
3. Experimental modal analysis of 

masonry buildings 
 

 

In this chapter the experimental modal analysis and its application to masonry 

structures is analysed. In the last decades the advancement in sensor technologies and 

digital computation tools stimulated an extensive use of modal testing on cultural heritage 

objects. The first section is intended to present an accurate state-of-the-art analysis of 

linear system identification with particular emphasis on output-only techniques, which 

are known to be well-suited for architectural heritage buildings.  

In the second section, model updating methods are introduced, and the 

importance of relying on a reference model for structural identification is also highlighted. 

A few examples are then presented on identification and model updating of significant 

cultural heritage structures. 

3.1 System identification 

3.1.1 Linear system identification and classification of methods 

System identification refers to the development of structural models from input 

and/or output measurements performed on a real structure using sensing devices. 

Dynamic system identification is a major tool for the monitoring and the diagnosis of 

structures: in fact, experimental results from dynamic testing give knowledge about global 

structural behaviour and can be used in calibrating numerical models, in forecasting the 

response to dynamic and earthquake loading and can help in evaluating safety conditions 

[1,2,3].  

Even if the age of virtual prototyping has already started [4], experimental 

testing and system identification are still playing a key role because they help the 

structural dynamicists to reconcile numerical predictions with experimental 

investigations. The term ‘system identification’ is sometimes used in a broader context in 

the technical literature and may also refer to the extraction of information about the 

structural behaviour directly from experimental data, i.e., without necessarily requesting 

a model (e.g., identification of the number of active modes or the presence of natural 

frequencies within a certain frequency range).  

Linear system identification is a discipline that has evolved considerably during 

the last 30 years[5]. Experimental modal analysis is by all means the most popular 



Luca Zanotti Fragonara - “Dynamic models for ancient heritage structures” 

 

48 

 

approach to performing linear system identification in structural dynamics. The model of 

the system is expressed in the form of modal parameters, namely the natural frequencies, 

mode shapes and damping ratios. The popularity of modal analysis stems from its great 

generality; modal parameters can describe the behaviour of a system for any input type 

and any range of the input.  

Probably, the most common classification among identification methods is the one 

based on the domain where the method works. One can have methods working in: 

 time domain; 

 frequency domain; 

 time-frequency domain. 

A detailed description of method in these three domains will be performed in the 

next sections of this chapter. 

The distinction among identification methods can be based also on the algorithm 

used. In fact, methods can be both direct and indirect. For what concerns direct methods, 

the identification process consists of determining the matrixes of the system model. 

Therefore, the mass, stiffness and damping matrixes of the dynamic equilibrium 

equations have to be determined. On the other hand, indirect methods are based on the 

Frequency Response Function (FRF) of the system and they estimate the modal 

parameters (natural frequencies, damping ratios, amplitude and phase of the modal 

shapes). 

A further classification can be made by resorting to the number of modes 

considered by the identification technique: 

 single degree of freedom (SDOF) analysis. 

 multi-degree of freedom (MDOF) analysis. 

For instance in the frequency domain one can work both with SDOF or MDOF 

analysis, while in the time domain and with direct method only MDOF algorithms are 

available. 

Another typical classification is the one based on the number of input and output 

channels. The type of system depends mostly on the number of sensors available, for what 

concerns output channels, and on the type of excitation used, for what concerns input 

channels. Identification methods can be framed in four classes: 

 SISO (single input-single output): only one point of the system is excited and only 

one FRF can be determined. 

 SIMO (single input-multiple output): only one point of the system is excited but 

many FRFs can be determined. 

 MISO (multiple input-single output): these class of method is less common than 

the others, in this case several points of the system are excited and the output is 

read in only one point. 

 MIMO (multiple input-multiple output): in this case multiple points of the system 

are excited and the output is measured in multiple points of the system. 

Finally, a last distinction can be made on the basis of the source of excitation used 

in the identification process. In fact one can have an excitation known (such in the case of 

an impulse, excitation through a vibrodyne or a shaker) or unknown (environmental noise, 

wind, traffic…).  

For a description and classification of various input-output modal analysis 

techniques the reader may consult specialized texts [3,6,7]. 
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3.1.2 Time domain methods 

In recent years, time domain techniques have been used rather successfully, 

thanks to the great spectral resolution offered and to their modal uncoupling capability 

[8,9,10,11,12,13]. One of the basic shortcomings of these methods is that they often 

produce spurious modes, whose true nature, however, can usually be identified by means 

of simple modal form correlation indicators [6], or, as an alternative, with the aid of 

numerical models.  

An important family of time domain methods makes use of time series 

autoregressive models and exploits the theoretical results coming from research in the 

field of system control [14]. These techniques provide a very general and attractive 

formulation, and are frequently applied to civil structures. The most critical aspect resides 

in the computational complexity associated with applications to multi-degree-of-freedom 

(M-DOF) systems. The extension of the parameter estimation techniques to stochastic 

multi-variate models, in fact, is far from being trivial, and additional difficulties arise 

from local minimum points and algorithmic instabilities [15]. 

Among the deterministic methods, in addition to the historic Ibrahim Time 

Domain [16], we should mention the Eigensystem Realisation Algorithm (ERA) [17], 

which, based on a Single Value Decomposition (SVD) of Hankel's matrix, has been closely 

studied in the literature (e.g. [18]), and the Polyreference Time Domain (PRTD) stemming 

from a generalisation of Prony's method [19,20].  

Since the beginning of the Nineties, there has been an increasing interest in so-

called Stochastic Subspace Identification methods, in which statistical, algebraic and 

numerical concepts and algorithms cooperate, leading to user-friendly software for linear 

system identification [12,21,22]. Contrary to classical algorithms, subspace algorithms do 

not suffer from the problems caused by a-priori parameterisations and non-linear 

optimizations. Van Overschee and De Moor [23] studied three different subspace 

algorithms for the identification of combined deterministic-stochastic systems. This 

comparison is done through the introduction of a unifying theorem, of which the three 

algorithms are special cases.  

3.1.2.1 Autoregressive methods 

Let us write the 2nd order dynamic equilibrium equation for a linear system with 

N degrees of freedom at the discrete time tk=k·t, through an autoregressive moving 

average model [3,14]: 

              1 1 0 1 1 1 1) ... ...k k n k n k k n k n kx a x a x b u b u b u e                              (3.1) 

in this expression x is the vector of displacements, u is the input vector, 

matrices [a] represent the autoregressive part, whilst matrices [b] represent the moving 
average part, vector ek represents the prediction error taking into account noise. Index n 

represents the order of the model (in linear dynamics n2). By reproducing (3.1) for L 

subsequent instants we can arrange the L resulting equations in a compact form [3,24]: 
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The minimisation of the error, [e]T[e], yields an estimate of matrix []: 

  
1

[ ]
T T

x Y Y Y x Y


                            (3.6) 

where Y


    indicates the pseudo-inverse of matrix Y   . 

In unknown input conditions, we can start with the construction of a purely 

autoregressive model (AR) [25]: 

 R Rx Y u                  (3.7) 
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 (3.10) 

Based on the initial estimate of [R] and the ensuing evaluation of [f] by difference 

from (3.7) we can perform a new least square minimisation for the determination of []. 

Eigenvalues and eigenvectors are calculated accordingly [3]. 

3.1.2.2 Eigensystem Realisation Algorithm (ERA) applied to Random Decrement (RD) 
signatures 

Dynamic response signals contain two parts: a free decay component due to the 

system’s initial state and a component associated with the forced response. Given a 

random stationary response signal with zero mean and even probability density 

distribution, let us select a set of points that satisfy a specific triggering condition. Each 

chosen point may be viewed as the initial state of a signal sequence. The average among a 

large number of sequences will converge to a system’s free decay signature. 

The auto and cross RD transforms are defined as the average values of the 

realisations of a stochastic process, after a delay τ from the instant when a particular 

“triggering condition” is satisfied. In practical applications, the triggering condition 

mainly used is the “positive point” one. The reason is that the correlation functions or 

their derivatives are often searched alternatively [26]. 

The RD technique is often used in conjunction with identification methods based 

on impulse response, as the latter is directly related to the correlation function [26,27]. An 

impulse response based technique most commonly studied and employed with RD 

functions is based on the Eigenvalue Realization Algorithm (ERA), as described below.  

The state space formulation (1st order equilibrium equation) associated to (3.1) 

can be written in the discrete time form as follows [3,17]: 

      1 [ ] [ ]      0,1,2,...k k kX A X B k     (3.11) 
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where  kX  represents the state vector, and  k  stands for impulse excitation.  

Assuming that at the initial time it is    0 0u   and knowing that    0) 1,0,...0
T

   and 

   0k   at k > 0, and by considering all loading points, for all subsequent time intervals 

we can write: 

 1[ ] [ ] [ ]         k>0k
kY A B  (3.12) 

The k Markov parameters [Yk], which represent the measured signals (or their RD 

functions when working with ambient measurements) can be organised in a Hankel 

matrix. Some conditions are to be met for obtaining a sufficient quantity of data to 

perform a Single Value Decomposition (SVD) on the Hankel matrix [28]. 

 1[ ] [ ][ ] ... [ ] [ ]sW B A B A B     
 (3.13) 

This process is known as realisation and it entails the determination of the [A] 

and [B] matrices from redundant data. 

There are an infinite number of sets of matrices that satisfy (3.12) since there are 

an infinite number of realisations for the system; the aim is to obtain the realisation 

which, while giving origin to the state space formulation with the lowest degree, still 

represents the dynamic behaviour of the structure. The system's modal parameters are 

obtained by extracting the eigenvalues and eigenvectors from the realised matrix [A]. 

3.1.2.3 Stochastic Subspace Identification (SSI) method 

When ambient excitation is considered, the input is unmeasured and equation 

(3.11) becomes: 

      1 [ ]      k=0,1,2,...k k kX A X e    (3.14) 

The SSI method requires the assumption that ek is constituted by white noise.  

If this assumption is violated, the main frequencies contained in the input signals cannot 

be separated from the authentic modal components, when solving the eigenvalue problem. 

Conceptually, SSI methods start by building large block Hankel matrices from 

the output sequence, divided up in ‘past’ and ‘future’ data matrices [23]. The Kalman filter 

state sequence can be obtained by projecting the row space of the future block Hankel 

matrix, into the row space of the past block Hankel matrix. This can be done using the 

concept of angles between subspaces, which is a generalization of the angle between two 

vectors. Once that state sequence is obtained, the estimation of the system’s characteristic 

matrices follows from solving a least squares problem.   

