RESULTS AND DISCUSSION

The most immediate application of our model is to d
termine how the electronic band structure in a quantum w
located a few nanometers below the free surface, can
properly tuned to introduce additional degrees of confi
ment for electrons and holes. In fact a lateral confinem
potential is induced by the stressors in regions of the qu
tum well where compressive hydrostatic stress is release
where tensile hydrostatic stress is produced. Being ana
cal, the results of the calculation provide a straightforwa
recipe for the design of quantum wires and quantum d
having the desired electro-optical properties. In this sect
our model is applied to the calculation of the hydrosta
stress induced by long rectangular stressors~giving rise to
quantum wires! and square boxes~quantum dots!.

For a periodic array of long stressors having a trapez
dal section, the major and minor bases being given byB and
b, the first-order hydrostatic stress is given byshy5tshy

(1)

1..., wheret is the maximum thickness of the layer and
shy
~1!5

2~11n!s0

3p~B2b!
logF S 11e2ky22eky cosF k

2
~B22x!G D S 11e2ky22eky cosF k

2
~B12x!G D

S 11e2ky22eky cosF k

2
~b22x!G D S 11e2ky22eky cosF k

2
~b12x!G D G , ~13!
As
wheren is the Poisson ratio of the substrate,s0 is the misfit
stress between the film and the substrate, andk52p/T, T
being the period of the stressor array. It is immediately s
that, for y50, the first order hydrostatic stress exhibits s
gularities forx56B/2 andx56b/2, that is at the corners o
the stressor. These singularities are an expected consequ
of the presence of corners when the problem is solved wi
the linear elasticity theory. However, they are integrable, i
the displacement field is a continuous function, and they
not affect the shape and the magnitude of the stress
underneath the center of the stressor where the effec
strain confinement is studied.

In the case of a regular matrix of rectangular boxes,
first-order expansion of the hydrostatic component of
stress field is given byshy5tshy

(1)1...., where
n
-

nce
in
.,
o
ld
of

e
e

shy
~1!52

p

6
s0~11n!3$xy~z!@fy~2x,z!1fy~x,z!#

1xy~2z!@fy~2x,2z!1fy~x,2z!#1xy~x!

3@fy~2z,x!1fy~z,x!#1xy~2x!

3@fy~2z,2x!1fy~z,2x!#%, ~14!

with

5 fy~u,n!5
Lu1u

A~Lu1u!21~Ln1n!21y2
,

xy~u!5
Lu1u

A~Lu1u!21y2
,

~15!

whereLx andLz are the dimensions of the stressor box.
license or copyright; see http://jap.aip.org/about/rights_and_permissions
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in the previous case, this function exhibits singularities
the plane,y50. It is easy to see that the stress diverges al
the border of the box where, however, the displacement fi
is continuous. Finally, in the region occupied by the quant
well the stress is minimum just under the center of
stressor.

In general, the stress field modulation in the quant
well can be increased by increasing the aspect ratio of
stressor provided that the critical thickness for the genera
of misfit dislocations is not exceeded.6

Our results show that, at the first order, the stress fi
decreases exponentially as the distance from the stresso
creases. At the same time the stress gradient increases a
distance from the stressor decreases. This means that th
a trade off in choosing the most convenient location of
quantum well bearing in mind, also, that the well cannot
too close to the free surface to avoid image-charge effec

In the following we report the results of the optimizatio
procedure for two prototype low-dimensional structures.
a first example we discuss a heterostructure consisting
In0.2Ga0.8As/GaAs quantum well and barrier covered
ZnS0.2Se0.8 stressors. The thickness of the ZnS0.2Se0.8 layer,
whose mismatch with respect to GaAs is11.1%, is chosen
in order to get the maximum strain modulation without e

FIG. 2. ~a! Schematic diagram of the stressed wire and substrate and~b!
conduction band modulation at the center of QW.

FIG. 3. Schematic diagram of the stressed dot and substrate.
Downloaded 03 Jul 2012 to 192.167.204.100. Redistribution subject to AIP 
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ceeding the critical thickness for pseudomorphic grow
~;40 nm!. After the growth, the ZnS0.2Se0.8 layer is pat-
terned to get 300-nm-wide stripes with 30 nm separati
The maximum band gap modulation is obtained for a 3-n
wide quantum well buried below a GaAs barrier of 5 nm.

