
04 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic update of a virtual cell for programming and safe monitoring of an industrial robot / A., Ferraro; Indri, Marina;
Lazzero, Ivan. - STAMPA. - 10:(2012), pp. 895-900. (Intervento presentato al convegno 10th IFAC Symposium on
Robot Control tenutosi a Dubrovnik, Croatia nel 5-7 September 2012) [10.3182/20120905-3-HR-2030.00112].

Original

Dynamic update of a virtual cell for programming and safe monitoring of an industrial robot

Publisher:

Published
DOI:10.3182/20120905-3-HR-2030.00112

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2502691 since:

Dynamic update of a virtual cell for
programming and safe monitoring

of an industrial robot

A. Ferraro ∗ M. Indri ∗ I. Lazzero ∗

∗ Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

e-mail: andrea.ferraro.rrg@gmail.com,
{marina.indri, ivan.lazzero}@polito.it

Abstract: A hardware/software architecture for robot motion planning and on-line safe
monitoring has been developed with the objective to assure high flexibility in production control,
safety for workers and machinery, with user-friendly interface. The architecture, developed using
Microsoft Robotics Developers Studio and implemented for a six-dof COMAU NS 12 robot,
established a bidirectional communication between the robot controller and a virtual replica
of the real robotic cell. The working space of the real robot can then be easily limited for
safety reasons by inserting virtual objects (or sensors) in such a virtual environment. This
paper investigates the possibility to achieve an automatic, dynamic update of the virtual cell
by using a low cost depth sensor (i.e., a commercial Microsoft Kinect) to detect the presence of
completely unknown objects, moving inside the real cell. The experimental tests show that the
developed architecture is able to recognize variously shaped mobile objects inside the monitored
area and let the robot stop before colliding with them, if the objects are not too small.

Keywords: Virtual robotic cell, robot monitoring, depth sensors

1. INTRODUCTION

In the present market situation many small and medium-
sized manufactures focus their efforts on providing their
costumers with highly specialized products, suited for
specific demands. Consequently the production volume
of a single piece tends to remain small, due to frequent
changes of materials and processing cycles.

The use of industrial manipulators is currently subordinate
to conditions not compatible with such environments. To
introduce automatic machining in the work flow, the inter-
ested part of the manufacturing chain must be enclosed in
locked cells, equipped with safeties that cause a production
stop if the cell is opened. Another relevant issue is the ne-
cessity of accurate and time-consuming re-configurations
required to perform even small changes in the work cycle,
which in a competitive environment can quickly become
burdensome.

In this situation SMEs are looking for robotic solutions
that allow to share spaces among different manufacturing
cycles and possibly human workers, able to switch to new
productions without needing long reconfigurations and
bundled with easy to use interfaces.

Several commercial robot programming frameworks are
available, such as SimStation for graphical programming
or ROBCAD, a workcell simulation tool by Tecnomatix
Technologies Ltd., but they allow only the off-line motion
planning and the application of the planned trajectory to
the real robot, without the possibility to use their virtual
environment to monitor the actual robot motion, since
communication is established in one direction only, from
the virtual environment to the manufacturing cell.

Currently Politecnico di Torino in collaboration with
Comau S.p.A. (http://www.comau.com) is working on
a hardware/software architecture, developed using Mi-

crosoft Robotics Developers Studio (MRDS) to program
and safely handle a manipulator motion in open spaces,
aimed at guaranteeing easy and quick programming, and
expanded possibilities in a scenario in which space is
shared among different robotic systems, with possible in-
teraction with human operators.

The developed solution consists in a virtual cell in MRDS
environment, which unites the functionalities of a standard
off-line simulator with soft realtime robot monitoring and
the possibility of controlling the real manipulator, thanks
to the bidirectional communication established between
the robot and the virtual environment.

This peculiar setup allows for the switching master-
follower control routine called Viceversa to take place: the
simulator supports the creation of virtual obstacles which,
as in most traditional controllers, can send stop signals
when contacted by parts of the virtual robot, replicating
as follower the motion of the real one. After the contact,
the virtual system becomes the master and plans a path
to a safe position, which is then tracked by the real robot,
now become the follower.

