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Abstract 
 
The analysis of wave propagation in jointed rock masses is of interest for solving 
problems in geophysics, rock protective engineering, rock dynamics and earthquake 
engineering. At present, more than in the past, analyses of underground structures 
in seismic conditions need be considered.  

The aim of the present thesis is to contribute to the understanding of wave 
propagation in rock masses and of its influence on the stability of underground 
structures. The research is focused first on the analysis of the phenomenon through 
analytical, numerical and experimental methods. Then, static and dynamic stability 
analyses of a real case study such as the water storage cavern of the Tel Beer 
Sheva archaeological site in Israel (Iron age 1200-1700bc) are carried out.  

An analytical method such as the Scattering Matrix Method (SMM) is 
developed for the study of wave propagation through rock masses. This method 
(SMM) is based on the scattering matrix and is borrowed from electromagnetic 
wave propagation theory of transmission lines such as coaxial cables, optical fibres, 
strip-lines, etc. The scattering matrix is composed of reflection and transmission 
coefficients of a single joint or a set of parallel joints.  

Dry, fluid filled or frictional joints are considered. The computation can also be 
performed with material damping. Both P, SV or SH-waves can be applied to the 
model with any oblique angle of incidence. The analytical solution is obtained in 
the frequency domain and allows one to consider multiple wave reflections between 
joints. The analytical results obtained with the SMM are compared with other 
analytical methods and with the Distinct Element Method (DEM) by using the 
UDEC and 3DEC codes (from Itasca Consulting Group).  

The results obtained with the SMM applied to different joint models are 
compared with those obtained experimentally with the Hopkinson pressure bar 
(SHPB) tests. Resonant column laboratory tests are also performed to investigate 
the effects of fractures on wave propagation in a soft rock. A three-dimensional 
DEM model is implemented to simulate the resonant column test. Numerical and 
experimental results are compared. 

The stability of the water storage cavern of the Tel Beer Sheva archaeological 
site in Israel, excavated in a jointed chalk is assessed by means of static and 
dynamic DEM analyses in two and in three dimensional conditions. A back analysis 
of both the roof collapse during construction and of the cavern in its present 
configuration with a pillar installed in the centre is also carried out. 

Finally dynamic analyses are performed to evaluate the influence of wave 
propagation on the stability of the cavern with a deconvoluted motion produced by 
the Nuweiba earthquake (1995) being applied as input. Additional numerical 
analyses are performed to evaluate the dependence of the damage on the 
amplitude, duration, frequency and direction of the input wave. 



iv       Abstract  

Further developments are needed and some open questions remain to be 
addressed for the study of wave propagation phenomenon in rock masses and of 
their effects on the stability of geotechnical structures. In particular, the extension 
of the SMM to other more complex joint models, additional Resonant Column tests 
for other geometries of fractures and for a greater number of joints in the rock 
specimens are of interest. 
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Chapter 1   
 
Introduction 
 
 
1.1 Framework 
 
Propagation of seismic waves in jointed rock masses can be modelled by assuming 
the medium to be continuous or discontinuous. A realistic response of the rock 
mass is however provided when modelling wave propagation through 
discontinuities. In fact, the understanding of the effects of such features on wave 
propagation is essential for the solution of problems in geophysics, seismic 
investigations, rock dynamics, rock protective engineering and earthquake 
engineering.  

Also, the analysis of the dynamic behaviour of rock joints/discontinuities is 
fundamental to study the stability of tunnels and caverns excavated in fractured 
rock masses. Generally, it is assumed that underground structures are resistant to 
earthquakes, nevertheless some underground structures have undergone relevant 
damages in recent large earthquakes. The level of damage depends on the 
magnitude of the earthquake, rock mass properties, overburden depth, shape and 
type of lining of the geotechnical structures.  
 
 

1.2 Problem statement 
 

Wave propagation in rock masses and its influence on the stability of geotechnical 
structures are some of the most important topics in rock dynamics and earthquake 
engineering. Rock joints/discontinuities play an important role on wave 
propagation: when an elastic wave impinges a joint, part of the energy is 
transmitted and part is reflected. The amplitude of the transmitted and reflected 
waves depends on the joint model assumed, on its geometrical properties (spacing, 
length, thickness) and on the frequency content. These non-welded interfaces can 
be modelled with a linear elastic behaviour or with more complex models with 
dissipative behaviour. In this latter case some energy, owned from the incident 
wave, is dissipated along the interface between the two faces of the joint. The 
principal effects of rock joints on wave propagation are the attenuation and the 
slowdown of the incident wave. 
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The problem of wave propagation in discontinuous media has been studied by 
many authors but the analysis of the effects of the multiple reflections between the 
joints has not been widely analysed. Moreover, there is not a unique complete 
study on this problem for various types of joints. On the other hand, the influence 
of the dynamic loads on underground structures embedded in rock masses has not 
been extensively investigated. Given the above, a better understanding of wave 
propagation in rock masses and of its effects on the stability of the underground 
structures is needed. 
 
 

1.3 Scope and objectives 
 
The scope of the present thesis is to contribute to the understanding of wave 
propagation in rock masses and of its influence on the stability of underground 
structures. The study encompasses first the use of analytical, numerical and 
experimental methods. Then, the attention is focussed on a real case study, the 
water storage system of Tel Beer Sheva, an archaeological site in Israel (Iron age 
1200-700bc).  

In line with the need to provide a reliable analytical tool, the scattering matrix 
method (SMM) is developed first. The SMM is implemented to study wave 
propagation through rock joints represented with different models of behaviour. In 
addition, laboratory tests are performed in parallel with numerical analyses with 
the discrete element methods  (UDEC and 3DEC codes from Itasca).  

Finally, the numerical models developed with the Tel Beer Sheva archaeological 
site in mind allow one to provide a comprehensive back analysis of the roof collapse 
of the cavern, occurred during the construction stages, and to verify the stability of 
the cavern under both gravitational and seismic loadings.  

 
The following main tasks have been undertaken: 

 
- Detailed bibliographic study, in order to identify the theories, the methods 

and the experimental observations available in the present literature to 
describe wave propagation in discontinuous media. 
 

- Development of the scattering matrix method (SMM) to evaluate the 
effects of joints on wave propagation from the analytical point of view. 
 

- Comprehensive analytical study by using the SMM for different joint 
behaviours, with the interest in either a single joint or a set of joints.  

 
- Comparison and validation of the SMM with theoretical and numerical 

methods (e.g. the Distinct Element Method, DEM). 
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- Laboratory resonant column apparatus tests on soft rock for studying the 

possible use of this apparatus to testing of both intact and jointed rock 
specimens, with interest in the latter case on the influence of fractures on 
wave propagation. 
 

- Numerical analysis in both two dimensional and three dimensional 
conditions of the Tel Beer Sheva water storage system, with the intent to 
evaluate its stability under both static and dynamic loading.  
 

    
1.4 Organisation of thesis 
 
This thesis is divided into twelve chapters and two appendices. The present chapter 
is intended to provide a general introduction to the subject. Chapter 2 presents a 
review of wave propagation theories with particular attention on discontinuous 
media. Both analytical and numerical methods are described. 

The following two chapters present the fundamentals of the scattering matrix 
method (SMM). Chapter 3 is devoted to the definition of the SMM in continuous 
media and the use of some numerical computations to study the influence of welded 
interfaces on wave propagation. Chapter 4 extends the SMM to discontinuous 
media with particular emphasis on rock mass response to wave propagation. 

The following three chapters are then dedicated to the study of the effects of 
different models of rock joint behaviours. The transmitted and the reflected waves 
generated from a joint with linear elastic behaviour are studied in Chapter 5. The 
SMM is then validated in Chapter 5 by comparing the results with both analytical 
solutions and numerical methods. In chapter 6 the results of SMM in the study of 
filled joints are compared with experimental laboratory results obtained with 
modified split Hopkinson pressure bar (SHPB) tests. Additional comparisons of 
SMM are performed with theoretical methods. Chapter 7 describes the application 
of the SMM to study the effects of frictional joints through an equivalent 
linearization procedure. Some comparative numerical analyses are performed. 

Chapter 8 describes the application of DEM to the solution of wave propagation 
problems by comparing the results obtained with the SMM. The problem of the 
appropriate mesh element size when using DEM numerical models is also 
addressed. 

Chapter 9 is focussed on the description of the Resonant Column Apparatus 
tests performed on either intact of jointed rock specimens. The implementation of a 
three-dimensional numerical DEM model of the resonant column apparatus is 
performed. Experimental and numerical results are compared.  

The final two chapters are devoted to the DEM analyses performed on the Tel 
Beer Sheva water storage system in both two and in three dimensional conditions. 
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Chapter 10 describes the static analyses performed in order to reproduce the roof 
collapse undergone during the excavation as reported through archaeological 
studies. Chapter 11 presents the corresponding dynamic analyses of the cavern with 
the Nuweiba earthquake (1995) as input, by underlining the dependence of damage 
on the amplitude and direction of the input wave.  

Finally, some conclusions and suggestions for further works are given in Chapter 
12. 

Appendix A describes the analytical derivation of the normalization coefficients 
used in the SMM and Appendix B gives the database of seismic damage to 
underground structures. 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2   
 
State of the art  
 
2.1 Introduction    

 
Rock joints represent the main obstacle to stress wave propagation in rock masses. 
Through several types of interaction, wave peaks are diminished, propagation is 
delayed and frequencies are selectively filtered. The interaction is two-ways 
because waves with sufficient amplitude can change the state of the joints. Voids, 
micro-fractures, beddings and schistosities are also responsible for wave 
attenuation. 

In this chapter, a review of the available studies on the effects of fractures or 
micro-fractures on wave propagation is reported. We will summarize only the main 
theoretical developments dealing with the simulation of the influence of fractures 
on wave propagation and we will discuss the fields of application and the main 
assumptions introduced. Special consideration will be given to wave propagation 
across discontinuous media. 

The theoretical methods for studying the influence of joints on elastic wave 
propagation are essentially based on (Cai, 2001; Weidong, 2005): 
 

1. Displacement Discontinuity Method (DDM)  
2. Equivalent Medium Method (EMM) 
3. Wave Scattering Method (WSM).  

 
 
2.2 Displacement Discontinuity Method (DDM) 
 
The DDM was originally proposed by Mindlin (1960) and applied to seismic wave 
propagation by Schoenberg (1980). The basic assumption of this method is that the 
particle displacements of a seismic wave as this propagates through a joint are 
discontinuous, while the stresses remain continuous. 

The DDM is applicable to macro-fractures that are large in extent, small in 
thickness and in asperity separation if compared with wave length. Cook (1992) 
analyzes the effects of the fracture on wave propagation through the rock mass and 
states that this problem is not studied in detail as is the case of the effects of 
micro-fractures. In Rock Mechanics and Rock Engineering the effects of fractures in 
jointed rock masses are generally predominant and several applications of DDM are 
reported. 
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In DDM a planar fracture is physically envisioned as a planar collection of 
collinear micro-voids and asperities in contact. The closure of the voids and the 
asperities deformation define the global deformation of the fracture. When a wave 
propagates across a fracture of this type the stress field is continuous while the 
displacement field is discontinuous, given that the fracture undergoes a 
deformation.  

With these assumptions, a fracture is a non-welded interface if along it the 
relative displacements between the two sides of the fracture are not zero as for a 
welded interface. In DDM the discontinuity of displacements is applied as a 
boundary condition in the wave equations.  

The effects of a fracture or a rock joint on an incident wave are evaluated in 
terms of transmission and reflection coefficients. These coefficients are defined 
respectively as the ratio between the amplitude of the transmitted or reflected wave 
and the amplitude of the incident one. 

The DDM derives from the traditional theories of wave propagation in stratified 
media (Zoeppritz et al, 1919; Macelwane & Sohon, 1936; Kolsky, 1952; Cagniard, 
1962; Aki & Richards, 2002; and others). In these theories the interfaces are welded 
and then across the joint or the fracture a continuity of displacements and stresses 
is assumed to hold true.  

When an elastic plane wave impinges a welded interface between two different 
media a reflected and a transmitted wave are generated. Let us consider, as an 
example, a P-wave that impinges a flat interface at an angle of incidence ϑ1. In an 
elastic medium four waves are generated from the interaction of the incident wave 
and the interface (Figure 2.1): 
 

- A reflected P-wave at reflection angle ϑ1; 
- A reflected SV-wave at reflection angle φ1; 
- A transmitted P-wave at transmission angle ϑ2; 
- A transmitted SV-wave at transmission angle φ2. 

 
It is well known that the angles of reflected and transmitted waves are defined 

by using Snell’s law. In optics and physics, Snell's law (also known as Descartes' 
law or the law of refraction) is used to describe the relationship between the angles 
of incidence and refraction, when referring to light or other waves, passing through 
a boundary between two different isotropic media, such as water and glass. This 
law says that the ratio of the sine of the angles of incidence and of refraction is a 
constant that depends on the media. 

If we consider a refraction of a wave at the interface between two media of 
different stiffness, the velocity of wave propagation is lower in the second medium 
(V1<V2), then the angle of transmission ϑt is less than the angle of incidence ϑi. 
Therefore, for a wave that impinges an interface the Shell’s law is: 
 

http://en.wikipedia.org/wiki/Optics
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Isotropic
http://en.wikipedia.org/wiki/Medium_(optics)
http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Refraction
http://en.wikipedia.org/wiki/Refractive_index
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where ϑr is angle of the reflected wave.  

When ϑr is 90°, a reflected wave is generated which propagates along the 
interface between two materials. This situation is called critical refraction. 
 

  
                                   (a)                                        (b) 

 
                                                         (c) 

Figure 2.1 - Transmitted and reflected waves at discontinuities: compression wave (a), 
vertical shear wave (b) and horizontal shear wave (c) 

 
In DDM stress (and therefore velocity) is continuous across the joint, while 

displacement is proportional to stress since normal and shear stiffness are finite and 
constant. A fracture or a joint can be treated as an incompletely-welded interface 
or a non-welded interface. A fracture can undergo a closure, an aperture or a slip 
under normal or shear stress.  

These conditions can be simulated with a discontinuity of displacement in 
normal or tangential direction across a joint. These assumptions are applied as 
boundary conditions along a joint or a fracture. DDM provides solutions for three-
dimensional shear and normal wave interaction with rock joints and has been 
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shown to be accurate when compared with the results for normally incident shear 
and normal waves. 

Schoenberg (1980) integrated the wave equation of P and S-waves with 
arbitrary angles of incidence, expressing the joint dynamic response as a function of 
joint compliance. When the fracture is dry, the displacement discontinuity at the 
fracture is linearly related to stresses and fracture compliances. Later, Pyrak-Nolte 
et al. (1990a) expanded Schoenberg's solution to the case of discontinuities filled 
with viscous fluids (Kelvin and Maxwell models). In Pyrak-Nolte's formulation, the 
joint response is expressed by means of the dynamic stiffness, i.e. the inverse of 
joint compliance.  

In addition, DDM has been established by considering a slip rate dependent 
deformational behaviour (e.g., White, 1965; Miller, 1977, 1978; Chen et al., 1993). 
In these studies, the shear stress has been assumed to be a nonlinear function of 
slip rate and frictional slip, which refers to the shear displacement discontinuity 
across the fracture. Miller (1977, 1978) developed an approximate method to 
simplify the nonlinear problem into a linear one and accordingly derived a solution 
for S-wave normal incidence at a slip interface with finite shear strength. He found 
that transmission and reflection coefficients are dependent on the ratio of the 
maximum shear stress of incident wave to fracture shear strength. At the same 
time, a new coefficient, termed absorption coefficient, has been applied to account 
of energy absorption at the fracture interface due to the fracture slip. For example, 
Zhao XB et al. (2006b) presented a study on S-wave attenuation across parallel 
fractures with the Coulomb slip behaviour, where the fracture shear behaviour is 
directly incorporated into the theoretical formulation and no simplification is 
involved. The effects of shear stress ratio, fracture spacing and number of fractures 
on wave attenuation are examined. 

Jones & Whitter (1967) considered the effects of a flexible-bonded interface on 
wave propagation of an elastic plane wave. Two half spaces joined together at a 
plane interface by an elastic bond are assumed. In this study the displacements 
across the interface are taken as discontinuous. The relative displacement, between 
two sides of the interface, is function of the stress through the shear rigidity and 
the elastic moduli of the bonding material of the interface. 

For this formulation the boundary conditions are as follows: 
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where: 
τzz

(i) and τxz
(i) are the normal and the tangential stresses for each side of the 

interface; 
uz

(i) and ux
(i) are the normal and tangential displacement along the interface; 

E and G are respectively the Young modulus and the shear modulus of the bonding 
material of the interface; 
b is the thickness of bond of the interface. 

Kendall & Tabor (1971) analysed the effects of an incompletely-welded interface 
on wave propagation. They incorporated the discontinuity of displacements in the 
boundary conditions for solving the problem of a P-wave that impinges normally 
an incompletely-welded interface. This problem was also studied experimentally 
through ultrasonic wave transmission tests. 

Schoenberg (1980) used the displacement discontinuity model to simulate the 
effects of a linear slip interface. The displacements are linearly dependent from the 
stresses by the fracture compliance that is the inverse of the fracture stiffness. The 
boundary conditions are: 
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where, after the studies of  Pyrak-Nolte (1988) and Pyrak-Nolte et al. (1987 and 
1990a), cx and cz are the fracture compliances that are defined for a linear elastic 
fracture as: 
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where kss and knn are the shear and the normal dynamic fracture stiffness.  Analytical expressions of reflection and transmission coefficients were obtained 
for a linear slip interface. Pyrak-Nolte et al. (1990a) using the same approach 
analyzed the effects on wave propagation of a linear elastic dry fracture and a fluid 
filled fracture. In this case the fluid in the fracture is modelled by using the 
rheological models of Kelvin and Maxwell. In these conditions the displacement-
stress relation is given as a function of both the stiffness of the fracture and of the 
specific viscosity of the infilling fluid. 

For each type of body wave interacting with a joint, as illustrated in Figure 2.1, 
DDM provides the amplitude and phase delay of each of the reflected and 
transmitted waves. For the general case, a 4x4 system of equations need be solved; 
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however, for normally incident waves (ϑ1 = 0 or φ1 = 0) no wave conversion occurs 
and the amplitudes of the reflected and transmitted waves on the frequency 
domain are obtained by: 
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(for compressional wave incidence) 
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(for shear wave incidence) 

(2.5)
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(for compressional/shear wave incidence) 

(2.6)
 

 
where:  
R1 and T1 are the reflection and transmission coefficients for a single linearly 
deformable fracture;  
ω is the angular wave frequency.  

For compressional wave incidence, k denotes the dynamic normal stiffness of the 
fracture, and Z (= ρVP) the seismic impedance of the rock for compressional waves. 
For shear wave incidence,  denotes the dynamic shear stiffness, and Z (=ρVS)  is 
the seismic impedance for shear waves.  

k

The parameter that controls the amount of transmission and reflection of the 
compressive wave is the relation between the wave angular frequency and the joint 
dynamic or seismic specific stiffness K: 
 

 (2.7)
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A change in the wave amplitude causes a phase shift that corresponds to a time 

delay tg: 
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In laboratory tests of joint-wave interaction the frequency content of the 

incident and transmitted waves and the impedance of the rock material can be 
measured directly. Therefore the only unknown variable in Equations (2.4) - (2.6), 
the dynamic stiffness k, can be determined. Finally, and given that the system is 
elastic, there is no loss of energy associated to the wave reflection and 
transmission:  
 

 2 2
1 1 1R T+ =  (2.9)

 

 
Figure 2.2 displays the plots of transmission and reflection coefficients 

(Equations (2.4)-(2.6)) and the time delay (Equation (2.8)). When frequency is low 
in comparison to the specific stiffness, the wave is completely transmitted with no 
time delay, as this corresponds to a wave with zero frequency. On the other hand, 
when the frequency is high the wave is completely reflected. 

Hence the studies of Schoenberg (1980) and Pyrak-Nolte (1988) are dependent 
on the ratio between the fracture stiffness and the product of the medium 
impedance and wave frequency. When the frequency is high and the stiffness is low 
the attenuation of the wave due to the fracture is high. If k approaches to infinity 
we obtain a reflection coefficient R1 equal to zero and T1 equal to 1. This situation 
represents a welded interface with total wave transmission. On the other hand, if 
the fracture stiffness approaches to zero, R1 becomes 1 and T1 equal to zero. In this 
case the fracture can be considered as a free boundary with total wave reflection. 

The previous analytical solutions for a single fracture are verified with 
ultrasonic laboratory tests using specimens with artificial or natural fractures. 
Myer et al. (1985 and 1990) compared the theoretical results obtained with the 
theory of displacement discontinuity with ultrasonic laboratory tests on a single 
artificial fracture. In these tests the fracture is modelled as a partial contact with 
two steel cylinders separated by thin strips of lead. Pyrak-Nolte (1988) and Pyrak-
Nolte et al. (1987 e 1990a) performed a large number of ultrasonic tests across a 
single fracture in dry or wet conditions and with high and low confinement and 
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temperature. The results of the tests are shown to be in good agreement with the 
analytical methods. 
 

 
Figure 2.2 - Magnitude of transmission, reflection coefficients and normalized group time 
delay as functions of nondimensional frequency for P and S-waves normally incident to an 

elastic discontinuity (Pyrak-Nolte et al. 1990a) 

Other experimental studies have been performed by Suarez-Rivera et al. (1992), 
who also analyzed the effects of clay-coated and fluid-filled fractures from a 
theoretical point of view. The interaction between various fluids (polar or non-
polar) and the coating clay layers were taken into account in the theoretical 
analyses. The boundary condition introduced across the fracture is the 
discontinuity of particle velocities. The filling material is assumed to exhibit a 
viscoelastic behaviour according to the Kelvin and Maxwell models. In these tests 
the fractures are artificially built with fused silica disks coated with thin layers of 
sodium montmorillonite and filled with fluid. Also in this case the experimental 
results compare satisfactorily with the theoretical ones. 

Based on the displacement discontinuity theories, Rossmanith et al. (1993) 
examined the interaction of incident stress waves with a pre-damage fracture. A 
theoretical solution was obtained for the wave transmission across the fracture by 
taking into account the pre-damage state of the fracture. Daehnke & Rossmanith 
(1997a,b) conducted parametric studies of the effects of fractures on wave 
propagation in terms of a wide variety of measurable fracture properties, such as 
the Joint Roughness Coefficient (JRC), the Joint Compressive Strength (JCS), 
stiffness, shear strength, fracture pre-stress and pre-damage. 
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Watanabe (1995) used Cagniard’s technique (1962) to derive the analytical 
solutions for reflection and transmission of an impulsive elastic wave at a fracture 
(termed as jointed interface). His findings show that the incident P-wave, the 
reflected and transmitted amplitudes are affected only by the ratio between the 
normal and shear joint stiffness; while for the incident SH-wave, the reflected and 
transmitted amplitudes are not affected by the joint stiffness. 

In addition to the above studies on P and S-wave propagation across a fracture, 
elastic interface wave propagation along a fracture has been examined by other 
authors from both theoretical and experimental points of view. Earlier studies were 
conducted by Murty (1975), who examined a loosely-bonded interface with a shear 
displacement discontinuity. Pyrak-Nolte & Cook (1987), Pyrak-Nolte et al. (1992 
and 1996) and Roy & Pyrak-Nolte (1995 and 1997) performed laboratory 
measurements on the interface waves propagating along the fracture. Gu (1994) 
and Gu et al. (1995) used the plane wave analytical method to analyse the plane 
interface wave propagation along a fracture. They also conducted boundary 
element modelling to simulate the propagation of interface waves along the fracture 
generated by a line source. Both methods were used in combination with the 
displacement discontinuity model. Pyrak-Nolte & Nolte (1995) performed the 
wavelet analysis on seismic waveforms of interface waves propagating along a 
fracture. The analytical results on wave propagation velocity dispersion were 
compared satisfactorily with the prediction from the displacement discontinuity 
theories.  