The technique implemented here is the third algorithm considered in the unifying 

theorem by Van Overschee and DeMoor [23]. This method is often referred to as the 

“Canonical Variate Analysis” (CVA) and is due to Larimore [29]. It is based on statistical 
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arguments and makes extensive use of principal angles and directions. The reader is 

referred to the references for details. 

3.1.3 Frequency domain methods 

Frequency domain methods tend to perform better when the frequency range and 

the number of modes are limited. Methods in the frequency domain were the first to be 

used in the field of identification but problems related to the resolution in frequency, 

leakage phenomena [3] or high modal density, led to the introduction of time-domain 

based algorithms. 

Anyway, especially in the field of masonry structures several examples of 

frequency domain methods are available. For instance, Capecchi e D’Ambrogio [30] use a 

modified version of the method of “Rational Fraction Polynomial (RFP)” [31] together with 

the Hilbert transform in order to eliminate the non-linear contribution, to identify an old 

masonry building. Genovese et al [32] and Beolchini and Antonacci [33] used the Goyder’s 

method [34] in order to approximate the experimental frequency response functions with a 

least square minimisation and using a different set of function with respect to the RFT 

method. A common situation in experimental analysis is the identification of signal with 

unknown excitation, in such a case spectral method have been often applied 

[35,36,37,38,39].  

Nowadays, one of the most common and applied methods of identification in the 

frequency domain is the Frequency Domain Decomposition (FDD), also due to the 

availability of simple commercial codes. The FDD method [40] can be viewed as an 

extension of the traditional basic frequency domain method. It is performed using the 

output power spectral density (PSD), and based on the assumption that the excitation is 

pure Gaussian white noise and that all natural modes are lightly damped [40]. A singular 

value decomposition (SVD) is carried out for each PSD matrix and all modes contributing 

to the vibratory signature of a structure at a given frequency are separated into principal 

values and orthogonal vectors. When a single mode identified by peak picking at a given 

frequency prevails in the spectrum, the first vector obtained by the SVD will constitute an 

estimate of the mode shape. The first singular value corresponding to this mode should be 

approximately equal to the sum of the terms on the diagonal of the PSD matrix, which 

means that most of the power of the measured signals at this frequency can be attributed 

to the vibratory signature of this particular mode. Other singular values that are not 

associated with any mode will consist of decomposed noise initially contained in the 

signals before the SVD was performed. 

Once natural frequencies have been roughly identified by peak picking and mode shapes 

have been estimated using the singular vector matrices, equivalent single degree of 

freedom ‘spectral bells’ are identified for each mode. This step is achieved by comparing 

the estimated mode shape of interest with all vectors previously estimated throughout the 

spectrum by SVD of all the PSD matrices. A comparison of the mode shapes is then 

carried out by computing the modal assurance criterion (MAC - see section 3.2.4). All 

singular values corresponding to a MAC value superior to a user-specified parameter 

(which is called the MAC rejection level) are kept, thus forming an equivalent single 

degree of freedom spectral bell. Then, by inverse fast Fourier transform (IFFT) of that 

spectral bell, the resulting auto-correlation function can be used to revaluate the 
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frequency by counting the number of zero crossings in a finite time interval. Damping 

ratios are also estimated using the logarithmic decrement of the auto-correlation function.  

3.1.4 Time-frequency domain methods 

The main advantage of time-frequency domain analysis is its ability to handle 

non-stationary waveform signals, which are very common when structural damage and 

faults occur.  

As an example, let us consider a signal that features a time localization of 

spectral components. The Fourier transform is not suited for the analysis of such 

components, since it projects the signal on infinite harmonics which are not localized in 

time. If at any time instant only a single frequency is present, an instantaneous frequency 

may be variously defined; this quantity is commonly identified with the rate of phase 

change in the analytic signal [41]. Such a definition is capable of describing the time 

localization of a specific class of signals, but proves to be unsuitable for multi-component 

ones. 

In all cases where mono-dimensional representations are inadequate one can turn 

to bi-dimensional (joint) functions  ,xT t f  of the variables time and frequency.  ,xT t f  is 

referred to as “time frequency representation” (TFR) of the signal  x t .  

3.1.4.1 Linear time-frequency transforms  

3.1.4.1.1 Short Time Fourier Transform (STFT)  

In order to introduce the time localization of frequency components, a simple 

solution is obtained by pre-windowing the signal around a particular time t, as shown in 

Figure 1, calculating its Fourier transform, and doing that for each time instant t. 

Accordingly, the “short-time Fourier transform” (STFT), of a signal  'x t is defined as [42]: 

 
       * 2 ', '  '   d 'j ft
XSTFT t f x t t t e t
 






   (3.15) 

where  t  is a short time analysis window centred around t. The superscript * denotes 

complex conjugation. 
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Figure 3.1 - Prewindowing of a signal in the time domain and time-frequency representation. 

Since multiplication by the relatively short window  't t   effectively suppresses 

the signal outside a neighbourhood around the analysis time point 't t , the STFT is a 

“local” spectrum of the signal  'x t  around t.  

The STFT is evidently linear and is complex-valued in general. Provided that the 

short-time window is of finite energy, the STFT is invertible through: 

         2 '', '  '  d ' d 'j f t
Xx t STFT t f g t t e t f
  

 
      (3.16) 

with    * d 1g t t t  . Equation (3.16) implies that the total signal can be decomposed as a 

weighted sum of elementary waveforms: 

     2 '
, ' ' j ft

t fg t g t t e     (3.17) 

which can be interpreted as “atoms”. Each atom is obtained from the window  g t  by a 

shift in time and in frequency (modulation). 

The STFT may also be expressed in terms of signal and window spectra: 

        * 2 ( ' ), '  '   d 'j f f t
xSTFT t f X f f f e f
  


    (3.18) 

where X  and   are respectively the Fourier transform of x  and  . Accordingly, the 

STFT can be interpreted as the result of passing the signal through a filter with frequency 
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response  'f f   and is therefore deduced from a mother filter  f  by a translation of 

f . The STFT is thus similar to a bank of band-pass filters with constant bandwidth. 

The STFT preserves time-frequency shift (see property P3 in Table 1). Such 

transform, as well as its squared magnitude, the “Spectrogram” (SPEC), is frequently 

used in many application fields, including modal decoupling, system identification (e.g. 

[43,44]), group velocity, speech recognition etc. 
The time resolution of the STFT can be obtained by considering for x  a Dirac 

impulse: 

          02
0 0,  

j ft
xx t t t STFT t f e t t
  

      (3.19) 

Thus, the time resolution of the STFT is proportional to the effective duration of 
the analysis window  . Similarly, to obtain the frequency-resolution, we have to consider 

a complex sinusoid (an impulse in the frequency domain): 

        0 02 2
0,  

j f t j f t
xx t e STFT t f e f f
 

      (3.20) 

hence the frequency-resolution of the STFT is proportional to the effective bandwidth of 
the analysis window  . As a consequence, for the STFT, we have a “trade-off” between 

time and frequency resolutions: while a good time resolution requires a short window  , a 

good frequency resolution requires a narrow-band filter i.e. a long window. This limitation 

is a consequence of the Heisenberg-Gabor inequality [41,45]: 

 1T B   (3.21) 

where T is the signal’s temporal length and B is the bandwidth. The lower bound of the 

product is reached for Gaussian functions. 

3.1.4.1.2 Discrete STFT  

Equation (3.15) can be sampled on a rectangular grid: 

             02 '*
0 0 0, , '  '  d '

j mf t
x xSTFT n m STFT nt mf x t t nt e t
  

 


    (3.22) 

where n and m are integers.  

The problem is then to choose the sampling period 0t  and frequency 0f  so as to 

minimize the STFT inherent redundancy without losing any information [46]. For a 

sampled signal x n  whose sampling period is noted Δt, 0t  has to be chosen as a multiple 

of Δt such that  0 0 1t f  . We then have the following analysis and synthesis formulae: 



Chapter 3 - Experimental modal analysis of masonry buildings 

 

 

57 

 

 
  * 2 1 1,     for  -

2 2
w j mk

x

k

STFT n m x k k n e m                    (3.23) 

 
  2,
w j mk

x

n m

x k STFT n m g k n e                 (3.24) 

Equations (3.23)-(3.24) can be implemented efficiently by means of overlap “fast 

Fourier transform” (FFT) techniques. 

Alternatively, a filter-bank implementation is possible, based on sampling 

equation (3.18).  

3.1.4.1.3 Wavelet transform 

Another important TFR is the time-frequency version of the Wavelet transform 

(WT) defined as [42,47]:  

  ( ) *

'

( , ) ( ') ' d 'x
c ct

f f
WT t f x t t t t

f f

 
 

      
 

  (3.25) 

where  t  is a real or a complex band-pass function centred around 0t   in the time 

domain. The parameter fc in equation (3.25) corresponds to the centre frequency of  t . 

The WT was originally introduced as a time-scale representation and in fact retains the 

important property of preserving time shifts and time scaling. It does not, however, 

preserve frequency shifts. 

The WT’s time and frequency resolutions are related via the Heisenberg-Gabor 

inequality, like in the STFT case. However, while the STFT’s resolution is the same for 

each analysis frequency, the WT’s frequency resolution (respectively time resolution) 

becomes poorer (respectively better) as the analysis frequency grows. 

Scale shift invariance makes the WT, or its squared magnitude, the “Scalogram” 

(SCAL), a frequent choice in pattern recognition and many other application fields, 

including ridge and phase estimation (e.g. [48,49]) and SHM (e.g. see the list of references 

in [50,51]).  