The current experimental setup includes as real robot
a standard Comau Smart NS 12-1.85 anthropomorphic
arm, coupled with a C4G industrial controller, whose
external communication link can be used to read status
information, exchange data and give instructions to the
robot.

The results achieved so far were published in papers
Abrate et al. (2010) and Abrate et al. (2011). The first
one describes how it is possible to create the virtual
cell within MRDS environment, with a physics engine
able to handle all the variables needed for a realistic
replica of a work environment. The resulting simulator
can be used as off-line programmer in joint space and
as an external guard, monitoring or directing the robot’s

movements through a soft-realtime connection, as desired.
Programming in the Cartesian space was subsequently
added, thanks to the implementation of the efficient,
iterative inverse kinematics procedure, described in Abrate
et al. (2011).

Tests conducted on the virtual cell underlined the effects
of the system structural delays, due mainly to the con-
troller architecture, and to the technical time required
by the robot to go from motion to complete stop (see
Abrate et al. (2011) for a complete description of the robot
stopping routine). This situation often prevented the real
robot from stopping before colliding with the obstacle. To
address such issue, “risk layers” have been introduced in
Abrate et al. (2011), consisting in concentric, navigable
boxes wrapped around the virtual obstacles. The conse-
quence of risk layers crossing is a progressive slowdown of
the real arm motion, inversely proportional to the distance
between it and the obstacle, thus reducing the delay effects
to a safe level.

This paper focuses on the usage of low cost depth sensors
to make the MRDS environment aware of the presence of
obstacles inside the real working area and consequently
automatically update the virtual cell status.

So far every object inside the virtual cell had to be
explicitly introduced and fully described by the user; such
a procedure, while adequate for a static environment,
cannot handle quickly and easily the insertion of new
elements in the working area. Furthermore, a real-time
monitoring of the environment makes possible to track
automatically mobile objects inside the working area.

Many research groups worked on robot surveillance sys-
tems involving multiple standard cameras, such as Bosch
and Klet (2010), Ebert and Heinrich (2001) and Krüger
et al. (2004); these methods proved to be reliable in the
correct situations, but all of them require a mandatory step
of image processing. The usage of a depth sensor allows to
keep a simpler prototypal setup and the direct availability
of a three-dimensional view, lowering the computational
demand, makes possible to run all the virtual cell functions
on a single standard computer. The usage of depth sensors
to create real time virtual replicas of robotic cells has been
explored in Graf et al. (2010), but the work is more focused
on the detailed characterization of the detected obstacles
than on the creation of constraints to the manipulator
motion.

For the experimental setup a commercial Microsoft Kinect
depth-sensor has been chosen, due to its particular features
of low cost and wide availability. The pre-existing structure
of the virtual cell has been implemented using MRDS
Distributed Software Services (DSS), which allows to cre-
ate distinct but communicating services to handle the
various functions of the system. The most recent MRDS
release gives native support to Kinect integration in such
environments.

The paper is organized as follows: Section 2 illustrates
the structure of the prototype and the preliminary tasks
performed; Section 3 describes the processing of the depth
camera data and the handling of the virtual objects;
Section 4 reports the results of some experimental tests,
aimed at assessing the system’s fuctionality. Section 5
draws some conclusions and illustrates the guidelines of
current and future works.

2. WORKING AREA SETUP AND CALIBRATION

To introduce the depth sensor avoiding compatibility is-
sues, the virtual environment has been migrated to Mi-

crosoft Robotics Developer Studio R4 Beta, which offers
native support for the Kinect depth camera. The distance
measurements are provided by an IR-projector/IR-sensor
couple, both mounted on the depth camera body. Such
setup could easily create interferences when multiple cam-
eras are placed in the same environment, since it would
be possible for an IR-sensor to pick projections from the
other camera instead of it’s own reflections. To avoid any
possible self-induced noise in the prototype, exploit the
biggest possible vision field and reduce the amount of data
to be processed at every iteration, we have chosen to place
a single sensor in the center of the robotic cell roof, as
depicted in Fig 1.