Gu et al. (1996) conducted a complete study on wave reflection and 
transmission and wave conversion upon plane wave incidence on a single fracture at 
arbitrary angles. In particular, these Authors studied the conversion between the 
interface wave, head wave, P-wave, SV-wave and SH-wave. The results obtained 
show that for some combinations of the fracture stiffness and the Poisson's ratio of 
the half-space, no reflection or transmission of a P-wave or SV-wave occurs at the 
fracture. In addition, the P interface wave and head wave are generated when a 
SV-wave is incident to a fracture, at and beyond a critical angle determined by 
Snell's law. In a limiting case, when the wave is incident parallel to the single 
fracture, a generalized Rayleigh wave is produced which propagates along the 
fracture. Nakagawa et al. (2000a) investigated the phenomenon of wave conversion 
from P-waves and S-waves to new waves with particle motions that are not present 
in the incident waves, for the cases of P-waves and S-waves incident normally to a 
fracture subjected to a shear movement. 

Verweij & Chapman (1997) analysed the transmitted and reflected transient 
elasto-dynamic wave field at a fracture based on the displacement discontinuity 
theory, where the fracture is termed as linear slip interface. For both the SH and 
the P/SV wave incidence, the reflection and transmission coefficients of a fracture 
are solved. Their solution can provide the exact transmitted and reflected waves 
including the body wave, interface wave and head wave contributions. 
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Cai and Zhao (2000) and Zhao J. et al. (2006) used the method of 
characteristics for solving the wave propagation across a set of parallel joints, 
where multiple wave reflections were considered with an iterative method. Zhao 
and Cai (2001), Zhao XB et al. (2006a) used the method of characteristics to study 
P-wave attenuation across a single fracture with nonlinearly deformational 
behaviour, where the static BB (Barton Bandis) model was adopted. They found 
that not only initial normal fracture specific stiffness and wave frequency, but also 
incident wave amplitude and maximum allowable fracture closure have significant 
effects on wave attenuation. The method of characteristics was also used by Zhao 
XB et al. (2006b) for studying the effects of fractures with Coulomb slip behaviour 
on wave propagation. 

On the other hand, efforts have been made to establish the displacement 
discontinuity boundary conditions by considering the slip rate-dependent shear 
behaviour of a fracture (e.g. White, 1965; Miller, 1977 and 1978; Chen et al., 1993). 
In these studies, the shear stress was assumed to be a nonlinear function of 
frictional slip (discontinuity in shear displacement across the fracture) and slip rate 
of the fracture, which define the displacement discontinuity boundary conditions as: 
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where: 
u is the slip rate;  
f is the nonlinear function of stress-shear deformation relation. 

If the form of f  is determined, the wave equation can be solved for wave 
reflection and transmission across the fracture. However, due to the mathematical 
difficulties in handling the nonlinear governing equation (last of Equations (2.10)), 
the derivation of analytical solutions for wave reflection and transmission is usually 
difficult. A simplified method is to consider the fracture deformational behaviour as 
linear. For example, Miller (1977 and 1978) used an approximate analytical 
approach to simplify the nonlinearity into linearity and accordingly derived a 
solution for normally incident harmonic S-wave. In this approach, the nonlinear 
term in the governing equations is replaced by a combination of linear terms in 
such a way that the mean square difference between the resulting linear and the 
original nonlinear systems is minimized for all harmonic solutions. The parameters 
in the linear terms depend generally on the nature of the solution of the linearized 
system.  
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Miller (1977 and 1978) applied three different constitutive relations of shear 
behaviour, including Loeb friction model (1961), Fortsch friction model (1956) and 
Coulomb friction model with kinematic locking. These studies showed that the 
reflection and transmission coefficients are dependent upon the ratio between the 
amplitude of the incident stress wave and a characteristic frictional stress 
associated with each model. The high value of this stress ratio results in a small 
magnitude of the transmission coefficient, and in turn, high wave attenuation. It 
seems however that very few studies have been conducted to establish the 
displacement discontinuity boundary conditions by considering the nonlinear 
normal behaviour (closure) of the fracture. 

Compared to wave attenuation across a single fracture, wave attenuation across 
multiple parallel fractures is more complex due to multiple wave reflections 
between fractures. Theories of wave propagation in continuous multi-layered media 
containing welded-interfaces have been well developed (e.g. Rytov, 1956; 
Brekhovskikh, 1960; Treitel & Robinson, 1966; O’Doherty & Anstey, 1971; 
Schoenberger & Levin, 1974; Spencer et al., 1977; Kennett, 1983; Banik et al., 1985; 
Bedford & Drumheller, 1994). In particular, Watanabe & Sassa (1989 and 1995) 
applied the communication matrix method, originally developed for multi-layered 
media, to include the effects of internal multiple reflections on wave propagation 
across fractures assumed as thin low-velocity layers. However, the methods may 
not be entirely applicable to the multi-fractured rock masses because of the 
assumed displacement discontinuities across the fractures. 

Some researchers represented the fractures with the displacement discontinuity 
boundary conditions to study the wave propagation through multiple parallel 
fractures (e.g. Schoenberg, 1983; Pyrak-Nolte et al., 1990b; Coates & Schoenberg, 
1995; Yi et al., 1997; Nihei et al., 1999; Nakagawa, 2000b). However, since the 
displacement discontinuity theory analyses wave attenuation across fractures based 
on explicit reflections and transmissions at individual fractures, it is often difficult 
to explicitly determine the complex process of superposition of the multiple 
reflected and transmitted waves between many fractures. A real case without the 
presence of multiple reflections is that of incident waves parallel to the fractures, 
which are captured within the parallel fractures as channelling waves (Nihei et al, 
1999).  

In the past, for non-parallel incidence, a simplified method for analysing wave 
attenuation across multiple fractures was to ignore the multiple reflections as short 
wavelength approximation. By ignoring the multiple reflections, Pyrak-Nolte et al. 
(1990b) proposed a simple formula for calculating the magnitude of transmission 
coefficient (|TN|) for wave incidence normal to the multiple parallel fractures with 
identical stiffness: 
 
 1

N
NT T=  (2.11)
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where:  
|T1| is the magnitude of the transmission coefficient for normal incident wave 
transmission across a single fracture; 
N is the number of fractures.  

The above method has been shown to predict wave attenuation satisfactorily 
based on laboratory measurements of ultrasonic wave transmission across multiple 
parallel fractures by Hopkins et al. (1988), Pyrak-Nolte et al. (1990b) and Myer et 
al. (1995 and 1997). The same method was also used successfully in field seismic 
cross-hole tests of wave transmission across parallel vertical joints in a basalt rock 
mass by King et al. (1986) and Rezowalli et al. (1984). The laboratory 
measurements by Hopkins et al. (1988) and Myer et al. (1995) indicate that |TN| 
increases from |T1|N, when the fracture spacing is very small relative to the 
wavelength.  

Based on an exact dispersion equation for wave propagation across multiple 
parallel fractures of equal spacing, Nakagawa et al. (2000b) found that the 
Equation (2.11) is valid only when the first-arriving pulse is not contaminated by 
multiple wave reflections. These findings imply that the Equation (2.11) is not 
entirely applicable, if the effects of multiple reflections are significant due to the 
close spacing of fractures. 

To avoid the difficulty in determining the complex multiple reflections between 
individual fractures, the equivalent medium theories have been used for analysing 
wave propagation across multiple parallel fractures in a long wavelength limit (e.g. 
White, 1983; Schoenberg & Muir, 1989; Schoenberg & Sayers, 1995; and others). 
Frazer (1995) presented theoretical studies on SH-wave slowness and attenuation 
across multiple parallel fractures without the assumption of the long wavelength 
limit. 

Schoenberg (1983) and Schoenberg & Douma (1988) combined the equivalent 
medium method and displacement discontinuity method to analyse the wave 
reflections from a periodically stratified medium with slip interfaces (displacement 
discontinuities). The medium containing sets of parallel displacement 
discontinuities is represented as an equivalent homogeneous transversely isotropic 
medium functioning as a “group element” of displacement discontinuities. The wave 
reflection coefficient for this “group element” of displacement discontinuities was 
then derived by setting the displacement discontinuities boundary conditions in the 
wave equation. 

Coates & Schoenberg (1995) proposed a finite difference scheme to model the 
discontinuity displacement boundary conditions of planar faults and fractures 
(termed as slip interface conditions) by setting them parallel to the finite difference 
grid lines. However, this approach is more difficult for arbitrary non-planar fault 
surfaces. For this case, the equivalent medium theory is introduced to model the 
material behaviour in the cells of the finite difference grid intersected by the fault. 

Finally, the DDM can be applied to model the effects of plane fractures with 
large extent, small thickness and small spacing of asperities relative to the 
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wavelength, on wave propagation across a fractured medium. The fundamental 
parameter for modelling a fracture is the fracture compliance that is function of the 
fracture stiffness and/or of the specific viscosity of the infilling material. 
 
 
2.3 Equivalent Medium Method (EMM) 

 
The EMM has been used to analyze the effects of pores, impurities, inclusions or 
micro-cracks on stress wave propagation in porous or cracked media. It has also 
been used to study the effects of the macro-fractures with high density of 
distribution in rock masses. The intact material (for example rock) including the 
fractures and pores is modelled as a continuous, homogeneous and isotropic 
equivalent medium with effective properties. With these assumptions, a stress wave 
propagates through a cracked and porous medium in the same manner as through 
an equivalent continuous, homogeneous and isotropic medium. 

The effective properties of the equivalent medium are used for evaluating the 
global effects of pores and cracks on the attenuation of velocity and amplitude of 
the wave that crosses the medium. An effective elastic modulus Ee is generally 
introduced to consider the effects of pores and cracks on the velocity of wave 
propagation. On the other hand the quality factor Q and the attenuation coefficient 
α are used to represent the attenuation characteristics. Q and α are defined by the 
appropriate real and imaginary components in the effective elastic moduli or 
determined directly from the basic wave equation of the equivalent dissipative 
medium by assuming viscous attenuation mechanisms. The quality factor is 
inversely proportional to the fractional decrease in wave energy density per cycle of 
harmonic loading. For Q > 10, Q and α are related by Q = π/(αλ), where λ is the 
wave length in the medium. The viscosity of a cracked medium is generated by the 
viscosity of the base material and the filling fluid, the friction between the grain 
surfaces and the existence of cracks.  

The most relevant initial study of the effects of the pores on wave propagation 
in a fluid saturated porous solid was performed by Biot (1956a, b). Biot introduces 
a complete theory for evaluating the effects of parallel cylindrical saturated pores 
with fluid on P-wave propagation in the direction of these pores. Wave attenuation 
is produced by the viscous dissipation due to the fluid in the pores and the 
expression of the attenuation coefficient function of the wave frequency is defined. 
Biot’s theory was subsequently modified and extended by many authors. For 
example, McCann & McCann (1985) extended this theory to the case of pores with 
a certain size distribution in liquid-saturated porous sediments and derived the 
attenuation coefficient of linear variation with wave frequency ranging from 10 kHz 
to 2.25 MHz. 

The evaluation of the stress and strain fields inside and outside an ellipsoidal 
inclusion embedded in an isotropic solid was performed by Eshelby (1957), who 
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defined the effective elastic moduli based on energy considerations. His method was 
extended by Nur & Simmons (1969) and Nur (1971) who evaluated the effective 
elastic compliance of rocks with an anisotropic distribution of cracks and defined 
the anisotropy in the wave velocity by assuming a pressure dependence of crack 
parameters. Using a similar method to that proposed by Eshelby (1957), Kinoshita 
& Mura (1971) studied the effects of the inclusions on the elastic properties of 
anisotropic media.   

Walsh (1965a, b) developed an Excess Energy Method to compute the effective 
elastic moduli and the compressibility of cracked materials under the assumption of 
no stress field interactions between cracks. The solution obtained is accurate only 
for low crack density. Subsequently, also Walsh (1966) presented a method for 
defining the quality factor and the attenuation coefficient from effective elastic 
constants and friction coefficient of crack surfaces in contact. The frictional 
dissipation at crack faces produces the attenuation mechanism. Toksoz et al. (1979) 
presented an experimental laboratory method for measuring the attenuation of a 
seismic wave and for defining the seismic quality factor of cracked materials.  

An important contribution on the equivalent medium theories for defining the 
effective moduli was given by O'Connell & Budianski (1974), who evaluated the 
interaction between highly-concentrated cracks. These Authors proposed a self-
consistent method (SCM) to obtain the elastic moduli of a solid with randomly 
oriented ellipsoidal cracks and to examine the wave propagation velocities under 
dry and saturated conditions. This method allows one to predict a faster decrease 
in the effective moduli with respect to that obtained with the non-iterative method 
proposed by Walsh (1965a, b).  

In the following years, Salganik (1973) presented a modified SCM for estimating 
the effective elastic moduli from the crack density and O'Connel & Budianski 
(1977) used the same method to analyse wave attenuation based on the effective 
viscoelastic properties of a fluid-saturated cracked solid. The wave attenuation was 
regarded due to liquid squirting in the fully saturated cracks.  

Many other authors improved the SCM. For example, Zimmerman (1984a) 
verified if the method modified by Salganik (1973) can correctly predict the 
effective elastic moduli of a solid containing pores and spherical inclusions. He also 
(Zimmerman, 1984b) derived an analytical expression of the effective moduli of a 
cracked solid versus the crack density. Subsequently, based on the field 
measurements obtained by King (1966) and Johnston (1978), Zimmerman & King 
(1985) found that Salganik’s method is correct.  

Nishizawa (1982) developed a numerical approach applicable for evaluating the 
seismic velocity anisotropy in transversely isotropic media containing dense aligned 
cracks. This numerical scheme is based on the SCM. Then, Xu et al. (1990), 
starting from the numerical scheme of Nishizawa (1982), elaborated a new model 
for evaluating the effective elastic constants and the cracks closure under pressure 
in an initially transversely isotropic solid containing aligned cracks. Ultrasonic wave 
velocities laboratory measurements were used by King & Xu (1989) for the 
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experimental verification of the previous numerical approach. Smyshlyaev et al. 
(1993) applied the SCM for studying the wave propagation in a matrix-crack 
composite. 

Many studies are reported in the literature on the determination of the elastic 
effective moduli from crack shapes, structures and distribution. Chatterjee & Mal 
(1978) presented a method for computing the elastic moduli of a cracked medium 
based on the crack shape and distributions. Subsequently Crampin (1984) gave a 
definition of the effective elastic moduli for rock masses containing preferred 
oriented cracks. A simple method for defining the effective elastic constants of 
cracked solids based on arbitrary crack orientation statistics was also introduced by 
Sayers & Kachanov (1991). 

The wave attenuation phenomenon in porous or cracked media is interpreted 
with different types of physical mechanisms. Normally, the viscous dissipation of 
the base material and the filling fluid is considered to be the main mechanism of 
wave attenuation. Mavko & Nur (1975) and O'Connell & Budianski (1977) 
proposed the mechanism of squirting flow to explain wave attenuation in fully 
saturated cracked rocks. Mavko & Nur (1979) suggested the mechanism of bubble 
movement in partially saturated cracks for partially saturated rocks.  

Johnston (1978) carried out a comprehensive study on the attenuation of 
seismic waves in dry and saturated cracked rocks, where the wave attenuation was 
attributed to frictional sliding at grain boundaries and crack faces. Johnston & 
Toksoz (1980) carried out laboratory studies on the ultrasonic wave attenuation in 
dry and saturated cracked rocks subjected to pressure, and the wave attenuation 
was interpreted in terms of friction at grain boundaries and crack faces.  

The same interpretation on wave attenuation was adopted by Murphy (1982a,b 
and 1984) in the experimental studies of wave attenuation in cracked rocks. The 
experimental results obtained by him were later compared with the theoretical 
predictions due to Mochizuki (1982) based on a modified Biot's model (1956a,b). 
Discrepancies between the experimental results and theoretical predictions were 
found within the typical range of seismic frequencies. The reason seems that the 
attenuation mechanism involved in the experiments is different from that assumed 
in the theoretical predictions. Miksis (1988) investigated the wave attenuation 
arising from contact line movement between pores and contained fluid, in addition 
to the fluid viscous dissipation. 

Equivalent medium models have also been applied for analyzing the effects of a 
set of fractures on seismic wave propagation in rock masses. White (1983) studied 
the effects of a set of parallel fractures on wave propagation by using the effective 
moduli of the fractured rock mass. This author developed an equivalent medium 
model for computing the effective moduli of the global multi-fractured rock mass 
from the stiffness of the single fractures and the fracture spacing. Effective elastic 
moduli of the rock masses are computed based on different attenuation mechanisms 
and these moduli are used to relate velocity and attenuation through elastic-
dynamic equations.  



20       State of the art CHAPTER II 

White (1983) introduced complex moduli for a dissipative medium. Two 
independent complex moduli are required for isotropic material. The number of 
complex moduli increases with the degree of anisotropy (e.g. five complex moduli 
are required for a transversely isotropic medium). A result of this approach is that 
strain is out of phase with respect to stress by an amount which is determined by 
the ratio of the real to imaginary parts of the modulus. The inverse of this phase 
angle is commonly referred to as quality factor (Q) which can be used to 
characterize the medium anelasticity.  

Schoenberg & Muir (1989) incorporated the effects of multiple sets of parallel 
fractures in finely layered anisotropic media by representing them as group 
elements. These considerations allow manipulating the fractures and layered 
anisotropic rocks in a consistent and uniform manner. Schoenberg & Sayers (1995) 
studied the effects of multiple sets of parallel fractures with spacing smaller than 
the wave length. A method for including the effects of fractures on seismic wave 
propagation was proposed by writing the effective compliance tensor of the 
fractured rock mass as the sum of the compliance tensor of the background rock 
material and the compliance tensor for each set of parallel fractures. 

Recently, Li et al. (2010) proposed an equivalent viscoelastic medium model, 
which is composed of a viscoelastic medium model and the concept of virtual wave 
source (VWS). By using continuum mechanics concepts and an equivalent 
viscoelastic model wave propagation was studied across the rock mass by solving an 
explicit wave propagation equation, so as to simplify the problem. This method will 
be analyzed in Chapter 5. 

The equivalent medium theories have been applied for studying the effects of 
pores, cracks and fractures on wave propagation and for defining the effective 
elastic constants of the porous cracked media. The methods for computing the 
effective constants are based on the geometry, structures, concentration and 
distribution of pores and cracks and the fluid filling the pores and cracks.  

Many mechanisms have been introduced to simulate the wave attenuation due 
to the pores and cracks. In this way, many methods have been developed. These 
methods have been based on different assumptions on the wave attenuation 
mechanisms and on the viscosity, friction, squiring flow, bubble movement and 
contact line movement.  

These methods can be grouped into the intrinsic mechanisms of attenuation 
involving internal energy dissipation. A detailed description of these mechanisms 
has been given by Crampin (1981) and Xu & King (1990). A discussion of the wave 
attenuation mechanisms in view of wave frequency ranges was presented by 
Johnston et al. (1979). The conclusions of these studies are that the frictional 
dissipation is dominant in the range of ultrasonic frequencies and that fluid flow 
plays a second role in the frictional dissipation while the fluid squirting flow exists 
for lower frequency ranges.  
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2.4 Wave Scattering Method (WSM) 

 
The WSM has been used to study the effects of the micro-cracks on wave 
propagation velocity and amplitude attenuation in cracked media. The stress waves 
propagating through cracks are considered to be uniformly scattered by the cracks, 
provided that the crack size is small compared to the wave length and the crack 
concentration is diluted so that no interactions of wave scattering occur between 
individual cracks. 

Early in 1945, Foldy (1945) developed a multiple scattering theory of waves at 
cracks in a defective solid. The same theory was also proposed by Lax (1952). 
Considering the effects of wave scattering at the crack faces, Garbin & Knopoff 
(1973 and 1975a, b) presented methods for analysing the wave velocity variations 
with the incident angle and the polarization of the waves in a material permeated 
by a random distribution of voids (stress-free), circular cracks, and liquid-filled 
cracks. In these studies, the elastic shear and compression moduli were determined 
for the cracked material to account for the velocity variations. 

Kuster & Toksoz (1974a, b) derived a theoretical solution for wave scattering at 
inclusions in two-phase media and examined the wave dispersion and attenuation 
characteristics. The theoretical model was further verified with laboratory tests. 

Waterman (1976) presented a matrix theory of elastic wave scattering at cracks 
for investigating the wave propagation in cracked media. Chatterjee et al. (1980) 
examined the wave propagation velocity and amplitude attenuation variation at 
parallel thin penny-shaped cracks filled with a viscoelastic fluid. This study 
considered both the effects of wave scattering at cracks, with a technique similar to 
that used by Garbin & Knopoff (1973 and 1975a, b), and the effects of viscous 
attenuation caused by the filling fluid. It was concluded that the effects of the fluid 
viscosity is more significant than that of scattering at low frequencies. 

Hudson (1980 and 1981) proposed a "method of smoothing" in order to 
calculate the overall elastic constants and examined the wave velocity and 
attenuation in cracked materials by taking into account the wave scattering effects. 
Compared to the study of Chatterjee et al. (1980), Hudson's method (1981) 
considers only the wave scattering effects, and also predicts the frequency 
dependence of attenuation caused by wave scattering as derived by Chatterjee et 
al. (1980). In addition, Hudson showed that the attenuation coefficient due to wave 
scattering is proportional to the crack density and to the third power of the ratio 
between the mean crack radius and the wavelength. 

Hudson (1986 and 1990), Hudson & Knopoff (1989), Peacock & Hudson (1990), 
and Hudson et al. (1996) extended the method proposed by Hudson (1980) to the 
cases of various orders of crack density or multiple sets of cracks aligned in 
different directions. Furthermore, Hudson (1988) modified the analytical 
expressions obtained in 1981 to evaluate the wave attenuation across partially 
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saturated ellipsoidal cracks. The results show that the situation where cracks are 
partially liquid-filled is different from the limiting cases of either dry or fully liquid-
filled cracks, since the liquid is forced to flow laterally inside the cracks. 

Laboratory experiments have been carried out by many researchers to measure 
the wave propagation velocity and amplitude attenuation in the cracked media, 
where comparisons between the experiments and scattering theory were made. For 
example, Xu & King (1990) carried out laboratory tests of ultrasonic wave 
propagation through slate specimens before and after cracking. The testing results 
of wave attenuation were consistent with the theoretical predictions based on the 
Hudson's scattering model (1981). In addition, the observations due to Xu & King 
(1990) indicated that the quality factor (Q) ,  representing wave attenuation 
characteristics of the cracked materials, is more sensitive to the presence of cracks 
than the wave propagation velocity.  

Ass'ad et al. (1993) conducted a laboratory study of shear wave scattering at 
randomly distributed cracks, and compared the results obtained with Hudson's 
theory (1981). It was shown that the experimental results and the theoretical 
predictions agreed well for the situation of crack density up to 7%. However, 
discrepancies were observed at relatively higher crack densities (10%). Such 
discrepancies were explained by the additional energy dissipation due to the 
absorption of rubber inclusions used in the experiments. 

With the development of damage mechanics, some researchers used the damage 
mechanics-based method to evaluate the scattering effects of aligned cracks on the 
dynamic behaviours of rock masses and the wave scattering phenomenon in cracked 
rock masses (e.g. Han et al., 1986; Han, 1995). 

The effects of wave scattering at cracks on wave attenuation have been 
examined in terms of reflection and transmission coefficients of a single or a 
periodic distribution of cracks over a plane. A relatively simple case of wave 
scattering by a penny-shaped crack has been analysed by Mal (1970), Martin 
(1981), Achenbach & Norris (1982) and Martin & Wickham (1983). Furthermore, 
Bostrom & Eriksson (1993) examined the wave scattering by two penny-shaped 
cracks.  

Baik & Thompson (1984) determined the reflection coefficient of an imperfect 
bond composed of a planar distribution of cracks. Angel & Achenbach (1985a, b) 
investigated the elastic wave scattering by a periodic array of cracks for normal an 
oblique incidence of waves, respectively. In their study, the reflection and 
transmission coefficients of a planar periodic array of cracks were analytically and 
numerically solved, and the balance of energy rates was checked. 

Further efforts to examine the wave scattering in terms of reflection and 
transmission coefficients of cracks were made for a periodic array of spherical 
cavities (Achenbach & Kitahara, 1986), a doubly periodic array of cracks (Angel & 
Achenbach, 1987), a multiple periodic arrays of cracks (Achenbach & Li, 1986a), a 
periodic array of inclined screens (Achenbach & Li, 1986b), and a periodic array of 
inclined cracks (Mikata & Achenbach, 1988).  



