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Preface  

 

My years as a PhD student were characterized just by curiosity and hunger for 

knowledge. During the school, I chose to dedicate my time to the projects I was 

really interested in to discover what I like most. Luckily, my supervisor permitted all 

this. In these years, I dealt with a miscellaneous of topics, ranging from artificial 

intelligence to cell cultures, stopping by clinical engineering, optimization 

algorithms, system dynamics, and so on. My research ‘adventure’ ends up with this 

thesis and with its topic: bio-imaging. After all my wander around, I have found my 

way, I have found what I really like to do, I have found what really arouses me.  

This thesis is a summing up of all the ‘wander around’, describing in details what has 

aroused me in the last years, and presenting a brief collection of other works that I 

enjoyed doing during my PhD school.  
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Abstract 

 

Quantification of myelin in vivo is crucial for the understanding of neurological 

diseases, like multiple sclerosis (MS). Multi-Component Driven Equilibrium Single 

Pulse Observation T1 and T2 (mcDESPOT) is a rapid and precise method for 

determination of the longitudinal and transverse relaxation times in a voxel wise 

fashion. Briefly, mcDESPOT couples sets of SPGR (spoiled gradient-recalled echo) 

and bSSFP (fully balance steady-state free precession) data acquired over a range of 

flip angles (α) with constant interpulse spacing (TR) to derive 6 parameters (free-

water T1 and T2, myelin-associated water T1 and T2, relative myelin-associated 

water volume fraction, and the myelin-associated water proton residence time) based 

on water exchange models. However, this procedure is computationally expensive 

and extremely difficult due to the need to find the best fit to the 24 MRI signals 

volumes in a search of nonlinear 6 dimensional space of model parameters.  

In this context, the aim of this work is to improve mcDESPOT efficiency and 

accuracy using tissue information contained in the sets of signals (SPGR and bSSFP) 

acquired. The basic hypothesis is that similar acquired signals are referred to tissue 

portions with close features, which translate in similar parameters. This similarity 

could be used to drive the nonlinear mcDESPOT fitting, leading the optimization 

algorithm (that is based on a stochastic region contraction approach) to look for a 

solution (i.e. the 6 parameters vector) also in regions defined by previously computed 

solutions of others voxels with similar signals.  

For this reason, we clustered the sets of SPGR and bSSFP using the neural network 

called Self Organizing Map (SOM), which uses a competitive learning technique to 
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train itself in an unsupervised manner. The similarity information obtained from the 

SOM was then used to accordingly suggest solutions to the optimization algorithm. 

A first validation phase with in silico data was performed to evaluate the 

performances of the SOM and of the modified method, SOM+mcDESPOT. The 

latter was further validated using real magnetic resonance images. The last step 

consisted of applying the SOM+mcDESPOT to a group of healthy subjects ( ) 

and a group of MS patients ( ) to look for differences in myelin-associated 

water fractions values between the two groups.  

The validation phases with in silico data verified the initial hypothesis: in more the 

74% of the times, the correct solution of a certain voxel is in the space dictated by 

the cluster which that voxel is mapped to. Adding the information of similar 

solutions extracted from that cluster helps to improve the signals fitting and the 

accuracy in the determination of the 7 parameters. This result is still present even if 

the data are corrupted by a high level of noise (SNR=50). Using real images allowed 

to confirm the power of SOM+mcDESPOT underlined through the in silico data. 

The application of SOM+mcDESPOT to the controls and to the MS patients allowed 

firstly obtaining more feasible results than the traditional mcDESPOT. Moreover, a 

statistically significant difference of the myelin-associated water fraction values in 

the normal appearing white matter was found between the two groups: the MS 

patients, in fact, show lower fraction values compared to the normal subjects, 

indicating an abnormal presence of myelin in the normal appearing white matter of 

MS patients. 

In conclusion, we proposed the novel method SOM+mcDESPOT that is able to 

extract and exploit the information contained in the MRI signals to drive 

appropriately the optimization algorithm implemented in mcDESPOT. In so doing, 

the overall accuracy of the method in both the signals fitting and in the determination 

of the 7 parameters improves. Thus, the outstanding potentiality of 

SOM+mcDESPOT could assume a crucial role in improving the indirect 

quantification of myelin in both healthy subjects and patients. 
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1. Introduction 

 

In this chapter, all basic principles necessary to understand the problem faced in this 

thesis and its importance are introduced. For this reason, a brief description of brain 

anatomy, its normal composition and a particular disease (i.e. the Multiple Sclerosis) 

that affects it allows setting the practical importance of this work. One of the most 

promising tools available nowadays to deal with the problem is then presented, since 

its modified counterpart is the subject of this thesis.  
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1.1. Basic principles of brain anatomy 

 

The human nervous system monitors, processes and responds to information coming 

from inside and outside the body [1]. It is formed by two main parts, that are 

anatomically separate but strictly interconnected and integrated in terms of 

functionalities: the central nervous system, CNS, and the peripheral nervous system, 

PNS (Figure 1). The former essentially consists of the brain and the spinal cord, 

while the latter is formed by nerves extending to and from the brain and the spinal 

cord.  

 

 

Figure 1. Overview of the anatomical organization of the nervous system. 
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The brain is protected by the bony structures of the vertebral canal and skull, and an 

additional mechanical buffering protection is afforded by the surrounding meninges 

and ventricular system. Their functions are to protect the CNS and blood vessels, 

enclose the venous sinuses, retain the cerebrospinal fluid, and form partitions within 

the skull. At birth the brain weighs less than 400 g, but by the beginning of the 

second year of life it has more than doubled in weight to 900 g [2]. The adult brain 

weighs between 1.250 and 1.450 g, and demonstrates a gender differential, since 

brains of males generally weigh more than those of females [2]. This increase in 

weight is due more to the proliferation of glia cells than to the mitotic activity of 

neurons.  

Viewing an adult brain from an external point of view, three regions are clearly 

visible: the cerebrum, cerebellum, and part of the brainstem (Figure 2 a).  

 

 

Figure 2. An external view of the brain: from one side (a) and from the top (b). 

 

The cerebrum is a hollow structure divided into two hemispheres by the midline 

longitudinal cerebral fissure (Figure 2 b). Each hemisphere is subdivided into five 

lobes: the frontal (involved with decision-making, problem solving, and planning), 
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parietal (involved in the reception and processing of sensory information from the 

body), temporal (involved with memory, emotion, hearing, and language), and 

occipital lobes (involved with vision), and the insula (involved in emotions and 

regulations of the body's homeostasis). Additionally, the external part of the limbic 

system can be considered as sixth lobe, the limbic lobe (it regulates autonomic and 

endocrine functions, particularly in response to emotional stimuli). The hemispheres 

are connected through the corpus callosum (Figure 3), the largest connective 

structure in the brain, consisting of over 190 million axons that transfer information 

between the two cerebral hemispheres [3]. Below the corpus callosum are the front 

ends of two cavities within the cerebral hemispheres, the lateral ventricles (Figure 3).  

 

 

Figure 3. Major parts of the brain. 

 

They, named based on their position as right and left lateral ventricles, are separated 

from each another by two closely adjoined non-nervous membranes (septum 
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pellucidum); they are filled with cerebrospinal fluid and, in the same time, and they 

are the site of the choroid plexus, a structure that produces this fluid. The cerebral 

hemisphere surface is composed of a highly folded collection of grey matter, known 

as the cerebral cortex (Figure 2 b and Figure 4). That typical convolution forms 

ridges (gyri or gyrus, as singular), valleys (sulci or sulcus, as singular) or fissures 

(sulci particularly deep), allowing, in so doing, to reach a total surface area of several 

hundred square centimetres [1]. The convoluted surface comprises a continuous 

layered or laminated sheet of neurons and supporting cells about 2 mm thick called 

the cerebral cortex and it lies over and around most of the structures of the brain. 

Deep to the cortex is placed the substance of the cerebrum, i.e. the white matter 

(Figure 4).  

 

 

Figure 4. White and grey matter. 

 

It consists of myelinated neurons of varied sizes and their supporting glia. Buried in 

the white matter, the basal ganglia are large collections of cell bodies (Figure 3) that, 

when damaged, produce movement disorders. Other major sub-cortical structures, 

such as the thalamus and the hypothalamus, are situated below the corpus callosum 

(Figure 3). The thalamus relays sensory inputs to the cortex. The hypothalamus 

controls the release of major hormones and it is involved in processes such as 
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temperature regulation, control of food and water intake, sexual behaviour and 

reproduction, control of daily cycles in physiological state and behaviour, and 

mediation of emotional responses.  

The other structure visible from an external point of view is the cerebellum, located 

in the posterior part of the brain, just below the occipital lobes of the cerebrum 

(Figure 3). It essentially controls the timing and pattern of muscle activation during 

movement, regulates muscle tone in postural control, and provides an important role 

in maintaining the equilibrium. Similar to the cerebrum, the cerebellum has an outer 

rim of grey matter, the cortex, an inner core of nerve fibers, the medullary white 

matter, and the deep cerebellar nuclei, located within the white matter.  

Finally, the brainstem, the oldest part of the CNS, is structurally continuous with the 

spinal cord and it is composed of the mesencephalon, pons, cerebellum, and medulla 

oblongata (Figure 3). It is an extremely important structure, since all nerve 

connections of the motor and sensory systems from the main part of the brain to the 

rest of the body pass through it. 

All the structures described above have different morphological aspects depending 

on the plane of section. Generally, three anatomical planes are considered:  

1. the sagittal section is a vertical plane through the brain, parallel to the median 

plane. The latter slices the brain vertically along the midline into two 

symmetrical halves (Figure 5 d); 

2. the horizontal (or axial) section is a plane across the brain that would be 

horizontal if the patient were standing up (Figure 5 c); 

3. the coronal (or frontal) section is a plane that slices the brain vertically 

(Figure 5 b). 

Moreover, based on their positions (Figure 5 a), structures can be termed as: 

1. anterior (or rostral): if they are towards the front of the brain; 

2. posterior (or caudal): if they are towards the back; 

3. superior:  if they are towards the top of the brain; 
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4. inferior: if they are towards bottom.  

 

 

Figure 5. Anatomical planes of section. Depending on the plane of section (a), coronal or 

frontal (b), horizontal or axial (c), and sagittal (d) view can be obtained. 

 

 

1.2. Myelin sheath: structure, function, formation and damage 

 

The CNS is mainly composed of two cell types: neurons and glia [1, 4].  

Each neuron consists of a cell body (containing the nucleus) with a number of thin 

processes radiating outward from it: usually one long axon conducts signals away 

from the cell body toward distant targets; and several shorter branching dendrites 

extend from the cell body, providing an enlarged surface area to receive signals from 
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the axons of other nerve cells (Figure 6 a). The typical axon divides at its far end into 

many branches, passing on its message to many target cells simultaneously through 

synapses.  

 

 

Figure 6. Neuron and glia cells. 

 

The other type of CNS cells, glial cells, constitutes the largest majority of cells in the 

nervous system. Although glial cells also have complex processes extending from 

their cell bodies, they are generally smaller than neurons, and they lack axons and 

dendrites (Figure 6 b, c and d). This implies that glia cells do not participate directly 

in synaptic interactions and electrical signalling, but they support neurons to define 

synaptic contacts and to maintain the signalling abilities. Moreover, they modulate 

the rate of nerve signal propagation, modulate synaptic action by controlling the 

uptake of neurotransmitters, provide a scaffold for some aspects of neural 
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development, and help in (or preventing, in some instances) recovery from neural 

injury. Glia cells of the central nervous system generally fall into three categories: 

microglial cells, astrocytes, and oligodendrocytes. The former is referred to small 

cells derived from hematopoietic stem cells and with properties similar to tissue 

macrophages (Figure 6 b). They, in fact, are primarily scavenger cells that remove 

cellular debris from sites of injury or normal cell turnover. Astrocytes have a starlike 

appearance (hence the prefix ‘astro’) due to their elaborate local processes (Figure 6 

c). The major function of astrocytes is to maintain, in a variety of ways, an 

appropriate chemical environment for neuronal signalling. Finally, oligodendrocytes 

surround and insulate some neurons axons with a laminated, lipid-rich wrapping 

called myelin (Figure 6 d).  

The reasons why some axons are myelinated and others are not are still debated. In 

general, it seems that a minimum calibre is required (~1 µm) before an axon can be 

myelinated, but how axons of a minimum calibre are selected for myelination is still 

not understood [5]. Moreover, the myelinated axons are not equally distributed in the 

CNS. White matter, in fact, is essentially composed of myelin sheath, which 

comprises about 50% of the total dry weight and is responsible for its colour and for 

the gross chemical differences between white and grey matter [1]. 

The process of creating a myelin sheath around axons is called myelination and it 

occurs when the processes of mature oligodendrocytes contact axons [6] (Figure 7 a, 

b and c). 
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Figure 7. The process of myelination (a, b, c) and the resulting sheath (d). 

 

This process depends mainly on cell surface and extracellular matrix molecules 

which promote interactions between myelin and axons [7]. More in detail, myelin 

synthesis is triggered when the elongated oligodendrocyte processes make contact 

with nearby axons and form a cup at the point of contact, extending lengthwise to 

form a trough whose two lips advance around the circumference of the axon until 

they meet. One then passes beneath and rotates many times around the axon to form 

the multiple membrane layers or lamellae. The developing myelin sheath extends 

lengthwise in both directions along the axon to form an internodal segment (Figure 7 

d). But at the advancing edge, each layer of the spiral retains a bead of cytoplasm 

where the two inner leaflets of the surface membrane remain separate. In three 

dimensions, this bead comprises a ring of cytoplasm around the axon and is termed 

the lateral loop. Transverse bands, regularly arranged sites of close membrane 

apposition space 10-15 nm apart, later develop between the end of each lateral loop 
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and the underlying axon. There are as many lateral loops at the leading edge of the 

advancing sheath as there are lamellae, and these become stacked in a regular way 

with a periodicity of 12 nm. The complement of lateral loops at one end of each 

developing internode almost abuts onto its adjacent counterpart, and together these 

form the paranodal region next to nonmyelinated regions, called nodes of Ranvier 

(Figure 7 d). During compaction, the cytoplasmatic content of all except the inner- 

and outermost lamellae of the developing spiral sheath is gradually extruded, and the 

two inner leaflets of the surface membrane lipid bilayer thus become opposed. They 

then fuse to form the major dense line visible in ultrastructure cross-sections (Figure 

8). 

  

 

Figure 8. Electron micrograph of mature myelin sheath (from [8]). 

 

Inner and outer tongues of cytoplasm remain where the corresponding central and 

outermost lamellae have not compacted. Compact myelin thereby consists of a 

condensed lipid-rich membrane wrapped spirally many times around axons to form a 

segmented sheath. Thus, the resulting content of myelin is composed of water (40%), 

lipid (70-85% of the dry mass), and proteins (15-30% of the dry mass) [9]. 
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The myelin structure described above, in particular its thickness, its low water 

content, and its richness in lipids favour rapid nerve conduction velocity. The myelin 

sheath, in fact, is responsible for a type of conduction which is considerably faster 

than continuous propagation of the nerve impulse [1]. In unmyelinated axons, 

impulse conduction is propagated by local circuits of ion current that flow into the 

active region of the axonal membrane, through the axon, and out through adjacent 

sections of the membrane. These local circuits depolarize the adjacent piece of 

membrane in a continuous sequential fashion. In myelinated axons, instead, the 

excitable axonal membrane is exposed to the extracellular space only at the nodes of 

Ranvier, where sodium channels are located. When the membrane at the node is 

excited, the local circuit generated cannot flow through the high-resistance sheath 

and therefore flows out through and depolarizes the membrane at the next node. The 

low capacitance of the sheath means that little energy is required to depolarize the 

remaining membrane between the nodes, which results in an increased speed of local 

circuit spreading. Since active excitation of the axonal membrane jumps from node 

to node, this type of conduction is called ‘saltatory conduction’ (Latin ‘saltare’, ‘to 

jump’).  

After understanding the structure and the function of myelin, its importance is clearly 

outstanding. If the myelin sheath surrounding the nerve axon is, in fact, damaged or 

destroyed, transmission of nerve impulses is slowed or blocked leading to serious 

diseases (such as multiple sclerosis and leukoencephalitis). Different patterns of 

myelin abnormal formation (i.e., dysmyelination) or damage (i.e., demyelination) 

have been observed [10]. In active primary demyelination, for instance, the focal 

removal of myelin sheaths is accompanied by an infiltration of macrophages that 

quickly accumulate myelin debris and become transformed in fat-filled macrophages. 

In partial demyelination, instead, the dimensions of myelin sheaths are irregularly 

reduced; internodes of normal length may be too thin for the diameter of the axon 

they enclose, or short, thinly myelinated axons are interposed between normal size 

internodes. Any kind of damage of the myelin sheath causes changes in the electrical 

properties of the brain related to myelin loss and in the electrogenic features related 
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to alterations of the molecular organization within the axonal membrane that lead to 

conduction abnormalities. One of those major changes is the dispersion of Na
+
 and 

K
+
 channels observed in experimental models of demyelination [11, 12]. Na

+
 

channels, in fact, are no longer concentrated exclusively at the nodes of Ranvier, but 

a diffuse distribution along the naked demyelinated axon is reported. However, loose 

clusters of Na
+
 channels persist on some denuded axons. The same pattern is 

observed in the distribution of potassium channels. Moreover, nodal and internodal 

axonal molecules, that are generally specific of nodal or internodal region, are now 

diffusely distributed along the naked axons [13, 14]. These changes impair 

definitively the transmission of nerve impulses.  

 

 

 

1.3. Demyelinating diseases: the example of Multiple Sclerosis 

 

Multiple sclerosis (MS) is a one of the most important inflammatory disease of CNS 

with a high incidence among Northern Europeans and white US population [15]. 

Moreover, MS is twice more common in women than men. However, men have a 

tendency for later disease onset with worse prognosis, supporting gender-dependent 

factors in etiology and phenotypic variability [16]. Even if the pathogenesis is still 

debated, the central hypothesis is that T lymphocytes with receptors for CNS myelin 

components enter the brain, respond locally to their target antigen, and ‘indirectly’ 

attack local cells [17]. These autoaggressive T cells trigger an inflammatory cascade 

that results in demyelination, loss of oligodendrocytes and axonal degeneration. 

Macroscopically, at the nervous system level, this inflammation is responsible for the 

generation of scars (scleroses or plaques or lesions) in which a substantial axonal 

damage has been described [18-21]. Typical lesions are usually small, round or oval 

in shape and may occur in any part of the central nervous system where myelin 
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exists. Although MS is a white matter disease, 5–10% of the lesions may involve the 

grey matter including cerebral cortex and basal ganglia [22]. At the onset, the 

resulting interruption of myelinated axons in CNS causes the symptoms typical of 

MS [17]: weakness or diminished dexterity in one or more limbs, a sensory 

disturbance, monocular visual loss, double vision, gait instability, and ataxia. As the 

disease worsens, bladder dysfunction, fatigue, and heat sensitivity occurs in most 

patients. Cognitive deficits are also common, especially in advanced cases, and 

include memory loss, impaired attention, problem-solving difficulties, slowed 

information processing, and difficulties in shifting between cognitive tasks. To 

quantify and monitor changes in the level of disability over time, the Kurtzke 

Expanded Disability Status Scale (EDSS) is the gold-standard measure [23]. The 

scale measures impairment or activity limitation based on the examination of eight 

functional systems (FS, i.e. areas of the central nervous system which control body 

functions): pyramidal (ability to walk), cerebellar (coordination), brainstem (speech 

and swallowing), sensory (touch and pain), bowel and bladder functions, visual, 

mental, and other (includes any other neurological findings due to MS). The 

examination results in a score ranging from 0 (normal neurologic examination) to 10 

(death due to MS) in half-point increments (Table 1).  

 

Table 1. EDSS score. 

EDSS Examination 

0.0 Normal neurological exam. 

0.5 / 

1.0 No disability, but minimal signs in one FS are present. 

1.5 No disability, but minimal signs in more than one FS are present. 

2.0 Minimal disability in one FS is present. 

2.5 There is mild disability in one FS or minimal disability in two FS. 

3.0 There is moderate disability in one FS or mild disability in three or four FS. 

However, the person is still able to walk. 

3.5 The person is still able to walk, but has moderate disability in one FS and mild 
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disability in one or two FS; or moderate disability in two FS; or mild disability in 

five FS. 

