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Abstract

Evaluating clustering results is a fundamental task in microarray data analysis, due to the lack of enough
biological knowledge to know in advance the true partition of genes. Many quality indexes for gene clustering
evaluation have been proposed. A critical issue in this domain is to compare and aggregate quality indexes
to select the best clustering algorithm and the optimal parameter setting for a dataset. Furthermore, due
to the huge amount of data generated by microarray experiments and the requirement of external resources
such as ontologies to compute biological indexes, another critical issue is the performance decline in term
of execution time. Thus, the distributed computation of algorithms and quality indexes becomes essential.
Addressing these issues, this paper presents the MicroClAn framework, a distributed system to evaluate
and compare clustering algorithms using the most exploited quality indexes. The best solution is selected
through a two-step ranking aggregation of the ranks produced by quality indexes. A new index oriented
to the biological validation of microarray clustering results is also introduced. Several scheduling strategies
integrated in the framework allow to distribute tasks in the grid environment to optimize the completion
time. Experimental results show the effectiveness of our aggregation strategy in identify the best rank among
different clustering algorithms. Moreover, our framework achieves good performance in terms of completion
time with few computational resources.

Keywords: Microarray, clustering analysis, quality indexes, rank aggregation, scheduling strategies

1. Introduction

Microarray technology allows the measurement of expression levels of thousands of genes simultaneously,
thus it has become a fundamental tool in genomic research for studying biological processes of cancer
pathologies [18, 31, 42, 47]. Clustering analysis of gene expressions is often the first step in microarray data
analysis to discover co-expressed genes under different experimental conditions [23]. Furthermore, clustering
can be used as a pre-processing step before a feature selection or a classification algorithm, to restrict the
analysis to a specific category or to avoid redundancy by considering only a representative gene for each
cluster.

Many conventional clustering algorithms have been applied or adapted to gene expression data, and new
algorithms have been proposed specifically aiming at gene expression data (see [7, 12, 32, 25] for a survey).
If a time information is available, time-series microarray data can be analyzed to group genes that show a
similar trend across time instances [10, 27]. Otherwise, other approaches have been defined to group genes
which have a common behavior [33, 2, 16, 1, 22, 37]. For example, [16] describes the application of the
fuzzy c-means to microarray data, to overcome the problem that a gene can be associated to more than
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one cluster. In [33], a fuzzy majority voting approach is proposed to combine the clustering solutions in
the resultant Pareto-optimal set. [1] proposed an algorithm that adopts the idea of the k-means to cluster
genes by replacing the distance measure with the interdependence redundancy measure. A variation of
the hierarchical clustering algorithm is proposed in [22]. The basic idea is to consider a cluster as a high-
dimensional dense area, where data objects are attracted with each other. Differently, in [3] the authors
integrate in a hierarchical clustering method a new similarity measure to evaluate the similar expression
profiles according to the samples’ phenotypes.

Once a clustering algorithm has been proposed, there is the issue of evaluating results. Evaluating
clustering results is a fundamental task to identify the best algorithm and parameters (e.g., similarity
measure, number of clusters). The selection of the best clustering algorithm allows to improve the quality of
further analyses oriented to identify patterns in the data. In literature many quality indexes for clustering
evaluation have been proposed [51]. In the biological context of microarray data analysis, among the most
exploited indexes there are classical data mining measures, such as Silhouette and Precision. However, other
quality measures have been introduced to evaluate the biological meaning of clusters. For example, in [13]
two biological indexes based on the categorization of the biological functions of genes have been proposed.

Some tools have been developed to compute quality indexes for microarray clustering [6]. For example,
FunSpec [40] evaluates the biological enrichment of clusters of genes, while Onto-Express [21] automatically
translates lists of differentially regulated genes into functional profiles characterizing the impact of the
studied condition. However, these approaches provide only the quality index values, leaving to the final user
the task of comparing and aggregating the results in order to select the best clustering result.

Some recent works addressed the issue of comparing and aggregating quality indexes to identify a rank
among clustering results to select the best one [15, 35]. For example, in [35] a Monte Carlo method is
exploited to combine different ranks produced by some quality indexes. In [36] an R package exploiting the
Kemeny theory to aggregate different ranks is presented. These approaches aim at achieving the best rank
aggregation disregarding the high computational cost of the clustering analysis.

In microarray analysis the management of the huge amount of data generated by microarray experiments
becomes a critical issue. Since research centres often do not have efficient computational resources, some
efforts have been done to optimize the microarray analysis [43]. Particularly, the partition of data and
distribution to several nodes can solve the main memory problems and accelerates the methods. Clustering
algorithms, especially the hierarchical ones, require a lot of time for analyzing a microarray dataset. More-
over, some quality indexes need external resources, such as ontologies. The interactions with these resources
increase the overall computational cost. To discover the best clustering algorithm, multiple iterations are
needed, thus, the distributed computation becomes essential.

Research efforts have been devoted to manage very large datasets and optimize the computation of data
mining algorithms using distributed and parallel approaches [4, 11, 29, 52]. For instance, the fragmentation
techniques, presented in [4] and based on structural constraints of XML documents, allows improving query
processing on distributed environments. Similarly, in [11] a compression technique for multidimensional
data cubes is exploited to extract and browse compressed two-dimensional OLAP views, coming from remote
OLAP servers, on mobile devices. Differently, in [8] a parallel implementation of spectral clustering approach
is presented. However, a distributed system to perform clustering analysis of microarray data is not yet
proposed in literature. To the best of our knowledge, this is the first attempt to propose a distributed
framework oriented to the comparison of different clustering algorithm in order to improve the quality of
the final results.