CHAPTER II    State of the art 23 

The complexities of wave scattering by arbitrary distributions of cracks were 
examined by Piau (1979), Sotiropoulos & Achenbach (1988a, b), Zhang & Gross 
(1993) and Eriksson et al. (1995). Since analytical solutions for more complicated 
crack distributions are often difficult to derive, numerical methods such as the 
boundary element method have been used (e.g. Angel & Achenbach, 1985a, b and 
1987; Achenbach & Li, 1986a, b; Sotiropoulos & Achenbach, 1988a, b; Coutant, 
1989; Achenbach & Zhang, 1990; Hirose & Kitahara, 1991). 

A first attempt to consider the coplanar crack distribution over a bounded 
region (with a thickness) in space rather than in a plane was made by Achenbach 
& Zhang (1990). In this study, the reflection and transmission coefficients were 
expressed in terms of integrals over a number (N) of cracks, and the variation of 
these coefficients with frequency, relative region thickness and incident angle was 
examined. Lin & Keer (1987) and Budreck & Achenbach (1988) analysed the wave 
scattering at three-dimensional planar cracks. 

The above studies on wave scattering are based on the linear model of 
scattering. That is, the wave scattering is modelled based on the spring contact 
condition of cracks. On the other hand, studies on wave scattering at cracks with 
nonlinear contact conditions have been conducted (e.g. Morris et al., 1979; 
Achenbach & Norris, 1982; Hirose & Achenbach, 1993; Smyshlyaev & Willis, 1994; 
Capuani & Willis, 1997). In these studies, the nonlinear scattering is generally 
considered to arise from the nonlinear process of interaction of crack faces in 
contact.  

Morris et al. (1979) conducted laboratory measurements of nonlinear scattering 
by surface ultrasonic waves in an aluminium alloy subjected to fatigue loads. They 
observed an important phenomenon of higher harmonics of scattered waves at 
cracks caused by the nonlinear relation between the crack face traction and crack 
closure. Achenbach & Norris (1982) analytically investigated the wave reflection 
and transmission by an infinite flaw plane, where the interaction between the crack 
faces was modelled by a nonlinear relation between the crack-face tractions and the 
crack-opening displacements.  

Hirose & Achenbach (1993) used a time-domain boundary element method to 
numerically examine the nonlinear scattering problem at a penny-shaped crack 
subjected to a longitudinal incident wave. In this study, the contact-boundary 
conditions on the crack faces are of no overlap and no friction, which give rise to a 
boundary-type nonlinear problem of wave scattering. The higher harmonics 
phenomenon in the far field due to the nonlinear crack face contacting conditions 
was also described. 

A comparative study of linear and nonlinear scattering at cracks was conducted 
by Smyshlyaev & Willis (1994), based on the quasi-static approximation for the 
displacement jump across the crack. In their study, the linear scattering results 
from the assumption that either the crack faces never come into contact, or they 
remain in permanent gliding contact; whereas, nonlinear scattering arises when a 
unilateral constrain is introduced to crack deformation, corresponding to the 
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opening of the crack under tension, closure under compression and frictionless slip 
under shear. 

Capuani & Willis (1997) presented theoretical formulations for the transient 
nonlinear response of a flat crack. Explicit formulae were derived for the crack 
subjected to one-dimensional incident P-waves. In addition, numerical results were 
obtained for the crack subjected to various incident waves, by introducing a 
unilateral constrain to describe the nonlinear interaction between frictionless crack 
faces. 

To sum up, the wave scattering theories are suitable for analysing the wave 
attenuation across the micro-cracks of smaller sizes compared to wave length. The 
crack shape, crack density and distribution are very important parameters in the 
wave scattering formulations. Apparent wave attenuation due to the scattering of 
energy at cracks is considered as the principal attenuation mechanism. The wave 
attenuation is evaluated in terms of the reflection and transmission coefficients of a 
distribution of cracks. If cracks are filled with liquid, intrinsic attenuation can be 
taken into account based on the real energy loss - viscous dissipation by the filling 
liquid. The quality factor (Q) and wave attenuation coefficient (α) can also be 
derived to quantify the wave attenuation due to both energy scattering and 
dissipation. 
  
 
2.5 Comparison of the above methods 
 
Three different approaches have been analysed for evaluating the effects of micro-
fractures or fractures on wave propagation.  

The equivalent medium methods have some limitations. The first negative 
aspect of this approach (White 1983; Schoenberg and Muir 1989; Pyrak-Nolte et al. 
1990b; Zhao J. et al. 2006) is due to the simplification of the discontinuous rock 
mass to an equivalent medium. Moreover the discreteness of wave amplitudes 
attenuated at individual fractures is lost.  

Another limitation is that the frequency-dependent amplitude and velocity 
variations with respect to fracture orientation is not introduced, due to reflection 
losses across and wave channelling along fractures. The reason is that the 
equivalent medium approaches are usually based on static approximation (i.e. zero-
frequency). This problem has been addressed by Pyrak-Nolte (1988), Pyrak-Nolte 
et al. (1990b), Frazer (1990) and Coates & Schoenberg (1995). 

In particular, Yi et al. (1997) compared the two approaches by carrying out 
finite difference modelling of seismic wave propagation across multiple parallel 
fractures, where the displacement discontinuity model and the equivalent 
transversely-isotropic model for fracture representation are both incorporated in the 
numerical code. It is shown that the equivalent medium model underestimates the 
amplitude anisotropy and never predicts frequency-dependent wave propagation 
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velocity. By contrast, the displacement discontinuity model considers explicitly the 
effects of individual fractures by representing them as discontinuity displacement 
boundary conditions in the wave equation, and takes into account the frequency-
dependent amplitude attenuation across the fractures. 

The conditions of the applicability of displacement discontinuity theories have 
been discussed in past studies (e.g. Myer et al., 1985; Pyrak-Nolte, 1988; Pyrak-
Nolte et al., 1990a,b; Gu, 1994; and others). Considering a planar fracture as a 
planar collection of collinear micro-voids and asperities in contact, Nolte et al., 
(2000) paid attention to the limit of applicability of displacement discontinuity. 
Their study showed that the displacement discontinuity theories are valid only if 
the spacing between the asperities is much smaller than wave length, in addition to 
the conditions that the fracture extent is larger and the thickness is smaller than 
the wavelength.  

If the asperity spacing is comparable to the wave length, resonant scattering 
may occur at the voids between the asperities, resulting in the invalidity of the 
displacement discontinuity theories. Moreover, Nolte et al. (2000) found that in 
case the distribution of finely distributed asperities is strongly inhomogeneous, 
where the correlation length describing the fluctuation in the fracture stiffness may 
be comparable to or larger than the average asperities spacing, then even if the 
individual asperity separations are smaller than the wave length, resonant 
scattering possibly occurs and the displacement discontinuity theories are not 
applicable.  

The equivalent medium method cannot work well in representing media where 
the fractures are relatively large and sparsely spaced (with spacing of the order of, 
or larger than, a seismic wavelength) (Pyrak-Nolte et al. 1990b). 

The wave scattering theories are only applicable to micro-cracks. At microscopic 
scale, a fracture appears as a planar collection of void spaces and asperities 
(asperities refer to contacts between two fracture surfaces). The effects of micro-
cracks are analysed from the uniform wave scattering as a distribution of collinear 
cracks, and represented by the wave reflection and transmission coefficients in 
terms of integrals over the N numbers of collinear cracks in a plane.  

The point of view taken in these theories can be thought of as a middle ground 
between the equivalent medium theories and in the displacement discontinuity 
theories. That is, the scattering theories consider individual cracks and contact 
characteristics between the crack faces, but derive the wave reflection and 
transmission coefficients of a collection of cracks (such as a periodic array of cracks 
distributed over a plane, and a thick region of collinear defects and cracks 
distributed over a space).  

The wave scattering model is established in a long wave length limit, i.e. the 
crack size is small with respect to the wave length. This assumption is true for 
micro-cracks contained in rock materials, but may be inappropriate for macro-
fractures that are dominant in fractured rock masses, resulting in the limited 
applicability of the scattering theories to the fractured rock masses. In addition, 
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solutions to the wave scattering problems are derived usually under the assumption 
of weak concentration of cracks (no interaction between the adjacent cracks), which 
also limits the use of these theories for densely-cracked materials. 

Finally, the displacement discontinuity theories can be applied for simulating 
the effects of fractures or rock joints on wave propagation if they are planar, large 
in extent and small in thickness compared to the wavelength. These are good for 
obtaining the effects of fractures in the far field. 

The equivalent medium theories are particularly suitable for the analyses of the 
global effects on wave propagation of densely-concentrated micro-cracks or micro-
fractures. Moreover these theories are applicable to analyse wave propagation in 
highly fractured medium. 

The previous methods have advantages or disadvantages. Depending on the 
problem to be solved (e.g. scale, type and extension of fractures, fracture 
behaviour, type of input signal, etc.), a specific method can be chosen and adopted.  
 
 
2.6 Numerical Methods 

 
Many numerical methods are today available for studying rock engineering 
problems. These methods are very useful for solving more complex real problems 
that with the previous approaches cannot be solved. In this paragraph we will 
summarize the main numerical methods available: 
 

- Finite Element Method (FEM); 
- Boundary Element Method (BEM); 
- Discrete Element Method (DEM); 

 
 

2.6.1 Finite Element Method (FEM) 
 

The Finite Element Method is still one the most popular numerical methods in 
engineering. It has been applied to the solution of a large number of problems in 
different fields. Its popularity, particularly for load-deformation problems, largely 
depends on the fact that it is very appealing to engineers. They are able to relate it 
to a large extent to the background of structural mechanics as the physical 
meaning of the steps of calculations is relatively transparent. FEM is extremely 
popular with geotechnical engineers. Its strength lies in its generality and flexibility 
to handle all types of load, sequence of construction and installation of supports. 

The method essentially involves dividing the body into smaller elements of 
various shapes held together at the nodes, which are corner of elements. In general, 
the greater the number of elements used to model the problem and the better 
approximation to the real solution is obtained. Displacements at the nodes are 
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treated as unknowns and are calculated. Stresses are computed at one or more 
integration points inside each of the elements. Each element can have different 
material properties. 

The major disadvantage of the method is that considerable effort is required in 
preparing data for a problem. This is particularly crucial in 3D problems and has 
led to “mesh generation” programs. These programs produce the input data 
required for the Finite Element program. Still considerable effort is needed in 
starting up the problem. FEM is also expensive in computer time. A large set of 
simultaneous equations has to be solved to obtain solutions, especially when the 
stress-strain relationship is nonlinear. 

To model the rock fractures, Ngo & Scordelis (1967) proposed a two-node 
linkage element for rock joint. As an improvement, based on the lumped interface, 
Goodman et al. (1968) proposed a joint element in FEM. The Goodman joint 
element is a linear line element suitable for 2D analysis with four nodes and no 
thickness. The stiffness matrix for the joint element is derived in the same way as 
for the regular finite element. Mehtab & Goodman (1970) extended the formulation 
of the Goodman joint element to 3-D solution. Goodman (1976) presented another 
version of the joint element capable of modelling material non-linearity. 
 
 
2.6.2 Boundary Element Method (BEM) 
 
The Boundary Element Method (BEM) is becoming increasingly popular. The main 
reasons for this growth are: reduced set of equations, smaller amount of data, 
proper modelling of infinite domains, no interpolation errors inside the domain and 
valuable representation for stress concentration problems. BEM can be of as many 
different types as the domain methods, ranging from simple techniques such as 
indirect methods to the more versatile direct formulations. 

Kupradeze (1965) established the foundations of the indirect boundary element 
method adopting the Kelvin fundamental solution to solve elastostatic problems. 
Watson, applying the same technique, has obtained a numerical solution for a pre-
stressed concrete pressure vessel of a nuclear reactor treating the structure as a 
thick shell. The starting point of the direct formulation is due to Rizzo in 1967. His 
work, which presented the solution of the 2D elastostatic problem, was extended to 
the 3D case. The direct boundary element methods, which are more reliable than 
indirect techniques, are based on adopting the real physical variables of the 
problem as the unknown of the system. 

In this method only the surface of the rock mass to be analyzed needs to be 
discretized, i.e. divided into smaller patches. BEM differs from FEM by the fact 
that approximations only occur on the boundary of the problem domain. The 
solution inside the domain will always satisfy the equations of equilibrium and 
compatibility exactly. For 2D solutions, line elements at the boundary represent 
the problem, while for fully 3D problems, surface elements are required. The data 
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preparation is relatively simple. However, the computer program is not so 
transparent.  

Whenever there is a change of material properties, the surface defining the 
separation has to be discretized. Thus, if there are a number of layers of different 
materials, data preparation can still become complex. BEM appears to be a very 
efficient method for homogeneous, linear elastic problems, particularly in 3D 
conditions. For complex nonlinear material laws with a number of sets of materials, 
advantages of the method are considerably diminished. The matrices of equations 
arising in this method are not banded and symmetric as for FEM but are fully 
populated. Thus, though the number of equations to be solved is considerably 
reduced, computation time does not reduce in the same proportion. The method 
makes use of certain closed form relations of what may be called “elementary” 
problems. These solutions frequently contain trigonometric and logarithmic terms, 
which slow down the computations. 

Recognizing the advantages and disadvantages of FEM and BEM, many 
researchers have combined the two methods. The coupled FEM/BEM method in 
which for a certain region, close to an opening or some other area of interest, FEM 
discretization is used, while for the remaining area BEM discretization is adopted. 
 
 
2.6.3 Discrete Element Method (DEM) 

 
A discrete element method (DEM), also called distinct element method, is any 

family of numerical methods for computing the motion of a large number of 
particles of micrometre-scale size and above. Though DEM is very closely related to 
molecular dynamics, the method is generally distinguished by its inclusion of 
rotational degrees-of-freedom as well as stateful contact and often complicated 
geometries (including polyhedra). With advances in computing power and 
numerical algorithms for nearest neighbor sorting, it has become possible to 
numerically simulate millions of particles on a single processor. Today DEM is 
becoming widely accepted as an effective method of addressing engineering 
problems in granular and discontinuous materials, especially in granular flows, 
powder mechanics, and rock mechanics. 

The various branches of the DEM family are the Distinct Element Method 
proposed by Cundall in 1971, the Generalized Discrete Element Method proposed 
by Hocking, Williams and Mustoe in 1985, the Discontinuous Deformation Analysis 
(DDA) proposed by Shi in 1988 and the finite-discrete element method 
concurrently developed by several groups (e.g., Munjiza and Owen).  
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In the following we focus on three DEM methods that are widely used in 
engineering that are the Distinct Element Method (DEM), the Bonded Particle 
Model (BPM) and Discontinuous Deformation Analysis (DDA). A more 
comprehensive description of the Distinct Element Method will be given in Chapter 
8. 

 
 

Bonded Particle Model (BPM) 
 
In the Bonded Particle Model (BPM), based on the Discrete Element Method - 
DEM (Cundall and Strack, 1979), the response of rock under a number of 
situations can be simulated by assemblies of a large number of circular or spherical 
particles with finite radius bonded by ball - ball contacts.  

The relation between the model properties (assembly arrangement, particles' 
radius and contact characteristics) on a microscopic level and the rock macroscopic 
properties such as compressive strength or Young's modulus is not direct, as there 
is no complete theory to relate micro and macroscopic properties.  

The constant and steady growth of computational capacities and a number of 
very successful applications of BPM to model complex rock behaviour has 
promoted the utilization of this method (e.g. Potyondy et al. 1996; Potyondy and 
Cundall, 2004). Not much attention, however, has been dedicated to the modelling 
of rock dynamic behaviour using particle models.  

In the field of geophysics, some authors have used particle codes to model wave 
propagation in large scale, from hundreds of meters to tens of kilometres (Toomey 
and Bean, 2000; Abe et al., 2004). However, the model in question employed 
regular assemblies of particles, which do not mimic with realism the rock more 
complex behaviour.  

Matsuoka et al. (2003) also used a regular arrangement of disks to model a 
Hopkinson bar test of rock capturing some of the main features of the experiment, 
namely the detachment of a piece of the bar extremity ejected due to the reflected 
tension wave. Hentz et al. (2004) employed a 3D particle model to investigate the 
effect of strain rate in the compressive and tensile strength of rock and several 
authors have used particle models to model blasting in several aspects. 

Kim et al. (1997) and Donzè et al. (1997) modelled the crack generation caused 
by a blast charge in a cylindrical borehole, Donzè and Bernasconi (2004) modelled 
a shaft sinking blast in three dimensions obtaining patterns of rock damage around 
the shaft. Kim et al. (2006) investigated the influence of joint direction and spacing 
at a tunnel contour blasting. These works employ particle methods on blasting and 
rock dynamic applications managing to qualitatively capture the major phenomena 
at stake, namely fracture creation and propagation, rock fragmentation, movement 
of the blasted rock and damage due to high dynamic stress. However, the 
propagation of elastic stress waves outside the zone of rock fragmentation is not a 
relevant issue in these cases and has not been addressed so far. 



30       State of the art CHAPTER II 

Hazzard and Young (2004) used PFC3D to reproduce the anisotropic damage 
inflicted to a sandstone sample by triaxial deviatoric loading. This is the only work, 
to the knowledge of the authors, which investigates some of the characteristics of 
the propagation of stress waves in unorganized particle models of rock. 
 
 
Discontinuous Deformation Analysis (DDA) 

 
Discontinuous Deformation Analysis (DDA) is a type of discrete element 
method originally proposed by Shi in 1988. DDA is somewhat similar to the finite 
element method for solving stress-displacement problems, but accounts for the 
interaction of independent particles (blocks) along discontinuities in fractured 
and jointed rock masses.  

DDA is typically formulated as a work-energy method, and can be derived using 
the principle of Minimum Potential Energy (e.g. Shi & Goodman 1985; Shi 1988; 
Shi & Goodman 1988) or by using Hamilton's principle. Once the equations of 
motion are discretized, a step-wise linear time marching scheme in the Newmark 
family is used for the solution of the equations of motion. The relation between 
adjacent blocks is governed by equations of contact interpenetration and accounts 
for friction.  

DDA adopts a stepwise approach to solve for the large displacements that 
accompany discontinuous movements between blocks. The blocks are said to be 
“simply deformable”. Since the method accounts for the inertial forces of the blocks' 
mass, it can be used to solve the full dynamic problem of block motion.  

According to Sitar & McLaughlin (1997) contact detection logic is implemented 
in the code DDA similar to the DEM. Contact detection is performed in order to 
recognize the association between edges and corners between blocks. In this method 
interpenetration of blocks is avoided by a numerical iterative (algorithmic) 
procedure and thus the contacts are assumed to be rigid. The network of 
discontinuities, which are simulated by springs, creates and stores its own energy 
due to the above interpenetration cancelling technique. 

The code tries to find the necessary compatible displacements of the blocks, so 
that this energy is minimized. The residual energy is then used to back calculate 
contact forces, element stresses, etc. DDA has been successful in simulating various 
geotechnical engineering problems such as rock slope stability, and underground 
excavations in fractured rock masses. 

The DDA approach is applicable for rock masses in which the significant 
fractures affecting stability must be modelled explicitly using mean joint attitude, 
length, spacing, and bridge. This includes rock masses with more fractures than can 
be analyzed using the clamped beam model (Obert & Duvall, 1967) or the Voussoir 
bean analogue (Evans, 1941; Beer & Meek, 1982; Sofianos, 1996; Diederichs & 
Kaiser, 1999) for roof stability in mines, and rock masses where the number of 

http://en.wikipedia.org/wiki/Discrete_element_method
http://en.wikipedia.org/wiki/Discrete_element_method
http://en.wikipedia.org/w/index.php?title=Shi_GH&action=edit&redlink=1
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/w/index.php?title=Jointed_rock_masses&action=edit&redlink=1
http://en.wikipedia.org/wiki/Hamilton%27s_principle
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fractures is insufficient for application of particle flow codes (Cundall & Strack, 
1979) or plastic continuum approximations (Klerck et al., 2004). 
 
 
2.7 Summary 

 
A review of the analytical and numerical methods for studying the effects of cracks, 
fractures and joints on wave propagation has been presented. The theoretical 
methods available in the literature are different depending on the type of problem 
to be considered. In fact, some methods are appropriate to treat the effects of 
microcracks on wave propagation, other methods are better suited for studying the 
effects of fractures or joints. Many numerical methods are available but not all of 
them allow one to study effectively wave propagation problems in discontinuous 
media. The most frequently used methods are DEM and DDA.  
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Chapter 3   
 
The Scattering Matrix Method and the study of 
wave propagation in continuous media 
 
 
3.1 Introduction    

 
Wave propagation in continuous media is of interest in the design of underground 
structures and geotechnical works in general. This phenomenon has been studied 
by various authors. The first analysis is probably due to George Green (1839) who 
did not complete all the algebra necessary in the case of two half-spaces having 
different elastic constants and densities. This generalization was instead performed 
by Knott (1899) using potential theories and independently by Zoeppritz (1907). 

The incident plane wave assumption may be appropriate to study the case of 
waves at great distances from their source. If reflection and refraction take place 
near the source, this phenomenon cannot be explained directly by Knott’s theory, 
as in this case one considers a point source radiating spherical waves. An 
important indirect application of Knott’s theory can be mentioned for studying 
spherical waves by decomposing them into a sum (or integral) of plane waves. 
Knott’s theory is applied to each plane wave, and finally the result is obtained by 
superimposing the results for each plane wave. 

In this chapter, we will introduce the classical theory of wave propagation 
through a stratified medium with welded interfaces between elastic media, i.e. a 
continuum by using the Scattering Matrix Method (SMM). We will analyze the 
simplest type of interface in which two homogeneous isotropic elastic media are in 
welded contact on a plane boundary. This type of interface can be considered like 
a discontinuity surface of mechanical properties. Details of the seismic source are 
avoided by considering the case of a plane wave incident on the boundary.  

The SMM is based on the definition of the scattering matrix that is composed 
of reflection and transmission coefficients of a single interface or a set of interfaces. 
The SMM will be presented with some analytical and parametric analyses to 
evaluate the effects of the interfaces on wave propagation.   
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3.2 Properties of plane waves in elastic media and boundary 
conditions 

 
The assumption, in the Scattering Matrix Method of an incident plane elastic wave, 
allows one to treat the problem of wave propagation through interfaces more easily 
than with spherical waves.  

A physical quantity (such as particle acceleration or a stress component) 
propagates as a plane wave in direction l with speed c if (Aki & Richards, 2002): 

 
- at a fixed time, the quantity is spatially unchanged over each plane normal 

to the unit vector l, and if 
- the plane associated with a particular value of the quantity moves with 

speed c in direction l. 
 