4.0 The person is still able to walk 500 meters without aid or rest, and is up and about 

most of the day (12 hours) despite relatively severe disability. 

4.5 The person is still able to walk 300 meters without aid, and is up and about much 

of day. He or she is able to work a full day, but may otherwise have some 

limitations of full activity or require minimal assistance. This is considered 

relatively severe disability. 

5.0 The person is able to walk 200 meters without aid or rest. Disability impairs full 

daily activities, such as working a full day without special provisions. 

5.5 The person is able to walk 100 meters without aid or rest. Disability precludes full 

daily activities. 

6.0 The person needs intermittent or unilateral constant assistance (cane, crutch or 

brace) to walk 100 meters with or without resting. 

6.5 The person needs constant bilateral support (cane, crutch or braces) to walk 20 

meters without resting. 

7.0 The person is unable to walk beyond five meters even with aid, and is essentially 

restricted to a wheelchair. However, he or she wheels self and transfers alone, and 

is active in wheelchair about 12 hours a day. 

7.5 The person is unable to take more than a few steps and is restricted to wheelchair, 

and may need aid to transfer. He or she wheels self, but may require a motorized 

chair for a full day's activities. 

8.0 The person is essentially restricted to bed, a chair or a wheelchair, but may be out 

of bed much of day. He or she retains self-care functions and has generally 

effective use of arms. 

8.5 The person is essentially restricted to bed much of day, but has some effective use 

of arms and retains some self-care functions. 

9.0 The person is confined to bed, but still able to communicate and eat. 

9.5 The person is totally helpless and bedridden and is unable to communicate 

effectively or eat and swallow. 

10.0 Death due to MS. 
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Based on the symptoms, level of disability and the progression of the disease, three 

different major forms of MS can be detected [24, 25]: 

1. Relapsing-Remitting Multiple Sclerosis (RRMS) is the most common form of 

MS, reaching almost 85% of patients. It is characterized by clearly defined 

attacks of worsening neurologic function. These attacks (i.e. relapses, flare-

ups, or exacerbations) are generally followed by partial or complete recovery 

periods (remissions), during which symptoms improve and there is no 

apparent worsening or progression of disease. 

2. Primary-Progressive MS (PPMS) is a less common form, affecting 10% of 

MS patients. The onset of this type is slow, but there is a steady worsening of 

neurologic functioning, without any distinct relapses. A person’s rate of 

progression may vary over time with occasional plateaus or temporary 

improvements, but the progression is still continuous. 

3. Secondary-Progressive MS (SPMS) may follow after having RRMS. There 

may be a break from this type of MS or the symptoms can remain constant 

with no break from the disease. It may result in a progressive disability for 

some people. 50% of people with Relapsing-Remitting MS will have 

developed some form of the Secondary-Progressive MS within 10 years. 

4. Progressive Relapsing MS (PRMS) is the rarest type of MS, affecting only 

5% of patients. It is characterized by steadily worsening disease from the 

beginning, but with occasional relapses along the way. People with this form 

of MS may or may not experience some recovery following these attacks, but 

the disease continues to progress without remissions. 

In addition to these four types, a clinically isolated syndrome (CIS) has been 

described in which a first neurologic episode that lasts at least 24 hours occurs [24, 

25]. It is caused by inflammation/demyelination in one or more sites in the central 

nervous system, leading respectively to single or more than one neurological 

symptom.  
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Relapses in the first years, occurrence of progressive phase and disability seem to be 

the most reliable prognostic factors for MS [26]. It is well established, in fact, that 

the evolution to an irreversible disability takes longer in patients with an 

exacerbating–remitting onset, compared to those with a progressive one. The 

transition from a relapsing-remitting phase to a secondary progression is also 

associated with a worse evolution. Factors related to relapses, as a mono-

symptomatic onset, a complete recovery, a long time interval between the first and 

the second relapse, and a lower number of relapses within the first years, have 

consistently been associated with a better prognosis. Another clinical factor is 

strongly and consistently associated with the time course of disability: age at MS 

onset. It is accepted that a younger age at onset is related to a slower disease 

progression and therefore a better prognosis [27]. The clinical and epidemiological 

dissociation between relapses and disability accumulation in the long term is not 

contradictory with a short-term influence of relapses on MS course. For example, it 

has been shown many times that the higher the number of relapses in the first years 

of the disease, the shorter the time from disease onset to assignment of irreversible 

disability scores [28]. Unfortunately, despite important advances in therapeutics for 

MS, there is not an available drug that is able to significantly alter the long-term 

natural history of the disease [29-31]. 

 

 

 

1.4. Basic principles of magnetic resonance relaxation 

 

Magnetic resonance imaging (MRI) has played an expanding and unique role in the 

diagnosis and management of different diseases, including multiple sclerosis, since 

the beginning of its application by Young et al. in this field [32, 33]. The initial 

evaluation of a patient suspected of MS, in fact, starts with MRI thanks to its 
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sensitivity to depict focal white matter abnormalities and clinically silent lesions. 

Despite their limitations to demonstrate diffuse damage to the white matter, 

neuroaxonal degeneration and irreversible demyelination, conventional -weighted 

and -weighted images are currently the standard assessment methods to confirm or 

reject the clinical diagnosis [34]. MRI is also used as a prognostic tool at the first 

presentation in patients with CIS [22, 35].  

Briefly, MRI is based on the interaction of nuclear spin with an external magnetic 

field  [36]. More in details, when a set of proton spins are placed in a strong 

magnetic field,  (such as the MRI scanner), the individual spins align either 

parallel (with a lower energy state) or antiparallel (with a higher energy state) to the 

direction of the external field ( -axis) (Figure 9 b).  

 

 

Figure 9. Principles of magnetic resonance: in a collection of protons, their tiny moments 

are randomly aligned (a); when placed in a large magnetic field ( ), protons orient with the 

field, with slightly more in the parallel direction, producing the net magnetic moment ( ) 

that is the basis for MRI signal (b); and, which, precesses about the direction of  at the 

Larmor frequency (c). 
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At equilibrium, slightly more protons are aligned in the parallel orientation, resulting 

in a small but measurable net magnetic vector, . If tilted away from the direction 

of , this vector precesses about the external field at a specific frequency (the 

Larmor frequency) equal to  multiplied by the so called proton gyromagnetic ratio 

(i.e. a constant value characteristic of each nucleus). At 1.5 T, the Larmor frequency 

for protons is 1.5 T × 42.58 MHz/T ≈ 64 MHz, just below the bottom end of the FM 

radio spectrum. In other words, a radiofrequency (RF) pulse applied at Larmor 

frequency tilts the magnetic vector away from the direction of  into the transverse 

plane ( -plane), producing a net magnetic moment in that plane (Figure 9 c). 

Transverse magnetization, in fact, results when an RF pulse tips the longitudinal 

magnetization away from the -axis toward the transverse -plane: in particular, a 

90° RF pulse tips the magnetization all the way into the -plane; while a 180° RF 

pulse (twice as strong or twice as long as a 90° pulse), tips the magnetization so it’s 

pointing down, along the -axis. This transverse magnetization is the source of the 

signal measured in MRI. When the RF pulse is removed, the magnetization recovers 

back to equilibrium, with the individual spins returning to their original parallel or 

antiparallel direction and dephasing in the transverse plane. The signal produced is 

caused by freely rotating, decaying transverse magnetization and it is called Free 

Induction Decay (FID). 

The rate of return of the longitudinal magnetization and the rate of loss of the 

transverse magnetization are described by 3 characteristics: , , and  relaxation 

times.  
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Figure 10.  and  relaxation times: when RF is removed, the protons return to their 

equilibrium orientation with rate  and the net longitudinal magnetization recovers (a); 

while the net transverse magnetization decays with rate  (b). 

 

 indicates the re-growth of the longitudinal magnetization (Figure 10 a), while  

and  describe the loss of phase coherence of the transverse magnetization (Figure 

10 b). Since these processes of relaxation are driven by molecular motion, 

interaction, and energy exchange,  relaxation represents an exchange of energy 

between water protons and protons attached to other macromolecules (lattice). 

Hence,  is also referred to as the spin–lattice relaxation time.  relaxation, instead, 

reveals exchanges of energy between the water protons themselves. For this reason, 

 is called the spin–spin relaxation time. In these terms, it is clear that  relaxation 

is an energy-loss process, while  relaxation is an energy-conserving process. 

Similarly to ,  describes the decay of transverse magnetization, taking into 

account the macroscopic inhomogeneities of the external magnetic field and the 

presence of large paramagnetic molecules with different magnetic susceptibilities 

from tissue. Since these relaxation times derive from random molecular motion and 

proton–proton interactions, they are directly influenced by the local biophysical and 

biochemical environments and, therefore, contain information reflective of these 

environments, including tissue density (i.e. water content and mobility), 
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macromolecule, protein and lipid composition, paramagnetic atom (like iron) 

concentration, and other pathologically related characteristics [37]. Thus,  and  

differ for tissues with different composition, and changes in  and  are indicative 

of tissue changes associated with disease or other biological processes, (such as 

learning, neuroplasticity, aging and so on). For example, typical  and  values of 

water content in normal tissue are roughly 1000 ms and 50 ms, respectively., while 

 and  of pathological tissue usually become longer than those [36].  

To exploit the properties of relaxation times in mirroring tissue features with the aim 

of determining a good MRI contrast, different pulse sequences have been designed. 

The pulse sequences are sets of defined RF and gradient pulses repeated many times 

during a scan. They are divided into two major categories: spin echo (SE) and 

gradient echo sequences (GRE) [36].  

Spin echo sequences are generated when a 90° pulse and a 180° pulse are applied 

sequentially. As mentioned before, the purpose of the 180° pulse is to refocus the 

phase of the protons, causing them to regain coherence and thereby to recover 

transverse magnetization, producing a spin echo. Following the spin echo, coherence 

is again lost as the protons continue to resonate at slightly different frequencies due 

to non-uniformities in the main magnetic field. If another 180° pulse is applied, 

coherence can again be established for a second spin echo and this pattern can be 

repeated forming an echo train. The deriving spin echo signal is given by: 

 

where 

•  is a constant proportional to the proton density; 

•  is the echo time, i.e. the time between the 90° RF pulse and the peak of 

the echo signal. The 180° RF pulse is applied at time ; 
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•  is the repetition time, i.e. the time between 2 excitations pulses (time 

between two 90° RF pulses). 

From this formulation, -weighting increases with long  and , while -

weighting increases with a short  and  (Table 2). Proton Density weighting is, 

instead, characterized by a short  and a long  (Table 2).  

 

Table 2. - and -weighted images. 

 

Parameter Weighted Spin Sequences 
 

 

 

 
  

 

 
 

-weighted images Proton Density Images 

 

 
 

Not used -weighted images 

 

 

Especially the - and the -weighted images are highly sensitive for detection of 

MS lesions.  
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Figure 11. - (a) and - (b) weighted images. 

 

Generally, on -weighted images, lesions appear as hyperintense regions (Figure 11 

b). The less common grey matter lesions are usually small with intermediate-high 

signal intensity and a less sever degree of inflammation, which may cause the 

obscure appearance of this kind of lesions on MR imaging compared with that of 

white matter lesions [38]. With -weighted images, another abnormality in MS 

patients is highlithed: the grey matter hypointensity. Such hypointensities are thought 

to represent pathologic iron deposition [39]. -hyperintense MS lesions may appear 

hypointense on corresponding -weighted images (Figure 11 a). In general, most 

profound hypointensity is a sign of permanent lesions, pathologically correlated with 

the most profound demyelination and axonal loss [40]. 

GRE, the other sequences type, differs from the spin echo sequence because the flip 

angle (FA or , i.e. the angle to which the net magnetization is rotated relative to the 

main magnetic field direction through the application of a RF excitation pulse at the 

Larmor frequency) is usually below 90° and there is not a 180° RF rephasing pulse. 

A flip angle lower than 90° decreases the amount of magnetization tipped into the 

transverse plane, causing a faster recovery of longitudinal magnetization, thus shorter 
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 and decreased scan time. However,  reduction may cause that the 

transverse magnetization is completely disappeared at the onset of the following 

repetition and is submitted to the flip caused by the excitation pulse. Depending on 

how this residual transverse magnetization is managed, two main classes of gradient 

echo sequence can be distinguished: gradient echo sequences with spoiled residual 

transverse magnetization (such as SPGR); and steady state gradient echo sequences 

that conserve residual transverse magnetization and therefore participate in the signal 

(like SSFP).  

The SPGR (or SPoiled Gradient Recalled echo) ‘spoils’ (or destroys) the transverse 

magnetization by adding a phase shift to successive RF pulses during the acquisition. 

By shifting the residual transverse components out of phase, in fact, the buildup of 

the transverse steady-state signal does not occur, effectively eliminating the  

dependency of the signal. Although small  contributions are introduced by the 

gradient reversal, short , short , moderate to large flip angle, and spoiled 

transverse magnetization produces the greatest  contrast.  

The SSFP (Steady-State Free Precession), instead, applies strings of RF pulses 

rapidly and repeatedly with  short compared to both  and . In so doing, the 

signal never completely decays, implying that the spins in the transverse plane never 

completely diphase, thus the flip angle and the  maintain the steady state.  

These two sequences establish the base of DESPOT1 (Driven-equilibrium single-

pulse observation of T1) and DEPOT2 (Driven-equilibrium single-pulse observation 

of T2), which represent one of the most rapid, accurate and precise methods to 

evaluate the longitudinal and transverse relaxation times [41, 42]. DESPOT1 and 

DESPOT2 use respectively SPGR and bSSFP (fully-balanced SSFP, i.e. is a special 

type of SSFP sequence where the gradient-induced dephasing within  is exactly 

zero [43]) data acquired over a range of FA with constant . These methods allow a 

significantly faster measure of  and  than the other traditional methods. The 

combination of DESPOT1 and DESPOT2, in fact, permits the acquisition of whole-
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brain (25x25x10 cm), high spatial resolution (1 mm
3
 isotropic voxels)  and  

maps in clinically feasible 15 minutes acquisition [41], compared to, for instance, an 

acquisition time of about 20 minutes per slice of CPMG spin-echo sequence [42, 44].  

 

 

 

1.5. Multiple component relaxation: the mcDESPOT method  

 

Despite their advantages, both DESPOT1 and DESPOT2 are based on the hypothesis 

that the relaxation in each voxel is characterized by a combination of a single  and 

a single . In other words, this hypothesis implies the assumption that there is only a 

single water environment in each voxel. Unfortunately, this assumption is far from 

the real case, in which the water is compartmentalized into multiple distinct micro-

anatomical environments, each with unique biophysical and biochemical features, 

and, therefore, distinct  and  relaxation times [45]. Moreover, if the boundaries 

between these compartments are permeable to water, protons may easily exchange 

between them. In this scenario, the  or  value computed so far represent a 

weighted average of the compartmental  and  values and exchange rate [45]. 

Assuming, thus, the brain tissue inhomogeneity, a four-pool model was suggested 

[46, 47]. The four pools are referred to the 4 main species that could be present in a 

voxel: myelin tissue (non-aqueous protons), water trapped between the lipid bilayers 

of the myelin sheath, other tissue different from myelin (non-aqueous protons), and 

water in the intra- and extra-cellular spaces. The quantification of the myelin tissue is 

fundamental for a better understanding of multiple sclerosis, but also of many other 

diseases. Unfortunately, this assessment is not possible with the current MRI 

techniques, since the non-aqueous proton signal decays to zero in less than 100 µs, 

while the signal of water in tissue has  times longer than 10 ms [48-50]. However, 
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pathological changes in neurodegenerative diseases, in general, and in MS, in 

particular, affect directly the organization of non-aqueous molecules in cellular 

structures, and indirectly the quantity of water in the same structures. So, the 

previous four-pool model can be reduced in a two-pool one, in which each pool 

characteristics (  and  relaxation times) can be addressed with the current 

technology. This model, called mcDESPOT (MultiComponent-Driven Equilibrium 

Single-Pulse Observation of T1 and T2), is based, in fact, on the existence of two 

water environments (Figure 12): one referred to the intra- and extra-cellular water (F, 

free water), and the other to the water trapped between the hydrophobic lipid bilayers 

of the myelin sheath (M, myelin-associated water) [51, 52]. Quantification of this 

latter component provides a non-invasive means of measuring and monitoring 

myelin content in, for instance, multiple sclerosis [53].  

 

 

Figure 12. Multicomponent relaxation theory: a simple model of brain tissue contains two 

water components, free intra- and extra-cellular water and water trapped between the lipid 

bilayers of the myelin sheath (a); characteristic values of parameters of the two pool (b). 
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More in details, mcDESPOT is an evolution of previous techniques (DESPOT1 and 

DESPOT2 [41, 54]) and it combines SPGR and bSSFP acquired over a range of flip 

angle ( ) and with constant , to derive properties of those two physically 

separated but exchanging species, F and M. These properties are represented by free-

water and  ( ), myelin-associated water  and  ( ), relative 

myelin and free-water volume fractions ( ), and the myelin and free-water 

proton residence times ( ). The latter are the average time a proton is expected 

to remain in a compartment before exchanging to the other. To derive those 

parameters, the general Bloch-McConnell magnetization equations [55] are modified 

for obtaining the closed form expressions of SPGR and bSSFP signals (  and 

, respectively). 

The formulation that describes the two component SPGR signal involves only the 

longitudinal magnetization components: 

   [1] 

where 

•  is the magnetization that arises from the two species 

described by the volume fractions of myelin-associated water ( ) and free 

water ( ). Those fractions are weighted by a factor (ρ) proportional to the 

equilibrium longitudinal magnetization; 

•  is the 2x2 identity matrix; 

•  is a matrix containing the  and the 

exchange information of the two species. In particular, the  relaxation of 

myelin-associated water is represented by , while the  relaxation of free 

water is . The exchange rates are identified by the mean residence times 

(  for M and  for F); 
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•  is the repetition time; 

•  is the flip angle. 

Extension of the above analysis, to include the  and  magnetization components, 

leads to the equation for bSSFP signal: 

     [2] 

where the elements  compose the magnetization vector  

 

 

This vector is specified by the following equation 

 

where 

•  

is a matrix containing  and  relaxation, exchange, off-resonance effects 

( , effects generated when the transverse phase precession is 

nonzero), and the phase of the applied RF pulse ( ); 

•  is the repetition time; 
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•  is a 6x6 identity matrix; 

•  is related to the equilibrium 

longitudinal magnetization, with a term proportional to the proton density ( ), 

volume fractions of the species (  and ),  relaxation information (  

and ), and mean residence times (  and ); 

•  is a rotation matrix defining the RF pulse with excitation flip angle . 

These equations for the two component SPGR and bSSFP signal just defined 

comprise 11 free parameters: the free-water and  ( ); the myelin-

associated water  and  ( ); the relative myelin and free-water volume 

fractions ( ); the myelin and free-water proton residence times ( ); the 

myelin and free water off-resonance values ( ); and a factor ( ) related to 

the total equilibrium longitudinal magnetization and containing additional factors 

including scanner amplifier gains, RF coil receive biases, etc. The total number of 

free-parameters in this model may be reduced to 6 thanks to four assumptions:  

1. If a normalization of all signals with respect to their mean is performed,  is 

eliminated; 

2. If the two water pools are on-resonance, then ;  

3. If only two water pools are present, then ;  

4. If the water pools are in exchange equilibrium, then . 

With these assumptions, equations (1) and (2) can be fit to acquired SPGR and 

bSSFP data to derive estimates of the 6 parameters  and . 

However, errors could be introduced into these estimates when the flip angle  

deviates from the prescribed nominal value, and when the transverse phase 

precession ( ) is nonzero. These errors, in fact, alter the measured SPGR 

and bSSFP signals from their theoretically predicted values [54, 56] and lead to 

substantive errors in the derived multicomponent parameters. In general, flip angle 
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errors (or  errors) occur from tissue dielectric effects, while the  error is caused 

by main magnetic field inhomogeneities, particularly accentuated near air–tissue 

boundaries.  variations lead to off-resonance conditions in the bSSFP signal, 

manifesting as bands of artificially reduced signal, which deviates from the 

theoretical signal model [57]. To correct for these effects, an additional term is taken 

into account in the multiparameter fit to eliminate the off-resonance effect 

( ) coupled with acquisition of bSSFP data with more than one 

phase-cycling pattern ( , SSFP0, and , SSFP180). Moreover, a 

calibration using DESPOT1-HIFI approach is included [58], in which the 

supplemental acquisition of at least one inversion-prepared SPGR (IR-SPGR) image 

is required. IR-SPGR involves the application of a 180° inversion pulse, followed by 

an SPGR low-angle RF pulses. This sequence provides a strong contrast between 

tissues having different  relaxation times and suppresses tissues like fluid or fat, 

helping, in so doing, to reduce the  inhomogeneities. 