Addressing the previously described issues, this paper presents the MicroClAn framework, a distributed
system to evaluate and compare clustering algorithms using the most exploited quality indexes. A two-step
aggregation procedure based on the Kemeny and Condorcet theories identifies the best result over all the
ranks produced by the considered quality indexes. Furthermore, several scheduling strategies are exploited
to distribute tasks in the grid environment to optimize the overall execution time.

The paper is organized as follows. Section 2 introduces the basic concepts for microarray cluster analysis
and quality indexes. Section 3 presents the problem of ranking aggregation, while Section 4 describes
the exploited strategies to distribute tasks in a grid environment. In Section 5 the contributions and the
architecture of the MicroClAn framework are presented. Section 6 describes experimental results to validate
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the two-step ranking aggregation, show the efficiency of the distributed computation, and evaluate the
scheduling strategies. Finally, Section 7 draws conclusions and presents future developments of this work.

2. Quality indexes for microarray clustering

Let N be the number of genes and M the number of samples in a microarray experiment. After the
clustering process, each gene x belongs to one of the k clusters (C1, C2, ..., Ck) that are generated. Let ni

be the number of genes in cluster Ci. The notation d(x, y) represents the distance measure between gene
x and y, computed according to the distance measure exploited in the clustering process. Analogously, the
notation d(Ci, Cj) represents the distance measure between cluster Ci and Cj , computed according to the
cluster distance measure exploited in the clustering process.

Instead of a distance measure, a similarity measure can be computed among elements. We refer to
similarity between objects with the notation s(x, y). Also this measure depends on the exploited clustering
algorithm. If there is the need to switch from distance to similarity or vice-versa, if both are normalized in
the range [0, 1], the following relation holds: d(x, y) = 1− s(x, y) [46].

Based on following previous classifications both in the general [46] and microarray [12, 34, 20] context,
we divided clustering indexes in the three categories of internal, external and biological indexes. The most
exploited indexes belonging to each category are discussed in the following.

2.1. Internal indexes

Internal indexes evaluate the cohesion among cluster elements and the separation among clusters. These
evaluations are done without knowing the true partition of objects. Among the most exploited indexes in
this category, there are the Silhouette, the Homogeneity, the Separation, the Davies-Bouldin index, and the
Figure of Merit. A brief description of each of them is reported in the following.

The Silhouette index [41] measures the appropriateness of a gene being in a specific cluster rather than
in the others. The Silhouette value lies between -1 and 1. When it is close to 1 it means that the gene
is appropriately clustered, while if it is close to -1 it means it would be more appropriate if the gene was
clustered in its neighboring cluster. When the value is near zero, it means that the gene is on the border of
two clusters.

The Silhouette of gene x is computed as

Silhouettex =
b(x)− a(x)

max {a(x), b(x)}
(1)

where a(x) is the average distance between x and all other genes within the same cluster, and b(x) is the
average distance between x and all other genes within the nearest cluster.

Even if the Silhouette is defined for a single gene, it can be computed for a single cluster or the whole
clustering, simply by summing the Silhouette values of genes in a cluster or in all clusters respectively. The
average Silhouette of genes in a cluster is a measure of how tightly grouped are the data in the cluster and
the average Silhouette of the entire dataset is a measure of how appropriately the data has been clustered.

The Homogeneity index [44] measures the compactness of clusters by analysing the similarity among
elements in each cluster. The Homogeneity of cluster Ci is defined as follows:

Homogeneityi =
2

ni(ni − 1)

∑

x,y∈Ci,x<y

s(x, y) (2)

The Homogeneity increases if the solution improves. The Homogeneity can be also defined for the whole
clustering, as the average value of Homogeneity of all clusters.

The Separation index [44] evaluates if the distance between members of the same cluster is lower than
the distance between members of different clusters. It is defined as follows:

Separation =
2

N(N − 1)−Q

∑

x∈Ci,y∈Cj ,i6=j,x<y

s(x, y) (3)
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where Q is the total number of gene pairs that are in the same cluster (i.e., Q =
∑k

i=1 ni(ni − 1)). The
Separation decreases if the solution improves.

The Davies-Bouldin index (DBI) [14] combines the homogeneity and the separation in a single measure.
It evaluates the average similarity between a cluster and its most similar one and it is defined as follows:

DBI =
1

k

k
∑

i=1

max
j,j 6=i

{

dintra(Ci) + dintra(Cj)

d(Ci, Cj)

}

(4)

where dintra(Ci) is the average distance between values and the centroid of cluster i, i.e., dintra(Ci) =
1
ni

∑

x∈Ci
d(x, zi) and zi is the cluster representative (e.g., centroid). Low values of DBI correspond to good

cluster quality.
The Figure of Merit (FOM) [51] estimates the predictive power of a clustering algorithm by doing the

following steps: (i) the experiment j is removed from the data set, (ii) the genes are clustered basing on
the remaining data and (iii) the within-cluster similarity of expression values in experiment j is measured.
Particularly, when the experiment j is removed from the data, the FOM is defined as follows:

FOM(j) =

√

√

√

√

1

N

k
∑

i=1

∑

x∈Ci

(exj − ēj,i)
2

(5)

where exj is the expression value of gene x in the experiment j in the raw data and ēj,i is the average
expression value in condition j of genes in cluster Ci. This estimation is repeated M times to compute the
aggregate figure of merit which evaluates the total predictive power of the clustering algorithm over all the
conditions.

2.2. External indexes

If the object class labels are a priori known, the clustering result can be compared with the true partition.
The indexes that are used to measure the agreement between cluster labels and the true partition are usually
named external indexes. The most exploited external indexes are Precision, Recall, F-measure, Rand index,
Jaccard index and Minkowski index.

In the following, we refer as T1, T2, ..., Th as the true class partition, while the obtained clustering is
indicated as previously described C1, C2, ..., Ck. The number of objects of class j in cluster i is indicated as
nij .