It follows that physical quantities propagating with these two properties must 
have a functional dependence on space and time only via the combination t – (l · 
x)/c. We call l/c the slowness vector s. An advantage of using slowness (rather 
than velocity) to summarize the speed and direction of propagation of a wave is 
that slownesses may be added vectorially (velocities, in this context, cannot). Thus, 
using Cartesian coordinates (x,y,z), the slowness of a given wave is the vectorial 
sum of its components sx,sy,sz along each coordinate direction:  
and the slowness in direction n is simply s · n. In contrast, the velocity with which 
a plane wave advances in a particular direction is, in general, faster than its 
velocity in the direction of propagation (see 

ˆ ˆx y zs s s+ +s = x y ẑ

( ) , ,i j ji i jju u uρ λ μ ρ μ= + +

0k j j ik ks s s s uμ δ ⎤+ =⎦

Figure 3.1). 
The two basic types of plane waves in a homogeneous isotropic medium are 

easily distinguished by substituting the general form u=u(t - s · x) for displacement 
into the elastic displacement equation, 
 
 (3.1) 
 
to give 
 
 ( )ik iρδ λ μ⎡ − +⎣ (3.2) 
 

Forming the vector product and scalar product of (3.2) with s, and using s2 = 
1/c2, we obtain 
 

 
2

μ⎛ ⎞⎟− ⎟⎟⎟⎝ ⎠
u×s = 0

c
ρ⎜⎜⎜ 2

2

c

λ μ
ρ

⎛ ⎞+ ⎟⎜ − ⎟ ⋅⎜ ⎟⎜ ⎟⎝ ⎠
u s = 0 (3.3) 
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Figure 3.1 – Schematization of a plane wave (l is the direction of propagation and ϑinc is 
the angle of incidence, with respect the z-axis 

Therefore, either  and c2 = (λ + 2μ)/ρ, or  and c2 = μ/ρ. It 
follows that the plane wave is either a P-wave, with longitudinal motion (parallel 
to s) and speed [(λ + 2μ)/ρ]1/2 = VP, or an S-wave with transverse motion and 
speed (μ/ρ)1/2 = VS. The longitudinal or transverse nature of P or S motion is 
exact, at all frequencies, for plane waves in homogeneous isotropic media. 

u×s = 0 ⋅u s = 0

To describe the energy associated with the elastic motion, we consider the 
concept of elastic strain-energy density. The strain energy of a medium is its 
capacity to do work by virtue of its configuration, and it is known (Aki & 
Richards, 2002) that the strain-energy density can be expressed as 1/2τijεij. For a 
plane wave ui =ui(t - s · x), the strain tensor is eij = -1/2[ i j j iu s ], and recalling 
the stress-strain relations for an isotropic linearly elastic medium it is easy to show 
that  

u s+

 

 ( )( 21 1

2 2ij ijτ ε λ μ= + ⋅s u) ( )( )μ⎡ ⎤+ ⋅ ⋅⎢ ⎥
⎣ ⎦

u u s s  (3.4) 

 
In the case of either a P-wave (for which s is parallel to , and |s| = VP

-1) or 
an S-wave (s perpendicular to u , and |s| = VS

-1) it follows from 
u

(3.4) that 
 

 21 1

2 2ij ijτ ε ρ= u

Constant phase planes

z 

 
ϑinc 

x

l

. (3.5) 

 
i.e., the strain-energy density equals the kinetic-energy density. The quantities in 
(3.5) are all real, and the energy densities depend on t and x only via the 
combination t - s · x. Hence the speed of energy propagation is no different from 
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the speed with which a pulse shape in particle displacement is propagated: either 
VP for P-waves or VS for S-waves. 

It follows that the flux rate of energy transmission in a plane wave (i.e., the 
amount of energy transmitted per unit time across unit area normal to the 
direction of propagation) is ρVP  for P-waves and ρVS  for S-waves. We have 
proved this result only for plane waves in homogeneous media, and it is a "local" 
property, depending on material properties and on the planar nature of the wave 
only at the point at which the flux rate is evaluated. We can therefore expect that 
flux rates are still given approximately by  times the propagation velocity for 
the case of slightly curved wave-fronts in a medium with some spatial fluctuation 
in material properties. It follows that there is a physical interpretation of the 
results of geometrical ray theory for displacement amplitude (Aki & Richards, 
2002).  

2u 2u

2uρ

 
 
3.3 Scattering Matrix Method (SMM) 
 
The scattering phenomenon that takes place when an elastic wave impinges on a 
discontinuity is conveniently described by a scattering matrix. In the case of a 
planar interface between two media or a planar joint in a rock mass, incident, 
reflected and transmitted plane waves have the same transverse wave-vector. The 
respective amplitudes are related by a 2x2 block matrix 
 

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
11 12

21 22

S S
S

S S
 (3.6)

 
 

 
where  
Sii has the meaning of reflection coefficients at the two sides of the interface and Sij 
of transmission coefficients. Since elastic waves have three possible polarization 
states (P, SV, SH), the submatrices have size 3x3. 

When more parallel interfaces are present, the scattering matrices of each 
interface are combined according to a standard algorithm in order to describe the 
behaviour of the complete structure, with due consideration of all multiply reflected 
waves.  

The method is borrowed from the study of electromagnetic waves propagation 
and the theory of transmission lines such as coaxial cables, optical fibres, strip-
lines, etc (Collin, 1992). 

The problem can be related to discontinuities of mechanical properties, between 
two different media, or joints as characteristic of rock masses. In this chapter we 
analyze the first type of discontinuities while in Chapter 4 we will consider typical 
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discontinuities as present in rock masses. As a first instance, we can consider the 
case of a planar welded interface between two homogeneous linear elastic media.   

An earthquake generates waves that can be decomposed into a compressional 
wave (P-wave) and two shear waves (SV and SH). These three different elastic 
waves produce particle motion parallel to three spatial directions. In fact, a plane 
P-wave produces particle motion in the direction parallel to that of propagation; 
for a SV-wave the particle motion is normal to the direction of propagation but is 
in the plane of incidence while for a SH-wave the particle motion is normal to the 
plane of incidence. In this situation, we can simplify the problem by considering 
that, on reflection at an interface, P and SV-waves are coupled while the SH-waves 
are decoupled from them. 

The description of the Scattering Matrix Method (SMM) can start by studying 
the propagation of a plane wave through a welded interface between two media 
with different mechanical properties (Figure 3.2). The wave-vector k represents the 
direction of propagation of the incident plane wave and its modulus is the 
propagation constant. The interface is represented by the z=0 plane in Figure 3.2. 

We consider a 2D time harmonic problem by orienting the y axis perpendicular 
to both z and k, so that 0y∂ ∂ ≡ . 

 

 
Figure 3.2 – Welded interface between two media - Geometry of the problem 

As a first instance, we can consider that the wave vector k is relative to a P-
wave that impinges on the interface at an angle ϑP. The wave vector k can be 
decomposed into x and z directions as: 
 
 ˆ ˆzPkξ= +k x z

x̂

ϑ

x 

 (3.7)
 

   Medium 2    Medium 1 

 
where:  

 and ẑ  are the unit vectors; 
sin P

Pkξ =  is the transverse wave-vector; 

SV
e P

e

SH
e

z

k
ϑinc 
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ω  is the angular frequency; 
kP = ω/VP is the propagation constant for P-waves; 
VP is the velocity of propagation of P-waves;  
ϑP is the P-wave angle of incidence; 

kzP = (kP
2
 - ξ 2)1/2

 is the z component of the wave-vector k. 
 

The same considerations apply to shear waves but in this case we have to 
consider that kS and kzS are function of angular frequency, shear wave velocity and 
angle of incidence. 

Snell’s law shows the following relation between P and SV waves: 
 

sin sinP SV
P Sk kξ ϑ ϑ= =  (3.8)

 
 

 
where: 
ϑSV is the angle of incidence for SV-wave. 
 

It is well known (Van der Hÿden) that the state variables that characterize the 
elastic wave field are the velocity v and the traction  on a plane orthogonal to 

. Indeed these are the quantities that are continuous at a welded interface. 
ˆ⋅T z

ẑ
The stress field associated to a plane wave is computed by an impedance 

relation (Auld, 1973; Aki & Richards, 2002):    
 

P

Pk

ρω
− ⋅ =T l v       for pressure waves (P-waves) 

S

Sk

ρω
− ⋅ =T l v       for shear waves (S-waves) 

(3.9)
 

 

 
The left hand side of these equations yield the traction on planes orthogonal to 

the propagation direction ˆ. The traction of interest is  on the planes 
orthogonal to ˆ  and is given by (Auld, 1973): 

l ˆ⋅T z
z

 
ˆ− ⋅ = ⋅T z Z v  (3.10)

 
 

 
with: 
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44 44 44

44 44

12 11 12 11

cos 0 sin 0
1

0 cos 0 0

sin 0 cos 0

zi
i

zi

C C C k
k

C C

C C C

ϑ ϑ
ϑ

ω ω
ϑ ϑ ξ

+

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

Z
44

0

zi

C

k

C k

ξ ⎤
⎥
⎥
⎥
⎥
⎥⎦

 (3.11)
 

 
where the + sign is to be used for forward waves and the – sign for backward 
waves. Moreover kzi is to be interpreted as kzS for shear waves and kzP for pressure 
waves while ki as kP and kS. 

We derive now the explicit expressions of the elastic wave field for each wave 
type: 
 
Forward P-wave: 
 

( ), zPjk zP j x Px z c e e ξ−+ − +=v e  (3.12)
 

 
 
with: 
 

 ( )ˆ ˆsin cosP P P PN
ξ

ϑ ϑ+ + ⎜= + = ⎜⎜⎜
e x z ˆ ˆzP P

P P

k
N

k k
+

⎛ ⎞⎟⎟+ ⎟⎟⎝ ⎠
x z  (3.13)

 

 
where   is a suitable normalization factor (see Appendix A). PN +

 

 2

44ˆ ˆ2
P P

C
k k

ξ
44 11

ˆ

2

zP

zP

jk zP j x P P

P
jk zP j x zP

P

c e e

kN
c e e C C k

ξ

ξ ξ
ω

−+ − + +

−+ −

− ⋅ = ⋅ =
⎡ ⎛⎜ ⎞ ⎤⎟⎢ ⎥⎟− ⎟= ⋅ + ⎜⎜⎢ ⎥⎟⎟⎝ ⎠⎜⎢ ⎥⎣ ⎦

x z

T z Z e
 (3.14)

 

 
Backward P-wave: 
 
 ( ), zPjk zP j x Px z c e e ξ+− − −=v e  (3.15)

 

 
with: 
 

 ( )ˆ ˆsin cosP P P PN
ξ

ϑ ϑ− − ⎜= − = ⎜⎜⎜
e x z ˆ ˆzP P

P P

k
N

k k
−

⎛ ⎞⎟⎟− ⎟⎟⎝ ⎠
x z  (3.16)
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 2

44ˆ ˆ2
P P

C
k k

ξ
44 11

ˆ

2

zP

zP

jk zP j x P P

P
jk zP j x zP

P

c e e

kN
c e e C C k

ξ

ξ ξ

ω

+− − − −

+− −

− ⋅ = ⋅ =
⎡ ⎛⎜ ⎞ ⎤⎟⎢ ⎥⎟− ⎟= ⋅ − + ⎜⎜⎢ ⎥⎟⎟⎝ ⎠⎜⎢ ⎥⎣ ⎦

x z

T z Z e
 (3.17)

 

 
Forward SV-wave:  
 

 ( ),x z zSjk zSV j x SVc e e ξ−+ − +=v e  (3.18)
 

 
with: 
 

 ( )ˆ ˆ ˆcos sinSV SV SV SV zS

S S

k

k k

ξ
ϑ ϑ+ + ⎜= − = ⎜⎜⎜

e x z ˆ SVN N +
⎛ ⎞⎟⎟− ⎟⎟⎝ ⎠

x z  (3.19)
 

 

 2 2

44

ˆ

2
2

zS

zS

jk zSV j x SV SV

SV
jk zSV j x S

c e e

kN
c e e C

ξ

ξ

ω

−+ − + +

−+ −

− ⋅ = ⋅ =
2

44ˆ ˆzS

S S

k
C

k k

ξ ξ⎡ ⎤−⎢ ⎥−= ⋅ ⎢ ⎥
⎢ ⎥⎣ ⎦

x z

T z Z e

 (3.20)
 

 
Backward SV-wave:  
 

( ) zSjk zSV j x SVc e e ξ+− − −=v e,x z  (3.21)
 

 

 
with: 
 

 ( )ˆ ˆ ˆcos sinSV SV SV SV zS

S S

k

k k

ξ
ϑ ϑ− − ⎜= + = ⎜⎜⎜

e x z ˆ SVN N −
⎛ ⎞⎟⎟+ ⎟⎟⎝ ⎠

x z  (3.22)
 

 

 2 2

44

ˆ

2
2

zS

zS

jk zSV j x SV SV

SV
jk zSV j x S

z c e e

kN
c e e C

ξ

ξ

ω

+− − − −

+− −

− ⋅ = ⋅ =
2

44ˆ ˆzS

S S

k
C

k k

ξ ξ⎡ ⎤−⎢ ⎥−= ⋅ −⎢ ⎥
⎢ ⎥⎣ ⎦

x z

T Z e

 (3.23)
 

 
Forward SH-wave:  
 

 ( ),x z zSjk zSH j x SHc e e ξ−+ − +=v e  (3.24)
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where: 
 

ˆSH SHN+ +=e y  (3.25)
 

 

 

 ( 44
zS zS

SH
jk z jk zSH j x SH SH SH j x

zS
N

c e e c e e C kξ ξ

ω
− −+ − + + + −− ⋅ = ⋅ = ⋅T z Z e )ˆ ŷ  (3.26)

 

 
Backward SH-wave:  
 

( ) zSjk zSH j x SHc e e ξ+− − −=v e

ˆSH SHN− −=e y

,x z  (3.27)
 

 

 
with: 
 

  (3.28)
 

 

 
( )44 ˆ

j x SH SH

SH

zS

e

C k

ξ

ω

− − − −⋅ =

= ⋅ −

Z e

y

ˆ zS

zS

jk zSH

jk zSH j x

c e

N
c e e ξ

+

+− −

− ⋅ =T z
 (3.29) 

 
It can be noted that the x dependence of all the quantities is contained in the 

factor e-jξx, which is no longer written explicitly from now on. Focusing our 
attention on the z dependence, it is convenient to define an abstract 6x1 state 
vector Ψ(z) as: 
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⋅ z z z

 (3.30)
 

 
where: 
M is the modal matrix (Aki & Richards, 2002). 

The velocity and stress fields allow one to write the modal matrix M(ξ) (Aki & 
Richards, 2002): 
 

( )
41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66
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(3.31) 

 
where: 

41 ˆ ˆSH SHM + += ⋅Z e            42 ˆ ˆSV SVM + += ⋅ ⋅Z e 43 ˆ ˆP PM + += ⋅ ⋅Z e

51 ˆ ˆSH SHM + += ⋅ ⋅Z e            52 ˆ ˆSV SVM + += ⋅ ⋅Z e 53 ˆ ˆP PM + += ⋅ ⋅Z e

61 ˆ ˆSH SHM + += ⋅Z e            62 ˆ ˆSV SVM + += ⋅ ⋅Z e 63 ˆ ˆP PM + += ⋅ ⋅Z e

44 ˆ ˆSH SHM − −= ⋅ ⋅Z e            45 ˆ ˆSV SVM − −= ⋅ ⋅Z e 46 ˆ ˆP PM − −= ⋅ ⋅Z e

54 ˆ ˆSH SHM − −= ⋅ ⋅Z e            55 ˆ ˆSV SVM − −= ⋅ ⋅Z e 56 ˆ ˆP PM − −= ⋅ ⋅Z e

64 ˆ ˆSH SHM − −= ⋅Z e            65 ˆ ˆSV SVM − −= ⋅ ⋅Z e 66 ˆ ˆP PM − −= ⋅ ⋅Z e
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The columns of the modal matrix (3.31) contain the polarization vectors of 
forward and backward SH, SV, P waves. For example, the term 1,2 is the  
component of the velocity for the forward SV polarization and the term 4,2 is the 
tangential stress τzx. The modal matrix is defined for a certain value of the 
transverse wave-vector ξ that is the x component of the wave-vector k (

x

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⋅ ⋅⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

+ +
1 2

1 2- -
1 2

c c
M = M

c c

Figure 3.2). 
 
At this point, we have a representation of the elastic fields at each side of an 

interface. The following step of the Scattering Matrix Method is the imposition of 
the boundary conditions along the interface, in order to relate the scattered wave 
amplitudes to the incident ones. 
  
 
3.3.1 Wave scattering from a single interface 
 
Consider a single welded interface between two media with different mechanical 
properties. In Figure 3.3 we can see the geometry of the problem. For generality 
there is also a wave incident from the right side, but with the same value ξ. 
 

x 

2
+c

 
Figure 3.3 – Wave propagation through an interface (k is the wave direction vector) 

At a welded interface, both velocity and traction on the interface must be 
continuous: 
 

  (3.32)
 

 
where:  

z 

   c  2
−   c1−

k 

1
+c

ϑinc 

Interface 
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M1, M2 are the modal matrices of the medium “1” and “2” respectively. 
From Equation (3.32) we get: 

 
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⋅ ⋅⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
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where:  
c1

+ and c2
- are the amplitudes of the left side and right side incident waves, c1

- and 
c2

+ are the amplitudes of the scattered waves (reflected and transmitted). Equation 
(3.33) represents the relation between the elastic wave field at the right and at the 
left of the interface.  

From Equation (3.33) we can define the transmission matrix A that relates the 
wave amplitudes at two sides of the interface: 
 
  (3.34)

 

 
A more useful characterization of the interface is given by the scattering matrix, 

defined by: 
 

  (3.35)
 

 
Its expression is found by simple algebraic manipulations: 
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21 11
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where: 

6 6x
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11 12

21 22

A A
A

A A
and is a matrix with size 3x3. ijA

 
Hence, for three wave polarization states, the expanded expression of the 

scattering matrix is: 
 

  (3.37)
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and so on. 

The zeros make it clear that the SH polarization is uncoupled from the others. 
For this reason it is convenient to treat separately the case of SH and SV/P 
polarizations. In the following we will focus on the SV/P case, so that the 
submatrices of the A and S matrices are 2x2. 

It can be proven that the scattering matrix is symmetric.  
Some important energy considerations can be done for the scattering matrix S. 

It can be shown also that the scattering matrix of a lossless discontinuity is 
unitary, i.e. 
 

  (3.40)
 

 
where: 
S*T is the complex conjugate of the transpose of S; 
I is the identity matrix. 

The Equation (3.40) is a consequence of conservation of energy. It implies that 
the power sensity leaving the interface in the  direction is equal to the incident 
one. 

ẑ
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3.3.2 Wave propagation across N interfaces 
 
In order to characterize the wave propagation across N parallel interfaces, we have 
to compute the global scattering matrix of the set of interfaces. This matrix can be 
obtained by applying a “chain rule” procedure to the scattering matrices of each 
interface. 

However, the right reference plane of the scattering matrix of interface (1) must 
coincide with the left reference plane of interface (2) (see Figure 3.4). It can be 
shown that the scattering matrix S(1) of interface (1) becomes:  
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 (3.41)

 

 
instead of (3.36), where: 
Aij has size 2x2 and it is a sub-matrix of the transmission matrix A of the interface 
(a);  

zS
zi

zP

k
k

k

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠
 for coupled P and SV waves while for an incident SH wave . zi zSk k=

     (1)    (2)

  Medium 0  Medium 1 Medium 2
  

z 

    d1 

( )1S ( )2S  
Figure 3.4 – Stratified structure with two interfaces 

In Equation (3.41) relative to the shift of the reference plane, we can see that 
the scattering matrix of the interface (1) becomes function of the spacing (d1) 
between two interfaces (Figure 3.4).  

The last step of the construction of the global scattering matrix is the 
combination of the components of the scattering matrix for each interface. This 
procedure is named “chain rule” and it can be performed by using follows equations: 
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where: 
Sij

(1) is the sub-matrix, with size 2x2, of the scattering matrix of the welded 
interface (1). 

The global scattering matrix of the system of two parallel interfaces has the 
same form as that of a single interface (see Equation (3.37)). 

This procedure can be easily applied to a system with N interfaces. The steps 
for computing the global scattering matrix of a set of 3 parallel interfaces is 
summarized in (Figure 3.5): 
 

1. Definition of the scattering matrix for each of 3 interfaces (S(1), S(2), S(3)); 
2. Shift of the reference plane, for S(1) and S(2). 
3. Application of the “chain rule” procedure to the scattering matrices S(2) and 

S(3). From this combination of the components of two scattering matrices, 
we can obtain the global matrix S(23) of the interfaces “1” and “2”. 

4. Application of the “chain rule” on the matrices S(1) and S(23). After this 
step we have the global scattering matrix of the set of three parallel 
interfaces.  

 ( )1S  ( )2S ( )3S 
 
 ( )23S

(

 
 ) =123S S 

Figure 3.5 – Computation of the global scattering matrix for a set of 3 interfaces 

 
The “chain rule” for the combination of the various scattering matrices is rather 

complicated. There is a simpler method that consists of the following steps: 
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1. Construction of the transmission matrix A(i) for each interface; 
2. Computation of the transmission matrix for each layer Astr

(i) between two 
interfaces: 
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3. Computation of the global transmission matrix A as product of the 

transmission matrices of each interface A(i) and of each layer Astr
(i): 

 

  (3.44)
 

 
where: 
n  is the number of interfaces;  

4. Computation of the global scattering matrix S from the global transmission 
matrix A

 
of the set of interfaces. This operation may be done as follows: 

 

 
 

 = − -1
22 11 12S A A

(3.45)
 

 
where:  
Sij and Aij matrices are submatrices of the global scattering and 
transmission matrices.  

 
This method is absolutely equivalent to the previous one if kzi in all layers are 

all real. When some of them are imaginary, the ratio between the exponentials in 
(3.43) becomes so large as to lose significant digits in the computation. The result 
in this case is that the matrix A11 in (3.45) becomes singular and cannot be 
inverted. 

The method based on the “chain rule” is stable and can be always used. 
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3.3.3 Free surface 
 
For real problems, it may be necessary to model a free surface boundary condition 
that we suppose to be located at z = 0. In this situation it is well known that the 
tractions along a free surface are zero and then: 
 

ˆ 0− ⋅ =T z  (3.46)
 

 
 

Since there is no transmitted field, the scattering matrix of this interface 
reduces to the S11 element, i.e. to the reflection coefficient. 

We recall that in a homogeneous medium at z = 0 we have: 
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hence: 
 
  (3.48)

 

 
from which:  
 
  (3.49)

 

 
where: 
C+ is the amplitude of the incident wave on the free surface while C- is the 
reflected one; 
M21 and M22 are the sub-matries of the modal matrix of the medium. 

In conclusion, the scattering matrix for a free surface is given by: 
 

  (3.50)
 

 
In the same way, in the case of a clamped surface v = 0 and:  

 

 0+ −+ = →11 12M c M c c  (3.51)
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In this case we have: 
 

= − -1
12 11S M M

Gτ γ ηγ= +

 (3.52)
 

 

 
 
3.4 Attenuation in lossy media 
 
When a wave travels through an elastic material, the total energy contained in the 
wave, partitioned between elastic strain energy and kinetic energy, is conserved. A 
plane wave will propagate without any change in amplitude. For waves that spread 
out radially, such as those emanating from spherical cavities or cylindrical 
boreholes, the amplitude will decrease, because a finite amount of energy is spread 
out over a wave front having ever-increasing area. This type of amplitude decay is 
known as geometric attenuation and is not associated with any loss of overall 
kinetic energy. 

However, rocks do not behave entirely elastically under transient conditions. 
There are numerous mechanisms which cause the kinetic energy of seismic waves to 
be transformed into internal energy. This energy is not lost, but rather serves to 
raise the temperature of the rock slightly. However, from a purely mechanical point 
of view, this energy appears to be “lost” or “dissipated”. Hence, part of the elastic 
energy of a wave propagating in a real material is always converted into heat. This 
conversion is accompanied by a decrease in wave amplitude. Viscous damping is 
often used to represent this dissipation of elastic energy. A viscoelastic medium is 
usually modelled as a Kelvin-Voigt solid (Figure 3.6). 
 

 
Figure 3.6 – Thin element Kelvin-Voigt solid subject to shear stress. The total resistance 
to shearing is the sum of an elastic component (spring) and a viscous component (damper) 

The stress-strain relation, for the Kelvin-Voigt model, is assumed to be: 
 

  (3.53)
 

 
where: 
τ is the shear stress; 
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γ is the shear strain; 
η is the viscosity of the material; 
G is the shear modulus of the material; 

t

γ
γ

∂
=

∂
 is the strain rate. 

The shear stress is the sum of an elastic part (proportional to shear strains) and 
a viscous part (proportional to strain rate). For a harmonic shear strain  
 

0
j te ωγ γ=  (3.54)

 
 

 
the shear stress will be: 
 

( ) 0 j tG j e ωτ ωη γ= +  (3.55)
 

 
The previous expressions show that the stress loop of Kelvin-Voigt solid is 

elliptical. The energy dissipation in a single cycle (Figure 3.7) is given by the ellipse 
area: 
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This equation shows that the dissipated energy is proportional to the frequency 

of the applied stress. 
 