3.1.4.2 Quadratic time-frequency transforms  

Although linearity is a desirable property, quadratic TFRs [42,52] allow for 

interpreting the distributions from an energy point of view. This interpretation is 

expressed by the so-called “marginal properties”: 

        
2 2

, d ;      , dx xT t f f x t T t f t X f
 

 
    (3.26) 
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having defined the “instantaneous power”  
2

x t  and the “spectral energy density” 

 
2

X f .  Consequently the signal energy is: 

      
2 2

d d , d dx xE x t t X f f T t f t f
   

   
       (3.27) 

The marginal properties are not sufficient to identify an energy density at every 

point in the time-frequency plane, since the uncertainty principle does not allow such a 

notion. Vice-versa, many quadratic TFRs may loosely support an energetic interpretation 

even if they do not satisfy the marginal properties, among them the SPEC and the SCAL: 

        
2

, ,x xSPEC t f STFT t f
 

  (3.28) 

        
2

, ,x xSCAL t f WT t f
 

  (3.29) 

In equation (3.28) the linearity structure of the STFT is violated, and in fact any 

quadratic TFR satisfies the “quadratic superposition principle”: 

 

     

     

   

1 2

1 2 2 1

1 1 2 2

2 2
1 2

1 2 2 1

, , ,

             , ,

x x x

x x x x

x t c x t c x t

T t f c T t f c T t f

c c T t f c c T t f

  

  

 

 (3.30) 

The last two terms in equation (3.30) are the cross-terms or interference terms. 

The interference terms are oscillatory structures which are restricted to those regions of 

the time-frequency plane where the auto-terms (or authentic terms) overlap. In the 

specific cases of the SPEC and the SCAL, if two components are sufficiently far apart in 

the time-frequency plane, then their interference terms will be virtually nil. 

Quadratic representations have recently served as an effective tool in structural 

diagnostics and machine fault detection [50,51]. 

3.1.4.2.1 The autocorrelation form and the Wigner-Ville transform 

A general approach to deriving time-dependent spectra is by generalizing the 

Wiener-Khinchine theorem: the correlation function and the power spectrum form Fourier 

transform pair. By assuming the symmetric form for the instantaneous temporal and 

spectral autocorrelation, which are also functions of the time lag  and the frequency lag ν, 

respectively  
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      , 2 2xr t x t x t      (3.31) 

      , 2 2xr t X f X f      (3.32) 

and by transforming equations (3.31) and (3.32) one obtains [41]: 
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= 2 2 d
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 (3.33) 

Equation (3.33) gives the “Wigner distribution” (WD), a transformation well 

known in quantum mechanics, whose signal processing version is often referred to as 

Wigner-Ville distribution. 

By taking the instantaneous cross-correlation between two signals,   1x t  and 

 2x t , the WD assumes the following more general form:   
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= 2 2 d
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 (3.34) 

The WD satisfies a large number of desirable properties (see Tables 1-2), in 

particular marginals, shift invariance and real-valuedness.  The instantaneous frequency 

[41] and the group delay can be evaluated using the local first-order moments of the WD 

[1]. 

Among the dual class of correlative TFRs, which combine temporal and spectral 

correlations, an important role is played by the “ambiguity function” (AF) [42]: 

 

     

   

1 2

* 2
, 1 2

* 2
1 2

, 2 2 d

= 2 2 d

j t
x x

j f

A x t x t e t

X f X f e f





   

 

 







  

 





 (3.35) 

The AF may be viewed as a joint time-frequency correlation function. Along 0   

and  0   axes AF reduces to the time correlation function and the frequency correlation 

function, respectively (correlative marginal properties). 
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3.1.4.3 Cohen class of transforms 

Among quadratic transforms, those belonging to the Cohen (or shift-invariant) 

class are characterized by the invariance of its members to time and frequency shifts (see 

P2 in Table 1), a property that is desirable for correlating the signal characteristics to 

phenomena that take place in the mechanical system which generates the signal. Cohen 

demonstrated that every member of the shift-invariant class is a filtered version of the 

WD, and that  it is possible to use a general formula for describing all of them [1]. Indeed, 

equivalent formulas can be written in four different domains: temporal correlation domain 

 ,t  , time-frequency domain  ,t f , ambiguity function domain  ,  , spectral correlation 

domain  , f  [53,54]. For instance, the following relation holds in the temporal 

correlation domain:  
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, ', ', d 'd

, , d

j f
x x

j t

T t f r t t t e t

t g e

 



   

    

  

 

 



 



 



 (3.36) 

where  ,g   is the kernel that uniquely identifies the specific TFR (  , 1g     for 

the WD). 

3.1.4.4 Desirable properties of the t-f distributions 

A standard set of desirable properties is usually referred [41,42,54] to compare 

the performance of different transforms. Herein, we consider a subset which contains the 

main characteristics that are of interest in the application context under discussion. In 

table 3.1 properties are related to the corresponding requirements on the kernel. Table 3.2 

reports the properties of eight important shift-invariant transforms, including the SPEC. 

The SPEC is in fact a member of Cohen's class, but, since it does not offer independence of 

temporal and spectral resolutions, it is generally classed as linear [41]. It is worthy to note 

that only the SPEC satisfies P0, while sacrificing non-negativity is mandatory in order to 

gain time-frequency resolution. 

 

 PROPERTY CONDITION ON THE KERNEL 

P0 Non-negativity: 

 , 0      xT t f t f    
 ,g     is the AF of some  f t  

P1 Realness: 

   *, ,x xT t f T t f  
   *, ,g g     

P2 Time-frequency shift: 
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       02
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P3 Time marginal: 
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P7 Finite time support: 
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P8 Finite frequency support: 
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P9 Reduced interference  ,g    is a low pass filter type in  ,   plane 

Table 3.1 - Properties of eight shift-invariant transforms and corresponding kernel conditions. 

Transforms P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Spectrogram (SPEC)           

Wigner (WD)           

"Alias-Free" Wigner            

Pseudo-Wigner            

Smoothed-Pseudo-Wigner            

Cone-Kernel            

Reduced Interference            

Choi-Williams (CWD)         (*) (*)  

Table 3.2 - List of desirable properties satisfied by different quadratic transforms. (*) Not in a strict sense, but only 

approximately. 
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The WD does not satisfies P9 (reduced interference), which is a desirable property 

as it preserves only the authentic (e.g. modal) components. Detailed theoretical 

discussions on different TFRs may be found in the specialized literature [53,54]. 

3.1.4.5 Time-Frequency Representation of Stochastic Processes 

3.1.4.5.1 Stationary processes 

The notion of spectral density, which is well consolidated in the field of stationary 

processes, may constitute a valuable starting point for approaching non-stationary 

problems.  

One of the reasons of the popularity of the Wigner transform is its desirable 

property to preserve the instantaneous spectral information in stationary processes. In 

fact, introducing the auto-covariance function of a process F,     , ,F FC t r t   , and 

taking the expectation in both sides of equation (3.33), we obtain the Wigner spectrum 

[11,19]: 

       , / 2, / 2 exp 2 dF FWD t f C t t j f    





      (3.37) 

In the stationary case, the quantity expressed in equation (3.37) is independent of 

t and reduces to the usual spectral density:     ,F FWD t f S f   [47,55]. In this 

situation, in fact, the covariance operator is a convolution operator, which is known to be 

diagonalized by the complex exponential functions. 

Unfortunately, in practical applications a limited number of signals are available. 

If the process is ergodic, a WD estimate of the spectral density may be obtained from a 

single realization  x t  by averaging over time instantaneous spectra [56]: 

    
2

2

1
, d

B

B X

B

V f WD t f t
B


   (3.38) 

Based on equation (3.38) it also proves possible to quantify the degree of non-

stationarity of a stochastic process on the given time interval via a distance measure [20]: 
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   (3.39) 

If the process is stationary Bd  reduces to zero. In multi-component signals, 

however, the Wigner representation of a single realization of the process is affected by 

interference terms, which can be filtered out in the ambiguity function domain but at the 
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cost of losing resolution. There is, in fact, a trade-off between cross term filtering and 

time-frequency resolution; hence the representation is kernel dependent.  Another 

problem is that the Wigner transform misses the desirable property of non-negativity over 

the t-f plane [57]. These two aspects may have some negative implications in the definition 

of instantaneous estimators to be used in the analysis of deterministic signals.  

Going back to linear TFRs, the square modulus of the STFT, or SPEC, of a 

stationary process may be written in the form [47]:  

 
        

2
, ' d 'FFSPEC t f f f S f f






     (3.40) 

where  f  is the spectrum of a window function  t , such that   1f  , and  FS f  

is the spectral density associated with the process. Equation (3.40) shows that the value of 

the spectrum at f  is a weighted average of the spectral density, when ~ 'f f . As long as 

the Fourier transform of the window is still localised near the origin, the spectrogram 

provides, for each fixed f, information on the part of the original signal which comes from 

the frequency contributions localised near f . 

If one were to work with a sample realisation  x t , by assuming the ergodicity of 

the signal, an estimator of the spectral density may be defined as follows [47]:  

      
2

2

1
,  d

B

B x

B

V f SPEC t f t
B





   (3.41) 

Owing to the weighting average operation, the spectral function expressed by 

equation (3.41) is a biased estimator. A spectral function that supports a weighted average 

interpretation may be defined also for the SCAL [47].  

3.1.4.5.2 Locally stationary processes  

When a process is non-stationary, the covariance operator may have complicated 

time varying properties and its estimation is arduous because we do not know a priori how 

to diagonalize them. In the following we will focus on the particular class of locally 

stationary processes, i.e. processes whose covariance operators are approximately 

convolutions. 

Recently, researchers have turned their attention to locally stationary processes 

as a tool to model systems where the behaviour varies as a function of time (e.g., Mallat 

et. al. [58], Dahlhaus [59], Ceravolo [60]). Though in the time-frequency plane the concept 

of local stationarity is easily grasped, to date it does not exist a universally accepted 

definition. In order to support an intuitive idea, suppose that for any t0 the Wigner 

spectrum varies very little within an interval [t0-, t0+]. Such a parameter 0 is called 

the stationarity length and in general its value depends on t0.  



Luca Zanotti Fragonara - “Dynamic models for ancient heritage structures” 

 

64 

 

The question on how to adapt the analysing window (or the kernel, in the case of 

a Cohen class transform) to the stationarity length of process is still open [47]. Several 

techniques have been formulated to select the best strategy and often they are based on 

optimisation procedures. For instance, Kozek [61] proposed a minimum bias optimisation 

criterion based on support properties of the ambiguity function. In principle, these 

methods are conceived to deal with stochastic processes or with a proper number of 

sample realizations and are not suitable to deal with a single signal. 

Some new ideas may arise when working with random fluctuations produced by 

mechanical systems, which typically change slowly in time or space. This type of signals 

can be generally considered as locally stationary, since they appear in the time-frequency 

plane as a sum of modulated harmonics concentrated at the modal frequencies. In this 

case, the instantaneous spectrum of a single realization may reflect and be associated 

with some physical parameters, whose consistency is an indirect indicator of the 

transform suitability. 