Fig. 1. Prototype depth camera placement

A single point of view in a different position would have
created difficulties in evaluating the effective depth of the
detected obstacle, being available only distance data re-
lated to one side of the object. A vertical placement instead
allows to approximate the obstacles with columns with a
minimal reduction of the robot operating area. The im-
plemented solution used to employ an estimation method
based on the depth value of the lowest perceived point
of the object. Such a solution resulted to be acceptably
accurate in several cases, but showed some problems with
irregular objects, for which the obtained values could be
not fully reliable, due to the lack of information about the
structure of the inferior part of the obstacle, like in the
situation sketched in Fig 2. In Section 3 the procedure will
be described and applied to correct the image perspective
error.

Fig. 2. Object with irregular underside, the section in red
cannot be seen by the depth sensor

The Kinect camera performs autonomously the conversion
between raw data collected by the distance sensor and
a “more” usable distance from the plan on which it lies
(Fig. 3). Given that, only a conversion ratio between
depth values and meters is required to perform the correct
conversions between depth data and actual distances in
the world. Such a calibration step is always necessary for
a new Kinect, since every camera is slightly different.

Fig. 3. Autonomous processing of distance data by the
Kinect depth camera implementation

The calibration of the prototype has been performed
fixing a panel of known size on the operating end of
the monitored robot, and using it to collect samples of
its perceived size at various distances from the sensor.
Using the robot as a support ensured a high degree of
repeatability.

The full calibration produced eight samples for each di-
mension (width and height of the object and distance from
the sensor) collected starting with the robot in full vertical
pose and lowering the operating end at steps of 10 cm each
until reaching the joints stroke end. With those values it
has been possible to obtain the fitting first grade poly-
nomials (Fig. 4) to estimate the conversion ratio between
depth values and real world distances, and between objects
sizes in depth frames and real world objects sizes. The
coefficients of such fitting functions have then been used in
the following equations to obtain the real world dimensions
of a depth map object:

X = x ∗ (depth ∗ xmul + xadd) (1)

Y = y ∗ (depth ∗ ymul + yadd) (2)

Z = depth ∗ (depth ∗ zmul + zadd) (3)

where X and Y are the dimensions (width and length)
of the object, Z its distance from the sensor in the real
world, x, y and depth are respectively width, height and
distance from the sensor of the object in the depth map,
xmul, ymul and zmul are slopes of the fitting lines and
xadd, yadd and zadd their offsets.

3. OBJECTS IDENTIFICATION AND HANDLING

The Kinect camera provides depth data in the form of an
array of 16-bit unsigned integer values, which are used in
the virtual environment in two separate ways:

• In the same data type, after reshaping in matrix form
for ease of reference, as base values for conversions
between depth data and world distances
• Converted to bitmap to create a frame adequate for

graphic processing

(a) Graph of the conversion factor for the X axis of the
Kinect reference system

(b) Graph of the conversion factor for the Y axis of the
Kinect reference system

(c) Graph of the conversion factor for the distance from
sensor of the Kinect reference system

Fig. 4. Fitting polynomials for the conversion rates be-
tween depth values and real world dimensions

A graphical processing phase is necessary after the conver-
sion of the depth data into a grayscale depth image. The
open library AForge.NET (http://www.aforgenet.com)
has been used, due to the availability of a C# native
implementation and to the presence of optimized filters
matching the required tasks. Other libraries and algo-
rhitms oriented to a more detailed analysis of the detected
objects (like the procedures introduced in Graf et al.
(2010)) have not been employed to keep low processing
times and to allow a faster prototyping.

The Kinect sensor perception field ranges from 0.8 m of
distance from the IR projector to about 4 m; every point
out of it is set to 0 in the depth map. In order to obtain
cleaner object detection a floor variable that can be set

by the user has been introduced, to represent a bottom
perception level which, substantially, shortens the Kinect
field of view to the given value. A secondary benefit is the
possibility to ignore all the objects under a given height, at
user discretion. This could be useful to avoid the creation
of undesired virtual obstacles (with the corresponding risk
layers) for small, negligible entities, such as robot wiring
and floor irregularities.