 
Figure 3.7 – Relation between hysteresis cycle and damping ratio 
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The peak of energy stored in a single cycle is: 
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A Kelvin-Voigt solid can be represented by a series of infinitesimal elements as 

shown in Figure 3.6. The one-dimensional equation of motion for propagation of an 
S-wave can be written as: 
 

 y zyv

dt dz

τ
ρ
∂ ∂
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and substituting (3.55) into the governing equation (3.59):  
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and differentiating we obtain:  
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∂
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where: ( ) ( ), j t

y yv z t V z e ω= . 
We assume that the direction of propagation of an S-wave in an infinite 

extended medium coincides with z. 
In these conditions, the propagation constant (or wave number) kS is complex: 

 

 ( )*2 2 *
S Sk G j kωη ρω+ = →

**
SVG

ω ω

ρ
= =  (3.62)

 

 
where: 
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*G G jωη= +  is the complex shear modulus that can also be written as 
( )2jD* 1G G= + . 

In order that the equation (3.62) is satisfied kS
*
 must be complex and if we put 

it equal to kR + jkI we obtain: 
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2 2 2 2 22 2
R I

R I R I R I R I

k jk G j
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 ( )2 22 R I R Ik k G k kωη= −

 (3.63)
 

 
and equating real and imaginary parts of (3.63) we find the following two 
equations: 
 

 
G k

 
(3.64)

 

 
The expressions to compute the real and imaginary parts kzs

*
 can be obtained by 

solving the equations (3.64) (Jaeger et al., 2007):  
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 (3.66)
 

 
The positive root for kR is chosen so that the wave propagates to the right, 

whereas the positive root must be chosen for kI so as not to yield a wave whose 
amplitude grows as it propagates. 

For a nonmolten rock, the elastic part of the stress would be expected to 
dominate the viscous part, which is to say  must in some sense be small. 
Expanding equations 

η
(3.65) and (3.66) for small values of  gives: η
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For lossless media the value of viscosity is zero and from the equation (3.67) we 
can obtain obviously that kR = ω/VS  and kI = 0. 

The actual velocity, VSi = ω/kR, varies with frequency, as it must for any 
dissipative medium, as required by the Kramers-Kroning relations (Mavko et al., 
1998, pp. 75-77). 

Using this further simplification, the wave (3.60) can be expressed as: 
 

 ( )
*

, jk z
0 0

RS Ik z jk zj t j tv e e eω ω−− −= =v z t v e e  (3.68)
 

 
where:  

Rk ze−  is the attenuation factor and  is called attenuation constant; Rk

Ijk ze−  is the phase factor and  is the phase constant. Ik

In Equations (3.62) and (3.68) we can see that the wave travels at velocity VS 
but with an amplitude that decays exponentially with the distance. This represents 
the viscous attenuation, rather than the geometrical attenuation found in spherical 
or cylindrical waves. 

According to the Kelvin model, the attenuation seems to increase with the 
square of the frequency. However, there are various mechanisms in rocks that give 
rise to viscous-like behaviour, and each has, in effect, its own dependence of η on 
frequency. Thus, each mechanism predicts a frequency-dependence of attenuation 
that will reflect both the ω2

 term from Equation (3.67) and the frequency 
dependence of η, usually giving rise to an exponent that differs from 2. Before 
discussing these dissipative mechanisms, we treat several standard definitions that 
are used to quantify attenuation. 

The imaginary part of the wave number, kI, is also denoted by α, the 
attenuation coefficient. Its inverse, 1/kI, is the length over which the amplitude will 
decay by a factor of 1/e ≈ 0.37. The mechanical energy (kinetic plus elastic strain 
energy) contained in a sinusoidal plane wave is proportional to the square of the 
amplitude so the fractional loss of energy over one wavelength is: 
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The quality factor Q is defined in terms of this fractional energy loss as follows: 
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Substituting kI from Equation (3.67) into Equation (3.70),
 
we can shows that Q

n also be expressed as: ca
 

 
22 2

2
S S

S

v v

Q Gv G

α ηω ηω
ω ω

= = =

)

1  (3.71)
 

 
It can also be shown that, if α  is small, 1/Q

 
is equal to the phase shift (in 

radians) between the stress and the strain, under sinusoidal oscillations such as 
described in Equation (3.55). Another parameter occasionally used to quantify 
attenuation in rocks is the logarithmic decrement, defined by δ = π/Q. 

Although α and Q contain the same information, α  essentially measures the 
energy loss per distance travelled by the wave, whereas 1/Q

 
measures the energy 

loss per wave cycle. Hence, as seen in Equation (3.71), these will vary with 
frequency in different ways. 

Versions of the relations (3.69)-(3.71) that do not require the assumption of 
small attenuation are given by Bourbié et al. (1987, p. 113).  

 
Same considerations presented in this paragraph can be done for a mono-

dimensional propagation of a P-wave. Obviously normal stress τzz and complex 
Young’s modulus  will be assumed.  (* 1 2E E jD= +
 
 
3.5 Analytical solutions  

 
In this part some analyses are presented for studying the behaviour of a welded 
interface between two different elastic half-spaces. We consider the effects of an 
interface on wave propagation by using the Scattering Matrix Method. Energy 
dissipation is here neglected. 

The mechanical properties of the media are summarized in Table 3.1: 

Table 3.1 – Properties of two media 

Mechanical properties Medium 1 Medium 2 

Mass density 2000 kg/m3 1800 kg/m3 

Velocity of the propagating P-wave 1560 m/s 700 m/s 

Velocity of the propagating S-wave 955 m/s 430 m/s 
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The geometry of the problem can be illustrated as shown in Figure 3.8. 
 

 

ϑi 

ϑt

ρ1,VS1 

ρ2,VS2 

   x 

Figure 3.8 – Schematic representation of the wave propagation problem 

The calculation is performed in the frequency domain and then a harmonic 
particle velocity input with unit amplitude and frequency f0 = 3Hz is assumed. 

Figure 3.9a-b shows the magnitude of the transmission and reflection 
coefficients versus the angle of incidence for a SH plane wave. In Figure 3.9a, we 
can observe the trend of the transmission and reflection coefficients for a wave that 
propagates from a medium with higher stiffness to another with lower stiffness. In 
Figure 3.9b the opposite situation is shown. Since the media are lossless the 
principle of the energy conservation is satisfied: 
 

 ( ) ( )2 2
1SH SHR Tω ω+ =  (3.72)

 

 
where:  
RSH(ω) and TSH(ω) are the reflection and transmission coefficients. 

 
Obviously Equation (3.72) is true for any angle of incidence and for any 

frequency.  



CHAPTER III    Wave propagation in continuous media 57 

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50 60 70 80 90

|T
1|
,|R

1|

Angle of incidence ϑi
SH [°] 

|Rsh|
|Tsh|

   ϑB 

 
(a) 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 10 20 30 40 50 60 70 80 90

|T
1|
,|R

1|

Angle of incidence ϑi
SH [°] 

|Rsh|
|Tsh|

   ϑc 

 
(b) 

Figure 3.9 – Transmission and reflection coefficients, for a SH-wave, versus the angle of 
incidence ϑi

SH: wave propagation from a medium with higher stiffness to another with lower 
stiffness (a) and vice versa (b) 
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In Figure 3.9a we can see that the transmission coefficient reaches 1 (|RSH| = 0) 

and for a particular angle of incidence called Brewster angle. It can be shown that 
this angle satisfies the condition: 
 

 2B tϑ ϑ π+ =  (3.73)
 

 
where: 
ϑt is the angle between the normal at the interface and the direction of propagation 
of the transmitted wave.  

From the refraction law we obtain: 
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Notice that the Brewster angle exists only for certain combinations of material 

parameters. 
Developing step by step the calculation according to the Scattering Matrix 

Method, we can obtain the well known analytical expressions of the reflection and 
transmission coefficients: 
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(3.75)
 

 
where: 
C44i is the shear modulus of medium i;  
VSi is the S-wave propagation velocity for medium i. 

From Equations (3.75), we can see that the reflection and transmission 
coefficients are only function of the mechanical properties of two media and of the 
angle of incidence, but do not depend on frequency. 

On the other hand, when a SH plane wave propagates from a less rigid medium 
to a more rigid medium, the trends of transmission and reflection coefficients versus 
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the angle of incidence change (see Figure 3.9b). It is possible to introduce a critical 
angle ϑc via   

(3.76)
 

 1

2

arcsin
S

c
S

V

V
ϑ =

 
If ϑinc < ϑc reflection and transmission coefficients are real and satisfy (3.72). If 

ϑinc > ϑc we have total reflection with |RSH| = 1. 
The elastic field in the second medium is an evanescent wave, i.e. a wave with 

exponentially decaying amplitude in the z  direction. In this case (3.72) is not 
satisfied because |TSH| has no energy interpretation. 

 
Next we have studied the same structure described in Figure 3.2 when the 

incident wave is P-polarized. 
Two conditions were taken into account: wave propagation from a more rigid 

medium to a less rigid medium and vice versa (Figure 3.10a-b). As well known, an 
incident P-wave originates two couples of waves: reflected and transmitted P-waves 
and reflected and transmitted SV-waves.  

In Figure 3.10, we can see the transmission and reflection coefficients vs. the P-
wave angle of incidence. When the wave propagates from a less rigid medium to 
another more rigid, the transmission and reflection coefficients become complex.  

In these conditions the definition of the critical angles is more complex and we 
can use the graphical method of the slowness surfaces to define them (Figure 3.11).  
In Figure 3.11 the radius of the cycles is the inverse of the P and S velocities of the 
media 1 and 2. When a P-wave impinges the interface with angle ϑc

(1) or ϑc
(2)  

critical transmitted P-wave or SV-wave respectively are generated.   
The energy of the incident P-wave is distributed to other waves originated by 

the incidence with the interface. In the situation plotted in Figure 3.10a, the 
conservation energy equation for a P-wave that impinges on a welded interface 
between two media is: 
 

 ( ) ( ) ( ) ( )2 2 2
PP PP PSV PSVR T Rω ω ω+ + +

2
1T ω = (3.77)

 

 
where: 
RPP (ω) is the P-wave reflection coefficient for an incident P-wave; 

TPP (ω) is the P-wave transmission coefficient for an incident P-wave; 

RSVP (ω) is the SV-wave reflection coefficient for an incident P-wave; 

TSVP (ω) is the SV-wave transmission coefficient for an incident P-wave. 
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(b) 

Figure 3.10 – Transmission and reflection coefficients, for a P-wave, versus the angle of 
incidence ϑi

P: wave propagation from a medium with higher stiffness to another with lower 
stiffness (a) and vice versa (b) 
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Figure 3.11 – Graphical representation of the critical angles for an incident P-wave 

Similar considerations can be done for an incident plane elastic SV wave. In 
Figure 3.12 the magnitude of the transmission and reflection coefficients are plotted 
versus the angle of incidence of a SV-wave. 

In Figure 3.16 the critical angles that are generated in these conditions are 
computed. If the SV-wave impinges the interface with an angle ϑc

(3) a critical 
reflected P-wave in the case (a) of Figure 3.12 is generated. In the other case, a 
critical transmitted P-wave and a critical transmitted SV-wave are originated 
respectively when the SV-wave impinges the interface with critical angles ϑc

(4) or 
ϑc

(5). 
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(b) 

Figure 3.12 – Transmission and reflection coefficients, for a SV-wave, versus the angle of 
incidence ϑi

SV: wave propagation from a medium with higher stiffness to another with lower 
stiffness (a) and vice versa (b) 
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Figure 3.13 – Graphical representation of the critical angles for an incident SV-wave 

 
3.6 Summary 
 
In this chapter, we have presented the Scattering Matrix Method (SMM) for 
studying the effects of welded interfaces on wave propagation in linear elastic 
media. The assumption is that stresses, displacements and velocities are continuous 
across the welded interfaces between two adjacent media. All three wave 
polarizations are considered in the SMM. The SMM is extended to consider 
multiple reflections between N interfaces with any spacing.  

The extension of the SMM to lossy media is then performed to consider the 
attenuation of the wave in these media. From a purely mechanical point of view, in 
these media part of the wave energy appears to be “dissipated” although the kinetic 
energy of the wave is transformed into internal energy. 

Transmission and reflection coefficients versus the angle of incidence are 
computed for all three possible incident waves. Critical angles are found in SMM 
results and with the graphical method of the slowness surfaces.  

These analyses highlight that when a plane elastic wave impinges on a welded 
interface the scattered waves are dependent on the impedance of two media and on 
the angle of incidence.  



64       Wave propagation in continuous media CHAPTER III 

Finally, we have presented the SMM as used to study wave propagation across 
a continuous stratified or layered medium. In the next part (Chapter 4) we will 
describe the extension of this method to wave propagation in a discontinuous 
medium with non-welded interfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4   
 
The Scattering Matrix Method and the study of 
wave propagation in discontinuous media 
 
 
4.1 Introduction    

 
The purpose of this chapter is to study the influence of rock joints on wave 
propagation by the Scattering Matrix Method. In Chapter 3 we have analysed the 
use of this method for the study of wave propagation in a continuum containing 
welded interfaces. In this chapter we will focus on non-welded interfaces 
representing the rock joints in a rock mass, i.e. a discontinuum.  

The influence of rock joints on wave propagation is taken into account by using 
the displacement discontinuity method (DDM), whereby the displacements across a 
joint are discontinuous while the tractions are continuous. The joints are considered 
to be planar, large in extent and small in thickness compared to the wavelength. 

Reflected and transmitted waves are calculated for one and more joints in dry 
or fluid filled conditions. Some analyses are also carried out for studying the 
influence of the characteristic parameters on wave propagation in a discontinuum. 
 
 
4.2 Rock joint modelling 
 
The Scattering Matrix Method (SMM) can model a rock joint by using the DDM. 
In this way one assumes that the displacements across a joint are discontinuous 
while the tractions are continuous. Moreover the amount of the discontinuity is 
assumed proportional to the traction. The general formulation of the SMM for a 
medium with joints is the same as used for continuous media with welded 
interfaces (Chapter 3). The presence of a discontinuity of displacement generates a 
change of its transmission matrix.  

It is interesting to note that there is a formal analogy between the equations of 
elastic wave propagation and the equations of electrical transmission lines 
(Anderson, 1985 and Auld, 1973). In particular, the velocity can be identified with 
a current and the traction with a voltage, both of vector type. This implies that 
the joint has an “equivalent circuit” in the form of an admittance connected in 
parallel to the transmission line describing propagation in the homogeneous 
medium. This admittance depends of course on the characteristics of the joint, 
whether it is dry or fluid filled. The admittance can be also called compliance. 
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The geometry of the problem is shown in Figure 4.1.   
 

x 

2
+c

 
Figure 4.1 – Wave propagation through a single rock joint 

Rock joints pertain to a type of discontinuity that is generally known as non-
welded interface. In this part we consider two types of rock joints: 

 
- Linear elastic, dry joint; 
- Joints filled with fluid or soft material (Kelvin, Maxwell and Burger 

models). 
 

The definition of the admittance (or compliance) Y for each type of joint is the 
fundamental step for obtaining the transmission matrix of the joint. 

The boundary conditions along a joint, according to the displacement 
discontinuity model, are:  
 

 
( )A A A− +− = ⋅u u B τ

0− =τ τ

( )A A A− +− = ⋅v v Y τ

  

A A+     
(4.1)

 

 
The corresponding condition for the velocity is: 

 
 (4.2)

 

 
where: 
uA-, uA+ are the displacements of the left side and of the right side of the joint A; 

z

   c  2
−   c1−

k 

  Joint A 

1
+c

ϑ 
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vA-, vA+ are the particle velocities of the two sides of the joint A; 
Y = jωΒ is the joint admittance; 
τA = τA- = τA+ = -TA· ẑ  is the traction on the joint surface A. 
 
 
4.2.1 Linear elastic dry rock joint 
 
Displacements and tractions across a linear elastic dry rock joint are linearly linked 
by a normal stiffness knn and a shear stiffness kss of the joint. These values of 
specific stiffness have units of stress over length. For obtaining the characteristic 
admittance Y of the discontinuity, it is necessary to rewrite Equation (4.1) of 
displacement discontinuity: 
 

( )A A A− +− =K u u τ

A A A− +Δ = − = ⋅v v v Y τ

0

0

nn

⎛ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎝ ⎠

 
           x 

 (4.3)  
 
where K is the matrix in which normal and shear dynamic joint stiffness are 
stored. The inverse of this matrix is the matrix B in which are stored the joint 
compliances. Taking the time derivative of the previous equation we can obtain the 
particle velocity discontinuity relation: 
 
  (4.4) 

 
from where we can derive the admittance of a linear elastic dry joint: 
 
 1jω −=Y K  (4.5) 

 
If the joint is of the simplest type, i.e. it is characterized by normal and shear 

stiffness only, the K matrix is diagonal:  
 

 
0

0

0 0

ss

ss

k

k

k

⎜⎜⎜⎜= ⎜⎜⎜⎜

K (4.6)            y 
           z

 
 

Clearly, also in this case SH-waves are decoupled from P and SV, and 
 

    x     y     z
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 (4.7) 

 
Equation (4.7) highlights that, obviously, the compression waves are linked with 

the normal displacements along the discontinuity while the shear waves mobilize 
the shear displacement for a normal incident wave. When a P or SV-wave impinges 
not normally on a discontinuity the normal and shear displacements are mobilized. 
 
 
4.2.2 Joints filled with fluid or soft material 
 
A joint filled with fluid or a soft material can be modelled by using rheological 
models. These models have been presented in the literature in order to describe the 
time dependent behaviour of metals, steel (at high temperature) and fluids, and 
have been extended to geomaterials. They are generally formulated with reference 
to one-dimensional conditions and supply directly the fundamental relationships 
that govern the time dependency, either in a differential or in a closed form. A sub-
group of rheological models is the analogical or mechanical rheological model. In 
this case the constitutive relations are constructed by combining, in series or in 
parallel, different elementary material models. 

Therefore, rheological models are used to model joints with dissipation. In 
literature some models were proposed (e.g. Myer et al., 1990) to simulate the effects 
of joints filled with fluid or soft materials. Filled joints are generally represented by 
using the Kelvin-Voigt or Maxwell models. The Kelvin-Voigt model, also called the 
Voigt model, can be represented by a purely viscous damper and a purely elastic 
spring connected in parallel as illustrated in Figure 4.2a. The Maxwell model can 
be represented by a purely viscous damper and a purely elastic spring connected in 
series as shown in Figure 4.2b. In this study we consider also the Burger model 
shown in Figure 4.2c, which is obtained by connecting in series the Kelvin-Voigt 
and the Maxwell models. 
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(a)  (b) 

(c) 

Figure 4.2 – Viscoelastic models of Kelvin-Voigt (a), of Maxwell (b) and of Burger (c) 

The admittance of a filled joint depends on the type of rheological model. For 
simplicity, the process for computing the joint admittance is explained in detail for 
the SH-wave polarization while for P and SV-waves only the final expressions are 
reported. 

The combined effect of the displacement discontinuity resulting from the 
fracture impedance, Equation (4.5), and the presence of a viscous fluid in the 
fracture can be expressed as a superposition of the two effects. 

This can be accomplished in at least two simple ways. First, if we consider both 
the liquid film and the solid asperities as undergoing a common displacement under 
the effect of the applied stress, the averaged stress along the surfaces of contact is 
given by the sum of the stresses originating within the liquid film and within the 
contacting asperities. This case is commonly represented by the Kelvin-Voigt 
model. 

If instead we assume the stress to be in common to both the solid asperities and 
the liquid film, the resultant overall displacement is expressed as the sum of the 
displacements in the two individual components. In this case, the representative 
model is the Maxwell viscoelastic model. 

 
Starting from the Kelvin-Voigt model, the first step is the definition of the 

boundary conditions across the joint: 
 

 
displacement discontinuity: 

k u
 ( ) ( )ss A A y A A Au v vη τ− + − +− + − = →

( ) ( )ss y y y y y zyk u u v vη τ− + − +→ − + − =

 
(4.8) 
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continuity of stress:  0 0A A zy zyτ τ τ τ− + − +− = → − =

 
where ηy = μ/h, is the fracture specific viscosity in the y direction of the fluid or the 
soft material that fills the joint. The specific viscosity η has units of viscosity over 
length (kg/m2s), and represents the dissipative characteristic of the interface. μ is 
the dynamic viscosity (kg/ms) while h is the thickness of the liquid film between 
two faces. 

From time derivation of the equation of displacement discontinuity we can 
obtain the discontinuity velocity relation: 
 
 ( ) ( )ss y y y y y zyk v v j v v jωη ωτ− + − +− + − =  (4.9) 

 
and by introducing some simplifications we can derive the joint admittance for the 
Kelvin-Voigt model: 

 

 ( )y y zy zy
ss y ss y

j j
v v Y Y

k j k j

ω ω
τ τ

ωη ωη− +− = = ⋅ ⎯⎯→ =
+ +

 (4.10) 

 
Similar expressions can be obtained for P and SV-wave polarizations: 
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ω
ωη

ω
ωη

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜= ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ +⎝ ⎠

Y  (4.11) 

 
where ηx and ηz are the specific viscosity respectively in x and in z direction. 
 

Instead, the boundary conditions for a Maxwell model are the following: 
 

 

velocity discontinuity:  ( ) zy zy
y y

ss y

j
v v

k

ωτ τ

η− +− = +  

 
continuity of stress:  0zy zyτ τ− +− =

(4.12) 
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( )

 for P and SV-waves 
(4.13)  

 
If the joint contains only a viscous liquid without any contact between the 

asperities of two faces, the stiffness can be assumed to be equal to zero and the 
admittance of the joint becomes Y = 1/η. Obviously, this result can be obtained 
with either the Kelvin-Voigt or the Maxwell model. 

This methodology can be also implemented in the SMM by using a more 
complex model as the Burger model. The velocity for the Burger model is given by 
the sum of the velocities in the Kelvin-Voigt and Maxwell models: 
 

 

( ) ( )
maxy well− + =
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1

y y y y ykelvin

zyk k m m
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− + − +− = − + −
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 (4.14) 

 
Hence, the admittance of the joint modelled with the Burger model is: 
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for P and SV waves 

(4.15) 

 
where with the apexes (k) and (m) indicate respectively the parameters of Kelvin-
Voigt and Maxwell models. The admittance of the Burger model was obtained after 
the computation of the relative velocity between the two sides of the joint. This 
relative velocity is computed by the sum of two contributions: one from the Kelvin-
Voigt model and the other one from the Maxwell model. 
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4.3 Application of the Scattering Matrix Method to wave 
propagation in jointed rock masses 

 
With the admittance matrix for each type of joint being derived, we can develop 
the procedure to compute the transmission matrix for a non-welded interface. The 
state vector of the elastic fields at the two sides of a joint can be written as (see 
(3.30)): 
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(4.16) 

where:  
M1, M2 are the modal matrices of the media 1 and 2; 
c1

+, c2
-  are the amplitudes of the incident waves; 

c1
-, c2

+ are the amplitudes of the scattered waves (reflected and transmitted). 
By applying the boundary condition at (4.2), we get 
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where I is the identity matrix.  

From this we obtain 
 

 
0

A
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C v
M M

Iτ
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Therefore, the transmission matrix of the joint is:  

 

  (4.19) 

 
This equation should be compared with Equation (3.34), which refers to a 

welded interface. As Y changes from 0 to ∞ the joint changes from a welded 
interface to an impenetrable free surface. 

The scattering matrix can be derived from the transmission matrix in the same 
manner as described for a welded interface (see Equation (3.36)). 
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4.4 Evaluation of the effects of a single joint with the Scattering 
Matrix Method  

 
In this paragraph, we discuss the effects of a single joint on wave propagation. The 
analytical SMM is presented step by step. 

Analytical expressions of transmission and reflection coefficients for a wave that 
impinges a single joint are well known (e.g. Schoenberg, 1980; Myer et al., 1990; 
Pyrak-Nolte et al., 1990a). In this part, these analytical expressions of reflection 
and transmission coefficients will be obtained by using the SMM. 

Firstly, we consider in the following the problem of wave propagation across a 
single rock joint (Figure 4.1) in a homogeneous medium. 

The wave vectors of the two incident waves have the same components along 
the interface. Initially we consider the case of an incident SH-wave that impinges 
on a single joint. For SH polarization state the modal matrix (size 2x2) is the 
following: 
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1 2M M  (4.20) 

 
(see equation (3.31)). 