A simple case of locally stationary process is a uniformly modulated process that 

is constructed as      0x t c t x t , where   c t  is a slowly varying modulation function and 

 0x t some stationary process. The time evolutions of such a process are depicted correctly 

by the following time-varying spectrum [62]: 

      
0

2,F FP t f c t S f  (3.42) 

When dealing with more general classes of oscillatory processes, a description of 

temporal evolutions of spectral components, frequency by frequency, produces: 

       j2, e dft
xx t A t f X f f





   (3.43) 

 thus leading to Priestley’s evolutionary spectrum [25,26]: 

      
2

, ,F F FP t f A t f S f  (3.44) 

The modulation function  ,FA t f  is supposed to undergo a slow time evolution, 

which ensures an almost orthogonal decomposition. Priestley’s spectrum retains 

satisfactory properties (e.g. non-negativity) but misses uniqueness. 

In locally stationary conditions, evolutionary representation supports an 

interesting time-frequency input-output relationship [63]: 

         2, , dj ft
xy t H t f A t f X f e f





   (3.45) 
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where  ,H t f is the transfer function of a time varying filter. The important result is that 

the output is a modulated form of the filter (or system) transfer function. This is 

analogous to one-dimensional filtering in the frequency domain:      Y f H f X f . 

Finally, it is worthwhile noting that there is a theoretical link between 

evolutionary spectra and members of Cohen class of transforms [64] and, what is more, for 

slowly varying processes the Wigner spectrum approaches the evolutionary spectrum. 

3.1.4.6 Time-Frequency estimation and best windowing 

An attractive idea is to extend by analogy some properties of stationarity to local 

stationarity. For instance, an estimator for the time-varying spectrum of a locally 

stationary process,  ,FT t f  may be obtained from a single realization x(t) by selecting a 

proper analysis window/kernel and posing B=  in equations (3.38) and (3.41): 

    , ,F xV t f T t f  (3.46) 

where  ,xT t f  is any quadratic TFR. It is likewise possible to track instantaneous 

relationships between signals. For instance, in multi-channel measurements on 

structures, instantaneous estimators of amplitude ratio and phase difference between 

channels may be defined as follows [65,66]: 
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In linear time-invariant systems, equation (3.47) can support output-only modal 

identification procedures, as stability over time of such estimators discriminates modal 

components from exogenous frequency components.  In fact, modal signals are 

characterised by amplitude and phase relationships that are not time-dependent and 

therefore their modal shape is constant over time. The identification of modal frequencies 

therefore reduces to a search for the particular values  kf f  for which the estimators 

remain constant with respect to the time variable, in general by resorting to multiple 

criteria techniques. In frequency intervals where a single modal component is 

predominant, the estimators tend to lead to a constant value in time.  This property is 

progressively closer satisfied up to an actual constant value at the modal frequencies.  

Modal frequencies may be identified as minima in standard deviation plots 

defined as: 
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where T is the length of the analysed signal and PH  indicate the mean value.  

Once the modal frequencies have been identified, equations 33 supply the 

temporal evolution of the amplitude and phase ratios. Alternatively, modal shape 

estimators can be taken as: 
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 (3.49) 

where    k
z t  is a signal generated as a sinusoid with frequency equal to the kth modal 

frequency. The procedure is then repeated for all the signals at the ith and jth position. 

Recently an improvement of this technique, based on the principal component analysis, 

was proposed [67]. 

3.1.4.6.1 Best windowing  

Typical questions about time-frequency estimation are how to select the optimal 

representation and window analysis and how many realizations of the process are needed 

to obtain an accurate estimate for  ,FT t f . 

While quadratic representations are very useful in analysing strongly non-

stationary signals, choosing the best kernel for a particular application appears to be a 

challenging task, as relationships with dynamic response characteristics are far from 

being trivial.  

An alternative idea may consist in being satisfied with linear representations, 

which lend themselves to a clearer interpretation, and accepting the errors due to the fact 

that linear TFRs cause in general a distortion in the representation of the instantaneous 

power of stationary stochastic processes.  

In principle, a suitable choice for the window of a STFT should be a function 

compactly supported in the interval [t0-, t0+], and may vary according to a temporal law 

matched to the stationarity length of the process. Unfortunately, in most practical 

applications the stationarity length δ is unknown. 

Numerical studies have been performed in order to identify the influence of the 

analysis window on instantaneous spectral estimation via a STFT spectral function 

(equation (3.41)). To this aim, an extensive set of dynamic response signals has been 

created numerically by exciting simple linear oscillators by means of white noise. The 

results reported here will focus on the following factors: type of window, window length (in 

samples), decorrelation length of the process (related to damping) [43]. 

Equation (3.40) shows that the window may cause an error in the estimate and 

that the latter, when the number of realizations approaches infinity, decreases with 

increasing window temporal length. The effect of the window length as well as the type of 

window has been examined by Ceravolo [43]. 

The results, shown in Figure 3.2a, indicate that, averaging over a finite number 

of realizations (in this case 30 demonstrated to be sufficient for a virtually exact fitting), 

windows of optimal length exist for the estimate of the “frequency response function” 
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(FRF) and hence for the identification of modal parameters via linear TFRs. Such lengths 

are identified by minimum points in charts of the type shown in Figure 3.2a.  

  
Figure 3.2 - (a) Error in the curve fitting performed on STFT as a function of window length (average over 30 

realizations). (b) Optimal length in samples of the STFT (Hanning window) as a function of system’s damping: 

curves obtained for three different values of sampling frequency. 

In stationary conditions, the parameter that may affect the quality of time-

frequency representation demonstrated to be the decorrelation length, and hence 

damping, whilst other factors such as the window shape were seen to be less relevant, at 

least for typical analysis windows [43]. Figure 3.2b, which has been obtained from 

simulated examples, shows the evolution of the optimal length that the windows should 

have as a function of damping level (in this case for a Hanning type window). This type of 

chart may be of practical use when representing the response of structures under ambient 

excitation. The choice of the optimal length for the STFT analysing window, based on 

Figure 3.2b, is conditioned by the availability of a raw estimate of damping. 

3.1.4.7 Model based Time-Frequency estimation  

While linear representations, which permit a filter-bank interpretation, clearly 

allow reconstruction of the signal (e.g. equation (3.16)), for energy decompositions the 

same property is less obvious. For Cohen class of transforms the inversion is obtained 

from [68]: 
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By taking a particular value of t’, for instance zero, we have: 
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One can easily notice that, according to equation (3.50), the signal can be 

recovered but only to within a constant phase factor.  

3.1.4.7.1 Signal synthesis  

In many practical applications, e.g. earthquake accelerogram generation, the 

main interest is in synthesizing signals with specific time-frequency features, rather than 

in signal reconstruction. Synthesis algorithms can also be used to perform time-varying 

filtering, multi-component signal separation, and window and filter design. In this 

perspective, one might envisage filtering in the t-f plane with [54,69]: 

      , , ,T t f t f T t f   (3.52) 

where  ,t f  is referred to as time-frequency mask. 

A major problem of the masking approach is that not all two dimensional 

functions are valid TFRs. Instead, it is natural to resort to optimization techniques (e.g. 

least square methods), in order to find a time-frequency decomposition that best fits a 

time-frequency model. 

Synthesis algorithms are usually formulated to find a signal  x t  that minimises 

the error x  between a given model,  ,T t f ,  and the transform of the signal  ,xT t f to be 

synthesized [41,54,69]: 

    , ,   minx x
x

T t f T t f     (3.53) 

Since for WD and other shift-invariant transforms the solution of the 

optimization process is not unique (e.g.  x t  and   jx t e   have the same Wigner 

representation) the algorithm often contains a step to find the optimum phase factor. 

Under particular conditions it proves advantageous to represent  x t  in an ortho-

normal basis. Thus, by assuming a quadratic TFR, equation (3.53)  becomes: 

        *,     , ,   min
lk k x k kl

k k l

x t q t T t f T t f


         (3.54) 

such a formulation is certainly valid for linear dynamic systems, whose response is a sum 

of modal components. 

3.1.4.7.2 Model identification  

A formulation similar to that of equation (3.52) may be used also in solving the 

inverse problem, namely finding a model that produces the same distribution as a 

measured signal. 
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When  x t  is measured on a linear structure and we want to identify the 

dynamic model, a modal decomposition form is indicated for  ,T t f . As an example, a 

model identification can be obtained from the following unconstrained minimization [60]: 

    * , ,   min
lx k kl x

k l

T t f T t f    
p

 (3.55) 

where p is the global vector of parameters, which may contain α terms as well as other 

parameters of the model. 

In some applications, as in structural control, the optimization can be performed 

on an on-line basis. For instance, a “block-by-block” synthesis/identification algorithm is 

performed on local, finite record intervals, whose length will depend necessarily on the 

time-frequency analysis window or kernel. When parameters to be estimated retain a 

temporal significance (e.g. time-varying systems [70] or output-only identification) it may 

prove advantageous to perform an instantaneous minimization so as to obtain a punctual 

estimate of p: 

      , , d   minx xt T t f T t f f



   
 

p
 (3.56) 

The most convenient minimisation form and algorithm will depend on the specific 

application. In the implementation of equations (3.52)-(3.55), the analytic signal is usually 

preferred to the real one, since it avoids cross-term interference between positive and 

negative frequencies. 

3.1.4.7.3 Output-only identification of linear systems 

Natural excitation of flexible structures (buildings, bridges, antennas etc.) is 

characterized by slow energy supply. Also based on the time-varying filter interpretation 

evoked in equation (3.45), in the time-frequency representation of locally stationary 

signals we expect energy to concentrate around modal frequencies and be modulated 

according to the evolution of the TFR of the modulating waveform [43,50]. Consequently, 

the time-frequency model in equation (3.55) may be given the following (non-negative) 

form [43]: 

          * *,  
lk k l

k l

T t f t t H f H f   (3.57) 

where  kH f  is a scaled version the k-th mode’s FRF. In particular, for viscously damped 

dynamic systems the following expression holds: 
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1

2 22k k k kH f f j ff f


    (3.58) 

If the assigned TFR has a stochastic nature (possibly obtained by ensemble 

averaging) and its modal components are uncorrelated, the cross-terms vanish from 

equations (3.54)-(3.55). Correspondingly also  ,FT t f will tend to non-negativity in 

accordance with the model in equation (3.56).  