The following steps are performed on every processed
frame:

• Points without a readable value due to IR reflections
are set to ground level.
• Every point equal or farther than the configured level

of floor is set to black.
• The graphic entity matching the robot position is

recognized and graphically filtered out of the image.
• The remaining graphic entities (blobs) are recognized

and listed in a dedicated data structure of the MRDS
environment.

The resulting data are used as source to create the actual
objects to be added to the virtual cell, after a further
non-graphic filtering to rule out blobs too small to be
considered other than noise. For each blob, the distance
from the Kinect and the size on the image are processed
according to (1) - (3) to obtain the characterizing values of
size and position of the virtual object. Before their inclu-
sion into the virtual environment, a dimensional corrective
step is performed to avoid widening effects due to sensor’s
perspective, as it can be seen in Fig. 5. The sizing error is
calculated geometrically according to the scheme in Fig. 6
using the following equations:

β = acos

(
X1√

X2
1 + Z2

1

)
(4)

X2 =
(Z2 − Z1) ∗ cosβ

sinβ
(5)

Fig. 5. Filtered depth image: lined in red the actual
object’s size, lined in blue the oject’s size as registered
by the graphic library

In this case the possibility of hidden sections (Fig. 2) is
no longer an issue, since all the calculation is aimed at
correcting the size of the object as perceived by the sensor
itself.

3.1 Detection of moving objects

The procedure described so far provides satisfactory re-
sults in case of static objects. Some further difficulties
arise when moving objects are to be correctly detected and

Fig. 6. Size correction scheme: X1 is the graphical object’s
distance from the frame center, X2 is the size error,
Z1 is the distance from the sensor of the object’s top
point and Z2 is the distance from the sensor of the
object’s lowest point seen by the sensor

inserted into the virtual cell. In particular in the search for
the lowest point of floating objects, a varying number of
border points is often marked with depth values between
the expected ones and the underlying floor level. A possible
criterion, to prevent these points from influencing the
results of the sizing error computation (4) and (5), is based
on the heuristic definition of the maximum difference be-
tween depth values of adjacent points belonging to the
same object. To ensure the exclusion of misread values the
threshold D, representing such a maximum difference, is
used in two separate validation steps:

Peer check: the difference between the point depth value
and the depth values of the surrounding object points
must be lower than D.

Object check: the difference between the point depth
value and the depth value of the point of the object
closer to the depth sensor must be lower than D multi-
plied by the distance between them.

The value of D can be heuristically estimated on the basis
of the maximum observed difference between the values
of two adjacent points of a vertically sided object in the
depth bitmap, plus a safety margin. Underestimating the
value would lead to the exclusion of correct points, and
consequently to the introduction in (5) of reduced values
of Z2; an overestimate of D would be less critical, since
the misread values tend to be significantly closer to the
underlying level than to the object border.

The motion of the object revealed to be not easily man-
ageable on the side of the virtual environment. Moving
and resizing existing objects is not possible since it causes
a partial loss of the physical properties of the risk layer
entities, so it is necessary to delete and recreate an object
every time it moves or changes its shape. The complete
deletion of pre-existing blobs and consequent creation of
new ones for every processed frame would represent a very
easy approach, requiring no computation to discriminate
mobile objects from still ones. Unfortunately the refreshing
of every visible object for each frame resulted to be too
burdensome for the MRDS simulator. A feasible solution
is instead based on the implementation of proper func-
tions to discriminate between obstacles which need to be
refreshed and objects remained still since the last frame.
This solution allows to maintain the simulator responsive
through the refresh cycles and to avoid any lag in handling
the more critical collision messages.