 

 

 

1.6. Nonlinear search and stochastic region contraction approach 

 

Summarizing, the three acquired pulse sequences (SPGR and two sequences of 

bSSFP,  and ) represent the target of the model fitting in which 

theoretical signals (i.e. theoretical SPGR, SSFP0, SSFP180) are derived using 

equations (1) and (2). The fitting implies the identification of the 6 (or 7, if the off-

resonance effect, , is taken into account) parameters described above. Due to its 

nature, the problem addressed by mcDESPOT can be considered as a nonlinear 

optimization problem. In this context, finding global minima is a challenging task, 
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especially because nonlinear constraints form feasible regions that are hard to find 

and difficult to deal with (Figure 13).  

 

 

Figure 13. Difficulties that characterize the nonlinear search space. 

 

mcDESPOT deals with the nonlinear fitting of the SPGR, SSFP0 and SSFP180 

signals models to the acquired data using a particular approach called stochastic 

region contraction approach [59]. The outline of this method is reported in Figure 14. 

First of all, the solving process is performed through the implementation of two fits: 

one called NotSimplified, and the other Simplified fit. The differences between them 

regard the sequences used and the number of parameters searched. In the 

NotSimplified fit, in fact, all three pulse sequences are used (SPGR, SSFP0 and 

SSFP180) and all the 7 parameters are searched. In the Simplified fit, instead, the 

SSFP0 is not considered and, consequently, the two water pools are on-resonance, 

that means .  
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Figure 14. Outline of the stochastic region contraction approach implemented in 

mcDESPOT. After defining the expected search-space extents for each parameter (a), 

samples of  and  combinations are randomly chosen from 

these uniform distributions (b). For each sample, the theoretical signals are computed and the 

residuals between the theoretical signals and the acquired ones, both normalized respect to 

their mean, are calculated. The samples are then rank sorted by increasing residual and from 

a certain number of top samples, the minimum and maximum sampled value of each 

parameter is determined (c). These values are then used to update the extents of search-space 

(d) and the sampling process is repeated. 

 

For each voxel, the first step of the stochastic region contraction approach consists of 

defining the expected search-space extents for each parameter (Figure 14 a). A 

certain number of samples ( ) of  and  

combinations are randomly chosen from these uniform distributions forming, in so 
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doing, a set (population) of probable solutions (Figure 14 b). For each sample, the 

theoretical SPGR, SSFP0 and SSFP180 signals are generated using the equations (1) 

and (2). For each flip angle value, the residuals between the three theoretical signals 

and the SPGR, SSFP0 and SSFP180 acquired, both normalized respect to their mean, 

are calculated. The cumulative residuals are then computed across all flip angles 

values. The  combinations are then rank sorted by increasing residual and 

from a certain number of top samples ( ), the minimum and maximum 

sampled value of each parameter is determined (Figure 14 c). These values are then 

used to update the extents of search-space (Figure 14 d) and the sampling process is 

repeated. In this way, the search-space slowly contracts to the globally optimum 

solution (hence the name of the method). The algorithm continues until the 

difference between the minimum and maximum value of each parameter falls below 

a predefined threshold or a certain number of iterations ( ) is reached. After 

the algorithm stops, the top five combinations are averaged and the result is taken as 

the solution. The mcDESPOT uses the options reported in Table 3. 

 

Table 3. Options of the stochastic region contraction approach. 

Option Value 

 3750 

 50 

 0.5% 

 5 

 

 

The process just described is referred to the NotSimplified fit, since the parameter 

 and SSFP0 are inserted in the routine. The Simplified fit process is equal to the 

previous one, except for excluding that parameter and the SSFP0 from the analysis. 
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After performing both fits, the average of the two solutions derived from the 

NotSimplified and Simplified process is taken as the final solution for the voxel 

considered. 

 

 

 

1.7. Aim of the thesis 

 

One of the key elements in the optimization algorithms, in general, and in nonlinear 

fitting, in particular, is the representation of the search space, i.e. the space in which 

solutions are sought. As mentioned before, in fact, the shape of the space for this 

kind of problems could be extremely complex, making it difficult to deal with. In this 

thesis, we address this issue in the particular case of the nonlinear fitting of 

mcDESPOT. In mcDESPOT, the solutions space of each voxel is scanned through 

the extraction of random samples. Then, the residuals associated to those samples 

drive the further search. However, no a priori knowledge is used to direct the search 

in specific regions rather than others. The only a priori knowledge used is the extent 

of the parameters range. With this work, we look for a priori knowledge of the search 

space using the information contained in the 24 volumes signals (SPGR, SSFP0 and 

SSFP180 across all flip angles values). The basic hypothesis, in fact, is that similar 

acquired signals are referred to portions of tissue that show close properties. This 

closeness could be translated into similar parameters combinations (i.e. similar 

solutions). The similarity information, thus, could be used to delineate feasible 

portions of space in which the global minima could be most likely placed. Assuming 

that the hypothesis is verified, in this way, a higher probability of avoiding local 

minima and reaching global one is obtained, since the search is no more dictated just 
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by random scans, but promising sub-spaces are provided. The effectiveness and, 

thus, the accuracy of the fit algorithm are improved. Moreover, introducing prior 

information in the search helps to address another issue typical of a nonlinear fitting: 

the efficiency (i.e. the computational costs). In the mcDESPOT case, for instance, the 

amount of computational time is due essentially to the stochastic region contraction 

approach. Using a single core machine, processing 128x128x86 voxels (a typical size 

of a MR image) takes about 7 days. Even parallelizing the code and using clusters of 

high-performance computers (at least 16 cores), it takes around 15 hours for one 

subject. 

In conclusion, the aim of this thesis is to extract a priori knowledge from the MRI 

sequences, to relate it to tissue properties, and to introduce it into the optimization 

algorithm in order to increase the probability of reaching global minima in a 

reasonable amount of time. 
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2. SOM+mcDESPOT 

 
In this chapter, the theory behind the modified version of mcDESPOT is described. 

Moreover, the details of the validation and application phases are reported.  
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2.1. Self-Organizing Maps 

 

The Self-Organizing Map (SOM) has been proposed to model the sensory-to-cortex 

system mapping the unsupervised associative memory mechanism [60-64]. Visual 

information is processed mostly in the retina that is responsible for operations like 

extracting lines, angles, curves, contrasts, colours, and motion. The retina then 

encodes the information and sends them to the brain cortex in the left and/or right 

hemispheres for further processing. This processing includes the organization of the 

information that often involves both competition and correlative learning. When 

stimulus is presented, in fact, neurons compete among themselves for possession or 

ownership of this input. The winners then strengthen their weights or their 

relationships with this input. As stated in [60]: “When an axon of cell A is near 

enough to excite a cell B and repeatedly or persistently takes part in firing it, some 

growth process or metabolic changes take place in one or both cells such that A’s 

efficiency as one of the cells firing B, is increased”. This means that the change of 

the synaptic weight is proportional to the correlation between an input and its 

associated output.  

Kohonen [65] abstracted the above self-organizing learning principle and function 

and proposed a simplified learning mechanism. Briefly, the SOM algorithm 

comprises two stages: a competitive and a cooperative one. In the former, the best 

matching neuron is selected, i.e. the “winner”, and in the second stage, the weights of 

the winner are adapted as well as those of its immediate lattice neighbours. More in 

detail, the SOM uses a set of neurons, often arranged in a 2-D rectangular or 

hexagonal grid, to form a discrete topological mapping of an input space  

(Figure 15 a). The number of neurons determines the granularity of the resulting 

mapping, which affects the accuracy and the generalization capability of the SOM. 

Each neuron i is represented by an n-dimensional weight vector, called prototype 

vector: 
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where n is equal to the dimension of the input vectors. Neighbourhood relation 

connects adjacent neurons, dictating the structure of the map. Generally the 

topological relations and the number of neurons are fixed from the beginning. Before 

the training phase, initial values are given to the weight vectors. The SOM is robust 

regarding the initialization, but properly accomplished it allows the algorithm to 

converge faster to a good solution. Typically three initialization procedures may be 

used: a random initialization, where the weight vectors are initialized with small 

random values; a sample initialization, where the weight vectors are initialized with 

random samples drawn from the input data set; and a linear initialization, where the 

weight vectors are initialized along the linear subspace spanned by the two principal 

eigenvectors of the input data set [66]. Good initialization can guide to a faster or 

even better convergence. For example, initializing the map to a principal linear sub-

manifold can reduce the ordering time. In each training step, one sample vector  

from the input data set is randomly chosen and a similarity measure is calculated 

between it and all the weight vectors of the map. The Best-Matching Unit (here 

denoted as BMU or ), is the unit whose weight vector has the greatest similarity 

with the input sample. The similarity is usually defined by means of a distance 

measure, typically Euclidian distance. Formally the BMU is defined as the neuron 

for which  

 

where  is the distance measure. After finding the BMU, the weight vectors of the 

SOM are updated. The weight vectors of the BMU and its topological neighbours are 

moved closer to the input vector in the input space. This adaptation procedure 

stretches the BMU and its topological neighbours towards the sample vector (Figure 

15 b).  
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Figure 15. The SOM adapts its structure to the input vectors: the grid before the training (a) 

and after the adaptation (b). 

 

The SOM update rule for the weight vector of the unit i is: 

 

where  

•  indicates time; 

•  is the input vector randomly drawn from the input data set at time ; 

•   is the neighborhood kernel around the winner unit  at time .  

•  is the prototype vector of the unit  at time ; 

•  is the prototype vector of the unit  at time .  

The neighbourhood kernel is a non-increasing function of time and of the distance of 

unit  from the winner unit . It defines the region of influence that the input sample 

has on the SOM. The kernel is formed of two parts: the neighbourhood function 

 and the learning rate function : 
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where  is the location of unit  on the map grid. An example of neighbourhood 

function is the Gaussian one:  

 

where  is a suitable decreasing function of time. Usually the neighbourhood 

radius is bigger at first and is decreased linearly to one during the training. The 

learning rate is a decreasing function of time.  

Also the batch training algorithm is iterative, but instead of using a single data vector 

at a time, the whole data set is presented to the map before any adjustments are made 

(hence the name ‘batch’). In each training step, the data set is partitioned according 

to the Voronoi regions of the map weight vectors, i.e. each data vector belongs to the 

data set of the map unit to which it is closed. After this, the new weight vectors are 

calculated as: 

 

where  is the index of the BMU of data sample . The 

new weight vector is a weighted average of the data samples, where the weight of 

each data sample is the neighbourhood function value  at its .  

The training is usually performed in two phases. In the first phase, relatively large 

initial  value and neighbourhood radius are used. In the second phase, instead, 

both  value and neighbourhood radius are small compared to the beginning. This 

procedure corresponds to first tuning the SOM approximately to the same space as 

the input data and then fine-tuning the map. To guarantee convergence and stability 

of the map, the learning rate and neighbourhood radius are decreased at each 

iteration, thus converging to zero. 
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2.2. The modified mcDESPOT: SOM+mcDESPOT 

 

From the previous paragraph, it is clear how the SOM can learn directly from the 

examples, without the need of solving functions or models, to extract patterns and 

perform recognition tasks preserving the topology of the input space. Moreover, 

SOM is able to carry out similar recognition tasks, not only on the trained data but 

also on unseen examples. For these reasons, SOM is depicted as a suitable and 

promising tool to extract a priori knowledge buried in the MRI sequences.  

This a priori knowledge is built through the creation of a noise free database, in 

which an exclusive correspondence between combinations of the 7 parameters and 

the theoretical signals is established. The database is designed to explore some of the 

possible tissue properties that could be found in a brain. Furthermore, once defined 

the sequences options (such as , ,  and so on), the database does not change 

over time and over subject, since the model that dictates the correspondence between 

combinations of the 7 parameters and the theoretical signals does not change. More 

in details, the database is formed by in silico voxels characterized by specific 

theoretical SPGR, SSFP0, and SSFP180 signals and the parameters combination 

(  and ) used to generate those. The signals are 

normalized by their mean. To organize the information contained in the database 

revealing, thus, patterns hidden in it, the signals are queued forming a vector (signals 

vector) with 24 elements or volumes (i.e. one volume for each flip angle: 8 SPGR, 8 

SSFP0 and 8 SSFP180). All signals vectors are then collected and used for training 

the SOM. The SOM is trained and the association between each voxel and its BMU 

(or ) is obtained. Since a sort of clustering is performed, each neuron is considered 

also as a cluster. Hence, clusters of similar signals are obtained.  
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The information got from this procedure is then used to derive the a priori knowledge 

that will drive the optimization algorithm in mcDESPOT. Supposing to process a 

subject, the algorithm followed is reported in Figure 16.  

 

 

Figure 16. Process of creation of a matrix containing a priori knowledge: each voxel  is 

associated to its BMU (a). Since the basic hypothesis is that similar signals are associated to 

similar parameters, a certain number ( ) of voxels similar to  are randomly selected (b) 

and the corresponding parameters vectors are collected together in  (c). 

 

For each voxel , its signals vector is compared to the prototype vectors of the SOM 

previously trained by the noise free database. The prototype vector winner is found 

and the BMU (i.e. the corresponding cluster, ) is obtained (Figure 16 a). Since the 

basic hypothesis is that similar signals are associated to similar parameters, a certain 

number ( ) of voxels similar to  are randomly selected (Figure 16 b) and the 

corresponding parameters vectors (derived by noise free data) are collected together 

in a matrix  (Figure 16 c). Both the information given by  and the  

parameters vectors are saved. In the mcDESPOT, the first step of the optimization 

algorithm deals with the generation of a population of random solutions (or 
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parameters vectors). At this step, the a priori knowledge is introduced. The 

information previously saved (i.e. ), in fact, is inserted. The  solutions 

derived from the database replace the equivalent amount of random samples in the 

population. Moreover, if subject’s other voxels that are mapped to  are already 

computed, their solutions are also used to replace other random samples of the 

population forming another matrix ( ). The size of  may vary from 0 

(if no voxel belonging to  is already processed) to . If more than  

voxels are previously computed, then a random choice is done to reach just that 

number. This process of suggesting solutions that are likely similar to the one to 

compute is done at the first iteration, after that, the stochastic region contraction is let 

run as usually. The other samples (their amount is equal to 

) are randomly chosen from the uniform distributions of 

the parameters. In this way, the first iteration population of the fit is composed by 

three contributions, two of them imputable to the a priori knowledge: 

1. noise-free information that should also help to reduce the effect of noise in 

the computation of the parameters;  

2. the current subject information that highlights the features of that particular 

subject’s images; and 

3. random samples that helps to avoid to be trapped in local minima or to drive 

the optimization algorithm in unfeasible region of the solutions space. 

The method just described is called SOM+mcDESPOT, underlining the role of the 

SOM in generating the a priori knowledge that is used in the mcDESPOT. 

 

 

 

 



48 

 

2.3. Implementation  

 

The Self-Organizing Maps were implemented in Matlab
®

 (www.mathworks.com), 

while the mcDESPOT and its modification to take into account of the a priori 

information were written in C code, compiled with gcc (http://gcc.gnu.org/) and 

debugged with gdb (http://www.gnu.org/s/gdb/). All pre-processing was 

accomplished using in-house Python scripts to automate usage of the FMRIB 

Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl/)  

 

 

 

2.4. Validation 

 

To assess the performances of SOM+mcDESPOT, a validation was conducted on in 

silico dataset, considering both the case of noise free and with noise, and on real 

images.  

 

 

2.4.1. In Silico experiments 

 

To investigate if it is possible to couple the similarity information contained in MRI 

sequences to the similarity of tissue properties (i.e. the parameters values), a small in 

silico database was created mimicking a slice of a brain: given 4525 voxels with 

different combinations of the 7 parameters above mentioned, theoretical SPGR and 
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bSSFP (SSFP0 and SSFP180) data were generated using the equations (1) and (2) 

with the sequences parameters reported in Table 4.  

 

Table 4. Sequence specific parameters. 

 

 

 

SPGR IRSPGR bSSFP180 

 

TE 
 

1.57 2.18 1.72 

 

TR 
 

3.97 5.28 3.45 

 

TI 
 

- - 450 

 

 
 

{3,4,5,6,7,9,13,18}° 10° {10,13,17,22,27,32,41,55}° 

 

Voxel Volume 
 

1x1x1.5 1x1x1.5 1x1x1.5 

 

 

These signals were then normalized by their mean and queued forming the signals 

vectors. Depending on the presence or the absence of SSFP0, the signals vectors 

could have 24 (NotSimplified SOM) or 16 volumes (Simplified SOM), respectively. 

Effects of B0 and B1 inhomogeneities were considered zero. All signals vectors were 

collected and used as training set for the neural network analysis. For the SOM 

design, a hexagonal lattice map, a linear initialization and a batch training algorithm 

was chosen. 3 different size of SOM were evaluated: small (number of neurons = 

52), medium (number of neurons = 85) and large (number of neurons = 340).  

After trained the SOMs, to evaluate the quality of its clustering in the signals space, a 

simple metrics was used: the intra- and inter-cluster distances. For each cluster ( ), 

the intra-cluster distance in the signals space ( ) was defined as the 
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distance between the prototype vector ( ) of that cluster and the signal vectors ( ) 

mapped to that cluster: 

 

In the signals space, the inter-cluster distance , instead, was calculated as 

the distance among the prototype vectors: 

 

with . For each cluster, each signals vector was related to the 7 parameters 

(parameters vector or solution) that were used to generate it. In this way, an 

exclusive correspondence between clusters and parameters vectors was found. To 

evaluate if the clusters obtained in the signals space could be linearly moved to the 

parameters space, the intra- and inter-cluster distances relative to parameters space 

were also computed: 

 

 

 

where 

•  is the number of vectors mapped to ; 

•  is the number of vectors mapped to the unit ; 

•  are the parameters vectors associated to the voxels mapped to ; 

•  are the parameters vectors associated to the voxels mapped to the unit ; 

•  is the mean parameters vector given by averaging all the  parameters 

vectors associated to  signals vectors mapped to ; 
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•  is the mean parameters vector given by averaging all the  parameters 

vectors associated to  signals vectors mapped to the unit ; 

•  . 

Moreover, to check if the SOM clustering was able to identify similar (in terms of 

anatomy and know properties) tissue portions, a visual inspection of the clustering 

was sought: labelled each cluster with a number according to the topological order on 

the grid, the map of these labels was plotted.  

To test the hypothesis that similar acquired signals imply similar parameters, the 

suggesting process designed for the SOM+mcDESPOT was simulated (Figure 17). 

 

 

Figure 17. Process of collecting suggested solutions: each voxel  is associated to the 

corresponding BMU. A certain number ( ) of parameters vectors were then randomly 

chosen inside that cluster (a). If the number of element inside the cluster is less than , 
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then two different actions may be followed. The first one was to decide not to suggest 

solutions. The second one was to use the elements inside the cluster and, then, look for the 

remaining solutions among the elements mapped to neighbouring neurons (b). In the rare 

event in which, also using neighbours, the  was not reached, no solution was considered. 

The two procedures ended with the formation of a matrix ( ) containing the  similar 

parameters vectors. Moreover, in both cases, an equal number of solutions placed in clusters 

different from  or also from its neighbourhood was chosen (forming ). 