It is noteworthy that interference term suppression, as operated on deterministic 

signals by specific TFRs (property P9 in table 3.2), appears to produce in equations (3.54)-

(3.55) effects that are similar to those produced by a stochastic identification.   

3.2 Assimilating experimental results in numerical 

models (model updating) 

There are two main complementary approaches to the calibration of a model: a 

model-driven and a data-driven approach. Also the nature of the problem changes 

depending on the type of approach which is pursued.  

In the case of the model-driven methods the parameters of the model (or at least 

part of them) are unknown and must be obtained from the measured data. In this case a 

version of the model is constructed using physical laws based on first principles. Then the 

model parameters are changed by means of some optimisation techniques to fit the 

measured data. This procedure is commonly known with the name of Model Updating 

(MU).  

The data-driven approach consists in a forward evaluation problem and it is 

treated as a Statistical Pattern Recognition (SPR) problem. In its broader sense pattern 

recognition consists in the labelling of a sample of measured data according to a series of 

pre-defined classes. Pattern recognition finds applications in several engineering, 

economic and social fields.  

3.2.1 Model-driven approaches 

Model updating is a technique that has been developing through the last years. In 

various fields of the engineering the usage of numerical models to evaluate the behaviour 

of a physical system is frequent. The accurate representation of a system depends of the 

type of numerical model used to represent the elements of the system and on the 

properties of this model (e.g. in a structural application the elasticity modulus, boundary 

conditions, et cetera). The discrepancies between the behaviour of a numerical model and 

the real system can be significant as reported by [71] and [72].  

Inverse methods are commonly used to improve the quality and reliability of a 

model. They combine an initial (generally finite element) model of the structure, whose 

parameters can be derived by specific characterisation tests or simply guessed, and 

measured data expressed in the form of modal properties or frequency response function. 

In the comparison between analytic data and experimental data there is a 

potential problem: the response is measured only in a limited number of points of the 
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structure, and in a limited interval of frequencies.  Therefore, to compare these different 

set of data is necessary to expand the measured data or to reduce the analytic data. 

3.2.1.1 Modal reduction 

There are different types of modal reduction. The so-called static reduction or 

Guyan’s reduction [73] allows calculating a transformation matrix T which reduces the 

mass and the stiffness matrices to the terms related to the useful degrees of freedom. 

The dynamic reduction is an extension of the Guyan’s method, accounting of the 

inertial terms for a particular frequency. In this case is possible to reach higher precision 

respect to the static reduction [74].  

An Improved reduction system (IRS) has been introduced by O’Callahan 

[75]which improves the static reduction method through the introduction of inertial terms 

as pseudo-static forces. 

O’Callahan and others have developed also the System Equivalent Reduction 

Expansion Process (SEREP) which utilizes the computation of eigenvectors to produce the 

transformation between master and slave coordinates [76].  

3.2.1.2 Modal expansion 

Modal expansion is a procedure strictly related to modal reduction, and is 

possible to look at it as an inverse reduction.  

The easier way to expand data is to substitute the unknown eigenvector values 

with the values calculated from the analytical model but using this procedure both 

analytical and measured modal shapes have to be normalized in the same way. 

It is possible to expand data using the stiffness and mass matrices. This 

procedure is dual to the dynamic reduction [74].  

An alternative method is to use modal data coming from the finite element 

analysis. The identified modes are treated as a linear combination of the analytical modes 

and in this way it is possible to calculate a transformation matrix. This procedure is 

strictly linked to the previously mentioned SEREP procedure. 

3.2.2 Direct methods and sensitivity analysis 

Model updating methods may be classified as direct or sensitivity methods. Direct 

methods try to reproduce the measured data from the structure by applying little changes 

to the stiffness and mass matrix which are difficultly associable to the parameters of the 

model. Indeed, the main drawback of direct methods is that their results are characterised 

by a lack in the physical meaningfulness. More details about these methods can be found 

in [77,78,79,80,81,82,83]. 

Sensitivity-based methods are more widespread with comparison to direct 

methods because of their capability to calibrate the model taking the influence of the 

updating parameters of the different structural elements into account. They offer a wide 

range of parameters to update that have physical meaning and allow a degree of control 

over the optimization process. All these parametric methods rely on the definition of a so-

called “penalty function” which is computed as the quadratic norm of the differences 
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between the measured and the numerical quantities. The discrimination among the 

methods is based on the choice and the number of parameters to compute the objective 

function and the optimisation technique used to minimise it. Recently heuristic techniques 

like Simulated Annealing [84,85], Genetic Algorithms [86] and Evolutionary Strategies 

[87] and probabilistic approaches have supplanted traditional methods to solve non-linear 

problems like Newton-Raphson. New developments in optimisation techniques consent 

different approaches to the problem, such an optimisation through all the Pareto set of 

solution, performing a multi-objective minimization [88]. 

3.2.3 Parameterisation of the model 

The choice of the structural parameters that have to be updated is influenced on 

the typology of the modelled structure and on the uncertainty level which affects the 

model. Once the model is defined the most important task in a model updating procedure 

is the choice of the parameter to update. The sensibility to a single generic parameter θ, 

according to Wittrick [89] and Fox-Kapoor [90] is given by: 
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It is possible to rearrange this formula in order to calculate the sensibility of the 

single eigenvector. In particular types of problems it may be useful to calibrate different 

part of the model. Generally, several elements sharing the same properties are merged 

into a single macro-element in order to reduce the number of parameters to update and to 

ease the research of the optimal solution. In this case is possible to update single parts of 

the stiffness and mass matrices: 
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where [M] and [K] are the global matrices and [M]i and [K]i are the  matrices of the group 

of elements that needs update. 

In the case that the parameter θ assumes the aspect of a physical quantity as the 

elastic modulus, the volumetric mass or the Poisson’s modulus is impossible to apply (8) 

and (9), because the linearity between parameter and matrices is not guaranteed 

anymore. The Young’s modulus and the moment of inertia of the most uncertain elements 

are usually considered because they are directly related to the stiffness of the elements. In 

this case is possible to expand in Taylor series obtaining: 
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3.2.4 Comparison between identified and analytical data: MAC and COMAC 

The measurement data used to compute the objective function may belong to the 

frequency or modal domain. Time domain data are generally disregarded because 

measured time-series are affected by noise and their volume of data is difficult to handle. 

Data compression is performed to obtain FRF data, which are less affected by random 

noise because averaged but suffer little loss of information in the passage from time to 

frequency domain. Model updating methods based on modal parameters like natural 

frequencies, mode shapes and damping ratios exploit a further reduction in the number of 

data points but they have to cope with the reduction of accuracy in the modal parameters 

estimation. Furthermore, mode shapes are valuable parameters to be implemented in a 

model updating procedure because they allow pairing the analytical and experimental 

modes but their precise estimation is difficult to reach and changes due to damage are 

often smaller than the error bounds on corresponding measurements. In literature is 

possible to find many functional indexes that consent to compare measured and numerical 

data. Among the most used there is the MAC (Modal Assurance Criterion), defined as: 
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where {a}k is the theoretical eigenvalue corresponding to the kth mode, and mj  is the 

measured eigenvalue, corresponding to the jth mode. The MAC can vary between 0 and 1, 

and the comparison could be considered satisfied with a MAC value superior to 0.8. 

The COMAC (Co-ordinate MAC) quantifies the correlation between identified and 

analytical modal shapes referring to a particular degree of freedom: 
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where i  is the ith modal shape and j is the jth degree of freedom. 
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Many authors use a Weighted MAC (WMAC) which utilises a weight matrix. The 

weights can depend from the reliability of certain data (due to the distribution or the 

accuracy of the sensors). Among the others, it is also possible to remind: 

 Partial Modal Assurance Criterion (PMAC); 

 Modal Assurance Criterion Square Root (MACSR); 

 Scaled Modal Assurance Criterion (SMAC); 

 Modal Assurance Criterion using Reciprocal Vectors (MACRV); 

 Modal Assurance Criterion with Frequency scales (FMAC); 

 The Enhanced Coordinate Modal Assurance Criterion (ECOMAC); 

 Inverse Modal Assurance Criterion (IMAC); 

For a review of all these MAC-derived criteria and a complete bibliography, 

consult [91]. 

Another approach is to compare, instead of the modal shapes, the frequency 

response functions, with the same principle of the MAC. This comparison is feasible in the 

case of experimental tests performed with a vibrodyna. In this case it is called Frequency 

Response Assurance Criterion (FRAC). The Complex Correlation Coefficient (CCF) and 

the Frequency Domain Assurance Criterion (FDAC) derive from the previous. 

3.2.5 Data-driven approaches 

Differently from the model-driven methods, in the forward approach the 

knowledge of the phenomena ruling the structural behaviour is not derived from physical 

laws implemented in a model but is extracted directly from the data or based on a priori 

information, if available. The PR algorithm is trained to recognise the correspondence 

between samples of data and type classes [92]. Two different types of learning do exist. In 

the supervised learning several sets of training data are presented along with the 

corresponding class they belong to. Both the uniqueness of the correspondence between a 

set of measurements and its class and the exhaustiveness in the presentation of all the 

possible classes are fundamental requirements. The availability of patterns concerning 

the state of the structure represents the major obstacle for this type of learning. 

Unsupervised learning does not require prior information about the state of the structure; 

only data from the normal operating condition of the structure are needed to create a 

model of normal condition which is compared with all the new acquired data samples to 

detect changes. Two sources of data can be exploited: numerical modelling or experiment. 

The former presents the same drawbacks of the inverse problem approach. They are 

related to the dependence on a model of the structure whose properties may be uncertain, 

the constitutive laws of the materials not accurately defined and the analyses excessively 

time-consuming. On the other hand, the collection of training sets from experiments is 

even harder to accomplish because it requires several replica of the same system 

according all the possible scenarios which might affect the structure [93,94]. 

3.2.6 Perspectives and remarks 

The calibration of numerical models, through experimental data, has been a 

ground-breaking advancement in the field of numerical simulation. The advantage of 

distributed model in producing distributed predictions provided by updating is in contrast 
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with traditional experimental testing, which allowed to characterise the model of a 

structure only locally. A need exist for the use of confidence levels which may be assigned 

to quantified mesh, or test data, uncertainties.  

In the field of model updating one of the main research branch nowadays is the 

stochastic model updating, which may compensate in some way a possible lack of data 

[95,96]. This type of approach provides a suitable safeguard against severe 

underestimation of the variability of the parameters derived from a small sample set.  