From Equation (4.19), we can write the transmission matrix A:  
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The transmission matrix is then: 
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where the shear wave characteristic impedance (or acoustic impedance) is: 
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( ) ( )2
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Hence, the final expression of the transmission matrix for a joint with 
admittance Y is: 
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Now we can obtain, from the transmission matrix and after some algebraic 

manipulations (see Equation (3.36) in Chapter 3), the scattering matrix S of a 
single joint. Hence the analytical expressions of the reflection RSH and the 
transmission TSH coefficients for a SH-wave that impinges a single joint are: 
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(4.22) 

 
The equations (4.22) define the reflection and transmission coefficients versus 

the angle of incidence ϑ and the frequency ω for a rock joint with admittance Y. 
Analytical expressions of the transmission and reflection coefficients for the 

types of joints considered in this thesis are: 
 

- Linear elastic dry joint: 
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- Joint filled with fluid or soft material: 
 Kelvin-Voigt model 
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(4.24) 

 
 Maxwell model 
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 Burger model 
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The previous equations are the same, except from the sign of the imaginary 

part, as those presented by Myer L.R. et al. (1990). In fact, Myer uses the time 
convention e-jωt while we have assumed ejωt, hence the final expressions have the 
imaginary part with opposite sign. 

 
The magnitude and the phase angle of the transmission and reflection 

coefficients can be computed by the general expressions shown in Equations (4.23)-
(4.26). The transmission and reflection coefficients in terms of their magnitudes and 
phase angles Θ(ω,ϑ) can be written as follows: 
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(4.27) 

 
As an example, we only consider the linear elastic joint behaviour, but obviously 

the procedure is the same for the other models: 
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(4.28) 

 
The group time delay for the transmitted and reflected waves can be computed 

as follows: 
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(4.29) 

 
The transmitted and the reflected group time delays are equal and at zero 

frequency the group time delay becomes tg0 = ZS/2kss. The group time delay is 
maximum when the frequency is zero and decreases with increasing the frequency 
as we can see in Equations (4.29). 
 

On the other hand, if we have a SV or a P-wave that impinges a joint, the 
modal matrix has size 4x4 and it is the following: 
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where: 
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In this study, for simplicity, we consider that P or SV-waves impinge on a joint 
normally. In this condition we can consider separately the P and SV-waves. In fact, 
from an inclined incident P wave scattered P and SV-waves are generated and vice-
versa. The general case of an inclined P or SV-wave was solved by implementing in 
Matlab the SMM algorithm.  

 

The modal matrix, for normal P and SV incident waves (ϑinc = 0°), can be 
simplified in two matrices:  
 

11 11

P P

zP P zP P

N N

C k C k
N N

ω ω

+ −

+ −

⎡ ⎤−⎢ ⎥
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

P P
1 2M M  for P-wave 

44 44

SV SV

zS SV zS SV

N N

C k C k
N N

ω ω

+ −

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥= =⎢ ⎥−⎢ ⎥⎣ ⎦

SV SV
1 2M M  for SV-wave 

 
We can perform the following simplifications: 
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By following the same computational procedure described above, we obtain the 

analytical expressions of the transmission and reflection coefficients for a P or SV-
wave that normally impinges on a single joint: 
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where: 
YP and YS are the joint admittance (or compliance) for compressional and shear 
waves which, for a linear elastic joint (e.g.), are given by: 
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The computation of the magnitude and the phase angle of the transmitted and 
reflection coefficients can be performed using the same procedure as for SH-waves. 
These coefficients obtained in this paragraph are the single components of the 
scattering matrix. 
 
 
4.5 Analytical solutions 
 
In this part, we present some solutions for evaluating the effects of a joint on wave 
propagation. This problem will be treated by computing the transmission and 
reflection coefficients for different values of the joint properties (stiffness, viscosity, 
etc), frequency and angle of incidence. The SMM has been implemented in Matlab. 

In order to evaluate the effects of a single joint on wave propagation, we have 
taken a model composed of a single joint embedded in an elastic homogeneous 
medium. Material damping is set to zero for considering only the effect of the 
joints. The fundamental parameter of each joint is its admittance that is function 
of the behaviour of the joint. We will consider linear elastic dry rock joints and 
filled joints. 
 
 
4.5.1 Linear elastic dry rock joint 
 
When a wave impinges on a joint, transmitted and reflected waves are generated. 
The amplitude and the phase shift of these waves depend on the properties of the 
joint. In Figure 4.3, we can see the transmission and the reflection coefficients 
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versus the normalized shear joint stiffness (K). The normalized joint stiffness is 
defined as: 
 

 k
K

Zω
=

(

(4.33) 

 
where k is the joint stiffness that for an incident S-wave is kss while for an incident 
P-wave is knn. 

Figure 4.3 refers to a shear or pressure wave that impinges normally on the 
joint. The same figure applies to the two polarizations since normalized joint 
stiffnesses are used. 

The Equations (4.31) and Figure 4.3 show that when a joint has a very high 
value of joint stiffness (k→∞) all energy is transmitted while when the stiffness is 
close to zero (k→0) all energy is reflected. When the first condition holds true we 
are in the typical case of a welded interface while in the second case we can assume 
the joint as a free surface. 

We can evaluate the influence of the frequency on the transmission and 
reflection coefficients by assuming a fixed value of joint stiffness. With this 
assumption, when the frequency increases the normalized stiffness decreases and 
the transmission coefficient goes down very quickly. On the other hand, the 
reflection coefficient increases until 1 with the frequency increase. Hence, for high 
frequencies K → 0, |T1| → 0 and |R1| → 1. Similar considerations hold true if we 
consider the influence of the joint stiffness for a fixed value of frequency. 

In these conditions, the law of conservation of energy is satisfied: 
 

) ( ) 2 2
1 1 1R Tω ω+ = (4.34) 

 
The angle of incidence is another important parameter to consider. As well 

known, an obliquely incident SH-wave generates only SH scattered waves while for 
an incident P or SV-wave two pairs of P and SV scattered waves are originated.  
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Figure 4.3 – Transmission and reflection coefficients versus the normalized joint shear 
stiffness:  normal incident S or P-wave 

Figure 4.4 shows the plots of the reflection and transmission coefficients versus 
the normalized stiffness computed for various values of the angle of incidence ϑinc. 
The normalized shear stiffness is calculated considering the medium impedance ZS= 
ρVS. In this diagram, the different behaviour for each value of the angle of 
incidence ϑinc is well underlined. 

In Figure 4.5, we can note that the behaviour of transmission and reflection 
coefficients versus the normalized joint stiffness, obtained by using the modal 
impedance ZS = ρVScosϑinc, is essentially the same for each angle of incidence. The 
modal impedance depends on the mass density, the S-wave velocity of the medium 
and the angle of incidence ϑinc. 

Figure 4.4 and Figure 4.5 are also applicable to P or SV-wave normally incident 
on the joint. 
 

When an obliquely incident P-wave impinges a joint the wave propagation 
problem becomes more complex. For studying this problem, we have assumed a 
medium with a single joint with the mechanical properties summarized in Table 
4.1. 
 
 
 
 
 



82       Wave propagation in discontinuous media CHAPTER IV 

 
(a) 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

|R
1|

Kss

0°
20°
40°
60°
80°

ϑinc 

 
(b) 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

|T
1|

Kss

0°
20°
40°
60°
80°

 ϑinc 

Figure 4.4 – Reflection (a) and transmission (b) coefficients versus the normalized joint 
shear stiffness Kss (with ZS = ρ ⋅ VS) and the angle of incidence 
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Figure 4.5 – Reflection (a) and transmission (b) coefficients versus the normalized joint 
shear stiffness Kss (with ZS = ρ ⋅ VS ⋅ cos ϑinc) and the angle of incidence 

Two reflected waves (P and SV) and two transmitted waves (P and SV) are 
generated from an incident P-wave. In these conditions, both shear and normal 
joint stiffness are necessary to input in the SMM algorithm. 
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Table 4.1 – Mechanical properties of the rock mass 

Properties of the intact rock: 

Mass density 2300 kg/m3 

Velocity of the propagating P-wave 2800 m/s 

Velocity of the propagating S-wave 1400 m/s 

Properties of the joint: 

Normal stiffness 400 MPa/m 

Shear stiffness 200 MPa/m 

 
The behaviour of the reflection and transmission coefficients for two types of 

waves is plotted in Figures 4.6 to 4.9. These values are stored in a column of the 
scattering matrix of a single joint. The energy conservation law in these conditions 
is obviously verified since the structure is lossless. |RPSV| denotes, for example, the 
ratio between the amplitude of the reflected SV-wave to that of the incident P-
wave. 

We can note in these figures that for low frequencies the joint is behaving as a 
welded interface. The reflected wave increases in amplitude if we increase the 
frequency or decrease the normal and shear stiffness of the joint. In fact an increase 
in frequency has the same effect as a decrease in stiffness.  

Pyrak-Nolte et al. (1990a) showed that, for normally incident plane P-waves, 
the non-welded interface behaves somewhat like a low-pass filter for the 
transmitted P- wave, that is, at low frequencies, the transmitted P-wave has a high 
amplitude whereas the reflected P-wave has a low amplitude. Figures 4.6 to 4.9 
confirm this and, in addition, show that the joint (non-welded interface) behaves 
like a low-pass filter for the transmitted P-wave at all angles of incidence except for 
those near 90° and that the filter also attenuates the scattered converted waves at 
low frequencies as well. 

It is demonstrated in Figure 4.6 to Figure 4.9 that SV scattered waves are not 
generated by an incident P-wave perpendicular to the joint (ϑ = 0°). In fact in this 
situation the amplitudes of reflected and transmitted SV-waves are zero. The 
reflection |RPSV| and transmission |TPSV| coefficients increase with the angle of 
incidence until a maximum value. After that, these coefficients decrease and 
become zero for an angle of 90° for which all energy is reflected as P-wave. 
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Figure 4.6 – Magnitude and phase of the reflection coefficient of the reflected P-wave 
versus the angle of incidence 
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Figure 4.9 – Magnitude and phase of the transmission coefficient of the transmitted  
SV-wave versus the angle of incidence 

The phase for each scattered wave is essentially constant for the angle of 
incidence less than 70-80°.  

From the Kramers-Krönig relation (a consequence of causality), any changes in 
the amplitude of a wave must be accompanied by a change in phase.  

Figures 4.6 to 4.9 also show that the coefficients have significant phase values, 
even for high values of normalized joint stiffness K. For example, the reflected P-
wave, although small in amplitude at large Knn, experiences a phase shift of about 
90°. In the interpretation of seismic data the observation of small |RPP| reflections 
where none are expected, with 90° phase shifts, could be evidence of the presence of 
a small amount of non-welded contact. 
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The phase shift of the transmitted wave is related to time delay and it increases 
with the decrease of the joint stiffness and with the increase of the frequency. 
 
 
4.5.2 Joints filled with fluid or soft material 
 
A joint filled with fluid or soft material can be modelled, as previously described, 
with rheological models. In this paragraph we will consider the Kelvin-Voigt, the 
Maxwell and the Burger models. 

For a joint with a viscoelastic behaviour the law of conservation of energy is not 
satisfied: 
 

( ) ( ) 2 2
1R Tω ω+ ≠ (4.35) 

 
Hence, a part of energy of an incident wave is dissipated when impinges on a 

joint because it is simulated with viscous dampers. In fact, the fluid or the soft 
material layer, that fills the joints, produces a loss of energy due to their viscous 
properties. 

The results of the analyses shown in Figures 4.10 and 4.11 are applicable for 
oblique SH-waves (by considering that Zs  = ρ ⋅Vs ⋅ cosϑinc) and for normally incident 
P or SV-waves.  

 
In Figure 4.10, we can note the trend of transmission and reflection coefficients 

versus the inverse of the normalized joint stiffness (η/K) and the normalized 
specific viscosity (η/Z) for a joint simulated with the Kelvin-Voigt model. The 
curve with η/Z=0 corresponds to the case of a linear elastic dry joint. 
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Figure 4.10 - Magnitude of reflection and transmission coefficients as predicted by Kelvin-
Voigt model as a function of the normalized joint stiffness and the normalized specific 

viscosity 
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Figure 4.10 shows that for very large values of the joint stiffness k  or of specific 
viscosity η all energy is transmitted (|T1| →1, |R1| →0) while for very low values of 
k and η all energy is reflected (|T1| →0, |R1|→1).  

The transmission coefficient becomes frequency independent when the joint 
stiffness reaches zero while it remains non-zero. When the curves with η/Z ≠ 0, 
approach a horizontal slope the specific viscosity becomes predominant. For low 
values of specific viscosity the behaviour is like that of a linear elastic discontinuity 
in which for low frequencies almost the entire wave is transmitted while by 
increasing the frequency the transmitted energy decreases.  

If we compare the results obtained for an elastic joint, the specific viscosity 
reduces the energy transmitted at low frequencies and increases the energy 
transmitted at high frequencies. We obtain large values of the transmission 
coefficient |T1| with increasing the specific viscosity, if we take into account fixed 
values of joint stiffness and frequency. Hence, for high values of the specific 
viscosity there is a total transmission of energy at each frequency. In this condition 
the transmission and reflection coefficients become independent from the 
normalized joint stiffness, hence also from the frequency and from the joint 
stiffness. 
 

 
(a) 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

|R
1|

1/K

η/Z=100 

10

η/Z=0 

η/Z=100 

η/Z=0 



92       Wave propagation in discontinuous media CHAPTER IV 

 
(b) 

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

|T
1|

1/K

η/Z=100 

10

η/Z=1 

η/Z=0.1 

η/Z=0 

η/Z(ϑ=0°) 

Figure 4.11 - Magnitude of reflection and transmission coefficients as predicted by Maxwell 
model as a function of the normalized joint stiffness and the normalized specific viscosity 

On the other hand, the results obtained with the Maxwell model are 
summarized in Figure 4.11. In this case the results are different from those 
obtained with the Kelvin-Voigt model. The condition η/Z→∞, for the Maxwell 
model, corresponds to the case of an elastic joint. This previous situation is the 
opposite one of that obtained with the Kelvin-Voigt model. Curves of the 
transmission and reflection coefficients extend their area with horizontal slope for 
very low values of specific viscosity (η/Z→0). In this area, |T1| and |R1| become 
essentially independent from the frequency and the joint stiffness. The effects of 
high specific viscosity are large for Kelvin-Voigt model while are low for Maxwell 
model. 

 
The Burger model was implemented in the SMM and the results are plotted in 

Figure 4.12. The Burger model is composed by the Kelvin and the Maxwell models 
in series and in this calculation the stiffnesses and the viscosities are assumed to be 
the same. In Figure 4.12, we can see as the transmission and reflection coefficients 
trends start from the same values of Maxwell model.  

 
Figure 4.13 compares the transmission and reflection coefficients for an 

obliquely incident SH-wave or for a P or SV normal incident waves across a non-
welded interface represented by a spring (linear elastic model), a dashpot (purely 
viscous model), a Kelvin-Voigt model, a Maxwell model and a Burger model. These 



CHAPTER IV    Wave propagation in discontinuous media 93 

curves are the same also for SH-waves that impinge the joint with any angle of 
incidence. 

Kelvin, Maxwell and Burger models have the same limiting behaviour, either an 
elastic (spring dominated) or purely viscous (dashpot dominated) interface. The 
Kelvin-Voigt model predicts the behaviour of an elastic interface when the viscosity 
of the layer becomes small while the Maxwell model predicts that the interface will 
behave as an elastic interface when the viscosity becomes large.  

The behaviour of the Burger model is very similar to that of the Maxwell model 
for high and low values of normalized joint stiffness while for intermediate values 
the curve is different because its shape is similar to the Kelvin-Voigt model. 
Obviously, this behaviour is due to the fact that the Burger model is composed of a 
Kelvin-Voigt and a Maxwell model in series. 

The Maxwell and Burger models are more sensitive to changes in the rheological 
properties of the interface at low frequencies; at high frequencies their behaviour for 
different values of the viscous parameter does not change considerably. The Kelvin-
Voigt model is more sensitive to the rheological properties of the interface at high 
frequencies; at low frequencies these differences becomes small. 
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Figure 4.12 – Magnitude of reflection and transmission coefficients as predicted by Burger 
model as a function of the normalized joint stiffness and the normalized specific viscosity 
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Figure 4.13 – Comparison of reflection and transmission coefficients for a wave impinging 
a fracture represented by a spring (linear elastic model), dashpot (purely viscous model), 

Kelvin-Voigt model, Maxwell model and Burger model (η/Z=0.5) 

  
4.6 Evaluation of the effects of a set of joints  
 
The SMM method allows one to compute the global scattering matrix of a set of 
joints through a series of algebraic matrices computations. This method has been 
implemented in Matlab. 

In order to explain the SMM procedure, we examine the case of a set of two 
parallel joints with the same mechanical characteristics. The SMM will be 
developed step by step. 

The model used for studying the problem of wave propagation across two 
parallel joints is shown in Figure 4.14.  

The aim of this analysis is to obtain the global scattering matrix of the set of 
two discontinuities as shown in Figure 4.14. The first step is the computation of 
the scattering matrix of each joint:  
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(4.36) 
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where S(1) and S(2) are the scattering matrices of the joint “1” e “2”. 

In this analysis we consider a SH-wave that impinges on a joint.  
 

(1) (2)

ϑ

k 

 

d 

z

 
Figure 4.14 – Wave propagation across two parallel joints 

The second step is the application of the “chain rule” procedure, to the two 
scattering matrices, for obtaining the global scattering matrix. The reference plane 
of the first joint “1” has to be moved on the joint “2” for using the “chain rule” 
procedure. The scattering matrix for the joint “1”, after the translation of the 
reference plane, is the following:   
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(4.37) 

 
where d is the joint spacing. 

By applying the “chain rule” procedure (see Equations (3.42)), transmission and 
reflection coefficients can be defined as follows: 
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(4.38) 
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where RSH
(1) is the reflection coefficient for the case of SH-wave propagation across 

a single joint. 
Equations (4.38) show the dependence of the transmission and reflection 

coefficients on the joint spacing d, the joint properties Y, medium properties Zs and 
angular frequency ω. 

From Equations (4.38), we can obtain the same expression of the global 
transmission coefficient for a set of N joints obtained with a recursive approach 
(e.g., Boadu,1997; Fokkema and Ziolkowski, 1987). 

Figure 4.15 shows the magnitude of the transmission and reflection coefficients 
versus the joint spacing ratio computed with a constant value of normalized joint 
stiffness Kss of 1.6 and deduced from the Equations (4.38). A linear elastic joint is 
assumed. 

In Figure 4.15, we can note that transmission and reflection coefficients are 
periodic functions of the joint spacing ratio ζ, that is: 
 

 
cos inc

d
ζ

λ ϑ
= (4.39) 

 
where the joint spacing is divided by the ratio between the wavelength and the 
cosine of the angle of incidence. The results shown in Figure 4.15 are applicable for 
oblique SH-waves and for normally incident P or SV-waves. The points where the 
transmission coefficient reaches 1 while the reflection coefficient becomes zero are 
located each 0.5ζ.  
 
 
4.7 Analytical expressions of the transmission and reflection 

coefficients for a medium with parallel equi-spaced 
discontinuities 

 
In this paragraph the effects of a set of parallel equi-spaced discontinuities on wave 
propagation will be analysed. Wave propagation through N discontinuities is a very 
complex problem if it is studied by the plane wave method. The complexity of this 
problem is essentially due to the multiple reflections between the discontinuities.  

To address more easily this problem, we have adopted an approach used in the 
field of microwaves circuits. This approach is based on the Bloch waves, i.e. 
elementary waves very suitable to simulate wave propagation through periodic 
media. Therefore, this approach is applicable only on parallel equi-spaced 
discontinuities (periodic medium). Bloch waves are an appropriate combination of a 
forward and a backward wave that does not undergo any change from the input to 
the output plane of the periodic cell but only a phase-shift, hence a time delay.  
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Bloch waves are reflected from the interface between the elastic periodic 
medium and the elastic homogeneous one. Indeed plane waves are very good to 
treat problems of wave propagation in homogeneous media, while Bloch waves are 
a useful tool for studying wave propagation through periodic media. 
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Figure 4.15 – Magnitude of the transmission and reflection coefficients for a set of two 
parallel elastic joints (Kss= 1.6) versus the normalized joint spacing ratio ζ 

 
4.7.1 Periodic discontinuities, SH polarization 
 
The aim of this part is to compute the effects of a set of parallel equi-spaced 
discontinuities on SH-wave propagation. 

The characteristics of the periodic medium are shown in Figure 4.16. The 
periodic medium is composed of N unit cells (see Figure 4.16). 

The media on the left and on the right of the zone with parallel discontinuities 
are two half-spaces. The mechanical properties of the layers between the 
discontinuities are the same. The medium is characterized by the impedance ZS and 
the propagation constant k . S

For each discontinuity we can define an admittance Y that is function, as shown 
in the paragraph 4.2, of the mechanical properties of the joint and of the frequency. 
By varying the joint admittance we can simulate linear elastic dry joints and joints 
filled with fluid or soft materials. 
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  Figure 4.16 – Schematization of periodic medium 

It is necessary to define the transmission matrix of the unit cell, shown in  
Figure 4.16, for introducing the theory of Bloch waves. It is known that this 
transmission matrix at terminal planes close to the fracture is given by Equation 
(4.19). 

We need the expressions of the SH-wave modal matrix. Either we extract it 
from the Equation (3.31) in Chapter 3 or we compute it directly. 

Stress and velocity components of the elastic field in the unit cell are defined as 
follows (see Equation (3.30) in the Chapter 3): 
 

( ) m
y Sv c c Y+ −= −

( )( )

   velocity   velocity 

      

 
zy Sc c Z+ −= +τ   stress 

(4.40) 

 
where: 
c+ and c  are the amplitude of the incident and the reflected waves; −

YS
m

 = 1/ZS is the admittance of the medium; 
τyz is the tangential shear stress. 

Then, we can write: 
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zyτ
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(4.41) 

 
The inverse of the modal matrix, necessary for computing the transmission 

matrix A ̍ is: 
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Then the transmission matrix of the fracture, at the terminal planes to the 

joint, is: 
 

 
1 11

'
0 1 2 12

m m m
S S p pS S

m
p pS SS S

Z Y Y y yY Y
yZ ZZ Y

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ + −⎟ ⎟⎜ ⎜⎜ ⎜⎟ ⎟⎜ ⎜⎟⎜ ⎜⎟= =⎜ ⎜⎟ ⎟⎜ ⎜⎜ ⎜⎟ ⎟ −⎜ ⎜⎜ − ⎟⎜⎝ ⎠ ⎝− ⎟⎜ ⎝ ⎠⎝ ⎠
A

2 2

2y

⎞⎟ ⎟⎟ ⎟⎟ ⎟⎟ ⎟⎟ ⎟⎠
 (4.43) 

 
where . p Sy Y Z= ⋅

The transmission matrix of the unit cell can be obtained by moving the planes 
terminal to the cell boundaries. The transmission matrix of the unit cell is: 
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where:  

cos inc
zS

S

k d d
V

ω
ψ = ⋅ = ϑ

1−=A V Vλ

N N= =-1A V Vλ

 with d being the size of the unit cell and the 

discontinuity spacing. 
At this point, it is possible to introduce the theory of the Bloch waves that are 

related to the eigenvectors of the transmission matrix A of the unit cell. The 
matrix A has the following representation: 
 

  (4.45) 
 
where: 
V is the matrix of the eigenvectors of the transmission matrix of the unit cell; 
λ is the diagonal matrix of the eigenvalues. 

The transmission matrix of the periodic medium with N cells can be obtained 
by: 
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The eigenvalues of A have the physical meaning of phase-shift per cell of 

suitably defined waves: we are introducing Bloch waves, defined by the 
eigenvectors of A. The “natural basis” here is that of the forward and backward 
plane waves.  

Bloch waves can be defined only at the terminal planes of the periodic medium 
and not inside the periodic medium. 

The eigenvalues of A are the roots of the characteristic polynomial: 
 

( ) ( )det 0Trλ λ− ⋅ + =A A2  (4.47)  
 
where Tr(A) and det(A) are respectively the trace and the determinant of the 
transmission matrix A.