The precision of a cluster i with respect to a class j is the fraction of objects of class j in cluster i, while
the recall of a cluster i with respect to a class j is the extent to which cluster i contains all objects of class
j [46]. They are computed as follows:

Precision(i, j) =
nij

ni

(6)

Recall(i, j) =
nij

nj

(7)

where nj is the number of object in the class j.
The precision and recall values can be combined to measure the extent to which a cluster contains only

objects of a particular class and all objects of that class. Such measure is called F-measure [28] and is
calculated as follows:

F (i, j) =
2Precision(i, j)Recall(i, j)

Precision(i, j) +Recall(i, j)
(8)

The F-measure values are in the interval [0, 1], and the larger its values, the better the clustering quality is.
The F-measure of the whole clustering is the average value of the F-measures of each cluster.

Other measures have been defined with the aim of comparing results of two partitions. They can be used
to compare the obtained clusters both to the true class partition and to a partition obtained by a different
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clustering algorithm. The most used similarity oriented measure are the Rand index [38] and the Jaccard
index [19].

The Rand index [38], also called Simple Matching [50], is defined as the fraction of agreements between
two partitions, i.e., the number of object pairs that are either in the same group in both partitions or in
different groups in both partitions, divided by the total number of objects. It lies between 0 and 1, and
it is 1 if the two partitions agree perfectly. Also the Jaccard index [19] measures the similarity between
two partitions, by using a little different formula, as reported below. If there is the need of presenting the
proportion of disagreement instead of agreement between two partitions, the Minkowski index [45] can be
exploited.

Considering two partitions C and T of N objects, for each pair of objects (i, j) there are four possible
cases: 1) i and j are in the same cluster both in C and T , 2) i and j are in the same cluster in C but in
different clusters in T , 3) i and j are in the same cluster in C but in different clusters in T , 4) i and j are
in different clusters both in C and T .

Assuming that a, b, c, and d are the number of object pairs in cases 1, 2, 3, and 4 respectively, the
formulas of the previously described indexes are:

Rand =
a+ d

a+ b+ c+ d
(9)

Jaccard =
a

a+ b+ c
(10)

Minkowski =

√

b+ c

a+ c
(11)

2.3. Biological indexes

Differently from other contexts, the application of external measures is rarely possible on real microarray
datasets because the true partition is not a priori known and there are few benchmarks to evaluate and
compare algorithms. Since genes with similar expression profiles may imply similarity among their functions
in the biological activities, gene clusters may represent specific biological functions. The idea of biological
measures is to analyze biological annotations of genes in the same cluster and verify if they are coherent.

The most used biological measure is the functional enrichment. A cluster of genes is said to be enriched
for a functional category if the proportion of genes within the cluster known to be in that category exceed the
number that could reasonably be expected from random chance [40]. The degree of functional enrichment
for a given cluster c and functional category f can be quantitatively assessed by the hyper-geometric data
distribution P . For each category and cluster, the probability of observing such an overlap by chance is
calculated as:

Pc,f = 1−

nc,f−1
∑

i=0

(

nf

i

)(

G−nf

nc−1

)

(

G
nc

) (12)

where G is the size of genome, nf is the number of genes of the genome in the considered category, nc is the
cluster size and nc,f is the number of genes in the cluster which are in the same category. If this probability
is sufficiently low (e.g., low than 0.01), then the cluster is said to be enriched for that category. Usually the
biological enrichment is evaluated according to the Gene Ontology categories [30].

3. Quality index aggregation

In some applications it is possible to select the best clustering method by visualizing the clustering results.
However, in microarray experiments a visual approach is not feasible due to the high number of dimension
(i.e., samples). The quality indexes described in Section 2 can be exploited to identify the algorithm which
obtain the best results.
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Quality indexes evaluate clustering results by given a score to each of them. Thus, each index produce a
list of results sorted by score. Even if scores are not directly comparable among indexes because they range
within different values, the sorted lists can be compared to select the best results.

The problem of combining ranking alternatives is called the rank aggregation problem [17]. Let U be a
set of elements, named universe. An ordered list τ with respect to U is a ranking of a subset S ⊆ U , i.e.,
τ = [x1 ≥ x2 ≥ ... ≥ xd], where xi ∈ S and ≥ is a ordering relation on S. Let pτ (i) be the position of xi in
τ . Lowest values of pτ (i) represent best elements.

In our context, U is the set of clustering results produced by different clustering algorithms. Each quality
index produces a rank τi of the element in the universe.

Two exploited solutions to the rank aggregation problem are reported in the following sections.

3.1. Copeland aggregation

The Copeland aggregation belongs to the Condorcet methods, i.e., voting systems that selects the can-
didate (among elements belonging to a universe U) that is preferred by more order lists τ than every other
candidate.

All the Condorcet methods exploit a data matrix to count for each pair of candidates (xi, xj) the number
of time in which xi wins against xj (i.e., pτ (i) ≤ pτ (i)) and the number of time in which xi looses against
xj (i.e., pτ (i) ≥ pτ (i)). The winner of each pairing is the candidate preferred by a majority of voters.

When all possible pairings of candidates have been considered, if one candidate always beats every other
candidate then it is declared the Condorcet winner. If there is no Condorcet winner, a further method must
be used to find the winner, and this mechanism varies from one Condorcet method to another.

Some Condorcet methods produce not just a single winner, but a ranking of all candidates from first to
last place. The Copeland method is a Condorcet method in which candidates are ordered by the number
of pairwise victories minus the number of pairwise defeats. When there are multiple members of the Smith
set, which is the smallest non-empty set of candidates such that each member beats every other candidate
outside the set in a pairwise election, this method often leads to ties.