3.2.7 Stochastic model updating 

The usual model updating methods may be considered to be deterministic since 

they use measurements from a single test system to correct a nominal finite element 

model. Anyway, there may be variability in virtually identic test structures and 

uncertainties in the FE model [93]. This variability in the test structures may arise from 

many sources including geometric tolerances and the manufacturing process, and 

modelling uncertainties may result from the use of nominal material properties, ill-

defined joint stiffness’s and rigid boundary conditions. 

The choice of updating parameters is an important aspect of the process and 

should always be justified physically. Model uncertainties should be located and 

parameterised sensitively to the predictions. Finally, the model should be validated by 

assessing the model quality within its range of operation and its robustness to 

modifications in the loading configuration, design changes, coupled structure analysis and 

different boundary conditions. But predictions based on a single calibration of the model 

parameters cannot give a measure of confidence in the capability of numerical simulations 

to represent the actual structure. The credibility of the structural model must combine 

three components:  

 an assessment of the fidelity of predictions to test data;  

 an assessment of robustness to variability, uncertainty and lack of knowledge;  

 an assessment of prediction accuracy in situations in which the test 

measurements are not available.  

The three goals of fidelity-to-data, robustness-to-uncertainty, and confidence-in-

prediction are antagonistic and a trade-off has to be achieved. 

The parameter estimation problem can be presented within a 

statistical/probabilistic framework basically in two different ways corresponding to the 

frequency interpretation of probability or the degree of belief interpretation. The 

maximum likelihood (or maximum log likelihood) approach consists of determining the 

maximum of the conditional probability of the parameters on the basis of known random 

output measurements; this is a frequency approach. Bayesian methods, on the other hand 

require an additional input not needed by the maximum likelihood method, a prior 

probability distribution for the parameters, which embodies our judgement of how 

plausible it is that the parameters should have certain values. The selection of the priors 

is an extremely controversial aspect of the method since it is a subjective, degree of belief, 

judgement.  

Amongst the earliest papers dealing with finite element model updating, the 

seminal work by Collins et al [97] adopted a linearized sensitivity approach with the 

statistics of the unknown parameters determined from vibration measurements with 
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random errors. The approach, a “best linear unbiased estimator”, can be considered 

equivalent to a weighted least-squares method with the weighting matrix given by the 

inverse data covariance matrix. More recently, Beck and his colleagues [98,99]  developed 

a model updating approach using Bayesian inference. As with the work of Collins et al 

[97] the statistics of the uncertain finite element parameters are determined on the basis 

of randomness in the measurements from a single test piece, i.e. randomness due to 

manufacturing and material variability in a number of nominally identical test structures 

is not considered. In fact, this latter variability is very much more significant than 

measurement noise.  

The treatment of uncertainty and quantification of errors is in general a two-step 

process, the first step being the identification of all uncertainty and error sources whether 

they originate from the modelling assumptions, numerical computations or physical 

experiments. The second step is the assessment and propagation of the most significant 

uncertainties and errors through the modelling and simulation process to obtain the 

predicted response quantities. Neal [100] discusses the Markov Chain Monte-Carlo 

method, used for the solution of integrals arising in Bayesian inference and having 

applications including neural networks and simulated annealing. 

Multiple realisations of an experiment (numerical or physical) lead to the concept 

of the meta-model [101] and the possibility to express the distance between models and 

operate design modifications based on statistical concepts as opposed to the comparison 

between deterministic models based on nominal variables. As a result of Monte-Carlo 

simulation, the meta-model represents a source for a statistical problem description, 

confidence measures, correlation with experimental data, global dependencies and 

selection of dominant design variables. For instance, Fonseca et al [102] used a maximum 

likelihood method to solve the inverse problem of a cantilever with a lumped mass at an 

uncertain position. 

In the preceding discussion, randomness is confined to discrete parameters 

whereas in practice it may be distributed over areas or volumes, such as in the case of 

uncertainty in the thickness of a plate dependent upon spatial coordinate, and should 

therefore be properly represented by a random field. For what concerns this aspect of the 

problem, generally referred as spectral stochastic finite element method (SSFEM) one can 

read Ghanem and Spanos [103]. Ghanem and Red-Horse [104] carried out a vibration 

analysis of a space-frame with joints having distributed random material properties. All 

uncertainty propagation techniques rely on large amounts of computation. The SSFEM is 

particularly demanding computationally. 

3.3 Examples of experimental modal analysis of masonry 

structures 

3.3.1 Experimental modal analysis in buildings 

As previously stated, the modal analysis is the process of determining the 

inherent dynamic characteristics of a system in forms of natural frequencies, damping 

factors and mode shapes, and using them to formulate a mathematical model for its 
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dynamic behaviour. The formulated mathematical model is referred to as the modal model 

of the system and the information for the characteristics is known as its modal data. 

The execution of the experimental tests and the analysis of the measurements 

have to be defined accordingly to the type of structure under exam and to the 

characteristics that need to be determined. The excitation source can be known, by using a 

force to excite the system, but more often it can be used the environmental noise (such as 

wind or traffic). In the latter case the excitation results unknown. This type of excitation 

presents several advantages with respect to forced excitation: there is no need to apply 

external loads and external special devices and, more important, there is no need to 

measure the excitation (which can be tricky sometimes). With no need to apply external 

loads there are no risks to damage the integrity of the structure, which can be a limiting 

factor in the case of architectural heritage structures. Moreover, environmental excitation 

virtually allows acquiring an unlimited set of data because the input source is always 

present. This feature is exploited particularly in structural health monitoring systems, in 

order to monitor continuously the dynamic parameters of the structure. 

The linear identification techniques used are the so-called output only methods 

which usually work in the time domain. In this framework it is useful to distinguish 

among non-parametric and parametric identification methods. 

The linear identification techniques used are the so-called output only methods 

which usually work in the time domain. The results of the identification achieved using 

these techniques may be unreliable due to the presence of a source of excitation which 

cannot be assumed to be white Gaussian noise or to a random stationary signal. In other 

cases the excitation can be so weak that is not able to excite all the needed modes. A non-

stationary input, together with noise in the measurement of data leads to limitation in the 

applicability of the aforementioned techniques, because in such a case the structural 

response cannot be considered time-invariant anymore. This limitation can be overcome 

by using convenient windowing techniques of the signals, in order to individuate part of 

the response which can be still considered stationary. 

Table 3.3 shows a summary of the principal linear identification methods that 

have been successfully applied in the experimental modal analysis of masonry structures. 

 
Domain Excitation Methods 

Time 

Known 
Ibrahim Time Domain (ITD) [16] 

Auto-Regressive Moving Average (ARMA)  

Unknown 

Eigenvalue Realization Algorithm (ERA) [17] 

Stochastic Subspace Identification (SSI) [12] 

PolyReference Time Domain (PRTD) [20] 

Second Order Blind Identification (SOBI) [105] 

Frequency 

Known 
Rational Fractional Polynomial (RFP) [31] 

Goyder method [34] 

Unknown 
Spectral Analysis [106] 

Frequency Domain Decomposition (FDD) [40] 

Time-Frequency Known Time-Frequency Instantaneous Estimators (TFIE) [65,107] 

Table 3.3 - Principal linear identification methods used in the identification of masonry structures. 
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3.3.2 SS. Annunziata Bell-Tower in Roccaverano 

The first case study reported is the SS. Annunziata church bell-tower in 

Roccaverano. A vibration test campaign was carried out on a XVI century church bell-

tower rising in Roccaverano (Asti-Italy) whose style inspired by the school of Bramante 

(Figure 3.3). In the past the church was exposed to a strong earthquake which caused 

serious damage both on the facade and on the bells-tower and subsequently some 

interventions of restoration were made. The tower has been subjected to an extensive 

experimental investigation both under ambient vibrations and actions induced by the 

bells. 

Vibration measurements were performed on the bell tower only, by placing the 

accelerometers on the landings, arranged in the horizontal direction. Each set-up is made 

up of the signals relating to four acquisition channels, of which two were fixed as reference 

channels and two were moved to the levels of the different landings. The measurements 

were made separately in the E-W and N-S directions, but one of the tests was conducted 

with two accelerometers arranged in the orthogonal direction, according to the two main 

axes of the bell tower, in a central position. This made it possible to correlate the modal 

shapes observed in the two main directions and to build up space modal shapes, of special 

importance in connection with torsional modes. 

Different types of excitation were used, and namely, the one generated by bell 

tolling in two different directions, the one produced by pulses applied to the bells and 

finally the one arising from environmental noise. An aspect to be noted is the absolute 

absence on Fourier spectra of important components in the 2.5-10 Hz range, namely a 

frequency range within which the second flexural mode and the first two torsional modes 

are typically located in structures of this type. 

Let us now examine the results obtained with the TFIE method. For the sake of 

brevity, in lieu of the two-dimensional estimator, we give the charts of the standard 

deviation of the estimator as a function of frequency, as this makes it possible to identify 

each modal frequency as a relative minimum in scatter due to the constancy of modal 

amplitude ratios or phase differences. In the following we shall refer to the phase 

estimators, which admit a much clearer interpretation than the amplitude ones. Figure 2 

shows a sample phase difference estimator; this kind of diagram displays very clear 

minimum points and it also identify frequencies which did not appear at all in the PSD’s. 

The results are listed in table 3.4. 

It was clearly observed the existence of a first predominant mode in the N-S 

direction, i.e. at 1.66 Hz according to the less stiff direction, and another prevalent mode 

in the E-W at 2.26 Hz. These modes, which were also quite evident in Fourier spectra, 

were then immediately associated with the first two flexural modes according to the two 

main axes. The mode at 4.67 Hz (Figure 3.5), observed in either direction, was associated 

with a first torsional mode. 

All in all, the results of the identification process based on the time-frequency 

estimators offer information which is totally new with respect to the peaks observed in 

energy spectra. This prompted the need to construct a simplified and yet reliable FE model 

to work out a correct classification of the modes [66]. 
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Figure 3.3 - SS. Annunziata church and bell-tower in Roccaverano (Asti), Italy. 

The following data were used to build up a simplified truss model of the bell-

tower: 

1) The geometric data of the structure; 

2) Frequencies for which solid identification and physical evidence had been 

collected: 1.66 Hz, first flexural mode in the N-S and 2.26 Hz direction, first flexural mode 

in the E-W direction. 