 

For each voxel , the corresponding BMU (i.e. the corresponding cluster ) was 

found comparing its signals vector and the prototype vectors of the previous trained 

SOM. A certain number ( ) of parameters vectors were then randomly chosen 

inside that neuron/cluster. If the number of element inside the cluster is less than 

, then two different actions may be followed. The first one was to decide not to 

suggest solutions. The second one was to use the elements inside the cluster and, 

then, look for the remaining solutions among the elements mapped to neighbouring 

neurons. The number of neighbouring neurons taken into account was at most 6, 

since the lattice of the SOM was hexagonal, and the neighbourhood was generated as 

the first 6 neurons with prototype vectors closer to the prototype vector of . In the 

rare event in which, also using neighbours, the  was not reached, no solution was 

considered. The two procedures just described are referred in the following to as 

‘Suggestions From Cluster’ (Figure 17 a) and ‘Suggestions From 

Cluster+Neighbours’ (Figure 17 b) and ended with the formation of a matrix ( ) 

containing the  similar parameters vectors. To demonstrate that the  chosen 

solutions (just inside the cluster or within the cluster and the neighbours) were closer 

to the correct solution of  than other random solutions, an equal number of solutions 

placed in clusters different from  or also from its neighbourhood was chosen 

(forming ). Two values of were tested: 50 and 100. The residual between 

the solution of  and the two sets of chosen solutions was computed as follows: 
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where  is the correct solution of , and  is the solution of the voxel  belonging 

to  or , with  that varied between 1 to . Since the ranges of the 

parameters were different from each other, a previous normalization of each 

parameter by its maximum value was done. The solution characterized by the 

minimum value of residual was considered and the percentage of times that this 

solution belonged  rather than . Furthermore, since this step involved a 

random process, 100 different simulations were performed and that percentage was 

given in terms of mean and standard deviation. 

To investigate if the noise can corrupt the process of associating signal vectors to the 

correct cluster, three datasets with different levels of signal-to-noise ratio (SNR) 

were built. The noise was added to the in silico slice using the Rice distribution [67]. 

SPGR, SSFP0 and SSFP180 signals showed thus a total SNR equal to 50, or 100 or 

150. The percentage of voxels that were assigned to the correct cluster was then 

computed. 

After building the matrix  and saving the information of which cluster a voxel is 

mapped to, in order to evaluate the effect of suggesting similar solutions in the 

mcDESPOT routine, the in silico noise free slice was processed. For each voxel , at 

the first iteration, the suggested solutions (parameters vectors saved in  and, if 

exists, in ) were inserted into the population of the fit algorithm (both 

NotSimplified and Simplified fit). The was 50. After that, the code ran 

normally. To compare the results, the not modified mcDESPOT was also run on the 

same data. The analysis of the results was performed on two levels (signals and 

parameters) and at each iteration ( ). First of all, a comparison between the 

theoretical signals ( ) generated from the solutions resulting from the 

optimization algorithm and the acquired signals ( ) was rendered through the 

computation of mean residuals: 
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where  is the number of voxels with a nonzero signals of the image. For 

understanding how much the cumulative SOM+mcDESPOT residuals (i.e. the sum 

of residuals of all voxels) improved or deteriorated the mcDESPOT ones, the ratio 

between them was calculated: 

 

 

For a visual inspection, a map of the voxels that were characterized by lower signals 

residuals using mcDESPOT+SOM was plotted and the percentage of those voxels 

was computed. To investigate how much adding similar solutions to the fit 

population influenced the difference magnitude between the correct signals and the 

theoretical ones, the fraction of voxels with lower SOM+mcDESPOT signals 

residuals as a function of the amount of the difference between the 

SOM+mcDESPOT and mcDESPOT residuals was computed. In other words, 

defining  

 

The fraction of voxels with lower SOM+mcDESPOT signals residuals for each  

was calculated as 
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where  is the number of voxels that had improved 

SOM+mcDESPOT residual: 

 

while  is the number of voxels with worse SOM+mcDESPOT 

residuals: 

 

Plotting the  for each  allowed easily identifying how many 

voxels were improved (i.e. with lower residuals) after suggesting solutions and how 

much this improvement was.  

Since the correct solution for each voxel was known, it was possible to perform the 

same analysis described above, but comparing the real parameters vector ( ) with 

the one resulting from the optimization algorithm ( ). Thus, similarly to the signals, 

the mean parameters residuals were computed: 

 

 

The ratio between SOM+mcDESPOT cumulative parameters residuals and 

mcDEPOST ones was also calculated: 
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Maps of voxels with lower and higher SOM+mcDESPOT parameters residuals were 

plotted and the percentage of voxels with lower residuals due to the process of 

suggesting solutions was computed. Moreover, as before, the fraction of voxels with 

lower SOM+mcDESPOT parameters residuals as a function of  was plotted. To 

investigate the effect of SOM+mcDESPOT on each parameter, the residuals of 

 and  across all the iterations were plotted.  

An evaluation of the precision and the reproducibility of the solutions generated by 

the SOM+mcDESPOT process was done running the process 100 times. The 

precision of each parameter was then computed as the mean of the 100 values 

divided by the standard deviation. The reproducibility or coefficient of variation was 

calculated as the reciprocal of the precision. 

The last step of this validation phase was to evaluate the behaviour of the 

SOM+mcDESPOT in presence of acquired signals with low SNR. Thus, another in 

silico slice of brain with Rice distributed noise (SNR=50) was processed and the 

comparison between results from SOM+mcDESPOT and mcDESPOT was 

performed in the same way as for the noise free dataset. 

 

 

 

2.4.2. In vivo experiments 

 

The next phase was to validate the SOM+mcDESPOT model in a real scenario, i.e. 

using real images. A bigger in silico noise free database was built. 1676874 voxels 

were simulated mimicking the features of 3 normal brains and 3 brains affected by 

MS. For each voxel and given the 7 parameters combinations, the corresponding 

theoretical SPGR, SSFP0 and SSFP180 were generated as for the in silico slice. The 

signals vectors were collected, normalized by their mean and then clustered using the 
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Self Organizing Map. As previously, a hexagonal lattice map, a linear initialization 

and a batch training algorithm was chosen. In this case, the SOM size was large 

(number of cluster = 6480).  

The images necessary for the validation were SPGR, SSFP0 and SSFP180 of 3 

controls and 3 MS patients. Both were recruited at the University of California San 

Francisco with an informed consent and the study was performed with ethics 

approval from the host institute. 

 

Table 5. Demographic data of the validation phase. 

 

Demographic Data 
 

 

 
 

C1 C2 C3 P1 P2 P3 

 

Age (years) 
 

45 36 54 37 58 53 

 

Age at onset (years) 
 

- - - 30 40 34 

 

EDSS score 
 

- - - 1 1.5 3.5 

 

 

Imaging was performed on a 3 T GE scanner. Sagittally-oriented data were acquired 

with the sequence-specific parameters reported in Table 5. Following data 

acquisition, scalp and other nonbrain signals were removed from each image volume 

using the function BET of FSL (http://www.fmrib.ox.ac.uk/fsl/). The data from each 

individual were the linearly coregistered with FLIRT (FSL) to a reference volume 

(the first SPGR volume) to correct for subject motion throughout the exam. The 

Single-component  and  estimates were also calculated for each voxel using 

conventional DESPOT1 and DESPOT2 analysis [41]. 
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The mcDESPOT+SOM and the normal mcDESPOT were run and the results were 

compared. As for the in silico slice, the evaluation of the results was conducted at 

two levels: one regarded the signals, and the other the solutions/parameters obtained. 

Concerning the signals results, the mean residuals between the acquired signals and 

the theoretical ones generated by the solutions of the optimization algorithm were 

computed and plotted for each iteration and for each fit. Moreover, the map of voxels 

and the percentage of them with lower residuals reached with the SOM+mcDESPOT 

were computed. Since the real parameters were not known, it was not possible to 

compute the parameters residuals. However, histograms comparing the distribution 

of the parameters values obtained from the two methods were compared. 

 

 

 

 

2.5. Clinical application 

 

The SOM+mcDESPOT was applied to 10 healthy controls and 55 MS patients. All 

participants were recruited in conformance with local ethics board requirements of 

the Univeristy of California San Francisco, CA, USA. Among the MS patients, 33 

were diagnosed as affected by SPMS, while 22 showed a clinically isolated 

syndrome (CIS). In all patients, the MS extended disability status scale (EDSS) was 

evaluated. The patients and controls populations were indistinguishable by age 

according to a rank sum test at the 5% significance level. The demographic data are 

reported in Table 6. 
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Table 6. Demographic data of the application phase. 

 

Demographic Data 
 

 

 
 

Controls All patients CIS SPMS 

 

n 
 

10 55 22 33 

 

Median age (years) 
 

40 52 50 55 

 

Median Age at onset (years) 
 

- 34 42 31 

 

Median EDSS score 
 

- 3 1.75 4 

 

 

Images were acquired following the same procedure previously described in the 

section on in vivo experiments.  

For the SOM+mcDESPOT process, the reference database from which the  and 

 were extracted was the same one reported in the previous section and clustered 

with a large SOM ( ). Only the process of suggesting solutions from 

the clusters (Figure 17 a) was used to generate . 

To evaluate the distribution of the  values in the portion of tissue called normal 

appearing white matter (NAWM) that is defined as all white matter voxels minus the 

lesions, the conventional MRI data ( -weighted images) were used to segment the 

NAWM of each subject. This step was performed using FREESURFER 

(http://surfer.nmr.mgh.harvard.edu/). The segmented binary masks were then applied 

to the myelin-water fractions ( ) maps, after a linear registration (FLIRT, FSL). 

Among all the parameters, only the  was analysed since it is the most important in 

determining the quantity of myelin in the voxel. The histograms of all  maps were 

then plotted, averaged across the different groups, normalized and compared to the 
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ones obtained with the traditional mcDESPOT. Moreover, the mean and median 

values of each  map were computed and compared among the groups using the 

two-samples T-test.  
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3. Results 

 

The results derived from the validation and the application phases of 

SOM+mcDESPOT are reported in the following. 
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3.1. Validation 

 

 

 

3.1.1. In silico experiments 

 

Given the 4525 simulated combinations of the 7 parameters (mapped in the first 

column of Figure 18), the theoretical 24 volumes belonging to SPGR, bSSFP0, and 

bSSFP180 (8 volumes for each) were computed using the equations (1) and (2) 

(Figure 18).  
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Figure 18. An in silico slice of human brain was simulated. Given 4525 voxels of different 

combinations of 7 parameters (first column), 8 volumes of SPGR (second column), SSFP0 

(third column), and SSFP180 (forth column) signals were generated. 

 

The volumes were normalized by their mean and queuing forming signals vectors of 

24 or 16 (i.e. excluding the 8 volumes of SSFP0) elements. Those vectors were used 

as training set of a small, medium and large SOM. The number of neurons chosen for 

the architecture of the SOM was 52, 85 and 340, respectively. Considering each 

neuron as a cluster and labelled each voxel with its BMU, it was possible to obtain 

the clustering of the images based on their signals (Figure 19). Using both the 

NotSimplified and the Simplified SOM, a good segmentation of the major brain 

structures was achieved: the grey and white matter, the cerebellum, with its white 

and grey matter, and the brainstem were segmented using 24 volumes, while the 

corpus callosum was highlighted using just 16 volumes (Figure 19).  



65 

 

 

 

Figure 19. Small, medium and large SOM used to cluster the signals vectors of the in silico 

slice. A good segmentation of the major brain structures was achieved: the grey and white 

matter, the cerebellum, with its white and grey matter, and the brainstem were nicely 

segmented using 24 volumes (NotSimplified SOM, first row), while the corpus callosum was 

highlighted using just 16 volumes (Simplified SOM, second row).  

 

Changing the number of neurons did not vary the topographic distribution of them: 

increasing that number, in fact, allowed discriminating better among different 

signals, but the main distinctions were still preserved. To evaluate the quality of 

SOM clustering in the signals space, the intra- and inter-cluster distances were 

computed. In every case, the distance between the prototype vector of the cluster  

and the other prototype vectors was at least 8 times bigger than the intra-cluster 

distance of  (data not shown). This difference was statistically significant 
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( ). The SOM size that minimized and maximized most the intra- and inter-

cluster distances, respectively, was the large one. 

The next step sought a linear relationship between the two spaces, assuming that the 

shape of signals space could be detected in the shape of the parameters space in some 

way. To investigate that hypothesis, the inter- and intra-cluster distances were 

computed, but, this time, in terms of parameters vectors. As expected, the results 

showed close distances (data not shown), meaning that the shapes were different and 

the clustering was optimized for the signals space, but not in the parameters space.  

Despite that, another test was performed to understand if clusters designed by SOM 

could be informative of the similarity among voxels in terms of parameters and not 

only in terms of signals. For each voxel  belonging to cluster ,  solutions 

randomly chosen from the same cluster (or at most also from the neighbouring 

clusters) were compared to the parameters vector of . Since testing this hypothesis 

involved a random process, 100 different simulations were performed. The results 

are reported in Table 7.  
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Table 7. Mean percentage and standard deviation of similar voxels belonging to . 

   

Suggestions 

From 

Cluster 

 

 

Suggestions 

From 

Cluster+Neighbours 

 
 

 

 
 50 100 50 100 

N
o

tS
im

p
li

fi
ed

 

S
O

M
 s

iz
e 

 

Small 
 

64.59 ± 1.00 64.7 ± 2.09 61.44 ± 0.97 61.44 ±1.00 

 

Medium 
 

66.90 ± 0.70 68.25 ± 1.51 61.28 ± 0.83 62.36 ± 0.75 

 

Large 
 

74.21 ± 2.45 / 63.92 ± 0.60 63.96 ± 0.97 

S
im

p
li

fi
ed

 

S
O

M
 s

iz
e 

 

Small 
 

60.51 ± 1.09 63.64 ± 1.20 61.87 ± 0.58 63.07 ± 0.68 

 

Medium 
 

62.47 ± 0.59 63.65 ± 1.35 62.70 ± 0.97 63.02 ± 0.98 

 

Large 
 

63.24 ± 2.73 / 65.64 ± 0.67 65.31 ± 0.51 

 

 

On the whole, the process allowed suggesting solutions more similar to the one to be 

computed in more than 60.51% of the voxels. This implied that the information 

similar to the one that we wanted is at least 60.51% of the times contained in the 

same cluster (or at most in the neighbouring clusters). Moreover, the similarity was 

given by very small residuals, i.e. with values around . The best result was 

obtained using the large NotSimplified SOM (74.21% ± 2.45%). However, in this 

case and in the Simplified one, using 100 suggested solutions, it was not possible to 

derive the amount of voxels that had the most similar parameters vector in the cluster 

because the number of neurons with at least 100 voxels mapped inside was zero. The 

general trend showed that increasing the size of the SOM led to an increase of this 

percentage. Moreover, using 16 volumes (Simplified SOM) without including the 
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neighbours information made the results worse, while, considering the neighbours 

clusters elements slightly improved the percentage of voxels. Analysing the standard 

deviations for each test showed that the randomness used for choosing the solutions 

did not influence the results. 

In the process of collecting  similar solutions, the crucial part is represented by 

assigning a voxel to its BMU (i.e. its cluster). To evaluate how much this process is 

influenced by the noise of the images, a Rice distribution noise was added to the 

training set leading to images characterized by SNR equal to 200, 100 and 50 (for 

instance, Figure 20).   

 

 

Figure 20. Comparison of effects on the first volume of SPGR, SSFP0 and SSFP180 after 

adding a Rice distribution noise. 
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Figure 21. Comparison of effects on the histograms of the first volume of SPGR, SSFP0 and 

SSFP180 after adding a Rice distribution noise. 

 

Even if the different level of noise could significantly change the signals (for 

example, Figure 21), the correct association between a voxel and its cluster was not 

affected, especially using 24 volumes SOM (Table 8). In general, increasing the 

SOM size led to a decrease of percentage of voxels mapped to the correct . Since 

larger SOM implies more similar prototype vectors, it was easier to associate 

corrupted signals to another cluster. Obviously, this percentage decreased also when 

the SNR reduced. However, this decrease was not dramatic considering the small and 

medium NotSimplified SOMs: in those cases, the percentage of voxels mapped to the 

correct cluster was still high (85.28% and 81.04%, respectively). Using 16 volumes 

made the results worse up to just 32.46% with SNR equal to 50 and a large SOM.   
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Table 8. Percentage of voxels corrupted by noise and mapped to the correct cluster. 

 

% of voxels mapped to the correct BMU 
 

 
 

NotSimplified SOMs 
 

 

Simplified SOMs 

 

SNR 
 

200 
 

 

100 
 

 

50 
 

 

200 
 

 

100 
 

 

50 
 

 

Small SOM 
 

96.22 92.27 85.28 91.23 82.63 66.36 

 

Medium SOM 
 

94.50 90.10 81.04 87.85 75.98 57.68 

 

Large SOM 
 

91.60 82.85 66.28 75.23 54.59 32.46 

 

 

Looking for a compromise among all results described so far, a large SOM was 

chosen and the relative clusters information was used to run SOM+mcDESPOT. 

Moreover, mcDESPOT was run on the same data. The results were compared in 

terms of signals residuals, since it is the metric used in mcDESPOT to evaluate the 

goodness of a solution, and in terms of parameters residuals, since, in this case, the 

real solutions were known. 

The mean signals residuals trend over all iterations is reported in Figure 22 (a, b).  
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Figure 22. Noise free data: signals mean residuals derived from NotSimplified (a) and 

Simplified (b) fit, and cumulative residuals ratio of NotSimplified (c) and Simplified (d) fit.  

 

In both fits, suggesting parameters vectors at the first iteration caused an 

improvement of the total residual. This improvement was more accentuated and 

maintained until the end of the process in the Simplified fit (Figure 22 b). Plotting 

the ratio between the cumulative signals residuals obtained with SOM+mcDESPOT 

and the ones obtained with mcDESPOT, the improvement is clearer (Figure 22 c and 

d). For the NotSimplified fit, an initial gain of 20% in the residuals evolved towards 

an almost 50% at the end of the process. In the Simplified fit, instead, the results 

were even more outstanding: at the beginning, the SOM+mcDESPOT residuals 

represented just the 30% of the mcDESPOT residuals value; and, at the end, this 

percentage slightly increased reaching the 40%.  
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Mapping the voxels that were characterized by a lower SOM+mcDESPOT signals 

residuals showed that there was not a specific region in which the improvement was 

registered, but it was a diffused phenomenon for the NotSimplified fit (Figure 23, 

first row); while, with 16 volumes, a light prevalence in the white matter, brainstem 

and cerebellum was noticed (Figure 23, second row).  

 

 

Figure 23. Noise free data: maps of voxels characterized by lower mcDESPOT signals 

residuals (red) and SOM+mcDESPOT signals residuals (blue) across all iterations and in 

both fits. 

 

The percentage of voxels involved in this improvement ranged from 63.65% to 

74.21% in the NotSimplified fit, and from 75.56% to 86.32% in the Simplified one. 

This means that at least 63% of the voxels benefited from SOM+mcDESPOT 

approach, reducing remarkably their signals residuals.  
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Figure 24. Noise free data: plots of  in function of  at first (a), second (b), 

third (c), forth (d) and fifth (e) iteration. This plot is referred to only the NotSimplified fit. In 

this case,  is the difference among signals residuals. 

 

To confirm this result, another analysis was performed (Figure 24). For each voxel, 

the magnitude of the difference between the SOM+mcDESPOT and mcDESPOT 

signals residuals was computed and reported on -axis. Then, the corresponding 

fraction of voxels that showed a residuals difference greater than each value on -

axis and that had a lower SOM+mcDESPOT residuals was plotted on -axis. 

Considering the Not Simplified fit, using the information from the trained SOM 

allowed us to obtain lower signals residuals in more than 60% of the voxels (Figure 

24 a). This percentage increases to 100% as the difference between the 

SOM+mcDESPOT and mcDESPOT residuals increases, meaning that in the cases 

where the suggestions are very different, the SOM+mcDESPOT always gives the 

better suggestions. The same reasoning can be followed for the other iterations 

(Figure 24 b, c, and d): most voxels (at least 70% of them) showed much lower 

SOM+mcDESPOT residuals. In the Simplified fit, this situation was more 

accentuated: in fact, for each iteration, almost all the voxels (more than 95%) showed 

lower SOM+mcDESPOT residuals at  (data not shown).  

To investigate the results also in terms of parameters, the previous analysis was 

performed evaluating the difference between the solutions obtained by 
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SOM+mcDESPOT and the ones by mcDESPOT. The main observations derived 

from the signals residuals could be also applied to the parameters ones. Plotting the 

mean parameters residuals at each iteration showed how the accuracy was affected 

using SOM+mcDESPOT (Figure 25 a and b).  

 

 

Figure 25. Noise free data: parameters mean residuals derived from NotSimplified (a) and 

Simplified (b) fit, and cumulative residuals ratio of NotSimplified (c) and Simplified (d) fit. 