3.2. Kemeny optimal aggregation

Differently from Condorcet methods, other methods aims at minimizing the total disagreement (in term
of a distance function) among the several input rankings and their aggregation. The aggregation obtained
by optimizing the Kendall distance is called Kemeny optimal aggregation. The problem can be formalized
as an optimization task defined as:

σ∗ = argmin

k
∑

i=1

K(σ, τi) (13)

where K(σ, τi) is the Kendall distance, τi is an order list, and σ is the optimal aggregation list.
The Kendall τ distance [17] evaluates the number of pairwise disagreements between two lists. The

distance is defined as follows:

K(γ, δ) =
∑

t,u∈γ∪δ

K
p
tu (14)

where

K
p
tu =















0 if [rγ(t) < rγ(u) ∧ rδ(t) < rδ(u)]
∨[rγ(t) > rγ(u) ∧ rδ(t) > rδ(u)]

1 if [rγ(t) > rγ(u) ∧ rδ(t) < rδ(u)]
∨[rγ(t) < rγ(u) ∧ rδ(t) > rδ(u)]

(15)

where γ e δ are two order lists, t and u are two elements of γ e δ, respectively, and belonging to U . Moreover,
rγ(t), rγ(u), rδ(t) e rδ(u) are the rank positions of t e u in the γ and δ lists. Lowest the Kendal distance is,
highest is the similarity between the lists.
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4. Scheduling algorithms

The computational cost of clustering execution and results evaluation is very expensive due to the
complexity of these tasks. Several approaches to define the best strategy to distribute the tasks in a grid
environment have been proposed [9, 26, 49, 5]. In the following we present some scheduling strategies which
are integrated in our framework.

Given a metatask M defined as a set of independent tasks mi and a set of N grid nodes nj , let teij be
the execution time for task mi on node nj and tcij be the completion time for task mi on node nj given as
the sum of the execution time of tasks previously assigned to nj plus the teij value. Furthermore, let teM be
the total execution time of all the tasks belong to M . The aim of the scheduling approaches is to determine
the best strategy of scheduling tasks on nodes to minimize teM .

We define the Expected Time Matrix (ETM) a matrix representation of the information for the grid
environment. The ETM is a matrix of dimensions T × N , where T is the number of tasks and N is the
number of the grid nodes. Each cell of ETM stores the average execution time of each task on each grid
node on several repetitions, i.e., average values of teij .

An ETM can present two properties: (i) linearity and (ii) homogeneity. The linearity depends on the
node characteristics, while the homogeneity depends on task characteristics. An ETM is linear if given
two nodes A and B, the execution time of each task on A is less/greater than the corresponding execution
time on node B, i.e., A is always faster/slower than B. An ETM matrix is homogeneous if given a node
A, the execution time of a task is very close to the execution times of all the other tasks, otherwise it is
heterogeneous.

In the experimental section we will analyze different scheduling approaches based on the Expected Time
Matrix evaluation. In the following a brief description of each approach is provided.

Opportunist load balancing (OLB). The Opportunistic Load Balancing approach assigns in a casual order
each task to the first grid node available without considering the execution or completion times [5, 9, 26].
The aim is to exploit all the resources of the grid environment. This approach usually achieve bad results
because there is no optimization over the execution times of tasks, but it is a good assignment strategy if
the ETM is homogeneous.

Minimum Execution Time (MET). The Minimum Execution Time approach assigns in an arbitrary order
each task to the grid node with the minimum execution time for that task, disregarding the availability of
other nodes or the task completion time [48]. This approach aims at minimizing the execution time of each
single task. However, the grid nodes with the best resources is usually overloaded.

Minimum Completion Time (MCT). The Minimum Completion Time approach is similar to the MET
approach, but it assigns each task to the grid node with the minimum completion time for that task.
This method exploits the benefits of the two previous approaches avoiding the critical aspects of both.
However, since the tasks are considered in a casual order, the assignment can be not optimal, especially for
heterogeneous ETM.

Min-min. Differently from the previous approaches which consider each task at a time, the Min-min ap-
proach evaluates the completion times of all tasks before assigning them to the grid nodes. For each task,
the completion time for each grid node is retrieved. Then, the task with the minimum completion time is
assigned to the corresponding grid node and it is removed from M . This procedure is repeated until M is
not empty. This approach is more efficient but its complexity is O(|M |), where |M | is the number of tasks
belonging to M .

Max-min. Similarly to the previous one, also the Max-min approach evaluates the completion times of all
tasks before assigning them to the grid nodes. However, it starts assigning slowest tasks instead of fastest
ones. In fact it selects the task mi with the maximum completion time and assigns it to the grid node nj

with the minimum completion time for that task. Then, task mi is removed form M and the procedure is
repeated until M is not empty. This approach is particularly suitable for ETM heterogeneous.
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5. MicroClAn framework

The MicroClAn framework provides an evaluation system for microarray clustering results based on a
distributed execution. It provides two main contributions to the clustering analysis as well as the ranking
aggregation: (1) the definition of a biological score and (2) the exploitation of a two-step ranking aggregation.
The new contributions and the framework architecture are described in the following paragraphs.

5.1. BioScore

Since the enrichment does not assign a score to the whole clustering results, we defined a new the
biological score BioScore. This score evaluates how many subset of genes show a p-value under a threshold
(e.g., 0.01). It is defined as follows:

BioScore =

K
∑

i

G
∑

cat

δi,cat (16)

where K is the number of genes in the considered dataset, G is the number of biological function categories
stored in the external resource (e.g., GO). δi,cat is defined as follows:

δi,cat =

{

1 if Pi,cat < t

0 otherwise
(17)

where Pi,cat is the p-value related to the category cat associated to gene i, and t is a threshold. In this way
all the biological categories associated to one gene are considered for the enrichment.

5.2. Two-step ranking aggregation

Since quality indexes belong to different categories and can have different priorities, it is not possible to
directly compare the ranks produced by them, but a preliminary aggregation is needed among index of the
same category. Thus, we performed a two-step aggregation.