 

 
Figure 3.4 - SS. Annunziata bell-tower: standard deviation of sample phase difference estimator as a function of 

frequency. 
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Figure 3.5 - SS. Annunziata bell tower:  a sample mode identified in the range 1-5 Hz (1st torsional). 

Mode 
Identified frequencies 

(Hz) 

1 1.66 

2 2.26 

3 4.67 

4 6.18 

5 6.40 

6 8.90 
Table 3.4 - SS. Annunziata bell tower: first six modal frequencies as identified through TFIE method 

The chosen model was a space truss (Figure 3.6), whose horizontal members 

represent the flexural stiffness of the bell tower and the diagonals simulate the shear 

stiffness of the masonry panels. Albeit approximate, this model makes it possible to 

exploit the geometric data available in the determination of stiffness values, thereby 

reducing the number of parameters to be calibrated to the elastic properties of the 

material. 

The geometric data were exploited according to the following criteria: 

 the plan dimensions of the model reflect the distances between the outer walls; 

 the uprights of the lattice, which are assigned a very high stiffness value, are 

situated at the landings, where the accelerometers were placed; 

 from a careful examination of the vertical sections of the bell tower and the 

preliminary modal shapes observed, it can be seen that over a certain height, of 

ca 3.5 m, the bell tower constitutes a single body with the church building; 

 additional constraints were introduced in the form of 4 horizontal struts placed at 

the level of the first landing, to represent the influence of the church; 

 the areas of the vertical members of the lattice were determined so that, at each 

level, the moments of inertia of the lattice along the two main axes would equate 

the moment of inertia of the structure. The elasticity modulus (E) was assumed to 

be uniform over the entire tower; 

 the stiffness of the diagonals was determined so as to equate the shear stiffness of 

the panels. The area of the panels was known, whilst the tangential elastic 

modulus (G) remained unknown.  For the two storeys having no openings, a 

fictitious modulus (G*), which cannot be directly correlated with the material 

properties, was considered. 
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Figure 3.6 - SS. Annunziata bell tower: simplified truss model. 

The unknowns of the calibration process boiled down to five: the E and G moduli, 

the fictitious modulus G* and the stiffness parameters, k1 and k2, of the struts simulating 

the restraint. 

The calibration process, conducted by means of an iterative procedure, consisted 

of minimizing a cost function:  
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cii

f f
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  (3.66) 

where fci are the frequencies calculated through the calibration process, and  fmi are the 

measured frequencies. It should be noted that, in addition to making the calibration 

process more significant, the use of a physical model related to the geometric data actually 

measured also reduces the risk of dealing with an ill-conditioned problem. 

A first test was conducted by including in the cost function only the first two 

frequencies, namely the first flexural frequencies along the two principal axes, which are 

the most accurate and reliable one. After checking the reliability of the modes identified 

this far, a new calibration process was performed to include the fourth frequency, i.e. the 

second flexural frequency in the N-S direction. The quality of the results was significantly 

improved. Table 3.5 provides an overview of the frequencies of interest supplied by the 

calibrated model. 

The values taken on by the parameters after the calibration process are given in 

Table 3.6. In particular, the elastic moduli have values comparable with those obtained on 

masonry of similar structural types. It should also be noted that torsional modal 

frequencies are underestimated by the model which, being of a lower order, is not perfectly 

verified. In fact, a calibration process extended to include the torsional mode, of reliable 

attribution, was not successful. 

With the aid of the updated model, it was possible to complete the direct 

identification process on the higher frequency (Table 3.5). Furthermore, the model made it 

possible to classify the identified frequencies. Figure 3.5 shows one of the 13 modes 

identified by the proposed technique. At this second stage, the low coefficient of modal 

participation explained the total absence of some of these modal components in PSD 
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diagrams. In a further sensitivity study, it was seen that the restraint parameters have a 

negligible effect on lower modes [108], but in the field of frequencies of over 10 Hz, the bell 

tower loses its predominant influence on the modes, as the church building it is connected 

to prevails, so that mode classification calls for a global model reflecting the interaction 

between these two structural elements. A damage assessment stage would require the 

introduction of further local stiffness parameters in the calibration process. 

The repair consisted of mortar injections and prestressed cables at each landing 

level. The results of new test campaign on SS. Annunziata tower [108], after a repair 

intervention, are summarized and compared with the original ones (Table 3.5 and table 3.6). 

One may notice the splitting effect on the two fundamental frequencies, already reported on 

repaired structures and due probably to non-linearity. 

There was a 20-30% increase in the flexural frequencies (Young modulus) and a 

slight decrease in the torsional one (shear modulus). Thus, we can draw the following 

conclusions: 

 a slight increase in G, probably a fictitious effect of the mass increase, show that 

the tower’s shear behaviour has not significantly changed; 

 a considerable increase in the Young modulus and bending stiffness demonstrates 

the efficacy of the intervention. 

 
 Before repair After repair 

Mode 

Measured 

frequencies 

(Hz) 

Model 

frequencies 

(Hz) 

Measured 

frequencies 

(Hz) 

Model 

frequencies 

(Hz) 

1 1.66 1.67 
1.97 

2.12 
1.97 

2 2.26 2.25 
2.34 

2.54 
2.54 

3 4.67 3.86 4.30 4.00 

4 6.18 5.96  6.70 

5 6.40 6.55  7.33 

6 8.90 7.45  7.98 
Table 3.5 - Annunziata: identified and updated model frequencies, before and after the repair. 

Updated 

parameters 
Before repair After repair 

E 12.3108   N/m2 18.8108  N/m2 

G 2.5108  N/m2 2.0108  N/m2 

G* 0.2108  N/m2 0.3108  N/m2 

Table 3.6 - SS. Annunziata: parameters of the updated model. 

3.3.3 Application to the Bell-Tower of Alba’s Cathedral 

A second test campaign regarded the bell tower of Alba’s Cathedral (Figure 3.7) in 

the context of a rehabilitation intervention coordinated by Prof. Giuseppe Pistone. The 

tower has been subjected to an experimental investigation under three types of excitation: 

ambient vibrations, bell tolling and actions induced by a corer. 
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Acceleration measurements were carried out on the bell tower only, by placing 

three accelerometers per landing, arranged along the two horizontal axes. Two set-up 

were used, each one made up of the signals relating to 12 acquisition channels, of which 

three were fixed at the top level (43 m height) as reference channels and ten were moved 

to different landings. The measurements were made contemporarily in the E-W and N-S 

directions and the three fixed channels allowed correlating different set-up and building 

spatial modal shapes. During the signal pre-processing stage it was observed that the 

signals picked up under corer excitation were noisy and disturbed by strong harmonic 

components, hence they were not used in the elaborations. 

 

  
Figure 3.7 - S. Lorenzo Cathedral bell-tower in Alba 

The signals were analysed applying two different methods. The first one, in the 

time domain, is based on the ERA algorithm [109] applied on the estimated Random 

Decrement functions [26]. The second one, referred to as TFIE method, was applied by 

choosing Choi-Williams transforms with kernel parameter =5. ERA and TFIE methods 

were applied to different measurements, this resulting in occurrence diagrams for modal 

frequencies as depicted in Figure 6. 

For brevity’s sake, only a part of the identified modes is presented in Table 4, 

where the results coming from the two techniques may be compared. The first evident 

advantage in using TFIE was the possibility to work on several parameters (kernel 

selectivity, type of transform, etc.) that may improve the estimators and filter spurious 

components, as well as check modal energy changes in time. If compared to the previous 

application, the connection to the church in this case seems to play a more important role 

on the torsional components of the tower’s modal shapes. A further proof of this influence 

is that the TFIE method has identified additional modes, here omitted for brevity’s sake, 

that have been attributed to the church. On the other hand, the subspace and RD based 

algorithms showed to be more suitable when one has to perform a fast identification or 

when the system’s dynamic behaviour is very clear. 
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Figure 3.8 - S. Lorenzo Cathedral bell-tower: occurrence of modal frequency values resulting from different 

identification sessions 

 

Mode 1st 2nd 3rd 4th 5th 

TFIE frequencies [Hz] 1.25 1.44 3.63 3.81 4.12 

ERA frequencies [Hz] 1.22 1.44 3.58 3.80 4.05 
Table 3.7 - S. Lorenzo Cathedral bell-tower. Modal frequencies as identified through the TFIE method 

3.3.4 Application to the dome of S.Gaudenzio in Novara 

The dome of S. Gaudenzio Church in Novara (see Figure 3.9a) is a 117.5 m high 

monument, erected between 1844 and 1880 by Alessandro Antonelli, and represents one of 

the most daring masonry structures ever built. In view of its history, the past 

interventions and the current state of preservation, this dome is representative of a broad 

class of problems concerning historical structures. 

From a structural standpoint, it is organized as follows: the pillars along the 

transept support (level 17.0 m) a series of arches, consisting of four lower and four upper 

arches which bear the first tambour (level 35.0 m). This consists of two outer series of 

columns resting on the upper arches and an internal series resting on the lower arches. 

Above the first tambour (level 53.0 m) the building splits in an inner and an outer 

structure. The outer one continues into a second tambour and, above this (level 67.0), up 

to a ribbed shell dome known as gran tazza (big cup). Internally, the structure continues 
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into a hollowed dome ending in a cylindrical arrangement of columns that, in turn, 

supports (level 85.0 m) the 32 m high upper spire. The outer and the inner parts are 

mutually connected at many levels by means of arches and radial platbands. 

The dome exhibited stability phenomena immediately after its completion, 

causing an uninterrupted sequence of maintenance and strengthening interventions. In 

the period between 1930 and 1946, reinforced concrete was extensively used to rebuild the 

original upper spire; the upper part of its masonry supporting structure was encased in 

concrete as well; steel ties and a concrete ring were installed at the dome impost level, 

with the scope of preventing a feared base arc collapse. 

In a measurement campaign, the dome has been instrumented with 16 

accelerometers, arranged along 4 levels, as shown in Figure 3.9a. The measurement 

direction is horizontal and tangent to the section perimeter for all the accelerometers, in 

order to detect torsional mode shapes. Signals have been acquired utilizing ambient 

vibration as excitation source, thus requiring the employment of output-only analysis 

techniques, as hereinafter described. 