 

As before, when the solutions derived by SOM analysis were introduced in the 

optimization algorithm, a big difference between residuals was noticed, especially in 

the Simplified fit. This improvement was then reduced in the NotSimplified fit up to 

almost reach the convergence, and maintained in the Simplified one. The 

improvement amount was around 10-15% using 24 volumes and around 30% using 
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16 volumes (Figure 25 c and d). In other words, the mean accuracy was improved of 

10-15% and 30% within the NotSimplified and Simplified fit, respectively.  

The percentage of voxels that showed lower SOM+mcDESPOT parameters residuals 

ranged from 53.79% to 57.35% using 24 volumes to generate the solutions, and from 

54.08% to 66.23% using 16 signals volumes (Figure 26). Their distribution did not 

reveal any particular region of preference (Figure 26). 

 

 

Figure 26. Noise free data: maps of voxels characterized by lower mcDESPOT parameters 

residuals (red) and SOM+mcDESPOT parameters residuals (blue) across all iterations and in 

both fits. 

 

Figure 27 highlights the contribution of SOM+mcDESPOT in determining each 

parameter total residuals. 
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Figure 27. Noise free data:  (a,b),  (c,d),  (e,f),  (g,h),  (i,j),   (k,l) 

and  (m) cumulative residuals obtained with both fit.  

 

At the first iteration, the improvement due to the suggested feasible solutions was 

always present. At the end of the iterations of the NotSimplified fit, most of 

parameters obtained with SOM+mcDESPOT converged at the same values of 

mcDESPOT (Figure 27 a, c, g and i). A reduced cumulative residual, instead, was 

noticed for the parameter  and  (Figure 27 k and e). For the Simplified fit, a 

more complex situation was registered: almost converging curves were obtained for 

,  and  (Figure 27 b, d and f); lower SOM+mcDESPOT residuals were 

noticed for  and  (Figure 27 j and l); while  had a higher SOM+mcDESPOT 

curve (Figure 27 h).   

To investigate how many voxels were characterized by a SOM+mcDESPOT solution 

different from a mcDESPOT solution and how much this difference was, the fraction 

of voxels with lower SOM+mcDESPOT parameters residuals as a function of  was 

plotted for each iteration (Figure 28).  
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Figure 28. Noise of free data: plots of  in function of  across all iterations 

and referred to NotSimplified fit (first column) and Simplified one (second column). In this 

case,  is the difference among parameters residuals. 

 

Computing the NotSimplified fit, the SOM+mcDESPOT was responsible of 

remarked different and accurate solution in a rough mean of 60% of voxels (Figure 

28, first column). Using the Simplified fit, this percentage increased reaching 100% 

in almost all iterations as the difference between solutions obtained by 

SOM+mcDESPOT and mcDESPOT increased (Figure 28, second column). This 

indicates that also the parameters, as the signals before, benefited from the process of 

suggesting solutions.  

Since the analysis so far was done on noise free data, to evaluate the behaviour of  

SOM+mcDESPOT and mcDESPOT on a worse scenario, images characterized by a 

SNR equal to 50 were processed. Even in this case, the mean signals residuals were 

lower using SOM+mcDESPOT (Figure 29 a and b).  
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Figure 29. Data with SNR=50: signals mean residuals derived from NotSimplified (a) and 

Simplified (b) fit, and cumulative residuals ratio of NotSimplified (c) and Simplified (d) fit.  

 

In particular, in the NotSimplified fit, the difference between the two methods was 

less than 10% (Figure 29 c); in the Simplified fit, instead, the SOM+mcDESPOT 

residuals was, roughly, 50-60% lower than mcDESPOT ones (Figure 29 d). The total 

percentage of voxels with lower SOM+mcDESPOT signals is reported in Table 9. 

There was a worsening compared to the noise free data (Figure 23), but still the 50-

60% (NotSimplified fit) and 70% (Simplified fit) of voxels showed lower residuals 

with the new approach.  
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Table 9. Percentage of voxels corrupted by noise and with lower SOM+mcDESPOT signals 

residuals. 

 

% voxels with lower 

SOM+mcDESPOT signals residuals 
 

 

Iteration 
 

 

1 
 

2 
 

3 
 

4 
 

5 

 

NotSimplified Fit 
 

 

56.27 
 

55.38 
 

59.82 
 

59.29 
 

59.29 

 

Simplified Fit 
 

 

71.45 
 

70.14 
 

69.02 
 

69.44 
 

69.04 

 

 

The distribution of these voxels and the fraction of voxels with lower 

SOM+mcDESPOT as a function of  were close to ones obtained in the noise free 

data (data not shown).  

As expected, analysing the results from the point of view of the parameters, a general 

worsening in both fits was noticed (Figure 30): in this case, in fact, the accuracy of 

SOM+mcDESPOT improved of 10-15% in the Simplified algorithm (Figure 30 d), 

while it was almost equal or at most less than 5% worse in the NotSimplified one 

(Figure 30 d).  

 



83 

 

 

Figure 30. Data with SNR=50: parameters mean residuals derived from NotSimplified (a) 

and Simplified (b) fit, and cumulative residuals ratio of NotSimplified (c) and Simplified (d) 

fit.  

 

However, major emphasis should be given to the first iteration, since it was the point 

in which the solutions were suggested: considering just that iteration, the 

improvement of all residuals (both signals and parameters ones) was clear (Figure 29 

and 30). A worsening was also noticed in the total percentage of voxels with lower 

SOM+mcDESPOT parameters residuals (Table 10) compared to noise free data: 

nevertheless around 46.45 to 59.65% of voxels showed improvements in their 

residuals after suggesting solutions. 
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Table 10. Percentage of voxels corrupted by noise and with lower SOM+mcDESPOT 

parameters residuals. 

 

% voxels with lower 

SOM+mcDESPOT parameters residuals 
 

 

Iteration 
 

 

1 
 

2 
 

3 
 

4 
 

5 

 

NotSimplified Fit 
 

 

53.19 
 

49.55 
 

49.75 
 

47.03 
 

46.45 

 

Simplified Fit 
 

 

59.65 
 

50.23 
 

48.13 
 

48.18 
 

46.19 

 

 

However, the SOM+mcDESPOT method showed a leading role on determining 

different solutions with higher accuracy: the voxels that were characterized by higher 

accuracy values were the one with the solutions generated by the modified method, 

showing behaviour close to (Figure 24 and 28).  

100 different simulations of SOM+mcDESPOT on noise free and with noise data: 

the precision and the reproducibility were comparable to the ones obtained with 

mcDESPOT (data not shown), meaning that incorporating a priori knowledge did not 

influence the main processes implemented in mcDESPOT.   

 

 

 

3.1.2. In vivo experiments 

 

After demonstrating that suggesting solutions improved the accuracy in a simulated 

scenario, SOM+mcDESPOT and mcDESPOT were run in 6 real cases (3 controls 

and 3 MS patients). Before running the two methods, a pre-processing, consisting of 
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brain extraction and coregistration, was performed. Then, for each subjects, the 

association between each voxel and its  was found and  was built.  

The results in terms of mean signals residuals were reported in Figure 31.  

 

 

Figure 31. Signals cumulative residuals ratio in 3 healthy subjects (a, b and c) and 3 patients 

(d, e and f). 

 

In all cases, the SOM+mcDESPOT obtained lower residuals, reaching a gain that 

ranged from 10 to 50% for the NotSimplified fit, and from 30 to 60% for the 

Simplified one. A larger overall improvement in the patients group was noticed 

(Figure 31 d, e and f).  

To compare the final solutions, histograms of each parameter were plotted (Figure 32 

and 33). In general, suggesting solutions in the optimization algorithm led to lower 

the major peak in the histograms, because the trend in proximity of the boundaries of 

each parameters was smoother than mcDESPOT. A cut-off at each boundary was, in 

fact, observed in the histograms derived by mcDESPOT, while it was not present in 
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the SOM+mcDESPOT. This behaviour was observed without distinction in both 

patients (for instance, Figure 33) and healthy subjects (for instance, Figure 32).  

 

 

Figure 32. Histograms of the distribution of each parameter on the whole brain of C1. 
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Figure 33. Histograms of the distribution of each parameter on the whole brain of P1. 

 

 

 

3.2. Clinical application 
 

The results obtained in the in vivo experiments were confirmed after applying 

SOM+mcDESPOT to a total of 65 subjects. Plotting the histograms of the  values 

in the NAWM highlighted the difference between the two procedures (i.e. 

SOM+mcDESPOT and mcDESPOT). In Figure 34 (a), an artificial second peak was 
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observed in all histograms obtained by averaging histograms across different groups. 

Using SOM+mcDESPOT, instead, that peak disappeared and the histograms resulted 

smoother and more feasible (Figure 34 b). 

 

 

Figure 34. Histograms of the distribution of  in the NAWM. Comparison between 

mcDESPOT (a) and SOM+mcDESPOT (b) and among the different groups (controls, CIS 

and SPMS patients). 

 

Considering the results obtained with SOM+mcDESPOT, the mean and the median 

of each  NAWM map were computed and compared across the different groups. 

The controls’  averaged values were found significantly higher than MS patients’ 

ones ( ). In particular, the drop in the values of SPMS subjects was found 

statistically significant compared to healthy ones ( ), but not the drop in 

the CIS group ( ). No difference was instead noticed between CIS and 

SPMS mean values, even if this results was not statistically significant ( ). 

The same behaviour was registered considering the median values.   

 



89 

 

 

 

 

 

 

4. Discussion 

 

This study demonstrates that using prior information extracted from MRI sequences 

can improve the nonlinear search implemented in the indirect quantification of brain 

myelin content performed by mcDESPOT.  

Prior knowledge is generally used to guide the exploration of the search space, 

speeding up the convergence to a good solution and increasing the accuracy of the 

guessed solutions during the optimization process [68, 69]. Generally speaking, prior 

information deals with probability distributions that drive the search towards more 
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feasible regions, instead of scanning randomly all the domain (for instance, [70]). 

Unfortunately, in our case, a priori information of search space shape in terms of 

probability distributions is not known. However, another prior information can be 

extracted directly from the model: the exclusive connection between some feasible 

parameters and the corresponding signals (SPGR, SSFP0 and SSFP180 signals). 

Using both the in silico slice or brains, we showed how this connection permeates 

also the similarity relationship among voxels (each one defined by its 24 signals 

volumes and 7 parameters). Our findings, in fact, indicate that similar signals 

correspond to similar parameters, verifying one of the main hypotheses done at the 

beginning of this work. Using a large SOM, at least 74.21% of the voxels has the 

most similar one (in terms of parameters and signals) in the same cluster that it 

belongs to (Table 7). This means that the information on voxels similarity given by 

the clusters built and optimized in the signals space, is valid also in the parameters 

space for more than 74.21% of the times. This is a really important result because, on 

one hand, it establishes a link based on similarity among voxels, and, on the other 

hand, it legitimates to look for a voxel solution in the cluster  in which the voxel is 

mapped to, i.e. in the space defined by solutions that correspond to signals of similar 

voxels mapped to . Since the nature of the MRI sequences signals, it is clear how 

signals reflect the tissue properties [36] and it is also known that different brain 

structures are characterized by different values of the 7 parameters previously 

described [41, 51, 52, 58, 71]. However, at the best of our knowledge, none has 

investigated the similarity relationship among voxels, in terms of signals and 

parameters, and, above all, none has used this information to drive the computation 

of  and .   

The importance of this similarity relationship is further demonstrated through the 

validation phase performed using SOM+mcDESPOT. In the in silico noise free slice, 

for instance, for each voxel mapped to a certain cluster , using solutions that are 

related to the voxel through a similarity relationship (i.e. using  solutions 

randomly picked in  from the noise free database and up to  solutions from 
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voxels belonging to the processed subject and mapped to ) as feasible samples in 

the initial population of the optimization algorithm allows reducing both signals 

(63.65% of voxels using the NotSimplified fit, and 79.05% using the Simplified one) 

and parameters residuals (57.35% of voxels using the NotSimplified fit, and 65.88% 

using the Simplified one) at the first iteration (Figure 22 and 25). The 

SOM+mcDESPOT signals mean residuals, in fact, is about 25% or 70%  

(NotSimplified and Simplified fit, respectively) lower than mcDESPOT ones (Figure 

22 c and d). Considering the SOM+mcDESPOT parameters mean residuals, instead, 

a gain of about 15% (NotSimplified fit) and 30% (Simplified fit) is reached (Figure 

25 c and d). The same effect is observed processing the in silico slice characterized 

by SNR equal to 50 (Figure 29 and 30). Using SOM+mcDESPOT allows obtaining 

at least 56.27% (NotSimplified fit) and 71.45% (Simplified fit) of voxels with lower 

signals residuals that become 53.19% (NotSimplified fit) and 59.65% (Simplified fit) 

considering the voxels with lower parameters residuals at the first iteration (Table 9 

and 10). Thus, the validation phase conducted on in silico images demonstrates how 

useful the similarity relationship among voxels is and how much more feasible the 

solutions suggested are, compared to the random ones. This initial improvement is 

reflected on both signals and parameters residuals and helps to achieve a higher 

accuracy after all process is executed. Moreover, the approach of suggesting similar 

solutions is more effective when the model is not complete and, so, less accurate, i.e. 

using 16 volumes to determine the Simplified fit.   

These important results have been also validated through the processing of 6 subjects 

(3 patients and 3 controls). The SOM+mcDESPOT signals mean residuals are from 

15% to 60% lower than mcDESPOT residuals at first iteration. The extent of the 

improvement is then lowered after 5 iterations, but a gain of at least 10% is still 

present (Figure 31). Since the results previously obtained for the in silico images, we 

can deduce that an improvement in terms of parameters is also reached. Moreover, 

SOM+mcDESPOT deletes an artificial effect caused by the initial extents of search 

space of each parameter. Plotting, in fact, the intensity values of the final solutions 

across the whole brain obtained with mcDESPOT shows very sharp peaks that are 
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unfeasible (Figure 32 and 33). These artificial effects are attributable to the 

optimization algorithm and to the initialization of the search space. The stochastic 

region contraction approach [59], in fact, is a method that, starting with a big search 

domain, is able to reduce this space considering only smaller feasible regions. In this 

sense, the search space contracts across all the iterations. In the mcDESPOT, at the 

first iteration, samples are randomly chosen from uniform distributions with 

boundaries defined as 95% and 105% of lower and upper bounds, respectively, 

reported in Figure 14 (a). At the second iteration, the new lower and upper bounds 

are established again. For instance, the new lower bound can be equal to 95% of the 

old one: this causes a slight enlargement of the search space, instead of a contraction. 

The process of randomly choosing solutions within the range defined by the 95% of 

the lower bound and 105% of the upper one is then repeated. The same procedure is 

followed in the next iterations. Designed like this, the optimization algorithm is able 

to overcome the possibility of being in a not promising region, evolving towards a 

more feasible one through enlargements, but it is a slow process. Using 

SOM+mcDESPOT, instead, allows seeding the initial population with feasible 

values beyond the original limits of each parameter. Since when the new lower and 

upper bounds are established no control is performed on their values (such as the 

new lower bound value must be greater than the old one and the new upper bound 

must be lower than the old one), one of or both boundaries can enlarge temporarily to 

allow a search in other promising regions. For this reason, SOM+mcDESPOT is able 

to eliminate the artificial effect noticed in the mcDESPOT results.  

The application of SOM+mcDESPOT to 10 controls and 55 MS patients has 

reinforced the advantages described so far. The fractions of myelin-associated water 

have been investigated in the normal appearing white matter to evaluate the effect of 

the disease on the portion of tissue not involved into lesions. With the new method, 

the artificial peak showed in every histogram in Figure 34 (a) is definitively removed 

(Figure 34 b). This agrees with previous study on , in which no second peaks are 

reported [47, 53, 72]. Analysing the mean and the median value of each subject’s 

histogram, we observe a statistically significant difference between the group of 
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healthy participants and the patients ( ). However, investigating better the 

differences among groups, for SPMS but not for CIS patients, mean  values were 

significantly lower ( ) than the corresponding values for healthy controls. 

Confirmed by Kitzler’s previous work [72], this result supports the hypothesis that 

the quantity of myelin in NAWM is significantly influenced by the progression of the 

disease [73].  

Despite the remarkable advantages introduced by SOM+mcDESPOT, the new 

method still suffers from some limitations. The first one if that the similarity 

relationship is highly dependent on the model implemented in mcDESPOT. To 

couple the signals with the parameters, in fact, the equations (1) and (2) are solved. 

Even if the accuracy of the model has been demonstrated [51, 52], it is anyway a 

representation of the reality and not the reality. Moreover, the noise is not treated 

when a voxel is associated to its BMU: the signals belonging to the voxel are directly 

compared to noise free data. Despite the fact that we demonstrated that high noise 

level does not significantly influence the association voxel-its BMU (Table 8), 

however a small error could affect the process. Another limitation regards the 

optimization algorithm: this is designed and optimized just for random guessed 

solutions. Sometimes, the improvement of adding feasible samples to the population 

was deleted by the design of the search method (data not shown) even if it did not 

refer to a local minimum.  

Hence, the further works can be designed. A new optimization algorithm or a 

modified stochastic region contraction will be implemented to better exploit the 

information contained in the feasible samples chosen from the SOM analysis. The 

aim will be to speed up the entire process. Moreover, a broader application will be 

performed to investigate the differences in the myelin-associated water fraction 

among MS patients and among different brain regions. Finally, a deeper analysis of 

the SOM as a segmentation method using the SPGR and bSSFP sequences will be 

conducted. 
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In conclusion, we proposed the novel method SOM+mcDESPOT that is able to 

extract and exploit the information contained in the MRI signals to drive 

appropriately the optimization algorithm implemented in mcDESPOT. In so doing, 

the overall accuracy of the method in both the signals fitting and in the determination 

of the 7 parameters improves. Thus, the outstanding potentiality of 

SOM+mcDESPOT could assume a crucial role in improving the indirect 

quantification of myelin in both healthy subjects and patients. 
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6. Appendix 

 

In this chapter, a brief description of two other main projects that I did during my 

PhD school is reported.  
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6.A. Discovering information in OGTT curves shape for predicting 

the metabolic condition in women with previous gestational 

diabetes 

 

 

 

6.A.1. Abstract 

 

Gestational diabetes mellitus (GDM) makes women at risk of type 2 diabetes during 

their life. Here, we proposed OGTT curve shapes at baseline as predictor of this later 

abnormal glucose intolerance. To test our hypothesis, we analysed a total of 253 

glucose, insulin and C-peptide OGTT curves of women with a history of GDM and 

40 controls. Firstly, shapes peculiar of different glucose tolerance conditions were 

investigated by Self-Organizing Maps. These shapes were then used to build a 

classifier based on Kullback-Liebler distance to test if previous GDM affects shapes 

of curves classified as normal after delivery, and if glucose, insulin and C-peptide 

kinetics measured at time T0 can predict metabolic evolution within two years. As 

results, two most common morphologies, monophasic and triphasic, related 

respectively to a diabetic and normal condition, were identified. Using these shapes 

as reference, the classifier did not highlight any influence of previous GDM on 

normal curves. It underlined instead the great potential of shapes in predicting 

metabolic evolution: for example, 82.6% of women that developed diabetes within 

two years was correctly predicted using glucose curve information. This shows how 

shape of OGTT curves can reflects still not symptomatic changes occurring in 

glucose metabolism. 
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6.A.2. Introduction 

 

Gestational diabetes mellitus (GDM) is defined as the diabetic condition during 

pregnancy [1] with symptoms close to type 2 diabetes, i.e., an increased insulin 

resistance, and a decline in insulin secretion [2, 3]. GDM prevalence seems to be 

proportional to type 2 diabetes occurrences, ranging from 1% to 14% of all 

pregnancies depending on the population studied [4]. Shortly after delivery, glucose 

homoeostasis is commonly restored to the antepartum condition, but women with a 

history of GDM often show high blood pressure, atherogenic lipid profiles [5, 6], and 

have a high risk of developing type 2 diabetes [7]. A systematic review showed that 

the incidence of diabetes among women with a history of GDM ranges from 3% to 

65%, because of differences in the duration of the follow-up period and ethnicity [8]. 