The first step define the optimal rank for each index category by means of the Kemeny optimal ag-
gregation. In this way, indexes evaluating the same aspect are grouped and analyzed together. Then, a
Copeland aggregation is exploited to provide a final rank from the three category ranks. Furthermore, in
the MicroClAn framework it is possible to assign a weight to each category to give different relevance to
each of them or to exclude some of them if they are not relevant for the analysis.

The Kemeny aggregation performed on each index category guarantees that the best rank is identified.
Moreover, using this approach, it is not possible to retrieve more than one optimal rank as with Condorcet
approaches in some particular scenarios. The Copeland method, which is less computational expensive than
Kemeny, is exploited to identify the winner clustering algorithm. The quality of the final rank may be less
accurate only for the last positions, but it guarantees to identify the best approach.

Running example. Suppose an analyst wants to perform a comparison among four different clustering
methods, named in the following A, B, C and D. The comparison may be based on the following measures:
(i) Silhouette, (ii) Homogeneity, (iii) Rand Index, (iv) Jaccard and, (v) BioScore. As discussed in Section 2,
the first two measures belong to the internal quality index category, while the third and fourth in the external
one. The BioScore, which is based on the enrichment, belongs instead to the biological category. Suppose,
for instance, to obtain the results resumed in Table 5.2 for each quality index. The two-step aggregation
strategy integrated in the MicroClAn platform, as first step, considers each category separately. The Kemeny
aggregation method is exploited to define the optimal rank according to the different measures belonging
to the considered quality index category. For instance, in the internal category, the Kendall τ computed by
the Formula 14 for the rank [A,B,C,D] is equal to 0.43, while for [A,B,D,C] is 0.28. Since, the Kemeny
method should minimize the Kendall distance, the optimal rank for this category is [A,B,D,C]. Similarly,
the optimal rank for the external category is [B,D,C,A]. Since in this example there is only quality index
in the biological category, the MicroClAn framework will skip the aggregation strategy for this category.
When all the ranks for each category are defined, the Copeland method is exploited to extract the final
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Quality index category Measure Pos. 1 Pos. 2 Pos. 3 Pos. 4
Internal Silhouette A = 0.97 C = 0.21 B = 0.09 D = 0.08

Homogeneity A = 0.99 B = 0.93 D = 0.92 C = 0.89
External Rand index D = 0.6 B = 0.56 C = 0.34 A = 0.03

Jaccard B = 0.49 D = 0.42 C = 0.33 A = 0.32
Biological BioScore A = 0.83 D = 0.77 C = 0.43 B = 0.18

Table 1: Example of ranks according to different quality indexes. All the values are normalized in the range [0,1].

rank. The Copeland method orders the clustering algorithms by the number of pairwise victories, minus the
number of pairwise defeats. Thus, for each method we obtain the following results: A = 3, B = 2, C = 0
and D = 1. The final rank results [A,B,D,C].

5.3. Architecture

The MicroClAn framework is based on a distributed environment. The user interacts with the services
provided by different servers by means of a client. The client provide two contribution to the system: (i)
the scheduling of the tasks and (ii) the aggregation of the results. In MicroClAn the scheduling of the
tasks can be performed by one of the methods discussed in Section 4, while the aggregation procedure is
based on the two-step ranking aggregation presented in Section 5.2. The tasks provided by the servers are
divided into four categories: (i) clustering algorithms, (ii) internal indexes, (iii) external indexes and (iv)
biological indexes. Each server in the grid environment provides the subset of these services compatibly to
its resources. For instance, the biological indexes are provided only by the servers which can access to Gene
Ontology database. The location of the servers and the services available on each server are registered in
a nameserver. The client exploits the nameserver information to submit the task to the servers which are
registered and available in the distributed environment.

All the communications among client, servers and nameserver are based on the TCP/IP protocol. The
servers send a registration request to the nameserver specifying the services which are available. The
nameserver registers the service information and their location. The analyst, using the client application,
defines the experimental design (i.e., metatask) which will be applied to one microarray dataset. The
metatask is composed by tasks which are clustering algorithms and quality indexes of interest. The client
retrieves the information about the network addresses of the servers and the services available on the grid
environment from the nameserver. According to the information stored in the ETM, a scheduling approach
is performed to assign the tasks to the servers which provide the right services and optimize the objective
function of the scheduler. According to the scheduling strategy, the client send each task to the selected
server using the address provided by the nameserver. When one server accomplish their tasks, it returns
to the client the results. The client collects the results from the servers and send the necessary data to the
other servers, if it is necessary. When all the tasks are accomplished by the servers, the client exploits the
aggregation procedure to define the rank among the clustering approaches using the parameters set by the
analyst.

6. Experimental results

We evaluated the MicroClAn framework by means of three sets of experiments, addressing the following
issues: (i) the validation of the two-step rank aggregation, (ii) the efficiency of the distributed computation,
and (iii) the evaluation of scheduling performance.