 Since the structure is reciprocal, the determinant of A is 1. Hence the roots are 
reciprocal: 
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with λ1 = 1/λ2. 

This form suggests to introduce an angle ϕ such that 
 

 ( ) 11 22 1 2
j jTr A A e eλ λ −= + = + = +A (4.49) 

 
The trace of the transmission matrix can be also obtained from the equation 

(4.44) 
 

( ) ( ) ( )1 2 1 2j j
p pTr y e y eψ ψ−= + + − =A

 
( )( ) ( )( )1 2 cos sin 1 2 cos sinp py j y jψ ψ ψ ψ= + + + − − =  
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b

(4.50) 

 
where  py j=

Finally by equating expressions (4.49) and (4.50) of Tr(A), we obtain the 
phase-shift per cell: 
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After long algebraic manipulations, we can write the transmission matrix for the 

periodic medium composed of N cells in the following form: 
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By recalling the conversion expressions of the elements of the transmission 

matrix into those of the scattering matrix, we obtain the reflection and the 
transmission coefficients (RN and TN) of the periodic medium: 
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Equations (4.53) and (4.54) are the general expressions of the reflection and 

transmission coefficients for a set of N parallel joints. These coefficients are 
applicable for an incident SH-wave and for each angle of incidence ϑinc by 
remembering that: 
 

p Sy Y Z= ⋅  and  cos inc
S SZ Vρ ϑ=
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These expressions, which are related to the fracture impedance Y, are applicable 
to different types of fracture (see Paragraph 4.2). 
 
 
4.7.2 Additional considerations 
 
In this section some analyses have been performed with the SMM implemented in 
Matlab. The results obtained are explained by using Bloch wave theory. 

We can rewrite the trace of the transmission matrix of the unit cell as: 
 

 ( ) ( )2 cos 2 cos cos 2Tr D D Dψ α ψ α= + = −A sin sinψ α (4.55) 
 
and equating the components of (4.50) and (4.55) we obtain: 
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(4.56) 

 
Figure 4.17 shows the positions of stop-bands that are located in the intervals 

where the curve raises above 1 or falls below -1. 
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Figure 4.17 – Localization of stopbands 
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The band edges (defined by |cosϕ| = 1) of the first stop-band (see Figure 4.17) 

are:  
 

( ) ( ) ( )1
cos 1 cos cosD

D
ψ α ψ α α+ = − ⎯⎯→ + = − = −  

1

2

2ψ π α
ψ π
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ψ α π α+ = ± (4.57)  

 
For the second stop-band the band edges are: 
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In the same manner it is possible to compute the position of all stop-bands. 
It is clear from Equations (4.57) and (4.58) that the width of stopbands is 2α. 
The phase-shift per cell ϕ is function of the frequency and of ξ (= kS sinϑinc) and 

it represents the dispersion relation of Bloch waves. 
In Figure 4.17, the zones in which |cosϕ| < 1 correspond to real value of ϕ. 

These zones are defined as pass-bands. On the other hand the stop-bands are 
located where |cosϕ| > 1. In these zones ϕ is complex and thus Bloch waves are 

evanescent (i.e. attenuated). The maximum attenuation is reached at ψ =mπ − α 

and  (with "jϕ ϕ= ( ) ( )1 2" cosh ln 1D D Dϕ −= = + − =  

2

ln 1
2 2

b b
⎛ ⎞⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟= + + ⎟⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎟⎝ ⎠⎜ ⎟⎟⎜⎝ ⎠

). 

Figure 4.18 shows the plot of the real and imaginary part of ϕ versus ψ. Dashed 
curves yield the imaginary part of ϕ in m-1. 
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Figure 4.18 – The dispersion relation of Bloch waves between ϕ and ψ 

Some parametric analyses have been performed for linear elastic dry 
discontinuities. 

Figure 4.19 shows a plot of the reflection and transmission coefficients, for a 
discontinuous medium with N=10 parallel equi-spaced discontinuities, in function 
of the joint spacing ratio ζ (see Equation (4.39)) for a normalized discontinuity 
stiffness (Kss = kss/ωZS) equal to 1.6. In this case we consider a SH wave that 
impinges on the discontinuities. The results plotted are obtained by varying the 
joint stiffness and keeping constant the frequency or vice versa. 

The parameter b is related to the normalized joint stiffness Kss (Ky) as follows: 
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ωω⋅
= =b

j j
= = = (4.59) 

 
while the ratio ζ is related to ψ: 
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 cos
π λ

= =
2

incdψ
ϑ ζ  (4.60) 

 
Hence, for the case studied in Figure 4.19 we have: 
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⋅
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ψ ψ α
π π

−
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2 2 2
l

ψ ψ π
π π

−
= = = ⎯⎯→  stopbands period 

 
where the results are applicable for a SH-wave that impinges on a discontinuity 
with any angle of incidence ϑinc or for normally incident P or SV-waves. 
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Figure 4.19 – Reflection and transmission coefficients, for a discontinuous medium with 
N=10 parallel equispaced discontinuities, versus the ratio between fracture spacing and 

wavelength (ζ = d/(λ/cosϑinc)) with Kss = 1.6  

If we do not normalize the joint spacing with the cosine of ϑinc we obtain: 
 

- if ϑinc increases the period of the stopbands increases; 
- the width of the period  (l)  for ϑinc = 90°.  → ∞
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Figure 4.19is defined for a value of b = 1/Ky = 1/1.6.  
In Figure 4.20, the plots of the transmission and reflection coefficients versus 

the normalized joint spacing are defined for a stiffness ratio Kss = 0.47. In this 
situation the width of the stop-bands is 0.260 while the stop-bands period (l) is 
0.500, that is constant with respect to Kss. 

Finally, it is possible to say that by decreasing the discontinuity or joint 
stiffness (Kss), b and α increase. Hence the width of the stop-band increases. For 
Kss→ 0 the width of the stopband  and hence there is a complete reflection of 
the SH-wave. On the other hand if Kss  the width of the stop-band  and 
the wave is completely transmitted (welded interface).  

→ ∞
→ ∞ 0→

Characteristics of the stop-band are influenced by the number N of 
discontinuities. The increase of the number N of joints leads to an increase of the 
reflectivity within the stop-band and enlargement of its width. The band edges 
become also sharper. We can observe form Figure 4.20 and Figure 4.21 that when 
N increases, the band edges are sharper and the reflection coefficient tends to the 
unity exponentially with N. If the number N of discontinuities is high enough we 
can obtain reflection coefficient near 1 and the band edges are essentially vertical 
(Figure 4.20 and Figure 4.21). This last statement is confirmed by the fact that, for 
a very large N (Figure 4.22), the band edges maintain their position. Moreover the 
number of oscillations between two successive stop-bands is N-1. 
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(b) 

Figure 4.20 – Magnitude of the transmission and reflection coefficients versus the joint 
spacing ratio ζ and with Kss = 0.47, for a medium with N parallel equispaced discontinuities 

and with SH-wave normally incident 
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(b) 

Figure 4.21 – Magnitude of the transmission and reflection coefficients versus the joint 
spacing ratio ζ and with Kss = 1.6, for a medium with N parallel equispaced discontinuities 

and with SH-wave normally incident 
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Figure 4.22 – Magnitude of the transmission and reflection coefficients versus the ratio ζ 

with Kss = 1.6 and with a very large number of discontinuities 

In the end, this paragraph develops a well known methodology (especially in 
optical physics) that allows understanding the behaviour of discontinuous media 
with parallel equi-spaced discontinuities. We have derived simple analytical 
expressions of the reflection and transmission coefficients. These coefficients are 
function of: 
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- number N of discontinuities, 
- joint stiffness,  
- angle of incidence and frequency of the SH-wave. 

 
For certain values of frequency or the ratio ζ, the SH-wave is completely 

reflected (stop-bands). 
From the previous results, we can say that by increasing the number N of joints 

the magnitude of the transmission coefficient decreases while the magnitude of the 
reflection coefficient increases. Another important parameter is the normalized joint 
stiffness. When this value increases the magnitude of the transmission coefficient 
increases while the magnitude of the reflection coefficient decreases. 

For a certain number of joints (some tens), depending on the joints stiffness, in 
the stop-bands and then for certain ranges of normalized joint spacing ratio there is 
a total reflection of the incident wave. 

Additional analyses are performed in Chapters 5 to 8 for each type of joint 
behaviour considered in this thesis. 

 
 
4.8 Summary  
 
The application of the SMM to wave propagation through discontinuous media has 
been presented with interest in different types of joint behaviour (e.g. linear elastic, 
or viscoelastic).  

The expressions of the transmission and reflection coefficients for one joint and 
for N parallel equi-spaced joints has been obtained. Bloch wave theory has been 
used to understand the behaviour of a periodic medium and then of a medium with 
N equi-spaced parallel joints. 

The fundamental parameter for describing a joint with SMM is the admittance 
of the joint or discontinuity. By applying the analogy with the transmission lines, 
we have considered a relevant equivalent circuit in which the admittance is 
connected in parallel on the transmission line representing wave propagation in the 
z direction. The joint admittance is function of the frequency and of the properties 
of the joint (normal and shear stiffness and specific viscosity of the fluid or the soft 
material that fills the joint). 

The increase in the number of joints produces an increase of the reflected wave 
and a decrease of the transmission coefficient. The transmission coefficient increases 
with the increasing of the joint stiffness and with the decreasing of the frequency. 
Moreover, the transmission coefficient is more or less influenced by the number of 
joints as a function of the normalized joint spacing ratio. 

The behaviour of a medium with a set of parallel joints is periodic in the 
frequency domain (application of a harmonic incident wave).  



Chapter 5  
 
Comparative study of wave propagation across 
multiple rock joints by different analytical methods 

 
5.1  Introduction 

 
The theoretical methods proposed by different Authors for the study of wave 
propagation through discontinuous media (also see Chapter 2), in addition to the 
Scattering Matrix Method (SMM) developed in the previous two chapters, are 
briefly reviewed in the following.  

These methods may be classified as pertaining to either the Displacement 
Discontinuity Method (DDM) or to the Equivalent Medium Method (EMM). 
Firstly, we will introduce the Method of Characteristics (MC) and the Virtual 
Wave Source Method (VWSM) that belong to the DDM. Then, the Equivalent 
Medium Method (EMM), recently developed by Li et al. (2010), will be described. 

With reference to these methods a comparative study of wave propagation 
across multiple rock joints, where multiple wave reflections are taken into account, 
is presented. The advantages and disadvantages of these methods with respect to 
SMM will also be discussed. 
 
 
5.2  Method of Characteristics (MC) 
 
MC has been widely used to study one-dimensional wave propagation in continuous 
media (Ewing et al. 1957; Courant and Hilbert 1962; Bedford and Drumheller 
1994). Based on the one-dimensional wave equation, relations between particle 
velocity and stress along right- and left-running characteristics can be built.  

As shown in Figure 5.1, the quantity (Zv + σ)  is a constant along any straight 
line with slope 1/α (right-running characteristic) in the x-t plane, where  is the 
normal stress, v is the wave velocity, Z = ρα is the impedance of the material, ρ is 
the rock density, and α the wave velocity. Similarly, the quantity (Zv - σ) is a 
constant along any straight line with slope of -1/α (left-running characteristic) in 
the x-t plane. It is noted that the normal stress is defined to be positive for 
compressive stress, and negative for tensile stress. The definition is consistent with 
that commonly used in rock mechanics. 

σ



112       Comparative study of wave propagation CHAPTER V 

 

Joint

Figure 5.1 - Characteristics in the non-dimensional x-t plain (Cai and Zhao, 2000) 

MC can also be used to study wave propagation across discontinuous jointed 
rock masses (Cai and Zhao, 2000; Zhao J. et al., 2006). When a wave propagates in 
a jointed rock mass, multiple reflections occur between joints. Actually, the 
transmitted wave across parallel joints can be treated as wave superposition of 
differently arriving transmitted waves caused by the multiple reflections. In the x - 
t plane, new variables, non-dimensional distance (n) and non-dimensional time (j), 
are used:  
 

/j t t= Δ

/ ( )n x tα= Δ

 (5.1)  
 
  (5.2) 

 
where Δt is the time interval.  

It is assumed that a finite number of interfaces are located at integral values of 
non-dimensional distance in a half space with its left boundary at n=0, the first 
interface at n=1, the second interface at n=2, and the last interface at n=l (l is an 
integer). The interface could be a joint or a welded interface, which can be treated 
as a joint with infinite joint specific stiffness.  

Figure 5.1 shows conjunction points of right- and left-running characteristics at 
integral values of non-dimensional distance and non-dimensional time. Particle 
velocities and normal stresses are evaluated at these points. However, this does not 
mean that solutions can be obtained only at the interface positions. If the field 
between two adjacent interfaces is further divided into a certain number of layers, 
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solutions can be obtained at these layers’ boundaries, which are treated as joints 
with infinite joint specific stiffness. 

In the analysis, it is assumed that joints and elastic media on both sides of the 
joints have identical properties. Along the right-running characteristic ab and the 
left-running characteristic ac shown in Figure 5.1, two relations between particle 
velocities and normal stresses at points a, b and c are built: 
 
 ( , 1) ( , 1) ( 1, )Zv n j n j Zv n jσ σ− − ++ + + = − + ( 1, )n j+ −

( 1, )n j− +

1) ( , 1)n j n jσ+ = +

( , 1) / nnn j kσ= +

( 1, )n j−− +

 (5.3) 
 
 ( , 1) ( , 1) ( 1, )Zv n j n j Zv n jσ σ+ + −+ − + = + −  (5.4) 
 
where  and  are particle velocities at time j + 1 before and 
after the joint at distance n,  and  are normal stresses at 
time j +1 before and after the joint at distance n.  

( , 1)v n j− + ( , 1)v n j+ +
( ,n jσ− 1)+ ( , 1)n jσ+ +

Based on the DDM, the stresses at the joint are continuous, while the 
displacements are discontinuous. Therefore, the response at point a can be derived: 
 
 ( , 1) ( ,n jσ σ− ++ =         (5.5) 

 
 ( , 1) ( , 1)u n j u n j− ++ − +         (5.6) 

 
where knn is the normal joint specific stiffness,  and  are 
displacements at time j+1 before and after the joint at distance n. 

( , 1)u n j− + ( , 1)u n j+ +

With Equation (5.5), the addition of Equations (5.3) and (5.4) gives: 
 

 
( , 1) ( , 1)

( 1, ) ( 1, ) ( 1, )

Zv n j Zv n j

Zv n j n j Zv n jσ σ

− +

+ + −

+ + + =

= − + − + +
 (5.7) 

 
The differentiation of Equation (5.6) with respect to t is: 

 

 
( , 1)1

nn

n j

k t

σ∂ +
=

∂
( , 1) ( , 1)v n j v n j− ++ − +  (5.8) 

 
If Δt is small enough, Equation (5.8) can be expressed as: 
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( , 1) ( , )

nn

n j n j

k t

σ σ+ −
Δ

( , 1)]v n j− +− +

( , )n jσ+ =

( , 1) ( , 1)v n j v n j− ++ − + =  (5.9) 

 
Equation (5.9) can be rewritten as:  

 
 ( , 1) ( , ) [ ( , 1)nnn j n j k t v n jσ σ+ = + Δ +  (5.10) 

 
Substituting Equation (5.10) into Equation (5.3) gives: 

 

 
( ) ( , 1) ( , 1)

( 1, ) ( 1, )
n nnk t Z v n j k tv n j

Zv n j n jσ

− +

+

Δ + + − Δ +

= − + −
 (5.11) 

 
Equations (5.7) and (5.11) form a linear equation group with respect to particle 

velocities at point a before and after the joint. After it is solved, expressions of 
particle velocities at point a are obtained: 
 

 ( , 1) ( ( 1, ) ( 1, ) ( , ) ( ( 1,

( 1, ) ( 1, ) ( 1, ))) / (2 )

nn

nn

k t
v n j Zv n j n j n j Zv n

Z
Zv n j n j n j k t Z

σ σ

σ σ

− +

+

Δ
+ = − + − − + +

+ − + − − + Δ +

)j−
 (5.12) 

 

 

( , 1)

( ( 1, ) ( 1, ) ( 1, ) ( 1, ))

( 1, ) ( , ) ( 1, )) / (2 )

nn

nn

v n j

k t
Zv n j n j n j Zv n j

Z
Zv n j n j n j k t Z

σ σ

σ σ

+

+ −

+

+ =
Δ +

= − − + + − + +

− − + − − Δ +

Z
+  (5.13) 

 
By substituting Equations (5.12) and (5.13) into Equation (5.10), the expression 

of normal stress is derived as follows: 
 

 
( , 1) ( , ) ( ( 1, )

2
( 1, ) ( 1, ) 2 ( , ))

nn

nn

k t
n j n j Zv n j

k t Z
Zv n j n j n j

σ σ

σ σ

+

−

Δ
+ = + − +

Δ +
− + + + −

( 1, )n jσ −  (5.14) 

 
Equations (5.12) to (5.14) show that the responses at point a are determined by 

those at points b, c and d. Meanwhile, it indicates that responses at time j +1 can 
be calculated from those at time j. With input velocity of v(0, j) and initial 
conditions of ,  and , Equations ( , 0)v n+ ( , 0)v n− ( , 0)nσ (5.11) to (5.13) are applied 
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to determine particle velocities and stress at any point through an iterative 
computation. 
 
 
5.3  Virtual Wave Source Method (VWSM) 
 
Li et al. (2010) introduced a new concept of virtual wave source (VWS) with a 
viscoelastic medium model to establish an equivalent viscoelastic model, which can 
describe the dynamic properties of the rock mass and derived an explicit expression 
for the wave propagation equation. Here, the VWS concept is extended to the 
study of a discontinuous rock mass.  

The VWS exists at the joint position and produces new waves when the 
incident wave approaches the joint. The transmitted wave across the rock mass can 
be treated as the superposition of different transmitted waves created by the VWS. 
Combined with the DDM, VWS can also be used to study wave propagation across 
a discontinuous rock mass, where the discreteness of the joints can be taken into 
account. 

If an incident harmonic P-wave with the form of:  
 

exp( )Iv I i tω=  (5.15)  
 

transmits across a joint, the reflection and transmission coefficients across it can be 
written as (Equations 4.23): 
 

 1 2 / ( )nn P

i
R

i k Z ω
=

− +
 (5.16) 

 

 1

2 / ( )

2 / ( )
nn P

nn P

k Z
T

i k Z

ω
ω

=
− +

 (5.17) 

 
where I is the amplitude of the incident wave.  

Equations (5.16) and (5.17) show that reflection and transmission coefficients 
are dependent on a combined parameter Knn = knn / (ZPω) which is named as 
normalized normal joint stiffness.  

In order to obtain the theoretical solution of the transient wave transmitting 
across a joint set, the incident transient wave (vI) is first transformed into 
frequency domain by FFT (Fast Fourier Transform). In the frequency domain, the 
incident transient wave can be transformed as the sum of a series of harmonic 
waves with different amplitudes and frequencies: 
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 (5.18)  

 
where vIi is one harmonic wave, Ai and ωi are the amplitude and angular frequency 
of the harmonic wave vIi. 

When the rock is characterized by the presence of two or more joints, the 
transmitted wave can be treated as wave superposition of transmitted waves 
arriving at different times. In order to take into account wave superposition, the 
method of VWS is used. The VWS exists at each joint position and produces two 
new waves with opposite directions when an incident wave impinges the VWS.  

The concept of VWS can be re-explained as there are one ‘reflected’ wave and 
one ‘transmitted’ wave created from the VWS, when the wave arrives at the 
VWS’s position. The reflected and transmitted waves from one joint can be 
obtained by Equations (5.16) and (5.17) when the incident harmonic wave is 
known.  

Figure 5.2 illustrates the scheme of wave propagation across a jointed rock mass 
with VWS. The transmitted harmonic wave across one joint set is the result of the 
wave superposition of different transmitted waves created by the VWS: 
 

  (5.19) 

 
where vTi is the transmitted wave for the incident harmonic wave vIi, vTij is the 
transmitted wave arriving at different time, as shown in Figure 5.2. 

Then, an inverse transform for these transmitted harmonic waves is conducted 
to get the transmitted transient wave (vT) by IFFT (Inverse Fast Fourier 
Transform), which can transform one series of harmonic waves into a transient 
wave: 
 

  (5.20) 
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Figure 5.2 - Scheme of jointed rock mass with VWS (2 joints) 

 
5.4  Equivalent Medium Method (EMM) 

 
The equivalent medium method (EMM) (Li et al. 2010) is a continuous medium 
model which describes the dynamic property of the discontinuous rock mass. This 
model consists of a viscoelastic medium model and the concept of virtual wave 
source (VWS). The viscoelastic medium model is an auxiliary spring placed in 
series with the Kelvin-Voigt model (Figure 5.3), which can display both the 
attenuation and the frequency dependence of the transmitted wave. The concept of 
VWS is to consider the effect of discreteness of a rock mass on wave propagation, 
i.e., the wave reflections between two joints. 

As for the longitudinal motion equation for one-dimensional problems, the 
equivalent model of the auxiliary spring placed in series with the Kelvin-Voigt 
model can be mathematically expressed as: 
 

 
2 2 2

2
0a

v v v v
dt
x

∂ ∂ ∂ ∂
=

∂2 2
( )v a v v a vE E E E E

tt x
ρη ρ η+ + − −

∂∂ ∂ ∫  (5.21) 

 
where v is the particle velocity, Ea is the Young’s modulus of the intact rock, while 
Ev represents the stiffness contributed by the joints; ηv is the viscosity.  
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Define τ = ηv / Ev as the time of retardation of the Kelvin-Voigt element, and:  
 

 
1 1 1

c a vE E E
= +

p( )exp[ ( )]x i t xβ ω α− +

 (5.22) 

 
Ev and ηv need to be determined by comparing the transmitted wave through the 
equivalent medium with the existing solutions of a discontinuous rock mass. Ev is 
obtained for each joint section (including one joint and rock material having 
thickness equal to the joint spacing). Therefore, joint spacing is involved in the 
determination of Ev, while the joint thickness is not since the joint is very thin and 
the thickness is considered to be zero.  
 

vE

 
Figure 5.3 - Equivalent mechanical model of an auxiliary spring in series with Kelvin-Voigt 

model 
 

The solution for Equation (5.21) has the following form: 
 
 exv A= ⋅  (5.23) 

 
and 
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 (5.24) 

 
where α gives the phase shift per unit length and the minus sign of β indicates the 
wave attenuation.  

aE

vη
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Across the joint set, the final transmitted wave is the superposition of two 
parts. The first one is from the direct transmission of the initial incident wave and 
the other one is from the multiple reflections among the joints. Although the 
frequency-dependence and wave attenuation have been shown in Equations (5.23) 
and (5.24), the effect of the discreteness of joints on wave propagation in the 
viscoelastic solid still cannot be reflected in the two equations. 

In order to solve this problem, the concept of virtual wave source (VWS) is 
proposed in the equivalent medium model. The VWS exists at each joint surface 
and produces a new wave (in the opposite direction of the incident wave) at each 
time when an incident wave propagates across the VWS. The distance between two 
adjacent VWSs is equal to the joint spacing d. The equivalent length of the 
medium is defined as the product of joint number N and the joint spacing d, i.e., 
Nd. Figure 5.4 shows a rock mass with three parallel joints and the corresponding 
equivalent medium with and without VWS, where the equivalent length is 3d. The 
concept of VWS can be interpreted as that a reflected wave is created from the 
virtual wave source when either a positive wave or a negative wave arrives at the 
VWS. 

Assume there is an incident P-wave:  
 

( , 0) exp( )Iv t A i tω= −

( )exp[ ( )]d i t dβ ω α= − +

 (5.25)  
                                                    
from the left side A of the equivalent medium in Figure 5.4. According to Equation 
(5.22), along the direction of the incident wave the particle velocity at point B is: 
 
 ( , ) expev t d A  (5.26) 

 
where the phase shift of ve(t,d) and vI(t,0) is αd. According to the energy 
conservation of the simple harmonic waves (Cook 1992), the amplitude of the 
reflected wave at the interface B is , if the interface B is a 
discontinuous boundary.  