This means that women who had gestational diabetes have at least a seven-fold 

increased risk of developing type 2 diabetes compared with those who had a 

normoglycaemic pregnancy [9]. Moreover, the risk of type 2 diabetes seems to be 

maintained for several years, making necessary the monitoring of women glucose 

tolerance condition. Knowledge of early metabolic abnormalities that predispose to 

diabetes may be useful for development of rational prevention strategies. For this 

reason, it is generally recommended that women with GDM undergo testing for 

glycemia within the first 6 months postpartum [10, 11] and women who are found to 

have pre-diabetes or diabetes on this test typically will receive counseling on lifestyle 

modification and possibly anti-diabetic therapy [12]. However, the majority of 

women with GDM have normal glucose tolerance on this early postpartum testing, 

despite their considerable risk of future T2DM [13]. For this reason, there is the need 

to find reliable prognostic factors that are able to predict this risk.  

In the last years, different antepartum and postpartum independent predictors of later 

abnormal glucose tolerance have been identified [14-18]. Indicators such as family 
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history of diabetes, recurrence of GDM, maternal age, body mass index and 

metabolic factors (i.e., high fasting glucose level during pregnancy, impaired β-cell 

function, areas under curves for OGTT glucose and insulin curves) were reported to 

be predictive for development of diabetes postpartum [6, 8, 19-21]. However a clear, 

automatic, reliable method for predicting the risk of diabetes starting from a GDM 

condition is still lacking.  

 

The main aim of this study is to give a contribution to the identification of tools for 

the prediction of the metabolic condition in women with a history of gestational 

diabetes. In particular, since the shape of OGTT curves has been studied as related to 

glucose tolerance condition [22-24], we focus our attention on glucose, insulin and 

C-peptide curves derived from OGTTs of women with former GDM. Here we 

hypothesize that an evolution towards a normal or type 2 diabetes condition is 

predictable from the entire morphology of the OGTT curves at baseline.  

A multiple-step analysis is performed to evaluate whether the metabolic condition of 

GDM subjects can be predictable or not from the morphological features of the 

OGTT curves. Firstly, we investigate if a relationship exists between the shape of 

OGTT curves and the glucose tolerance condition. To do it, we apply an 

unsupervised neural network, i.e., the Self-Organizing Maps (SOMs) to a control 

group (normal glucose tolerance without previous GDM) and a group affected by 

type 2 diabetes and with a history of previous GDM. Then, a classifier based on a 

similarity measure, i.e., the Kullback-Liebler distance (KLd) is applied to OGTT 

curves to classify a so called normal group (normal glucose tolerance with previous 

GDM) with the aim to test if a memory of the previous disease is maintained in the 

morphology of the NGT curves (memory-of-disease-driven shape hypothesis). 

Finally, the same classifier was applied to predict the metabolic condition at time Tfu 

from glucose (GLU), insulin (INS) and C-peptide (CPEP) kinetics measured at time 

T0. The rationale for this approach is that we conjecture that the evolution from a 

condition A at time T0 to a condition B at time Tfu could be traceable in the shape of 
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OGTT curves at time T0. This means that the morphology of the kinetics curves of 

condition A-subjects at time T0 show features that are similar to the kinetics curves 

of condition B-subjects at time Tfu.  

Summarizing, the goal of the study is evaluating (a) if there are morphological 

features in OGTT curves that are peculiar of different glucose tolerance conditions, 

(b) if there is a memory of the previous disease (i.e. GDM) in the shape of OGTT 

curves of subjects classified as having normal glucose tolerance, and finally (c) if the 

shape of OGTT curves at time T0 can be used to predict the evolution of the glucose 

tolerance status at time point Tfu.  

 

 

 

6.A.3. Materials and Methods 

 

Subjects and test 

The OGTT curves of 178 Caucasian women (138 with a history of GDM, and 40 

controls -CNT-, i.e. with previous uncomplicated pregnancy and with normal glucose 

tolerance at the time of the study) were investigated. All women were recruited 

during pregnancy from the outpatient department of the University Clinic of Vienna, 

and gave written informed consent for participation in the study, which was approved 

by the local Ethics Committee. The population here investigated underwent up to 

five years follow-up. 

After an overnight fast, all the 178 subjects underwent a standard 75-g OGTT with 

venous blood samples collected at fasting and at 10, 20, 30, 60, 90, 120, 150 and 180 

min afterward. Plasma glucose was measured with the glucose oxidase method by an 

automated glucose analyzer (Beckman, Fullerton, CA), with an interassay coefficient 

of variation <2%. Insulin (Serono Diagnostics, Freiburg, Germany) and C-peptide 

(CIS Bio International, Gif-sur-Yvette, France) were determined in duplicate by 
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commercially available radioimmunoassay kits, with an interassay coefficient of 

variation <5%.  

The glucose curves showed values matching the American Diabetes Association 

2003 criteria [25] for normal glucose tolerance (NGT), impaired glucose metabolism 

(including impaired glucose tolerance and/or impaired fasting glucose, IGT), and 

type 2 diabetes (T2DM). In this study, we referred to NGT as ‘normal’ condition, 

while to IGT and T2DM as ‘diabetic’ one.  

The entire analysis was performed on a total of 293 curves (nCNT = 40; nNGT = 182; 

nIGT = 34; nT2DM = 37) reported in Figure A1.  

 

 

Figure A1. Curves measured by OGTT. Each row represents a type of curves measured by 

the Oral Glucose Tolerance Test: first row is referred to Glucose (GLU) curves, the second 

to Insulin (INS) and the third to C-peptide (CPEP). The first column shows curves belonging 

to the controls, i.e. women with previous pregnancy/pregnancies not affected by gestational 

diabetes (GDM). The other columns group Glucose, Insulin and C-peptide curves of women 

with previous GDM according to the ADA criteria [25]. More in detail, the second column 

represents women with a restored normal glucose tolerance (NGT), the third women with an 

impaired glucose tolerance (IGT), and the last one show curves of women that have develop 

type 2 diabetes (T2DM). 
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GLU, INS, CPEP curves and a combination of them, given by glucose and insulin 

(GLU+INS), insulin and C-peptide (INS+CPEP), glucose and C-peptide 

(GLU+CPEP) and glucose and insulin and C-peptide curves (GLU+INS+CPEP) 

were considered. The combination was simply obtained queuing two or three type of 

curves.  

Some of the OGTT data presented here were already included in previous studies 

[22, 26]. 

 

Curve morphology and information 

To evaluate whether specific shapes are associated to different conditions or not, we 

investigated the existence of specific morphological features in normal and diabetic 

OGTT curves. To do it, 65 subjects were considered and their OGTT curves at 

baseline were used (nCNT = 40; and nT2DM = 25).  

 

Self-Organizing Maps (SOMs) are applied to test the OGTT curve shape hypothesis. 

A SOM is a subtype of artificial neural network which uses a competitive learning 

technique to train itself in an unsupervised manner [27]. It consists of nodes 

(neurons) that, arranged as a regular, two dimensional lattice, are directly associated 

with a weight vector, called prototype vector. In a SOM, weight vectors are set in 

order to achieve a configuration where the distribution of the input data is reflected 

and the most important metric relationships are preserved. In this way, data that are 

“similar” in the input space map to nearby neurons on the lattice. This feature of a 

SOM is enforced by a competitive learning, performed in an iteratively manner. 

Briefly, at each training step t, a data sample x is selected from the input space and, 

as a rule, its distance from all prototype vectors is computed. In this application, the 

Kullback-Liebler distance was adopted. KLd is a similarity measure between 

conceptual reality, p, and approximating model, q [28]. It is widely used in 

information theory, even if in the last years it was applied to other fields such as 

image analysis and classification problems.  

For discrete distributions, the basic KLd is defined as:   
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    ;   

 

 

 

 

Roughly, KLd(p,q) is the information lost when q is used to approximate p. Since the 

definition of the Kullback-Liebler distance in Eq. (1) is asymmetric, here we used a 

symmetric version: 

 

 

 

In this study the KLd was preferred to other distance measures because of its 

property to include the order of samples in the formula. In fact, each variation 

occurring at sample i is weighted by the values that curves p and q assume at sample 

i (equations 1 and 2), thus weighting properly local shape changes.  

A winning neuron c (called Best Matching Unit, BMU), whose prototype vector m(c) 

is the most similar to the input sample x, is determined on the basis of the value of 

the KL distance of x from prototype vectors. The weight vector m(c) is modified in 

order to match the sample x even closer. As an extension to standard competitive 

learning, the neurons surrounding the BMU are adapted as well (Figure A2 a) and 

their prototype vectors m(i) are also moved towards the sample x, during the training 

time t, following the update rule 

 

     (3) 

 

where the scalar factor hci(t) is referred to a neighbourhood function.  
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Figure A2. SOM training process (a), U-matrix (b) and principal components plot (c). The 

SOM is a two dimensional lattice, in which each neuron is directly associated to a weight 

vector, called prototype vector. The principal objective of a Self-organizing map is to modify 

these weight vectors in order to achieve a configuration in which the distribution of the input 

data is reflected. For each data sample x selected from the input space, the most similar 

prototype vectors (called Best Matching Unit, BMU) is detected. BMU and its neighbouring 

are adapted to the input curve x. Solid lines represent the situation before the updating phase, 

while dashed lines after (a). At the end of the training, each neuron is characterised by an 

updated prototype vector that is more or less similar to its neighbours. The U-matrix (the 

unified distance matrix) represents this similarity because it shows the distance among 

neurons. In this case (b), dark colours stand for low distance values, while light one for high 

distance values. Nevertheless, sometimes, the U-matrix interpretation can be very hard, 

especially for small U-matrices. For this reason, to visually depict clusters, we plotted also 

the prototype vectors in their first two principal components space (c). The colours of 

squares correspond to distance values reported in the U-matrix. 

 

In this study we used a Gaussian distribution for hci(t), which decreases from the 

neighbourhood centre node r(c) to the outer limits of the neighbourhood r(i) as 

follows 

  

     (4) 
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The term α(t) in Eq. (4) is the so called learning rate and it can be regarded as the 

height of the neighbourhood kernel, while o(t) is the radius or the width of the 

neighbourhood kernel and it specifies the region of influence that the input sample x 

has on the map. Both the height and the width of the neighbourhood function 

decrease monotonically with the increase of the training time. 

As can be seen from equation (4), neurons closer to the best matching unit will be 

adjusted more than nodes further away. Moreover, while at the beginning the best 

matching unit is heavily modified and the neighbourhood is fairly large, 

modifications become more and more irrelevant as the learning process takes place. 

Given that not only the winning node is tuned towards the input pattern but also the 

neighbouring nodes, it is expected that similar input patterns in future training cycles 

will find their best matching weight vector at nearby neurons on the map: the more 

similar two input patterns are, the closer their best matching units are likely to be on 

the final map [29].  

In this study SOMs were designed as hexagonal lattice maps. A linear initialization 

of prototype vectors was adopted and a batch training algorithm was applied. The 

dimension of the grid depended on the size of subsets used. 

 

A visual representation of the similarity among neurons can be obtained by plotting 

the Unified distance matrix (U-matrix), i.e., the matrix of the distances among 

adjacent neurons: high values in the matrix indicate a frontier region between 

clusters, while low values highlight high degree of similarity among neurons on a 

region, i.e. low U-matrix values identify clusters. This can be visually rendered using 

a colour map, in which, for instance, dark colour stands for low distance value and 

light colour for high distance value (Figure A2 b). Being sometimes the U-matrix 

map hard to be interpreted by visual inspection, especially for small U-matrices, we 

also applied the Principal Components Analysis (PCA). PCA allows identifying new 

variables, the principal components, which are linear combinations of the original 

variables. Briefly, the first principal component is the direction along which data 

show the largest variation; the second component is the direction of largest variance 

which is perpendicular to the first principal component; and so on. In general, the k-
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th principal component is the leading component of the variance after subtracting off 

the first k-1 components. Exhaustive detail on the Principal Components Analysis 

can be found in [30]. Here we plotted the prototype vectors in the first two principal 

components (PCs) space (Figure A2 c) to visually depict clusters: this visualization 

allows to integrate the visual inspection of the U-matrix map because it plots the first 

two uncorrelated components in which the meaningful amounts of variance is stored. 

 

To investigate whether curves can be someway clustered exclusively in terms of their 

morphology, or if there is an influence of each sample exact value, the analysis was 

conducted both on measured and normalized curves (i.e. the area under curves 

became equal to 1). In the latter, two different normalization procedures were 

followed when combination of curves were considered: (a) the not-normalized 

OGTT curves were serialized, and the resulting curve was then normalized; and (b) 

GLU, INS, and CPEP curves were separately normalized, serialized, and then the 

resulting curve was again normalized to obtain the area under curve equal to 1. 

 

Since we are interested in the individuation of peculiar morphological features 

characterizing OGTT curves of normal and diabetic subjects, we built up two 

reference curves. Those curves were obtained by averaging prototype vectors of the 

two major clusters derived from SOMs analysis (as described in the previous section) 

and they were used in the following two other steps. 

 

 

Curve morphology and classification 

 

To test memory-of-disease-driven shape hypothesis, i.e., if a memory of the previous 

disease (the GDM condition) is maintained in the morphology of the NGT curves, a 

similarity measure between the reference OGTT curves and the 43 NGT ones 

(derived from baseline OGTT of 43 NGT subjects) was performed.  

The similarity measure between reference and individual OGTT curves was 

calculated using the Kullback-Leibler distance (equation 2). The analysis was 
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conducted on normalized OGTT curves (i.e. the area under curves became equal to 

1) as follows: for each NGT curve measured, the distance from reference curves was 

computed and, according to the distance values, a normal or diabetic classification  

was provided.  

 

Curve morphology and prediction  

To evaluate the potency of the OGTT curves shape at time T0 as predictor of the 

metabolic state at time Tfu, a similarity measure between the reference OGTT curves 

and a subset of 185 individual curves was performed. All 185 OGTT curves 

considered here belong to subjects with a recorded follow up: at time point Tfu 

subjects became or remained ‘normal’ in 139 cases and ‘diabetic’ in 46 cases. For 

this analysis, the difference between Tfu and T0 was less than 2 years, i.e. we 

predicted the evolution within two years from T0, and more than one curve for each 

subject could be used. The similarity measure between reference and individual 

OGTT curves was calculated using the Kullback-Leibler distance (equation 2). The 

analysis was conducted on normalized OGTT curves (i.e. the area under curves 

became equal to 1) as follows: for each OGTT curve measured at time point T0, the 

distance from reference curves was computed and, according to the distance values, 

normal or diabetic evolution of the subject was predicted. As the real follow up is 

well known, a contingency table was built and sensitivity and specificity were 

computed. Moreover, a statistical analysis (Chi Square Test) was also performed. 

The whole study was performed in the MATLAB environment (The MathWorks, 

Inc., Natick, MA).  

 

 

 

6.A.4. Results 

 

Morphology and Information 
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The morphological analysis showed that considering measured or normalized curves 

did not introduce any significant difference. In fact, despite normalization process 

made curves closer to each other (Figure A3), it did not produce different results, and 

similar SOMs were obtained maintaining or normalizing the exact value of OGTT 

sample.  

 

 

Figure A3. Comparison between measured curves and normalized ones. To evaluate the 

influence of shape on different Glucose conditions, the curves were normalized, i.e. the area 

under the curves was made equal to 1. The effect of this normalization process is clear if two 

examples of curves from the controls and the T2DM group are compared. The first row 

shows Glucose, Insulin and C-peptide curves as they were measured by OGTT: the 

differences between CNT and T2DM groups are due to the shape and to the values of each 

curve sample. In the second row, instead, normalized curves are plotted: the differences, in 

this case, are generated only by morphology. 

 

For this reason, in the forthcoming we present only results obtained over the 

normalized OGTT curves. Moreover, when combination of curves was considered, 
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only the results obtained on OGTT curves normalized after their serialization are 

reported here, since they were found more predictive. 

 

The application of SOMs to investigate on the existence of different morphological 

features in OGTT curves of CNT and T2DM groups shows interesting results. The 

visual inspection of the U-matrices shows the presence of two clearly distinct dark 

clusters (Figure A4), corresponding to different curve shapes.  

 

 

Figure A4. U-matrices of SOMs trained with CNT and T2DM groups. The controls and the 

diabetic groups were considered. Sets of GLU, INS, CPEP, GLU+INS, INS+CPEP, 

GLU+CPEP and GLU+INS+CPEP were used for training the SOMs and for generating the 

U-matrices. Neurons characterised by darker colours have lower distance values from 

neighbours, while lighter neurons have higher distances. Considering GLU (a) and 
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GLU+CPEP (f), compact neurons clusters with low distance values are concentrated in 

specific SOM regions surrounded by neurons with high distances that act as a frontier. 

Similar scenery is obtained using GLU+INS (d) and GLU+INS+CPEP (g). However, in this 

case, the frontier region is characterised by lower distance values. Using INS (b) and 

INS+CPEP (e), the clear identification of two clusters as in (a) is not possible. For CPEP 

curves (c), almost all neurons have similar distance values. 

 

The presence of distinct clusters is evident considering GLU and GLU+CPEP curves 

(Figure A4 a and f) and mild but still present when GLU+INS and GLU+INS+CPEP 

curves are considered (Figure A4 d and g). The same analysis performed on INS and 

INS+CPEP curves generates more complex and dispersed U-matrices (Figure A4 b 

and e). For CPEP curves, instead, almost all the neurons are characterised by very 

close neighbours distance values, giving rise to a sort of single cluster involving the 

entire SOM (Figure A4 c). Also in this case, plotting the first two principal 

components of prototype vectors confirms the visual inspection of the U-matrices. 

Even if the neighbours distances in the U-matrix are still very low (lower than 0.04), 

the darkest neurons are divided into two different regions, surrounded by lighter ones 

(Figure A5), making clear the identification of the two main clusters previously 

noticed (Figure A4). 
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Figure A5. Prototype vectors of SOMs trained with CNT and T2DM groups plotted in their 

principal components space. The controls and the diabetic groups were considered. After 

using sets of GLU, INS, CPEP, GLU+INS, INS+CPEP, GLU+CPEP and GLU+INS+CPEP 

for training the SOMs, the first two principal components of each prototype vector were 

plotted. The colour of each point is referred to the corresponding distance reported in the U-

matrices (Figure A4). Neurons with low neighbours distance values are grouped into two 

well separated clusters, if GLU (a) and GLU+CPEP (f) curves are considered. Two major 

clusters of neurons with low distance values could be still identified plotting principal 

components of prototype vectors of SOMs trained with GLU+INS (d) and GLU+INS+CPEP 

(g). Any cluster could be detected for INS (b), CPEP (c) and INS+CPEP (e). 

 

Again, this result is particularly clear for GLU and GLU+CPEP curves (Figure A5 a 

and f). The plots of prototype vectors of GLU+INS and GLU+INS+CPEP curves in 

the plane of the first two PCs show that two clusters can be barely identified (Figure 

A5 d and g). In the other cases, the prototype vectors seemed to be not able to 



117 

 

identify different region of the space corresponding to different curve shapes (Figure 

A5 b, c and e). 

 

The morphological features of OGTT curves identified by SOMs were compared as 

follows: neurons characterized (1) by a number of curves associated greater than two 

and (2) by a distance value from neighbours lower than 50% of the U-matrix highest 

distance (i.e. lower than 0.012 for GLU and GLU+CPEP curves and 0.015 for 

GLU+INS and GLU+INS+CPEP curves) were selected and grouped together in 

clusters (Figure A6 a, d and A7 a, d).  

 

 

Figure A6. Clusters identified in SOMs trained with GLU and GLU+CPEP curves. Neurons 

with a distance value less than 50% of the highest distance and with more than 2 curves 

associated to, were grouped into clusters (a,d). The same neurons were identified in the 

principal components space (b,e). Then, the prototype vectors of those neurons were 

averaged obtaining the curves plotted in (c,f). In (c), the average prototype vectors collect all 

the main features of Glucose curves: for cluster number 1 (blue line), a more complex curve 

with a higher initial and final value is observed; for cluster 2 (red line), instead, a 

monophasic shape is noticed. In (f), the average prototype vectors reflect the principal 

characteristics of Glucose and C-peptide curves that were simply queued for training the 
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SOM. The Glucose features are the same reported in (c). Also the C-peptide averaged curves 

show the characteristics noticed for GLU. 