Since the strain in the ZnS0.2Se0.8 layer, before pattern-
ing, is uniformly tensile, lateral quantum confinement in t
quantum well is obtained in the regions just below the vo
between the stressors. The quantum well experiences a s
gradient resulting in a nearly parabolic lateral potential w
~Fig. 2!. The maximum modulation in conduction ban
DEcMax is about 130 meV and the width of the lateral co
fining potential is approximately equal to the distance b
tween stressors.

Another interesting example is shown in Fig. 3, where
quantum dot~QD! is obtained with a GaAs/In0.2Ga0.8As
quantum well stressed by In0.3Ga0.7As square boxes. The
thickness of the In0.3Ga0.7As layer is 3 nm that is less tha
the critical thickness for pseudomorphic growth. The size
the In0.3Ga0.7As stressors is 1531533 nm3. In this case, the
strain in the InGaAs layer, before processing, is uniform
compressive with a mismatch of22.1% with respect to the
GaAs substrate. This means that lateral confinement oc
just under the stressors rather than between them as in
case of tensile stress. In fact, the quantum well hydrost
expansion due to the stressors has a maximum at the c
of the square box, whereas it decreases towards the e
where a slight compression occurs.

This results in a box-shaped well for electrons. T
maximum modulation in conduction bandDEcMax is now
about 140 meV and the width of the well is approximate
the same to the size of the stressors. For this structure
single-particle energies and the associated eigenfunction
calculated by solving numerically the Schro¨dinger equation
in the envelope function approximation by means of a pla
wave expansion.7 Figure 4 shows a plot of the electro
charge density corresponding to the first three electronic
els. The center of the stressor is located atx50 andz50.
The ground state exhibits a single maximum at the cente
the stressor, while the excited states exhibit an increas
number of maxima. It is evident that the electrons are c
fined laterally in the quantum well~QW!. The energy split-
ting between the ground state and the first excited level is
meV which is larger than the thermal energy at room te
perature.

FIG. 4. Three-dimensional plot of the 0D electron density correspondin
the ground energy state (n50) and the lowest excited level (n51), which
is degenerate in this structure.
license or copyright; see http://jap.aip.org/about/rights_and_permissions
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IV. CONCLUSIONS

In summary, we have developed a new and sim
method to calculate analytically the stress field induced i
quantum well by a stressor of arbitrary shape. The met
allows one to engineer the strain distribution and the co
sponding band gap modulation. Low-dimensional structu
can easily be designed to get nearly parabolic lateral con
ing potentials with a band gap modulation as high as 13
140 meV and an interband splitting of about 40 meV. Due
its flexibility and simplicity this method is well suited fo
engineering a vast range of nanostructures, for instance
electron beam lithography, having the desired structural
electro-optical characteristics.
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APPENDIX

The explicit expression of the six matrixes appearing
Eq. ~12! is the following:

S@1#5S 0 1 0

1 0 0

0 0 0
D 1

i

Qnm
3

3S 2nk~Qnm
2 1nm2p2! 0 mp~Qnm

2 22nn2k2!

0 0 0

mp~Qnm
2 22nn2k2! 0 2nn3k3

D ,

S@2#5S 1 0 0

0 1 0

0 0 1
D 1

~122n!

Qnm
~2! S m2p2 0 mpnk

0 0 0

mpnk 0 n2k2
D ,
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S@3#5S 0 0 0

0 0 1

0 1 0
D 1

i

Qnm
3

3S 2nm3p3 0 nk~Qnm
2 22nm2p2!

0 0 0

nk~Qnm
2 22nm2p2! 0 2mp~Qnm

2 1nn2k2!
D ,

T@1#5
ink

Qnm
T@2#,

T@2#5S n2k2

Qnm
2 ink

nkmp

Qnm

2 ink 2Qnm 2 imp

nkmp

Qnm
2 imp

m2p2

Qnm

D ,

T@3#5
imp

Qnm
T@2#.

The determinant ofT@2# is equal to zero and it is easy to se
that T@2#250.
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