(a) Unfiltered depth image with-
out shadowing phenomena

(b) Filtered depth image with-
out shadowing phenomena

(c) Unfiltered depth image with
shadowing phenomena

(d) Filtered depth image with
shadowing phenomena

Fig. 7. An example of the possible effects of shadowing: in
(c) the obstacle is considered by the graphic library
part of the robot, and consequently removed from the
image (d)

The use of dedicated data structures to keep track of
objects positions and movements allows also to introduce
some simple rules for the exit of an obstacle from the
monitored area. Preventing a virtual object to be deleted
unless close to the area border, or moved to a nearby
location, is instrumental to avoid troubles from possible
signal glitches. It also forbids virtual obstacles to disappear
when their real counterpart enters in the shadow created
by a larger object. Such an occurrence is particularly
troublesome when an obstacle is shadowed by the moving
robot itself, becoming, from the graphic library point of
view, part of the same blob and consequently an element
to be removed from the image toghether with it (Fig 7).

4. EXPERIMENTAL RESULTS

The final prototype has been tested experimentally with
obstacles in the real robotic cell, moving both vertically
and horizontally (Fig. 9).

The video “Self updating virtual cell collision tests with
moving and floating obstacles”, containing samples of the
testing phase, is available in the “Video” page of the web-
site http://www.polito.it/labrob, demonstrating the
dynamic behaviour of the prototype in various conditions
of motion speed and obstacle positioning. In the first part
of the video is clearly visible the slowdown of the manip-
ulator as its distance from the moving obstacle decreases,
while the second part depicts two tests, respectively at
20% and 40% of the maximum speed of the robot (2 rad/s),
involving a smaller floating obstacle. Both sections include
an initial part, which shows how the virtual cell updates
automatically position and dimensions of the moving ob-
stacles.

The video shows that the developed system is able to
detect the presence of the objects, place them correctly in
the virtual space, and assign them the correct dimensions.

The static collision tests performed at velocities greater
than 30% of the maximum robot speed showed the inade-
quacy of uniformly spaced risk layers (like in Fig. 10(a))
in such conditions. To completely avoid the risk of contact

CALIBRATION

DEPTH DATA
ACQUISITION

CONVERSION TO
BITMAP

GRAPHICAL
PROCESSING

ENTITIES
IDENTIFICATION

IDENTIFICATION OF STILL
AND MOBILE OBJECTS

GENERATION OF NEW
VIRTUAL OBJECTS

DELETION OF NO LONGER
PRESENT VIRTUAL OBJECTS

KINECT CAMERA
PLACEMENT

ACQUISITION OF
KNOWN OBJECT

DEPTH DATA

FITTING LINES
CALCULATION

COEFFICIENT SETTING
IN CONVERSION FUNCTIONS

SEARCH OF OBJECT
EXTREME POINTS

PERSPECTIVE
CORRECTIONS

CONVERSION BETWEEN
DEPTH IMAGE SIZES AND
REAL WORLD DISTANCES

OBJECT INTRODUCTION
IN SIMULATED
ENVIRONMENT

Fig. 8. Setup and elaboration cycle of the automatic
update prototype

with the obstacle it was necessary to modify the original
risk layers spacing (adopted in the tests reported in Abrate
et al. (2011)), expanding the inner layers as in Fig. 10(b),
in order to obtain a quicker slowdown: Figs. 10(c) and
10(d) compare the original and the modified slowdown
profiles corresponding to the inserted risk layers. The in-
nermost yellow layer (corresponding to the complete stop
of the robot) must be placed at least at 5 cm of distance
from the actual object surface, according to the maximum
stopping time imposed by law for industrial manipulators.

With this configuration the prototype had been able to
successfully stop without coming in contact with the
object, regardless of the approach vector. A test with
obstacles moving at speeds up to 0.5 m/s did not reveal
significant differences in the stopping times, but evidenced
issues caused by the shadowed areas of the image. As a
matter of fact every big object in the working area can hide
a smaller one from the sensor, but the problem becomes
evident when the shadow is generated by the robot itself
which, being a medium-sized anthropomorphic arm, can
hide small objects while approaching them. The solution
described in Section 3.1 allows to keep track of the object’s
last known position and size, preventing the robot to enter
their areas also when real time data about it are no longer
available from the depth sensor.