 

The choice of the threshold as 50% is purely qualitatively (as usually done with U-

matrix) derived from the fact that we would like to find just two clusters. Then, 

prototype vectors belonging to single clusters were averaged and the average curves 

were plotted. The results are displayed in figures A6 and A7. As for the GLU and 

GLU+CPEP curves, the average prototype vectors belonging to one of the clusters 

(blue curve) exhibit more complex shapes, with two complete peaks, one occurring 

in the first part of the test and the other the end. On the contrary, monophasic shapes 

characterize the average prototype vector of the other cluster (red curve), with the 

only peak occurring in the middle of the OGTT test (Figure A6 c and f). 

Furthermore, the average prototype vectors of the two clusters differ for different 

glucose concentration at the beginning and at the end of the test. Notably, the 

contribution given by the C-peptide curves is minimal (Figure A6 f). 

 

Similar features can be noticed in the average curves of prototype vectors belonging 

to single clusters, obtained from SOMs trained with GLU+INS and 

GLU+INS+CPEP curves (Figure A7).  
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Figure A7. Clusters identified in SOMs trained with GLU+INS and GLU+INS+CPEP 

curves. Neurons with a distance values less than 50% of the highest distance and with more 

than 2 curves associated to, were grouped into clusters (a,d). The same neurons were 

identified in the principal components space (b,e). Then, the prototype vectors of those 

neurons were averaged obtaining the curves plotted in (c,f). In (c), the average prototype 

vectors collect all the main features of Glucose and Insulin curves that were simply queued 

for training the SOM. Cluster number 1 curve (blue line) shows two-peaks shape glucose 

part with a higher initial and final value, and an almost two-peaks shape insulin part. Cluster 

2 curve (red line), instead, has a monophasic shape in both Glucose and Insulin part. In (f), 

the average prototype vectors reflect the principal characteristics of all kind of curves 

queued. 

 

Interestingly, the insulin contribution shows the same behaviour as glucose, i.e., a 

two-peaks shape is present when also the glucose curve shows two complete peaks 

(blue curve), with the highest peak in the first part of the OGTT test and a 

monophasic shape when also glucose curve shape is monophasic (red curve), with 

the peak in the second part of the OGTT test (Figure A7 c and f).  
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For the next step, we considered the blue curves as representative of a ‘normal’ 

condition, while the red curves of a ‘diabetic’ one based on the morphological 

features noticed on Figure A6 and A7 and based on observations derived from 

previous literature[22].  

 

Morphology and Classification 

The average prototype vector curves (Figure A6 c, f and A7 c, f) were used as 

reference curves for the classification based on shape similarity measure. To do it, 

KLd values between normalized NGT curves and reference curves were computed, 

obtaining the results reported in Table A1.  

 

Table A1. Classification of NGT curves based on Kullback-Liebler distance from the 

reference curves obtained with SOMs.  

 

 

 

 

 

 

Considering just GLU reference curves, 67% of NGT curves were correctly 

classified. Instead, using the other reference curves (GLU+CPEP, GLU+INS and 

GLU+INS+CPEP), almost 100% of NGT curves were correctly classified.    

 

Morphology and Prediction 

Using the average prototype vector curves (Figure A6 c, f and A7 c, f) as reference 

curves, we used the KLd for prediction. Normalized curves at time T0 were 

considered and their Kullback-Liebler distances from corresponding referent curves 

were computed. The validation was possible because the real evolution of those 

curves at time Tfu was known. Table A2 shows the sensitivity, specificity and p-value 

associated to each contingency table computed.  

 

Curves Normal Diabetic 

GLU 67.44% 32.56% 

GLU+CPEP 95.35% 4.65% 

GLU+INS 100% 0% 

GLU+INS+CPEP 95.35% 4.65% 
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Table A2. Sensitivity, Specificity and p-value of contingency tables built as results of 

Kullback-Liebler classifier.  

 

 

 

 

 

 

Very close results using prototype vectors of SOMs trained with glucose, and 

glucose and C-peptide curves were obtained. In both cases, in fact, a high sensitivity 

was reached, meaning that at least the 82% of women that have developed diabetes 

within two years were correctly identified. The 63-64% of women that remained or 

became ‘normal’ was, instead, assigned to the ‘normal’ evolution. The slight 

difference obtained using GLU or GLU+CPEP was simply due to the number of not 

classified subjects: in case of GLU+CPEP, in fact, 3 subjects could not be classified 

having the same distance from ‘normal’ and ‘diabetic’ referent curves.  

The opposite behaviour was noticed if GLU+INS or GLU+INS+CPEP were 

considered. A higher specificity and a lower sensitivity were obtained (Table A2). 

Also in these cases, 3 subjects were not classified. 

The contingency tables built were found statistically significant. 

 

 

 

6.A.5. Discussion 

 

In this study we tested the hypothesis that morphological features of glucose, insulin 

and C-peptide OGTT curves can be predictive of the metabolic condition of women 

with a history of GDM. To the best of our knowledge, few previous works 

investigated on the existence of relationships between the shapes of OGTT curves 

and glucose tolerance [22-24] and only very recently the shape of plasma glucose 

Curves Sensitivity Specificity p-value 

GLU 0.826 0.633 < 0.001 

GLU+CPEP 0.844 0.649 < 0.001 

GLU+INS 0.511 0.848 < 0.001 

GLU+INS+CPEP 0.556 0.788 < 0.001 



122 

 

concentration curve during OGTT was proposed as predictor of future risk of type 2 

diabetes in women with previous GDM [31].  

 

In the analysis presented in this study on frequently sampled 3-h test OGTT curves 

(1) the entire shape of glucose, insulin and C-peptide OGTT curves was considered, 

with each single measured sample giving contribution to the prediction and (2) the 

identification of peculiar morphological features that can discriminate between 

normal and diabetic subjects was addressed.  

It is worth to notice that the method applied here does represent a step forward with 

respect to the recent cross sectional studies on OGTT curves shape [22]. Our 

approach, that allowed us (3) to perform an analysis of how the shape of OGTT 

curves can reflect the history of glucose tolerance state in women with previous 

GDM and (4) to predict future risks based just on the shape of glucose, insulin and 

C-peptide OGTT curves, represents a first attempt of longitudinal study applied to 

GDM.  

 

The rationale behind this study is to reveal if OGTT curve shapes can be the mirror 

of still not symptomatic mechanisms occurring in glucose metabolism. These 

mechanisms can be normal (as for healthy subjects) or abnormal (as for T2DM 

subjects, for example), and influence accordingly the kinetics of both glucose and 

insulin. For this reason, we hypothesized that the progression from the normal to the 

diseased (i.e., diabetic) condition can be traceable in features and changes occurring 

in OGTT curves morphology.  

As a first step, we identified those OGTT curves morphological features that are 

common to a normal condition or to a diabetic one and used them as reference curves 

to address the driven-by-shape prediction of future risk of type 2 diabetes. Clustering 

glucose, insulin and C-peptide curves of CNT and T2DM groups allowed us to 

identify representative-of-the-state curve shapes. Interestingly, our results are in 

agreement to what is reported in Tura et al. work [22]: the most common curve 

shapes (not only glucose, but also for insulin and C-peptide kinetics) are monophasic 

(i.e. with one peak) and triphasic (i.e. with two complete peaks). According to 
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previous observations [22-24], these curve shapes are highly related to different 

glucose tolerance condition: the monophasic is the most common among diabetic 

subjects, while the triphasic represents the normoglycaemic state. The cause of these 

different shapes was suggested to be in the pulsatile behaviour of insulin secretion 

(and in plasma insulin concentration, as a consequence) [32]. This pulsatile 

behaviour involves rapid oscillations (period of 5–15 min), ultradian oscillations with 

a period of 80–150 min [33], and circadian oscillations [34]. Moreover, it was also 

observed that insulin oscillations seem to be coupled to glucose oscillations of 

similar time scale [33, 35]. Since some studies found that these oscillations are 

depressed in diabetic [36] or elderly subjects [33], it was suggested that the 

oscillatory behaviour may be an intrinsic characteristic of the insulin-glucose 

regulation system in healthy individuals, being sign of a specific defect in β-cell 

function, i.e. a reduced dynamic responsiveness of insulin secretion to glucose 

changes. For this reason, we associated our monophasic reference curves to a 

diabetic state and the triphasic curves to a normal state.  

 

The same oscillatory behaviour was found in NGT curves, which we classified as 

characterized by a triphasic shape more than monophasic. This morphological 

feature-based classification is markedly improved when a combination of OGTT 

curves, i.e., GLU+INS, or GLU+CPEP, and GLU+INS+CPEP is considered. 

Previous observations in which women with former gestational diabetes (but 

normotolerant after delivery) do not show the majority of indices of insulin 

sensitivity and beta-cell function significantly different from healthy control women 

with similar age, BMI, and glucose concentrations [37] agree with our results.  

 

The potency of curves shape for the prediction of the metabolic condition was tested 

by using a similarity measure between the reference curves, i.e., the monophasic 

diabetic curve and the triphasic normal curve, and curves from the dataset with a two 

years follow-up. The hypothesis was that if a subject will evolve to a certain 

condition, its current OGTT curves should contain morphological features 

characterizing the final state.  
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Here, we demonstrated the soundness of our hypothesis. In fact, with the method 

proposed here, by using only the information on glucose curves we were able to 

predict that the 82.6% of women belonging to the population under investigation 

have developed diabetes within two years of follow up. Interestingly, we also noticed 

that using GLU+CPEP curves do not introduce relevant changes to sensitivity and 

specificity, indicating that the C-Peptide curve shape could not be meaningful for 

prediction. We also noticed that adding the shapes of insulin to glucose in both 

referent curves and dataset curves reversed the situation: a higher ability to recognize 

normal metabolic condition was reached compared to the ability of predicting 

diabetic state. 

In the clinical practice, the prediction of the metabolic condition of women with a 

history of GDM is based on several indicators, such as maternal weight, maternal 

age, fasting plasma glucose concentration, and area under glucose concentration 

curves [6, 17, 38, 39]. In particular a very recent study [40] proposes pre-pregnancy 

obesity, weight gain, and fasting glucose level at the OGTT as predictors of T2DM 

development. However, prediction factors applied in the clinical practice are 

characterized by sensitivity and specificity values lower than the ones we obtained 

using just shape as predictor [40].  

Our results confirm that the shape of OGTT curves reflect significant change that 

moves normal metabolic mechanisms into diabetic ones. The onset of T2DM is 

essentially caused by insulin resistance in muscle and liver, and impairment in β-cell 

function. Recently, it has become evident that β-cell function plays a more important 

role than previously expected: it appears that it is the progressive impairment in β-

cell function that actually determines the rate of progression toward type 2 diabetes 

[41]. As there is increasing evidence that the OGTT should be adequate for reliable 

estimation of β-cell function [42]. The fact that a progressive impairment of β-cell 

function can be noticed in the progressive changes in the shape of OGTT curves, 

confirms of the work of Mari and Ferrannini [42].  

 

This study suffers from limitations that are listed in the forthcoming. First of all, the 

prediction of the metabolic condition is at 2 years after the baseline OGTT. 



125 

 

Unfortunately, the majority of women do not visit the clinic for yearly visits, causing 

a significant reduction of dataset size as years increase. Another limitation is that the 

dataset we used for training the SOMs is imbalanced, with the 70% of the OGTT 

curves being “normal” and only the 30% being “diabetic”. Even if SOMs is a tool 

that is less sensitive to imbalanced data than other tools such as linear regression, a 

bias derived from the size of the dataset could influence the final results.  

  

In conclusion, we have shown that the shape of glucose OGTT curves can be a 

reliable indicator to predict the metabolic condition of women with a history of 

GDM. Our results suggest that the morphology of the OGTT curves reflect those 

significant changes in the underlying mechanisms that are involved in glucose 

metabolism. Moreover, our results suggest that it is the shape of the OGTT curves 

rather than the exact values of each sample that contains information of glucose 

metabolism evolution. Therefore, a classifier based on morphological features (1) 

could be helpful in prediction of T2DM development in women with a history of 

GDM and (2) could be easily translated to the clinical practice. 
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6.B. Modeling Clinical Engineering Activities to Support HealthCare 

Technology Management 

 

 

 

6.B.1. Abstract 

 

Biomedical technology is a valuable asset of healthcare facilities. It is now 

universally accepted that, to assure patient safety, medical devices must be correctly 

managed and used, and that the quality of healthcare delivery is related to the 

suitability of the available technology. The activities that guarantee a proper 

management are carried out by the people working in a Clinical Engineering (CE) 

department. In this section, we describe a model to estimate the number of clinical 

engineers and biomedical equipment technicians (BMET) that will constitute the 

Clinical Engineering department staff. The model is based on the activities to be 

simulated, the characteristics of the healthcare facility, and the experience of human 

resources. Our model is an important tool to be used to start a Clinical Engineering 

department or to evaluate the performances of an existing one. It was used by 

managers of Regione Piemonte to start a regional network of Clinical Engineering 

departments. 
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6.B.2. Introduction 

 

Biomedical technology is strategically important to effectiveness of healthcare 

facilities. During the middle of the 60s technology started to spread inside the 

hospitals. The instruments were definitively simpler than today but their ability to 

auto-detect failures was small and the problem of their management was mostly 

concerned with electrical safety or fixing. In the last fifty years the performances and 

the potentialities of technology increased dramatically and this change significantly 

affected biomedical instrumentation. Medical devices became more sophisticated and 

safer, but the number of devices increased significantly. Testing electrical safety 

turned into one of the activities, and the principal problems became to correctly 

manage the devices maintenance, to purchase the most suitable instrument, to plan 

device substitutions, to ensure the correct functioning of the instruments, and to 

guarantee the availability of critical devices every time they are needed. It is now 

universally accepted that to assure patient safety, medical devices must be correctly 

managed and used, and that the quality of healthcare delivery is related to the 

suitability of the available technology. These activities, related to both technology 

management and to support physicians and nurses to properly use the devices, are 

carried on by clinical engineers (CEs) and biomedical equipment technicians 

(BMETs), usually employed in clinical engineering department (CED). 

Following the technology progress, also the clinical engineering changed 

accordingly. Its role, in fact, moved from dealing with electrical safety and on-site 

repair of a damaged device to the more complete Healthcare Technology 

Management (HTM). This term is used for underlining the attention not only on one 

activity (i.e. electrical safety), but on all processes associated to technology 

management (i.e. acquisition, maintenance and so on). According to [1], costs, 

technology improvements, and social expectation led this transition. In this 

framework, the role of clinical engineering is to support and improve patients care by 

means of the application of engineering methods to health technology management 

[2]. The transition also modified the activities carried on by CED. More managerial 

responsibilities, in fact, have been asked to clinical engineers and also computer 
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skills have become mandatory, since all CED activities are supported by a 

computerized system that provides technology inventory management, preventive 

maintenance scheduling, work orders creations both automatically according to a 

schedule or manually, maintenance history, downtime of a device, purchase orders, 

and much more [2]. 

The organization of a clinical engineering department evolved in the same way as its 

role. At the beginning, each hospital hired its own clinical engineers. Nowadays, 

instead, CEs may be employed by a healthcare provider or by an organization that 

supplies services to multiple healthcare facilities and a more distributed management 

that takes into account different sizes and acuity levels of health organizations is the 

most appropriate in the current healthcare business environment [3].  

 

All these aspects impact the CED staff composition and increase the complexity of a 

clinical engineering department. One way to explore this complexity in a handy way 

is to create a model that mimics all main features involved in a CED and to simulate 

that model.  

 

Modeling has been applied in the domain of healthcare both to assist clinical decision 

making for diagnosis, therapy and monitoring, and to support healthcare managers in 

facility location and planning, resource allocation, and organizational redesign. 

Especially the second group of problems benefits also of simulation to understand 

the consequences of certain solution. There are three main reasons to choose 

simulation to analyze healthcare problems: healthcare systems are characterized by 

uncertainty and variability, healthcare organizations can be hugely complex, and the 

key role is played by human beings [4]. Different methodologies are used according 

to the model objectives. Among the possible methodologies, most of the models are 

based either on Discrete Event Simulation (DES) [5] or System dynamics (SD) [6, 

7]. 

DES represents the operations of a system as a sequence of events. Each event occurs 

at an instant in time and marks a change of state in the system. Usually the time is 
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simulated by means of probability distributions. DES is widely adopted when the 

system consists mainly of queues.  

SD is a methodology for modeling and simulating complex systems, developed by 

Forrester [7], based on the idea that the system behavior may be understood by 

means of the feedback concept, and that it is a function of the activities and 

interaction of its components. As a consequence, in SD models the system behavior 

is the result of the interaction of its feedback subsystems that represent its dynamic 

complexity. A key theme of SD is that policy interventions are diluted, and often fail 

because decision makers are not fully aware of the feedback structures [8]. SD 

models are deterministic and can be used at a speculative and strategic level. A few 

mixed models based on both DES and SD may be found in literature [4].  

A new promising tool for modeling the healthcare domain is Multi Agent System 

(MAS). Agent technology has become a leading area of research in Artificial 

Intelligence (AI) and computer science [9]. The features of intelligent agents are 

aimed at distributing the task of solving problems by allowing different software 

components to cooperate, each one with its own expertise [10]. The multi agent 

systems paradigm is an emerging and effective approach to tackling distributed 

problems, especially when data sources and knowledge are geographically located in 

different places and coordination and collaboration are necessary for decision 

making [11]. Each agent is a “smart” software program that acts on behalf of human 

users to find and filter information, negotiate for services, automate complex tasks, 

and collaborate with other agents to solve complex problems. An important property 

of intelligent agents is their autonomy. Intelligent agents have a degree of control on 

their own actions, and under some circumstances, they are also able to make their 

own decisions, based on their knowledge and the information perceived from the 

outside environment [12].  

 

When a new clinical engineering department must be established, the healthcare 

managers must decide the staff composition. In the past, they used to decide the 

personnel taking into account only the number of beds. With the growing differences 

among medical devices that are associated to the complexity of the clinical activities 
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this rule is no longer appropriate. Several more indicators must be taken into account 

to ensure that the clinical engineering department has the proper staff. 

In this work, we describe a model to be used for estimation of the number of clinical 

engineers and biomedical equipment technicians that constitutes the new CED staff. 

For this aim, a detailed description of basic activities for a CED was provided. Then, 

workflow diagrams were built to analyze and describe each activity. Finally, 

collecting all information previously detailed, a model based on system dynamics 

was designed, implemented and simulated in order to mimics a CED in all of its 

features: people involved, activities, time scheduling, and so on. In this way, using 

inputs that characterized a healthcare facility, it was possible to provide the minimum 

staff composition for guaranteeing that all activities are completed and the 

customers’ requests (such as maintenance requests) are satisfied. Moreover, this 

work provides an efficient way to handle and to simulate the complexity occurring in 

a system with interacting processes, structures and people like a clinical engineering 

department.   

 

Background 

The Italian National Health Service (NHS) follows a model similar to one developed 

by the British National Health Service since it provides universal health care 

coverage throughout the Italian State as a single payer. However, the Italian NHS is 

more decentralized, because it gives political, administrative, and financial 

responsibility regarding the provision of health care to the twenty regions [13]. Each 

region must organize its services in order to meet the needs of its population, define 

ways to allocate financial resources to all the Local Health Agencies (LHAs) within 

its territory, monitor LHAs’ health care services and activities, and assess their 

performance. In addition, the regions are responsible for selecting and accrediting 

public and private health services providers and issuing regional guidelines to assure 

a set of essential healthcare services in accordance with national laws.  

The LHAs form the basic elements of the Italian NHS. In addition, in 2000, there 

were ninety eight public hospitals qualified as “hospital trusts.” Hospital trusts work 

as independent providers of health services and have the same level of administrative 
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responsibility as LHA. Based on criteria of efficiency and cost–quality, the LHAs 

might provide care either directly, through their own facilities (directly managed 

hospitals and territorial services), or by paying for the services delivered by providers 

accredited by regions, such as independent public structures (hospital agencies and 

university-managed hospitals) and private structures (hospitals, nursing homes, and 

laboratories under contract to the NHS). 

Each LHA has three main facilities: one department for preventive health care, one 

or more directly managed hospitals, and one or more districts. Through the districts, 

the LHAs provide primary care, ambulatory care, home care, occupational health 

services, health education, disease prevention, pharmacies, family planning, child 

health and information services. 

Both LHA and hospitals build most of their activities on technology, and require a 

Clinical engineering department to take care of healthcare technology management. 

 

 

 

6.B.3. The CED Model 

 

Design 

The design step consists in building the conceptual model of a Clinical Engineering 

Department (CED). The model is essentially based on three main elements: the 

complexity of the healthcare facility, the activities performed by the CED, and the 

staff expertise and roles employed in the CED.  