The Frequency Domain Decomposition (FDD) [40] and the TFIE techniques have 

been applied to a set of 500-second long ambient vibration records of the dome. It was 

observed that the FDD approach, applied to certain records, is unable to uncouple the first 

pair of modes. However, the failed uncoupling is evident from the complexity of the mode 

shape. Also the ERA method seemed to be incapable of decoupling clustered modes in the 

present case: this is also evident by the apparent high complexity of the associated 

eigenvalues. The outcomes of the identification are collected in table 3.8: it can be 

observed that both the FDD and the TFIE methods yield rather close values which also 

qualitatively agree with the preliminary FE prediction shown in figure 3.10. For the first 

mode, the FDD method yielded a shape similar to that of the preliminary FE model (see 

figure 3.10), while the TFIE method exhibited a mode dominated by shear deformability, 

i.e. governed by the bottom part of the structure. 

 

  
Figure 3.9 - The dome of S. Gaudenzio Church: overall view (a), and cross section (b). 
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Conversely, for the first torsional mode (1.77 Hz), the TFIE method showed a  

behaviour in close agreement with that of the model, with in phase rotations, unlike the 

FDD method. The other modal shapes, here omitted for brevity, were found to be more 

consistent, except for a number of alleged phase problems on the channels located on top.  

 
Figure 3.10 - Graphical representation of the mode shapes obtained through a FE model. 

Mode FDD frequencies [Hz] TFIE  frequencies [Hz] 

1° - Bending 

 

0.79 

0.81 

0.79 

0.82 

2° - Bending 
1.63 

1.67 

1.61 

1.67 

1°- Torsional 1.73 1.77 
Table 3.8 - Frequencies provided by the identification techniques. 

The discrepancies may be ascribed to several factors which need to be examined 

more closely, including: (1) the use of different measuring sets for the two methods (only 

one set has been used for the TFIE method so far); (2) the structure complexity, whose 

behaviour is affected by the interaction between two structural systems (external and 

internal skeleton as shown in figure 3.9); (3) the interaction with the bottom part of the 

structure. 

The FE model shown in figure 3.10 was built to reproduce the portion of the dome 

above level 26.5 m (i.e. just above the supporting arches of the transept) utilizing 53696 

elements comprising beams and shells. The data used to update the model were 

essentially the frequencies collected in table 3.8 and the calibration process consisted of 

minimising a cost function based only on modal frequencies. 

At a first stage, the unknowns of the calibration process boiled down to the 

masonry elastic modulus, the density and the Poisson ratio. With the aid of the updated 

model, it was possible to complete the direct identification process through the TFIE 

method on the higher frequencies (see Figures 9-10 and Table 6). Furthermore, the model 

made possible to classify the identified frequencies. With regard to frequencies and modal 

shapes the agreement between the six additional modes identified and those provided by 

modelling was good. 
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The better performance of the identification technique on high modes suggests 

that the current FE model were unable to fully reproduce all the phenomena governing 

the lowest modes, such as the restraint conditions between the different parts of the 

structure and the interaction with the bottom part of the basilica.  

 
Figure 3.11 - Standard Deviation of a sample Phase Difference estimator (TFIE method). 

Frequencies [Hz] 

Mode Experimental (TFIE) FE Updated FE (final) 

2° - Torsional 2.92 2.76 2.88 

3° - Bending 
2.62 

2.99 

2.80 

2.80 

2.66 

2.66 

3° - Torsional 3.38 3.46 3.33 

4° - Bending 4.63 4.61 4.63 
Figure 3.12 - Frequencies provided by the identification techniques compared with the updated model outcomes. 

On the basis of the identified modes a model updating process was performed on 

the model in which additional side springs and extra masses at the base where added to 

simulate the interaction with the bottom part of the basilica.  
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Figure 3.13 - Graphical representation of the higher modes obtained through the TFIE method (translations along 

the axes x and y and rotation angle θ respectively). 

The parameters of this optimisation process were: the masonry elastic modulus 

and the Poisson ratio as well as the elastic modulus of the column granite (final value of 

the parameters were: Em=3.7918e10 N/m2; m=0.17; Eg=3.5e10 N/m2). The frequencies of 

the calibrated model (0.79, 0.80, 1.51, 1.55, 1.67 Hz; see Table 6 for the higher ones) show 

that the current model is unable to match the experimental ratio between the bending 

modes. This implies that the present FE model is not fully verified. 

In this example different techniques provided results that are unreliable in some 

cases, and the evidence of this inconsistency only arose from the comparison among 

different methods and with the support of a well-conceived FE model of the dome. We 

conclude that the blind application of input-unknown techniques may result in misleading 

conclusions. Indeed, no method is capable of providing information that is not contained in 

the signal, independently on how refined the method can be. 

3.3.5 Application to the Matilde’s tower in San Miniato 

The Torre di Matilde (Figure 3.14), erected in San Miniato (Pisa) in the 12th 

century, is a rare example of the military architecture of the time: its construction dates 

back to when the Emperor Henry IV (1184-1194) visited the city. The structure, including 

the bell tower, was badly damaged by the bombings of 1944. 
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The tower, rising ca 35 m above the cathedral floor, is parallelepiped shaped, with 

crown and end shrines added in the 13th century. Inside the tower, three wooden storeys 

prove too weak to ensure a valid connection between the four walls. At the top of the 

tower, a small masonry vault closes the structure by linking together the side walls. The 

cracking pattern of the building displays major lesions at the corners, extending over 

virtually the entire height. An extensive measuring campaign was performed on the 

tower, within the framework of an inter-university scientific program (PRIN). 

 

 
 

Figure 3.14 - View of the Torre di Matilde of S.Miniato (Pisa) 

The results discussed in what follows refer in particular to dynamic response 

signals to environmental conditions acquired by means of 23 accelerometers (Figure 3.14), 

of which 10 were positioned on the parapet of the roofing (level E), 10 at the next to the 

last level (level D) and the remaining 3 at the level underneath (level C). Measuring 

directions were parallel to the main axes of the cross section of the building. 

Different recorded segments were analysed, most of them obtained at a sampling 

frequency of 1.6 kHz. A preliminary qualitative analysis with Welch window energy 

spectra and representations in the joint time-frequency domain revealed important shares 

of spectral energy localised around three prevalent frequencies: 2.70 Hz, 3.40 Hz and 6.40 

Hz. The analysis of a certain number of signals also revealed the presence of less 

pronounced peaks around the frequencies of 2.95 Hz, 4.70 Hz and 6.05 Hz. The energy 

spectrum in figure 3.15 summarises the frequencies recurring in most signals. 

Structural identification was performed by using two time domain methods, ERA 

and PRTD, whose extension to environmental type signals required the prior extraction of 

the Random Decrement functions. Then time-frequency identification was performed 

through the TFIE method.  

This study was limited to the analysis of vibration modes with frequencies lower 

than 10Hz; in this range, all methods identified a considerable number of modes, which 

invariably included modes associated with the frequencies already observed in the 

preliminary analysis. Table 3.9 lists the modal frequency values corresponding to the 

three principal modes obtained with the three methods by averaging the results over the 

various recorded segments analysed.  

A A

B B

C

D

EE

D

C
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Figure 3.15 - Energy spectrum of a typical signal 

ERA PRTD TFIE 

2.6880 Hz 2.7036 Hz 2.7344 Hz 

3.4109 Hz 3.4086 Hz 3.3913 Hz 

6.3274 Hz 6.3538 Hz 6.3232 Hz 

Table 3.9 - Modal frequencies identified with the various methods 

Figure 3.16 and figure 3.17 show two sample diagrams of phase difference 

estimators (TFIE method), calculated on pairs of signals measured according to each of 

the two main directions. The concomitance of the main frequencies along the two 

orthogonal axes demonstrates that all the modes are affected by appreciable oblique and 

torsional components, an effect determined by the markedly asymmetrical configuration of 

the plan. 
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Figure 3.16 - Phase difference estimator – Sensors 

arranged along the Y axis 

 
Figure 3.17 - Phase difference estimator – Sensors 

arranged along the X axis 

The damping values obtained from the analyses in the time domain were seen to 

be affected by considerable scatter and, as already observed in earlier studies on “output 

only” methods, should be considered with some caution. Accordingly, these results have 

been omitted waiting for a more accurate, and more painstaking, evaluation by means of 

instantaneous damping estimators. 

As for mode shapes, it was decided to represent them on a preliminary basis with 

vectors having their origins coinciding with the positions of the sensors and intensity and 

direction defined by the modules and phases of the eigenvectors, respectively (Figure 15). 

This made it possible to check the directions, which, in some segments, sometimes turned 

out to be reversed due to phase evaluation problems. This type of difficulty is very 

frequent in the identification of masonry buildings, on account of the non-linear behaviour 

of the materials, as well as structural complexity. To obviate phase problems, especially 

between channels acting in orthogonal directions, in addition to spatial analyses, separate 

analyses were performed in the two orthogonal directions.  

The first vibrating mode is flexural in the lower stiffness plane. Once this mode 

has been identified, from the analysis of its associated eigenvector (Figure 3.18, figure 

3.19) it can be seen that the top storey of the tower does not only translate but it also has 

a pronounced rotational component; this rotational behaviour of the top floor was also 

brought out by the analysis performed in the orthogonal direction (X). By averaging the 

different results a modal shape of a basic translational type in the lower stiffness plane 

was obtained. 

Figure 3.19 also illustrates the other two principal modes determined with the 

ERA method, i.e., a mode characterised by prevalent translation along the greater 

stiffness direction X (also showing a strong torsional effect at the top level) and a 

predominantly torsional mode. 

The shapes corresponding to the other frequencies identified were also 

constructed, but, in view of their weak energy and complexity, they could not be classified. 

A simplified, non-calibrated model, worked out with the ADINA code, has led to 

preliminary hypotheses about the frequency around 2.95Hz, which might be associated 
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with the first mode of the roof vault, whilst the other frequencies might be either modes 

associated with the adjacent church or ovalisation or wall modes. The latter might fall 

within a relatively low frequency range owing to the weakening effect of the cracks along 

the corners of the tower.  

 
Figure 3.18 - First identification mode determined with the ERA method – Prevalent translation in the lower 

stiffness plane (Y direction) 

The model also yields a ratio, of ca 1.20, between the frequencies of the first 

translational modes in the two directions, in good agreement with the ratio determined 

experimentally, of 1.25. 

 

 
(a) Mode 1 (2.7 Hz) 

 
(b) Mode 3 (3.4 Hz) 

 
(c) Mode 5 (6.4 Hz) 

Figure 3.19 - The three modes identified reliably.  
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