6.1. Validation of ranking aggregation

We evaluated the quality of the two-step rank aggregation described in Section 3 on both simulated and
real datasets. Since no benchmark microarray dataset containing gene class labels is provided, to evaluate
the ability of external indexes we choose two synthetic datasets for which the true partition is known [24]. In
Figure 1 the two datasets, named in the following dataset A and B respectively, are shown. Seven different
clustering algorithms have been exploited:

9



(a) dataset A (b) dataset B

Figure 1: Visualization of the two sysntethic datasets on which different clustering algorihtms have been applied

Position Silhouette Homogeneity Separation FOM DBI
1 DBS HR-A,HR-C,HR-S HR-A KM-A KM-A
2 PAM HR-C DBS DBS
3 HR-S PAM KM-M KM-M
4 KM-A DBS DBS PAM PAM
5 KM-M KM-A KM-M HR-C HR-S
6 HR-A,HR-C PAM KM-A HR-S HR-C
7 KM-M HR-S HR-A HR-A

Table 2: Internal quality index ranking for the dataset A

A) DBS : the density based clustering algorithm (DBSCAN)

B) PAM : the K-medoids method using the Euclidean distance

C) KM-A: the K-means based on the average centroid

D) KM-M : the K-means based on the median centroid

E) HR-S : the hierarchical clustering approach with single-linkage

F) HR-C : the hierarchical clustering approach with complete-linkage

G) HR-A: the hierarchical clustering approach with average-linkage

The algorithm parameters have been set according to the analyzed dataset. For instance, on the synthetic
datasets the parameter K has been set equal to 6 since there are 6 natural clusters. Differently, the DBSCAN
parameters have been set equal to ǫ = 12,minPts = 14 for the dataset A, ǫ = 11,minPts = 6 for the dataset
B. We tested also different similarity measures for the K-means and hierarchical algorithms on both datasets.
For the dataset A, we set the Manhattan distance for the K-means algorithms, while the Spearman similarity
for the hierarchical clustering methods based on single and average linkage and the Manhattan distance for
complete-linkage approach. Differently, on the dataset B we exploited the following similarity measure: (i)
Manahattan distance for K-means based on the average centroid, (ii) Euclidean distance for DBScan, K-
medoids and K-means based on the median centroid, (iii) the Pearson similarity for single-linkage hierarchical
method, (iv) the Spearman measure for average-linkage hierarchical approach, and (v) the cosine similarity
for complete-linkage algorithm. In the results, we will report only the identifier of the clustering method.

These algorithms represents the most exploited methods in clustering analysis. Indeed, the k-means
approach, despite its simplicity, it is proved to be a good performing algorithm on microarray data [39].
The hierarchical clustering algorithm is instead frequently used in biological studies since it provide a
natural way to graphically represent the results through a dendrogram [23]. Differently, the density-based
algorithm (DBScan) allows the assignment of outlier samples to a separate noise cluster, thus being suited
for microarray-based studies [37].

Considering the dataset A, different ranks, reported in Table 2, are retrieved for each internal quality
index. Analyzing these ranks is very difficult to identify the best clustering approach. However, combining
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Position F-measure Rand Jaccard Mikowski
1 DBS DBS DBS DBS
2 KM-A KM-A KM-A HR-A
3 KM-M PAM KM-M HR-S
4 PAM KM-M PAM HR-C
5 HR-C HR-C HR-C PAM
6 HR-S HR-S, HR-A HR-S KM-M
7 HR-A HR-A KM-A

Table 3: External quality index ranking for the dataset A

Position Silhouette Homogeneity Separation FOM DBI
1 DBS DBS HR-S DBS DBS
2 KM-A PAM HR-C KM-M KM-A
3 KM-M KM-A HR-A KM-A KM-M
4 PAM KM-M DBS PAM PAM
5 HR-C HR-S KM-A HR-C HR-S
6 HR-A HR-C KM-M HR-S HR-C, HR-A
7 HR-S HR-A PAM HR-A

Table 4: Internal quality index ranking for the dataset B

the internal index ranks with the Kemeny optimal aggregation, the final rank is DBS, PAM, KM-M, KM-A,
HR-C, HR-A, HR-S. If the external indexes are analyzed (Table 3), a different rank is retrieved by the
Kemeny approach, i.e. DBS, KM-A, PAM, KM-M, HR-C, HR-S, HR-A. Even if the two ranks are quite
similar, some methods achieve different performance with respect to the two sets of quality indexes. By
exploiting the two-step aggregation, the MicroClAn framework allows to identify the optimal rank with
respect to both indexes’ categories which is: DBS, PAM, KM-A, KM-M, HR-C, HR-S, HR-A.

The DBSCAN approach results the best one, as also demonstrated by the visual inspection. In Figure 2
the clusters identified by (a) the DBSCAN, (b) PAM, and (c) HR-A methods are reported. The visual
inspection of the results highlights the effectiveness of our framework since we can notice the main differences
among the clusters identified by these approaches. DBSCAN result is the best one, followed by PAM which
captures one of the six clusters but the other clusters are merged or split due to the presence of noise points.
Similar result is obtained with KM-A that assigns the most of the points to the same clusters selected by
PAM. Differently, the hierarchical algorithms identify only two big clusters while the other four clusters are
composed only by noise points.

Similar results are obtained for the dataset B. In Table 4 and Table 5 are reported the ranks associated
to each quality index belonging to the internal and external category respectively. The final rank obtained
by the MicroClAn framework is the following: DBS, HR-C, HR-A, HR-S, PAM, KM-A, KM-M,. Also for
this dataset, the visual inspection of the clustering results shows the effectiveness of our approach in select
the best clustering approach as pointed out by the Figure 3.

The biological validation was performed on the Colon dataset2 which contains the expression values of
2000 genes for 62 samples. Since the hierarchical clustering is one of the most clustering algorithm exploited
in microarray data analysis, we compared the results of a hierarchical single-linkage approach with different
values of K (i.e., from 5 to 20). We denote the different setting as HR0 for k = 5, HR1 for k = 10, HR2
for k = 15 and HR3 for k = 20. The internal and the biological indexes were exploited for the evaluation.
The internal indexes identify HR0 as the best clustering method followed by HR2, HR1 and HR3. However,

2http://datam.i2r.a-star.edu.sg/datasets/krbd/ColonTumor/ColonTumor.html
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Position F-measure Rand Jaccard Mikowski
1 DBS DBS DBS DBS
2 HR-C PAM HR-C HR-C
3 HR-A KM-M HR-A HR-A
4 HR-S KM-A HR-S HR-S
5 PAM HR-C PAM PAM
6 KM-M HR-S KM-M KM-M
7 KM-A HR-A KM-A KM-A