 

The first element (i.e. the complexity of the healthcare facility in which the CED 

works) is rendered using parameters that describe the territorial and the internal 

organization of the facility, including also the number and type of devices managed 

by the facility. In detail, the parameters are the following: (1) number of territorial 

units (hospitals and districts headed by the facility) (nTU); (1) number of hospitals 

with Emergency Units (nEU); (2) number of clinical departments (nCD); (3) number 



135 

 

of university departments (nUNIV); (4) number of high-risk devices (such as  life 

supports, critical monitoring, energy emitting and other devices whose failure or 

misuse is reasonably likely to seriously injure patient or staff) and complex 

technologies (i.e. devices that require special set-up, like Positron Emission 

Tomography, or specialized management procedures) (nCOMP); and (6) total 

number of technologies owned by the facility (nT); (7) number of technologies not 

covered by a full-risk maintenance contract (nTDM); (8) number of technologies in 

hospital with emergency unit (nTEU); (9) number of technologies in hospital without 

emergency unit (nTnoEU); and (10) number of devices used by territorial units 

(nTTU).  

The second element on which the CED model is based regards activities that are 

considered fundamental for a Clinical Engineering service. The basic or core 

activities are: department management, acquisition procedures, safety and preventive 

maintenance testing, critical technologies management, inventory management, 

investments planning, maintenance procedures and end-users training. A brief 

description of the activities modelled and who generally performs them is provided 

in the following paragraphs. 

The CE Department management includes all the organization tasks necessary for 

supervising the clinical engineering department, such as the coordination of the staff, 

and it is performed essentially by the CE director.  

The acquisition process consists of several steps starting from the definition of the 

specifications and ending when the device is installed in the clinical department. In 

answer to a public call, different companies send their offer. The offers are then 

evaluated, and the best one is chosen. After the arrival of the new device, the BMET 

installs, tests, and inserts the new device into the inventory. If required, the end-users 

training is also scheduled.   

The aim of preventive maintenance is to keep the safety and quality features of 

technologies during the entire period of their exercise. In so doing, planning safety 

and functional tests, done periodically according to the laws and technical standards, 

is mandatory. Also the end-users education is important in this context to avoid the 
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malfunction of a device due to an incorrect use. The people responsible for this 

activity are both CE, for planning, and BMET, for the execution of the plan.  

The Clinical engineering department must guarantee the continuous availability of 

devices defined as critical through the predisposition, update and application of a 

plan for finding a substitute of the device that is out of order as fast as possible and, 

in any case, to assure both patient safety and the healthcare essential activities. The 

clinical engineer has the responsibility of performing this activity.  

The inventory management allows the staff to record all the data concerning a device 

from its insertion into the database to the dismissal: in particular, the technical 

characteristics, its location, and both preventive and corrective maintenance data. 

The BMET is responsible of these procedures.  

The activity of investments planning, done by CE, deals essentially with a triennial, 

an annual and three-monthly plan to define the needs of the healthcare facility. 

Moreover, a monthly review is necessary to check the effective execution of plans 

done so far. The investments could be necessary for substituting a technology, for 

improving the functionalities of an existing one, buying new components, or for 

acquiring new devices.  

Finally, the corrective maintenance procedures are all the processes that regard the 

restoration of damaged technologies. This activity is usually performed by BMETs.  

The third main element of the CED model is the staff employed in a clinical 

engineering department. At this stage, we considered clinical engineers (CEs) and 

biomedical equipment technicians (BMETs) without any particular specialization.  

The last step in building a conceptual CED was to define the outputs. The main 

outputs are essentially the number of people that must be involved in the staff to 

guarantee a certain level of service effectiveness, the workload of each kind of staff 

member in terms of hours, the overtime required for completing tasks, and the 

answering time to a specific request, i.e. the delays between the arrival of 

maintenance queries and their solution. 

Figure B1 shows a schematic representation of the conceptual model. 

 



137 

 

 

Figure B1. General description of the model. 

 

After identifying in greater detail the features of the CED model, a more in-depth 

description was necessary, underlining the connection among the three basic 

elements previously listed (i.e. parameters, activities and people involved). Among 

the possible methods that can be used, we selected workflow diagrams, and in 

particular the diagram proposed by [14] and based on Petri nets. It allows the 

description of different types of jobs or processes, where each process is constituted 

by a set of tasks that have to be completed following defined rules. One person or a 

group of people is identified as responsible for each specific task that constitutes the 

workflow. In our case, each process is one activity that can be completed through a 

series of sub-activities (tasks) following some procedures (rules). The diagram 

consists of transitions, shown as rectangles, and places, represented using a circle. 

Transitions represent the tasks performed during the process, while places represent 

the input and output of a task. Places and transitions are linked by means of a 
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directed arc. Arcs from a place to a place or a transition to a transition are not 

possible, because they do not have any meaning. 

 

 

Figure B2. Workflow representing the maintenance process. Rectangles represent the tasks 

while circles stand for the input conditions and output state. Human resources are associated 

with the tasks by means of dedicated circles. A detailed description of the tasks is reported in 

the text. 

 

As an example, Figure B2 shows the workflow of the corrective maintenance 

activity/process, in which transitions are white rectangles, places are blue circles and 

people involved are represented by purple circles. The process starts when the call 

center receives a request of intervention. The BMET that answers the call may be 

able to solve the problem either because it is only an incorrect use of the device easy 

to detect or it is a usual problem that may be solved by the user just with a few 

instructions. If he/she is not able to solve the problem there are two possibilities. If 

the technology is covered by a particular maintenance contract by the supplier (called 

full-risk contract) that guarantees assistance in case of malfunctioning, a call for 

assistance occurs. If the technology does not benefit from a full-risk contract, the 
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BMET that answered the call asks a BMET assigned to maintenance to go and 

diagnose the problem. The results of this exploratory assessment may be different. If 

there is no failure, i.e. the problem is not caused by device, the intervention is closed. 

If there is a malfunction, then the BMET decides if he/she can fix the problem or if 

the supplier must be called. In the second case, there are two alternatives: either the 

technology could be repaired in the healthcare facility (in loco) or it must be sent to 

the supplier (external intervention). Sometimes, when the external intervention is 

necessary, the administrative department has to approve that decision and the relative 

cost. After the repair, BMET verifies the correct functioning of the device: if 

everything works, the request can be closed, otherwise a new intervention is 

required. At the end, a report of the intervention with the associated documents is 

recorded in the inventory database. 

Moreover, another important task of corrective maintenance is to guarantee the 

continuity of functioning of devices defined as critical. In this case, when the failure 

is diagnoses, the BMET uses the plan for a continuous availability of devices to 

provide a functioning technology to temporary substitute the damaged one. 

 

Implementation 

The processes previously modelled with workflows diagrams were then implemented 

and simulated using the iThink software by ISEE Systems, inc. 

(http://www.iseesystems.com/), a tool based on system dynamics. iThink employs 

the System Thinking approach proposed by Checkland [15]. It allows the design and 

the simulation of models through four levels that are distinct but also strictly 

connected: the Interface, the Map, the Model and the Equation layer. Starting with 

the idea of the system that has to be implemented, the first step is to lay out that idea 

in a map form through the Map layer. This map can be transformed into a model in 

the Model layer. Five building blocks are provided in these two layers to define the 

model: stocks, flows, converters, connectors and modules. Briefly, stocks 

(graphically rendered as rectangles) are measurable accumulations of resources, for 

example patients, customers and work backlogs. Essentially they are delays which 

separate and buffer their inputs from their outputs, and are built up and depleted over 
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time as input and output rates into them change. Flows fill and drain accumulations. 

The directed pipes represent activities. The results of activities flow into and out of 

accumulations, changing their magnitudes. Converters (represented as circles) hold 

value for constants, define external inputs to the model, calculate algebraic 

relationship, and serve as the repository for graphical functions. Connectors (arrows) 

connect model elements. Modules are self-contained models that you can connect to 

other models. Each module within a model is cohesive on its own, so it can be run 

separately or within the larger model. With these building blocks, a map and a model 

of the system can be created. During the model building, a list of equations that 

makes up the model is automatically generated into the Equation layer. Finally, the 

Interface layer provides the tools for connecting the end-users interface to the model 

and to make clear the input/output interactions with the model. 

In this environment, the workflow of corrective maintenance process previously 

described was translated (Figure B3).  

 

 

Figure B3. iThink model of the maintenance process as it is defined at the model level. 

Rectangles represent stocks, red lines are the connectors and the circles the converters. A 

detailed description of the model is reported in the text. 

 

Depending on the total number of technologies, a stochastic number of requests of 

maintenance is generated each day. In this way, we simulate the arrival of various 
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types of demands, concerning essentially failure or malfunctioning of technologies, 

to the Clinical engineering department call center. Requests are classified according 

to their urgency, complexity, and the means used (e-mail, phone, letter, or direct 

call). Demands labelled as urgent must be answered as quickly as possible, while 

complex demands usually may require an additional time for their solution. For this 

reason, three accumulations are set with the aim to simulate the waiting time required 

for the analysis of requests. This time is proportional to the kind of requests. After 

the analysis, the staff may decide to directly solve some demands or to delegate the 

corrective intervention to the suppliers. In the former case, the BMET is responsible 

for the hours necessary to the problem solution. Concerning the intervention of 

suppliers, a waiting time is considered simulating the time necessary for the sending 

of the technology, the repair, and the subsequent arrival at facility, or for the ‘in loco’ 

intervention, in which a specialised technician is sent to repair the device directly at 

the facility. In both cases, a certain amount of time has to be referred to BMET for 

planning activities of these processes. After that, the technology is repaired and the 

request satisfies.  

From this model just described, corresponding equations are derived. They are based 

on time variables, number of devices, and indicators that take into account the 

different complexity characterizing each facility. All the times involved in the 

process were composed by the joining of two parts: a fixed part, which indicated the 

minimum time required for each task, and a stochastic one for considering the 

differences among the requests or for any possible inconvenient related to that task 

that could delay the activity. In this way, the time associated to each task is included 

between a minimum and a maximum that depends on the activity considered. These 

minima and maxima derive from the experiences of three different experts that head 

well-established clinical engineering departments in an Italian region called Regione 

Piemonte. The times generated for each tasks are then referred to the people of the 

staff that were responsible of that task.  

 

Simulation 
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After the user inserts the parameters describing the healthcare facility, the simulation 

starts, covering a period of one year, leaving out the number of days off provided for 

contract. So, the total number of days simulated are 220. At the beginning of the 

process, the number of events associated to each activity is derived from the 

parameters just inserted. Moreover, in a stochastic way, it is also planned when each 

event occurs and the amount of hours necessary for completing that activity. For 

example, the annual investments plan is done once, generally at the beginning of the 

year. In this case, for this activity, one event is generated and it is scheduled in a 

stochastic day at the beginning of the year. Suppose, instead, to have 7 acquisition 

processes: 7 different events are generated and distributed in a stochastic way along 

the year. So, each day, a certain random number of events related to the different 

activities occurs. The corresponding amount of hours is referred to people that are 

responsible for that task. In particular, those hours are assigned to the person that 

effectively does the work, completing his/her daily working time of 7 hours and 21 

minutes (as the employment contract regulates). If at the end of the day the tasks are 

not finished, the remaining hours are rescheduled the day after and overtime starts to 

be counted.  

The outputs of the simulation are showed through an appropriate interface. For each 

staff member, there are two numeric displays representing the amount of daily 

workload and the overtime, both in terms of hours. Moreover, a graph showing the 

daily distribution of the workload is reported. A status indicator is related to each 

kind of staff people (CEs, BMETs working inside a single unit, BMETs working 

across different units) and it is used to point immediately out critical situations. In 

fact, it acts like a traffic light depending on the amount of working hours: it changes 

from green to yellow, before, and then to red if the total amount of work, 

respectively, not exceed, slightly exceed or exceed in a significant way the daily 

working hours permitted. In detail, we assume that, for each person, a year’s 

workload of [0 - 1584] hours is completely sustainable, [1584 - 1900] is moderately 

sustainable, and finally a workload that exceed the year’s 1900 hours is 

unsustainable. These numbers are derived from the employment contract. In addition, 
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the interface shows also the year’s distribution of delay in answering customer 

demands.  

 

Validation 

The aims of the validation step were (1) to verify each single assumption made in the 

model, (2) to demonstrate that the results of the simulation are reliable, and (3) to 

understand how general is the CED model, in order to apply it to every regional 

healthcare facility. The validation process required data, both input and output, from 

well working clinical engineering department. For this reason, we chose three 

different facilities located in Regione Piemonte, one for each group previously 

described (ASOu, ASO, ASL), that are characterized by a very settled CED. In order 

to evaluate the model ability to analyze different situation, the three facilities chosen 

differed from each other in their sizes (such as the number of total technologies 

owned, the number of university department, and so on). This can be easily seen in 

Table B1: the facility A (an university teaching hospital) is the biggest, the facility C 

(a LHA) is of middle size and the facility B (a hospital trust) is the smallest. 

 

Table B1. Input data corresponding to the facilities used for the validation process. 

 

 

For the first part of the validation, the staff was set as it was in the reality: for A, 6 

CEs and 16 BMETs; for B, 2 CEs and 7 BMETs; and for C, 3 CEs and 9 BMETs. In 
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these scenarios, the experts focused on the workload of each kind of staff member, 

the overtime required for completing tasks, and the answering time to a specific 

request for evaluating if the model resembles the real situation. Moreover, for each 

facility, 10 simulations were launched to evaluate the influence of stochastic 

variables in the model. The outputs derived from those simulations did not differ 

each other in a significant way (their standard deviation was less than 1%), meaning 

that the model is robust despite the random feature of some variables. According the 

experts’ experience, for all three facilities results were correct, demonstrating that the 

simulation provided accurate results and that the model was appropriate to represents 

different healthcare organizations.  

 

After demonstrating that the model worked correctly, a second validation phase 

could be performed. The same three different kinds of facility were chosen to 

investigate the model ability to find the minimum number of staff members. Trying 

different combination of staff composition, in terms of numerousness of each 

professional figure, the results obtained were reported in Figure B4.  
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Figure B4. Evolution of total workload and overtime assigned to each person varying the 

number of CE and BMET of CE Department staff. Depending on the hours amount, it is 

possible to identify regions of situation that can be unsustainable (US), moderately 

sustainable (MSS) or completely sustainable (CSS). The definition of sustainability is given 

evaluating the workload and the answering time to maintenance requests. The dotted line 

represents the real number of CE and BMET employed in the facilities considered. 

 

As expected, increasing the number of clinical engineers and biomedical equipment 

technicians led to a decrease of the number of hours associated to each person for 

completing all occurred events. Both the total number of hours and the overtime 

obviously followed this trend. Increasing the number of people employed, however, 

a little bit of overtime generally remained because of the simulation nature: some 

periods or even only some days, there was a higher concentration of work (such as 

corrective maintenance, acquisition planning, safety tests to be performed in the 
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same moment) leading to a higher workload that translated into overtime. Depending 

on the total number of hours necessary to complete all activities and on the overtime, 

region of sustainable or not sustainable situation could be depicted. The definition of 

sustainable or not sustainable situation is not completely fixed, because it depends on 

the employment contract and on the people’s needs. According to our definition of 

sustainable/moderately sustainable/not sustainable, different scenarios could be 

analysed. For the facility C, for instance, an unsustainable situation could be reached 

if the staff was formed by 1 CE and 6 BMETs. Having a quick look of the behaviour 

of just one activity, the corrective maintenance process generated a very heavy 

workload, in which each BMET should be able to work for at least 20 hours per day 

(Figure B5 a). 
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Figure B5. Daily time requested by the corrective maintenance activity in an unsustainable 

(a), moderately sustainable (b) and completely sustainable (c) situation. 

 

Moreover, in this situation, the answering time for maintenance requests is extremely 

high (Figure B6 a, c and e), especially for urgent requests that have to wait up to 13 

hours before someone could start the maintenance process (Figure B6 a).  

 

 

Figure B6. Answering time over the year simulated of urgent, normal and complex requests 

in unsustainable situations (a, c, e, respectively) and moderately sustainable situations (b, d, 

f, respectively). 

 

Adding 2 more CEs and 1 more BMET, the situation started to be moderately 

sustainable. The workload was again high (Figure B5 b), not allowing the staff to 
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complete every maintenance process, but the answering time began to be reasonable 

(Figure B6 b, d and f). Finally, a total coverage of works occurred in facility C when 

the number of CEs is more than 3, and, for BMETs, more than 7. In this case, it was 

a completely sustainable situation because the hours assigned to each person 

employed filled the normal working time provided in the contract and the overtime 

was acceptable (Figure B5 c). Moreover, the answering time for each kind of request 

was very close to zero (data not shown).  

To validate these results with the real situation, the real staff composition was 

compared with that one come out from CED model. In Figure B4, the dotted lines 

represented the real number of people employed in clinical engineering department 

for each facility considered. They were all positioned in the region referred to a 

sustainable situation. Since the chosen facilities have a well-established clinical 

engineering department, if the staff composition provided by CED model in 

sustainable scenario corresponded to the actual staff composition, then the model 

was able to describe the real situation, even for very different size of facilities. The 

experts found consistent the CED model results and their real experiences. 

 

Application 

Regione Piemonte is an Italian region with a population of 4,4 million people and a 

healthcare system principally based on public structures. The Region is divided in 21 

local healthcare facilities, managing a total of 65 hospitals and more than 13000 

beds, with an amount of more than 115000 medical equipment items. Until a few 

years ago, more than a half of these health facilities had no structured and 

acknowledged clinical engineering departments. Medical equipment management 

was usually in charge of technicians belonging to a general maintenance department 

of the hospital or totally given in outsourcing without any control on quality and 

costs. Only a few hospitals had specialized BMETs and CEs able to face with the 

complex processes of managing hospital technologies. Even in this case the staff 

number was not sufficient to deal with all the requests at a reasonably quality level. 

In 2005, the growing awareness by regional institutions of the impact of medical 

technologies in the strategic healthcare choices and high costs led the Regional 
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Agency for Healthcare Services (AReSS Piemonte - Agenzia Regionale per i Servizi 

Sanitari) to start a “Health Technology Management” (HTM) working group, in 

order to support central planning strategies and to coordinate clinical engineering 

departments activities and procedures. To ensure a good effectiveness of regional 

coordinating actions, the first goal was to reach an adequate level of healthcare 

technology management in every local healthcare facility. For this reason in 2006 the 

AReSS HTM group decided to build a model of a regional network of Clinical 

engineering departments to be implemented in Regione Piemonte [16]. 

The CED model previously described was then applied to all 21 healthcare facilities 

located in Regione Piemonte to suggest the staff composition of the clinical 

engineering departments that will take part in the network. Moreover, it was possible 

to simulate different scenarios, characterized by various staff composition, to 

evaluate drawbacks and benefits of each organizational situation. In so doing, with 

the model results, every facility could search a good compromise between its CED 

quality service and the staff composition, in other words between quality service and 

the costs for setting and maintaining it.  

To define the minimum number of staff members necessary for a minimum quality 

level for each facility, the CED model was simulated several times to understand also 

the impact on the staff composition on the quality level different combinations of 

number of CEs and BMET. Some of the results are reported in Figure B7 where, for 

each facility, the number of CEs and BMETs are plotted against the number of 

devices to be managed.  
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Figure B7. Number of CE and BMET required to perform the basic activities in each 

Clinical engineering departments of all the healthcare agencies of Piemonte Region. 

 

The figure shows that the linear trend is interrupted in some cases. This is consistent 

with our design of a CED: in the model, there are some activities that are less 

dependent on the number of technologies (such as the clinical engineering 

department management) but that have to be taken into account for the staff 

workload. With this number of CEs and BMETs, it was possible to guarantee an 

acceptable workload and overtime for each person and answering time close to zero 

(data not shown). 

In 2008, Regione Piemonte approved an important regional health system reform 

using these results to start establishing new clinical engineering departments or 

improving the existing ones. In January 2010, the results were also used by the 

region managers to promote a regional guideline for developing the CED network. 

The guideline contains the functions and responsibilities assigned to Clinical 

engineering departments, classes of equipments to be managed, professionals work 

profiles in terms of activities and educational background, and the global 

organization of department. 

At this time, about 70% of regional healthcare facilities have a properly structured 

clinical engineering department.  
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