During the tests has also become evident that surfaces
which do not provide a good IR response (black painted
ones in general, expecially if polished) should be avoided
whenever possible, since a lack of reflection from a point
puts it automatically beyond the maximum readable dis-
tance for the Kinect camera, and such a discontinuity is
not easily handled in the virtual object’s generating code.

(a) Robot approaching horizontally moving obstacle

(b) Robot approaching floating obstacle

Fig. 9. Synchronized views of the real and virtual manipu-
lators approaching a ground moving object (a) and a
floating one (b), motion directions are shown by the
red (obstacle) and cyan (robot) arrows

5. CONCLUSIONS AND FUTURE WORKS

The experimental test showed that the developed architec-
ture is able to recognize variously shaped mobile objects
inside the monitored area and let the robot stop before
colliding with them, if the objects are not too small. The
current setup, with a single low-cost depth sensor devoted
to the detection of completely unknown objects, is not
sufficient to ensure complete safety conditions in any situ-
ation, but provides a tool to easily and dynamically reduce
the operating area of the robot, so to avoid undesired
contacts with objects in the cell. Possible enhancements
of the current architecture towards safe conditions include
the usage of predictive algorithms to estimate the future
position of the detected obstacles, and the coupling of the
depth map with data collected by other kinds of sensors
differently placed in order to eliminate the shadowing
phenomena previously described. Refinements of the image
processing could produce more accurate data about shape
and position of the real obstacle, allowing for smaller
bounding boxes, and therefore a better definition of the
safe operating area of the robot.

Future works will be devoted also to the definition of
proper re-planning procedures including obstacle avoid-
ance algorithms, after the detection of a possible contact
with an object, in order to continue as much as possible
the pre-assigned working cycle. In the current implemen-
tation, the robot simply stops after the slowdown behavior
imposed by the risk layers crossing, goes back at a reduced
velocity to a “safe” target along the previously tracked
trajectory, and waits there for further instructions.

(a) Original risk layers spacing (b) Modified risk layers spacing

Vreal

Vmax

50%

100%

5%

Distance [cm]x - 50x - 75x - 100 x

ObstacleThird layerSecond layerFirst layer

(c) Original slowdown graph

(d) Modified slowdown graph

Fig. 10. The modified risk layers spacing causes a quicker
slowdown of the arm motion, granting full stop before
coming in contact with the obstacle also for tests over
30% of the manipulator maximum speed

REFERENCES

Abrate, F., Bona, B., Indri, M., Messa, D., and Bottero, A.
(2010). Motion planning and monitoring of an industrial
robot via a virtual manufacturing cell. In ICRA 2010
Workshop on Innovative Robot Control Architectures for
Demanding (Research) Applications, 67–72.

Abrate, F., Indri, M., Lazzero, I., and Bottero, A. (2011).
Efficient solutions for programming and safe monitor-
ing of an industrial robot via a virtual cell. In 2011
IEEE/ASME International Conference on Advanced In-
telligent Mechatronics (AIM 2011), 434–439.

Bosch, J. and Klet, F. (2010). Safe and flexible human-
robot cooperation in industrial applications. In 2010 In-
ternational Conference on Computer Information Sys-
tems and Industrial Management Applications (CISIM),
107–110.

Ebert, D. and Heinrich, D. (2001). Safe human-robot-
cooperation: problem analysis, system concept and fast
sensor fusion. In IEEE Con. Multisensor Fusion ans
Integration for Intelligent Systems, 107–110.

Graf, J., Dittrich, F., and Wörn, H. (2010). High per-
formance optical flow serves Bayesian filtering for safe
human-robot cooperation. In ISR / ROBOTIK 2010,
1–8.

Krüger, J., Nickolay, B., and Schulz, O. (2004). Image-
based 3D-surveillance in man-robot-cooperation. In
INDIN ’04 2nd IEEE International Conference on In-
dustrial Informatics, 411–420.