Table 5: External quality index ranking for the dataset B

(a) DBS (b) PAM (c) HR-A

Figure 2: Visualization of different clustering results for the dataset A. (a) DBSCAN algorithm with ǫ = 12,minPts = 14
using the Euclidean distance. (b) PAM method using the Euclidean distance and K = 6 as number of clusters. (c) Hierarchical
average-linkage based on the Spearman similarity measure and the number of clusters K = 6.

the biological index retrieves a different rank equal to HR3, HR2, HR1 and HR0. The two ranks are in
contradiction because the best algorithm for the internal indexes is the worst one in terms of biological
meaning, and vice-versa. MicroClAn allows to overcome this contradiction by combing the two ranks. In
fact, combining the two analyses MicroClAn identify the HR2 method as the best one, since it is a good
trade-off between internal and biological evaluations.

6.2. Distributed execution

The main advantage of MicroClAn is the distributed execution of tasks, where a task is a clustering
algorithm or a quality index computation. In Table 6 are reported the average execution time of each task.
These statistics are related to several runs of MicroClAn on different datasets on one grid node. The grid
node is a virtual machine with Linux server 64 bits with kernel 2.6.32-26-server, 4 GB of RAM using one
Intel(R) Xeon(R) E5450 CPU @ 3.00GHz. The BioScore is the most expensive since, during the computation,
many access to the database storing Gene Ontology are performed. Among the clustering algorithms the
hierarchical clustering is the most expensive due to the update of the distance matrix exploited to identify
each step of the aggregation. FOM is the internal index with a high complexity. In fact, the index should
remove each object (e.g., sample), to evaluate the accuracy of the cluster result. The external indexes are
the tasks with the lowest impact over all the clustering analysis process and they usually completed while
other indexes are evaluated. Therefore, if the comparison of different clustering results is performed on one
single machine, the completion time is affected by the most expensive tasks in terms of execution time and
the number of clustering solutions which are involved in the experimental evaluation.

We evaluated the efficiency of MicroClAn by analyzing the execution time by using two different node
types which present different performance on tasks. The node A is a virtual machine with Linux server 64 bits
with kernel 2.6.32-26-server, while the node B runs Linux desktop 32 bits with kernel 2.6.32-30-generic-pae.
Both nodes have 4 GB of RAM and each one uses one core of one Intel(R) Xeon(R) E5450 CPU @ 3.00GHz.
The different performance are influenced mainly by the operating system architecture. For instance, the node
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(a) DBS (b) KM-M (c) HR-C

Figure 3: Visualization of different clustering results for the dataset B. (a) DBSCAN algorithm with ǫ = 11,minPts = 6 using
the Euclidean distance. (b) K-means based on the median centroid using the Euclidean distance and K = 6. (c) Hierarchical
complete-linkage based on the cosine similarity measure and the number of clusters K = 6.

Task Execution time (s)

Clustering

DBSCAN 45.20
K-means 0.36
PAM 17.68

Hierarchical 69.88

Internal indexes

Silhouette 1154.96
Homogeneity 15.64
Separation 10.96

FOM 3219.83
DBI 3.18

External indexes

FMeasure 0.30
Rand 0.31

Jaccard 0.28
Minkowski 0.33

Biological indexes BioScore 23217.62

Table 6: Average execution time for MicroClAn tasks on one A node.

B ha better performance on computing the silhouette index, while the clustering algorithms are executed
in less time on node A. Thus, in this case the ETM is not linear and not homogeneous. The experimental
design was composed by evaluating two clustering algorithms, i.e. hierarchical and kmeans by means of four
internal indexes (i.e., DBI, Silhouette, Separation and Homogeneity) on Colon dataset. We set the number
of clusters equal to 50 and the similarity measure equal to the cosine. We run each experiments 10 times.
In Table 7 are reported the average execution times respect to grid nodes involved in the computation.

The nodes A and B show different performance in completing tasks. The node B outperforms node
A mainly in the index computation. In fact, the clustering algorithms are executed in around 5 seconds
on each node, while the indexes show different execution times on the two node types. For instance, the
silhouette index is computed on node A on average in 617 seconds while the node B terminates the task
in 278 seconds. The scheduling procedure allows to reduce the completion time by a factor between 41%
and 48% using two nodes. Adding more similar nodes does not reduce the completion time since there is
one task which represents the bottleneck of the entire process. In the conducted experiments the silhouette
index for hierarchical clustering is the most expensive task since the execution time is around 1000 and 300
seconds on node A and node B respectively. Thus, only when this task is completed the comparison of
different ranks is performed. If we add nodes with better execution times for the silhouette task (i.e., node
B), the completion time is reduced according to the performance of the new nodes on the critical tasks. For
example, when two nodes B substitute two nodes A in a distributed environment of 4 nodes, the completion
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# Nodes Grid nodes Clustering (sec) Indexes (sec) Total (sec)
1 A 5.088 2103.832 2108.920
1 B 5.946 595.834 601.780
2 A−A 4.566 1096.741 1101.307
2 B −B 5.336 348.293 353.629
4 A−A−A−A 4.554 1078.672 1083.226
4 A−A−B −B 4.504 323.721 328.225

Table 7: Average execution time using the distributed computing.

ETM OLB MET MCT Min-min Max-min
(sec) (sec) (sec) (sec) (sec)

Linear and homogeneous 4.41 ± 0.30 8.09 ± 0.13 3.99 ± 0.41 3.83 ± 0.12 4.38 ± 0.49
Linear and heterogeneous 9.67 ± 0.84 24.17 ± 2.26 10.86 ± 3.02 10.61 ± 1.88 8.84 ± 0.97

Not linear and homogeneous 3.76 ± 0.18 5.89 ± 0.14 3.62 ± 0.19 3.49 ± 0.18 3.90 ± 0.29
Not linear and heterogeneous 4.40 ± 0.73 3.98 ± 0.32 3.64 ± 1.46 3.80 ± 0.88 3.48 ± 1.20

Table 8: Average execution time expressed in seconds for five scheduling strategies and initialized ETM.

time is reduced by a factor of 70%. In this case the scheduler will assign the silhouette task always to the
nodes B which show the best performance for the silhouette index.

6.3. Scheduling strategies

This section aims at evaluating the different scheduling strategies that can be exploited in the MicroClAn
framework. Each scheduling approach, discussed in Section 4, presents advantages and disadvantages. Thus,
we performed a set of experiments to explore all the possible scenarios. Based on the execution times collected
on different runs of our framework, we simulated four different scenarios which capture all the possible ETM
property configurations: (i) ETM linear and homogeneous, (ii) ETM linear and heterogeneous, (iii) ETM
not linear and homogeneous, and (iv) ETM not linear and heterogeneous.

When the framework runs for the first time, the ETM is not initialized. All the execution times related
to each task for each node are set to −1. Since the execution times are not available, all the scheduling
approaches, except OLB, assign all the tasks to one node each run during the first runs until the ETM
is not filled. Differently, the OLB approach balances the task among all the grid nodes independently to
execution time information. When the ETM matrix is filled with the execution times for each task, each
scheduling strategy balance the workload among all the nodes according to its strategy. Therefore, the
ETM initialization is useful to avoid the over-load at startup of only some grid nodes. To initialize the ETM
we run the MicroClAn framework several times with the OLB approach until all the cells of the matrices
assumed a value.

The grid environment employed to evaluate the MicroClAn framework on the aforementioned scenarios,
was composed by four grid nodes, named in the following A, B, C and D. Each grid node is an Intel
Xeon processor with 4 GB of RAM. Several metatasks composed by eight tasks were defined to evaluate the
scheduling strategies. We collected the execution times of ten runs of each experiment. In order to exploit
the approaches with arbitrary scheduling avoid result biases due to the task order, we sorted randomly
the list of the tasks. In Table 8 we report the average execution time for each scenario when the ETM is
initialized. In the following we discuss in more details the performance of each scheduling strategy according
to the ETM characteristics.
ETM linear and homogeneous. Since this scenario models the system runs regularly, the scheduler has
all the information of the average execution times for each task on each node. Thus, all the methods have
a comparable average execution time except for the MET method which achieve the worst performance.
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ETM linear and heterogeneous. When the tasks are heterogeneous in terms of execution times (i.e., high
variance) but the nodes are linear, the performance in terms of average execution time are similar behavior
for most of the approaches. Moreover, this scenario favorites the scheduling approaches which assign the
most expensive task in terms of execution time to the fastest nodes. Indeed, the Max-min method achieves
the best performance, while the MET, which is the worst approach, has a more relevant difference with
respect to the other ones due to the heterogeneity of the tasks.
ETM not linear and homogeneous. In this scenario, the tasks have similar execution time but nodes
are not linear, i.e., some tasks are faster on some nodes and slower on some other nodes. This kind
of scenario favorites the approaches based on the minimum execution time. All the approaches present
similar performance to the previous scenario. Moreover, the MET results the worst approach as in the
aforementioned cases.
ETM not linear and heterogeneous. This scenario is the most similar to a real case in which the user
wants perform a comparison among different clustering methods. Indeed, clustering algorithms and quality
indexes have different complexities and the nodes usually have different performance according to each task.
In this case all the approaches have similar performance. Since this scenario models the behavior of grid
nodes with similar resources working on heterogeneous tasks, the assignment of a task to the fastest node
means assign it to the free node. In this case, MET presents a similar behavior in task assignment with
respect to the other approaches. The Max-min approach shows the best performance because the expected
values stored in the matrix are the most stable.

Due to the heterogeneity of the clustering approaches and quality indexes in terms of complexity, Micro-
ClAn framework adopts the Max-min approach which in many cases achieves the best performance. However,
to initialize the ETM the OLB strategy was exploited in the first runs to guarantee good performance in
term of completion time of the metatasks.

7. Conclusions

Microarray clustering gave rise to a lot of attention in recent years in the scientific community. Many
tools and algorithms were proposed to address microarray clustering and clustering evaluation, while less
attention has been devoted to the definition of a procedure to compare and aggregate clustering evaluations
produced by quality indexes to select the best one. Moreover, when few computational resources are available
to perform a large set of clustering analysis, the completion time of these tasks become a challenging task.

To address these issues, in this paper we proposed the MicroClAn framework, which evaluates clustering
algorithms by means of internal, external and biological indexes and compares results by using a two-step
aggregation procedure based on Kemeny and Condorcet theories. A distributed environment has been
exploited to optimize the execution time and several scheduling strategies were evaluated.

Experimental evaluations on synthetic and real microarray datasets show the effectiveness and the ef-
ficiency of MicroClAn framework. The two-step aggregation procedure allows to evaluate separately the
quality indexes belonging to different categories and assign more relevance to one aspect (e.g., biological
quality) during the evaluation process. Moreover, the clustering analysis takes advantage in term of com-
putational time exploiting a distributed environment and the most suitable scheduling procedure.

Future works will be addressed to include different scheduling procedures which consider also the features
of the grid nodes and the network traffic. Moreover, we will study new techniques to improve the performance
of some quality indexes by means of parallel algorithms. Finally, since our framework is modular, we plan
to include new quality indexes and clustering algorithms which can be exploited for further analyses also in
other contexts (e.g., geographical, financial, social networks). Interested readers are encouraged to try the
system, which is available upon request.
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