2 1/2{1 [exp( )] }A dβ−

From the Kramer-Kronig relation (a statement of causality), any changes in the 
amplitude of a wave must be accompanied by a change in phase. Since the phase 
shift between the reflected and transmitted waves is π/2 (Pyrak-Nolte et al. 1990a; 
Cook 1992), the reflected wave at B can be expressed as:  
 

 2( , ) 1 [exp( )] exp[ (ev t d A d i tβ ω′ = − − / 2)]dα π+ −  (5.27) 
 
where ve’(t,d) is regarded as the wave produced from the VWS at B. Then, ve(t,d) 
and the created wave ve’(t,d) propagate along two opposite directions as new 
incident waves to the adjacent interfaces C and A, where new waves are repeatedly 
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created and propagate to their adjacent interfaces. The transmitted wave at the 
right side D of the equivalent medium is a wave superposition of ve(t,3d) arriving at 
different times, which is the summation of multiple waves created from the three 
VWSs and the transmitted wave from the incident wave vI(t,0) propagating across 
the viscoelastic medium. 

 
Figure 5.4 - Scheme of jointed rock mass and equivalent medium 

(b) Equivalent medium model without virtual wave source (VWS) 
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5.5 Comparative study  
 

In order to compare the four different methods, the SMM and the three methods 
briefly described above (MC, VWSM, and EEM), a one-dimensional P-wave 
propagation analysis through a rock mass with parallel joints is performed. The 
joints considered in the analysis are planar, large in extent and small in thickness 
compared to the wavelength. The material damping is considered because we only 
study the effects of joints on wave propagation.  

The model is the same for all the methods considered as shown in Figure 5.4a. 
A normally incident half-cycle sinusoidal P-wave is assumed to be applied at the 
boundary of the model with a frequency of f0=100Hz and unit amplitude (Figure 
5.5). Hence, the incident wave is applied at the boundary “A” while the transmitted 
wave is recorded at the boundary “D ” (Figure 5.4a). The assumed mechanical 
properties of the rock mass are listed in Table 5.1. 
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Figure 5.5 - Incident wave (half-cycle sinusoidal wave) 

Transmitted waveforms across 1, 2, 3 and 4 parallel joints with joint spacing d= 
1/10λ and normalized joint stiffness Knn = 0.36 are plotted in Figure 5.6. The 
transmission coefficient is defined as the ratio of the amplitude of the transmitted 
wave to that of the incident wave. The transmitted wave is shown to decreases in 
amplitude with increasing number of joints. Therefore, the incident wave is 
attenuated from the jointed rock mass, and this attenuation increases with the 
number of joints. Each joint causes a time delay of the transmitted wave. This time 
delay increases with the joint number and it results in a phase shift. Hence the 
phase shift ϑ  for a compressional wave normally incident upon a joint (Schoenberg, 
1980) is a function of the normalized joint normal stiffness Knn and 
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arctan(1 / 2 )Kϑ = nn . Obviously, there is also another part of this time delay that 
is caused by the medium between joints. 

Table 5.1- Mechanical properties of the rock mass 

Model Parameters from 
curve fit 

Density 2650 kg/m3 

Velocity of the propagating 
P-wave 5830 m/s 

Joint normal stiffness 3.5 GPa/m3 

 
Moreover, it is clear from Figure 5.6 that the transmitted waveforms obtained 

with all four methods are almost coincident. We can only note negligible differences 
for later arriving transmitted waves. 
 

 
(a) Single joint 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.01 0.02 0.03 0.04 0.05

P
ar

ti
cl

e 
ve

lo
ci

ty
 [
m

/s
]

Time [s]

SMM
MC
VWSM
EMM



CHAPTER V    Comparative study of wave propagation 123 

 
-0.25

0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.01 0.02 0.03 0.04 0.05

P
ar

ti
cl

e 
ve

lo
ci

ty
 [
m

/s
]

Time [s]

SMM
MC
VWSM
EMM

(b) Two joints 

 
(c) Three joints 
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(d) Four joints 
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Figure 5.6 - Comparison of transmitted waves obtained from four methods with different 
joint number N (Knn=0.36 and d=1/10λ) 
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Wave propagation across a single fracture is simulated as shown in Figure 5.7. 
By showing the trend of the transmission coefficient |T1| versus the normalized 
joint normal stiffness |Knn|, it is found that the four methods agree well with each 
other. In Figure 5.7 we can see that if the value of |Knn| approaches infinity, |T1| 
approaches 1. While |Knn| approaches 0, |T1| approaches 0. These two limit 
conditions correspond respectively to the case of a welded and free interface. 
Between these two extreme conditions, |T1| increases with increasing |Knn|. 
 

Figure 5.8 shows the transmission coefficient |T2| evaluated for a model with 
two parallel joints by varying the non-dimensional ratio (ζ) of joint spacing to 
wavelength for different values of Knn (0.3, 1). The following remarks are made: 

 
1. The four methods agree well with each other. 
2. |T2| increases with increasing Knn. 
3. When ζ > 0.19 for Knn and  ζ > 0.26 for Knn = 0.3, |T2| is constant. 
4. For smaller ζ values, |T2| reaches a maximum value. The trends of |T2| 

versus ζ are essentially the same for the two values of Knn analysed. 
5. |T2| increases with Knn. 

 
Figure 5.9 shows the magnitude of transmission coefficients across N (2, 4 and 

6) joints as a function of ζ with Knn = 0.36. We can note that: 
 

1. The four methods agree well. There is only a small gap between EMM 
and other DDMs between ζ = 0.31 and ζ = 0.57. 

2. |TN| decreases with the increasing of N. 
3. When ζ > 0.24 for N = 2, ζ > 0.46 for N = 4 and ζ > 0.66 for N = 6, 

|TN| is constant. In this zone, |TN| strongly decreases with N according 
to the exponential function |TN| = |T1|N, as proposed by Pyrak-Nolte et 
al. (1990a). 

4. For smaller ζ values, |TN| reaches the maximum value. In this area, |TN| 
decreases more slowly with increasing N. Moreover, in the range of ζ 
between 0 and 0.04 (0.04 corresponds to the max value of |TN|), |TN| is 
approximately the same with increasing N. 
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Figure 5.7 - Transmission coefficient for a single joint versus Knn 
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Figure 5.9 - Transmission coefficient for N parallel joints versus the non-dimensional joint 

spacing ζ with a Knn = 0.36  

Finally, wave attenuation across jointed rock masses is mainly due to the 
presence of joints, although there is wave attenuation due to rock material damping 
(not considered in these analyses).  

In fact, if the stiffness of the joint decreases, the amplitude of the transmitted 
wave decreases. If the frequency increases, the amplitude of the transmitted wave 
decreases. The reduction of the amplitude of the transmitted wave increases with 
the increasing of the number of joints because at each joint some energy of the 
wave is reflected. 
 
 
5.6 Discussion 

 
The MC, SMM and VWSM methods use the displacement discontinuity model for 
representing the joint as a discontinuity in displacements, while EMM adopts a 
different approach to model the rock mass. 

MC is widely used in solving particle one-dimensional wave propagation 
problems and also helps to explain the boundary and initial problems that must be 
prescribed in such cases. The method works directly in the time domain. Therefore, 
FFT and IFFT cannot shorten computation time.  

With MC, wave interaction with different joint behaviour can be studied, e.g., 
joints with nonlinear behaviour (the static BB model, Zhao XB et al. 2006a) and 
joints with Coulomb slip behaviour (Zhao XB et al. 2006b). MC can also be used 
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to study wave propagation across a large number of joints and joints with different 
spacing. MC cannot be used in frequency domain.  

The MC uses differential equations to calculate the dynamic response and 
therefore it is affected by inherent computation errors. With smaller time interval, 
the results will be more accurate, but the computation efficiency will be lower. In 
addition, it is hard to study with MC obliquely incident wave propagation across 
jointed rock masses.  

With SMM, all multiple wave reflections between joints are taken into account. 
This method works in frequency domain. Transmission and reflection coefficients 
for a single joint or for many joints can be derived analytically. With SMM, we can 
derive the analytical expressions available in literature (e.g., Pyrak-Nolte et al. 
1990a). With this method, material damping can be considered, which in previous 
analyses was set equal to zero, in order to better evaluate the influence of joints on 
wave propagation.  

SMM can also allow to study various joint conditions (e.g. dry, filled or 
frictional joints) and to treat obliquely incident waves across a joint set. 
Additionally, wave propagation across a large number of joints in a rock mass and 
joints with different spacing can be studied. However, in order to study wave 
propagation in time domain, FFT and IFFT are to be used to transform harmonic 
wave to transient wave. Thus, there will be additional computation time, and the 
time interval will result in computational errors. For an obliquely incident wave, 
some difficulties can be found in comparing the transmitted wave computed by 
using SMM and that measured in experiments or obtained by numerical modelling. 
These difficulties are due to the limited transversal size of the specimen or of the 
numerical model, which results in a limited number of transmitted waves from 
multiple wave reflections between joints.  

VWSM uses a virtual concept in order to represent the influence of joints on 
wave propagation. VWS exists at each joint position and produces new waves (2 in 
opposite directions) each time an incident wave propagates across the VWS. With 
the transmission and reflection coefficients obtained for one single joint in 
frequency domain, wave propagation across one joint set can be studied, where 
multiple wave reflections are considered. Material damping can also be taken into 
account. The method can be extended to study obliquely incident waves across one 
joint set with different joint spacing.  

In addition, with VWSM, different arriving transmitted waves can be separated, 
and the analytical results can be compared with experiments, numerical modelling 
and in situ tests, especially for obliquely incident waves. However, in the time 
domain, FFT and IFFT should be used to transform harmonic wave to transient 
wave. Thus, there will be additional computation time, and the time interval will 
result in computational errors. Besides, the times of multiple wave reflections are 
controlled by the time duration used in the computation. With longer time, the 
times of multiple wave reflections will be larger and the results will be more 
accurate but the computational time will be longer. 



128       Comparative study of wave propagation CHAPTER V 

Unlike previous methods, the EMM adopts an equivalent viscoelastic medium 
model and the concept of VWS to solve the problem. The VWS is to reflect the 
discreteness of rock mass, or to describe the multiple reflections among joints. With 
this method, effective moduli of the jointed rock mass can be accurately obtained. 
It is convenient to adopt the effective moduli to quantitatively compute the wave 
attenuation across the jointed rock mass in engineering application. However, this 
method requires some additional steps for computing the input parameters 
(stiffness contributed by the joints (Ev) and viscosity (ηv)) that are function of the 
incident wave frequency and the joint spacing. The EMM also needs to carry out 
further study for some other problems, such as the obliquely incident wave 
propagation problems and the wave propagation across a great number of joints 
with different spacing. 
 
 
5.7 Summary 
 
The methods described above can be used to simulate wave propagation across a 
set of rock joints, where multiple wave reflections can be taken into account. All of 
them have advantages or disadvantages. Depending on the problem to be solved 
(type of input signal or joint conditions), a specific method can be chosen and 
adopted. 

In particular, SMM is very good to solve wave propagation problems through a 
large number of joints because the time required for computations is small and the 
accuracy remain the same of that for a single joint. Particularly efficient for this 
type of analysis is the method of Bloch waves (see Chapter 4) that gives, for a 
periodic distribution of joints, the same results of the SMM. It is important to say 
that although the SMM work in frequency domain gives results that are very near 
to those obtained with a completely different method operating in the time domain 
as MC. 

On the other hand, MC and VWS are not very good if the number of joints is 
large because the computational time becomes very large and if the incident plane 
wave impinges obliquely the joints. EMM is the most simplified approach and 
many difficulties may be found if we increase the number of joints or we consider a 
oblique incident wave.  

 



Chapter 6   
 
Filled joints 
 
 
6.1 Introduction    

 
Many studies have been performed on wave propagation across non-filled joints 
(Cai and Zhao, 2000; Schoenberg, 1980). However, natural joints, are often filled 
with materials such as sand or clay or are water saturated. Therefore, the study of 
wave propagation across filled joints is of great interest. 

In the present chapter, this problem is analysed by using the SMM as developed 
in Chapter 4. Parametric analyses are performed to evaluate the effects of joint 
properties and of the impedance ratio between the filling material and the rock on 
wave propagation. The results obtained with the SMM are compared with those 
derived with other analytical solutions and numerical methods.  

Consideration is finally given to the results of tests performed with the modified 
split Hopkinson pressure bar of P-wave propagation across a joint filled with 
saturated sand (Li and Ma, 2009). These results are back analysed with the SMM 
by using Kelvin, Maxwell and Burger viscoelastic models.  
 
 
6.2 Analytical solutions for wave propagation across a single 

filled joint with SMM 
 

The simulation of wave propagations through a filled joint can be performed by 
using different analytical methods. The most accurate method is the “thin plane 
layer model TPLM” (Fehler, 1982) where the joint is modelled as a thin layer and 
composed of two welded interfaces between the intact rock and the filling material 
and between the filling material and the intact rock. Another method is an 
approximation of the first one and uses the DDM (Schoenberg, 1980 and Pyrak-
Nolte, 1990) as modified by Rokhlin and Wang (1991). Also used is the EMM 
which simplifies the problem significantly.  

With the SMM a rock joint can be modelled according to different approaches: 
the “thin plane layer model TPLM” and the “displacement discontinuity model 
DDM” modified with the introduction of a stress discontinuity. The choice of one 
method or the other one is dependent on the joint conditions and the accuracy 
required for the computations to be performed.  
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6.2.1 Thin Plane Layer Model (TPLM) 
 
The TPLM simulates the filling material as a thin layer with thickness h composed 
by two interfaces with the intact rock (Figure 6.1) and characterized by continuity 
of velocities and stresses. With this model, we are in the typical condition of a 
continuum and the theory of wave propagation as described in Chapter 3 can be 
applied. 
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Rock Rock
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Figure 6.1 – Thin plane layer model 

Analytical expressions of the transmission and reflection coefficients can be 
derived by computing the transmission matrices of the two welded interfaces that 
form the joint. For the SH-wave polarization we have: 
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where:  
A(a), A(b) are the transmission matrices of the welded interfaces (a) and (b) (see 
Chapter 3); 
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To obtain the global transmission matrix of the filled joint we can compute the 
scattering matrix of layer 2 with thickness h: 
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str
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 (6.3) 

 
The global transmission matrix of the filled joint is: 

 
( ) ( ) ( )2a b

str=A A A A  (6.4)  

 
and with some algebraic manipulations (see Equations 3.45) we can obtain the 
scattering matrix and then the reflection and transmission coefficients of the filled 
joint represented with the TPLM: 
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where: 

2 2–  zS zSjk jkh he eφ
−

=  and ; 2 2+ zS zSjk jkh he eϕ
−

=

2zS
k is the z wave vector component in the filling material. 

Equations (6.5) and (6.6) show that the reflected and transmitted waves are 
function of the impedance ratio F and the thickness h of the joint. If we consider 
the filled of the joint as viscoelastic (Chapter 3) the shear modulus becomes 
complex (Gf

* = Gf + jωηf for Kelvin-Voigt model). 
 
 
6.2.2 Displacement Discontinuity Method (DDM) 

 
When the density of the filled material is not negligible compared with the rock 
density, the initial mass of the filled joint can affect wave propagation (Rokhlin 
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and Wang, 1991). With consideration given to the initial mass terms of the filled 
joint, besides the displacements, the stresses across it are also discontinuous. In 
fact, the density of the filled material, which is usually saturated sand or clay, is 
comparable with the rock density. Therefore, the simple displacement discontinuity 
model (Pyrak-Nolte et al., 1990a; Schoenberg, 1980) is not appropriate to study 
wave propagation and a displacement and stress discontinuity model need be 
introduced.  

There are numerous models to represent the viscoelastic behavior of a joint 
filled with soft materials. The Kelvin model (one spring and one dashpot in 
parallel) is usually adopted to describe the dynamic and seismic response of 
saturated soils (Braja and Ramana, 2011; Verruijt, 2010). However, Suárez-Rivera 
(1992) found that the Maxwell model (one spring and one dashpot in series) is 
more appropriate to study shear wave propagation across a thin clay layer. In the 
present study, both the Kelvin and the Maxwell models will be used. Also adopted 
is the Burger model. 

The boundary conditions along a joint, according to the displacement and stress 
discontinuity model, are:  
 

( )A A A− +− = ⋅v v Y τ

A A− +− =τ τ 2
A Ajω ω+ +− = ΠMu v

 

 
(6.7)  

 
where:  
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0
t

n

m

m

⎛ ⎞⎟⎜ ⎟⎜Π = ⎟⎜ ⎟⎟⎜⎝ ⎠
 for coupled P-SV waves and Π = mt for SH-waves. mn is termed as 

the normal mass, mt is called as the tangential mass (termed as the plate mass by 
Rokhlin and Wang, 1991). 

Here, mn = ρ0h, which determines the stress difference in the normal direction, 
is the mass of the filled medium of a unit area of the joint plane and named as the 
normal mass, where ρ0 is the density of the filled medium, h is the joint thickness. 
mt = qmn = [1-(Cplate/Vi)2sin2ϑinc]mn, which determines the stress difference in the 
tangential direction, is the effective mass in the tangential direction and is named 
as the tangential mass. q is a parameter dependent on the plate velocity of the 
filled medium Cplate ={[E0/[(ρ0 (1- ν0

2)]}0.5, where E0 and ν0 are Young’s modulus 
and Poisson’s ratio of the filled medium, respectively, the incident angle ϑinc and 
the wave velocity of the rock corresponding to the type of the incident wave Vi, Vi 
= VP for P-wave or Vi = VS for S-wave. When the wave is normally incident upon 
the joint, q = 1 and thus mt = mn.  

The analytical expressions of the reflection and transmission coefficients are also 
computed. 
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The transmission matrix A of the non-welded interface is obtained from the 
boundary conditions (6.7): 
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and in the same manner, as shown in the Chapter 4, we can obtain: 
 

  (6.9) 

 
For SH polarization state, the extended expression of the transmission matrix is 

the following: 
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and from Equation (3.36) we can compute the scattering matrix and then the 
reflection and the transmission coefficients of the filled joint: 
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By comparing the Equations (6.11) and (6.12) with Equations (4.22) we can see 

that the introduction of the discontinuity of stress consists in introducing in the 
expressions the term function of the mass. The admittance expressions (Y) for 
various models are the same of those shown in Chapter 4. The curves of the 
transmission and reflection coefficients versus the normalized joint stiffness and 
normalized joint viscosity are similar to those introduced in Chapter 4 because the 
contribution of the ratio ωΠ/ZS is very small. In nature, this ratio is very small 
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because the rock impedance at the denominator is much larger than the numerator. 
In fact, the thickness of the joint is normally of the order of millimetres and then 
the numerator becomes very small compared with the denominator. 
 
 
6.2.3 Comparison of TPLM and DDM 
 
In order to compare TPLM and DDM, it is of interest to analyze the case of a SH-
wave impinging obliquely a filled joint. A comparison of the results obtained is 
shown in Figure 6.2 where the magnitude of the transmission coefficient is plotted 
versus the ratio between the joint thickness and the wavelength in the filling 
material (λf) divided for the cosine of the angle of incidence (ϑinc). 

It is noted that the joint in Figure 6.2 is given a linear elastic behaviour. To 
perform this comparison we state that: 
 

 f
ss

G
k

h
= (6.13) 

 
and if we consider a Kelvin joint the viscosity term becomes: 
 

  f

h

η
η = (6.14) 

 
Equations (6.13) and (6.14) show the correlations between DDM and TPLM 

and justify the unit system of the specific shear stiffness kss and the specific 
viscosity η used in the DDM. In fact, the unit system of the joint specific stiffness 
is Pa/m that is different from the usually stiffness defined as the ratio of force to 
displacement with unit N/m. On the other hand, the specific joint viscosity is in 
Pa·s/m that is different from that defined as the ratio of stress to flow velocity 
gradient expressed in Pa·s. 

In Figure 6.2, with the two approaches representing the same problem, a very 
good agreement is obtained for a joint thickness ratio less than 0.1. The plot is for 
an impedance ratio F=1/25 that is a typical value for rock joints filled with soft 
materials. 

For the joint thickness ratio greater than 0.1 the behaviour of the filling layer 
changes and the displacement discontinuity model is no longer applicable. In fact, a 
series of peaks are found with the magnitude of the transmission coefficient equal 
to 1. These peaks identify the typical resonance frequencies of the Fabry-Perot 
interferometer, as well known in optics (Iizuka, 2008). In this interferometer, the 
resonant frequencies are spaced nλf/2 as shown in Figure 6.2. 
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These results show that the displacement discontinuity model is an 
approximation of the thin plane layer model. In fact, the first model is applicable 
when the wavelength is very large compared with the joint thickness. Similar 
results can be obtained with the Kelvin-Voigt model.  

These considerations are also valid for an oblique P/SV wave but in this case 
also the joint normal stiffness knn is mobilized and, for the comparison DDM-
TPLM, it can be written as C11f/h. 
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Figure 6.2 - Comparison of DDM and TPLM for different values of the transmission 
coefficient versus the ratio between the joint thickness and the wavelength in the filling 

material divided for the cosine of the angle of incidence 

 
6.3 Numerical analyses with TPLM 
 
It is now of interest to perform some numerical analyses to study the influence of 
the filled joints on wave propagation. The analyses are for a linear elastic joint. 
The dependence of the impedance ratio, the joint thickness and the joint spacing 
on the transmitted wave are investigated. 

Without losing generality, a half-cycle sinusoidal wave is assumed to be the 
incident wave, in the form of: 



136       Filled joints CHAPTER VI 

 
 0( ,0) sin( )Iv t I tω= (6.15) 

where: 
I=1m/s,  
ω0=10kHz.  

In cooperation with EPFL, Lausanne and NTU, Singapore, the analyses 
performed with SMM were also carried out with both MC and VWSM, as 
described in Chapter 5. In all the methods the TPLM has been implemented. 

The transmitted wave forms for a one-dimensional wave propagation through a 
column composed by N parallel joints are plotted in Figure 6.3a-d. The incident 
wave is put at the first joint and the transmitted wave is recorded immediately 
after the last joint. 

For one joint, we have assumed a non-dimensional joint thickness of δ0=0.5 and 
an impedance ratio F=1/6. δ0 is the ratio between the joint thickness h and the 
wavelength in the filling material. For 2, 5, 8 joints, δ0=0.05, the joint spacing ratio 
ζ=0.2 and F=1/6. We can say that the magnitude of the transmitted wave 
decreases with the increasing of the number of fractures. 

Figure 6.4 shows the magnitude of the transmission coefficient for a single joint 
versus the impedance ratio between the rock and the filling material. The graph is 
obtained by assuming δ0=0.05. It can be found that with increasing 1/F, |T1| first 
increases from zero to one, and then it decreases to zero when 1/F approaches 
infinity. Obviously, when 1/F=1, the phenomenon of impedance matching takes 
place and all waves will be transmitted. However, in nature, 1/F usually varies 
from units to tens, and therefore, we can state that |T1| decreases with increasing 
1/F.  
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(c) 5 joints 
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(d) 8 joints 
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Figure 6.3 - Transmitted waveforms across (a) 1 joint, (b) 2 joints, (c) 5 joints, (d) 8 joints 
with SMM, MC and VWSM 
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Figure 6.4 – Magnitude of the transmission coefficient for a single joint versus the 
impedance ratio  

The influence of the joint thickness on wave propagation has been analysed as 
shown in Figure 6.5. It is found that |T1| decreases from unit to a constant with 
increasing δ0. When δ0 approaches zero, there will be no filled medium, and all the 
wave will be transmitted. When δ0 is larger than one the threshold value δ0thr, |T1| 
will not change with δ0. This is because when the joint thickness is large enough, 
the arriving time difference between the first transmitted wave and later 
transmitted waves from multiple wave reflections between the two interfaces of the 
filled joint is so large that later arriving transmitted waves have no affect on the 
amplitude of the first transmitted wave. When 0< δ0< δ0thr, the effects of multiple 
wave reflections between the two interfaces of the joint become weaker with 
increasing δ0, which is consistent with the experimental results obtained by Li et al. 
(2009). 

The plot of Figure 6.5 is obtained in time domain but is essentially the same as 
shown in Figure 6.2 computed in frequency domain. In frequency domain we 
considered a harmonic incident wave and then the response is also harmonic. In 
this analysis we applied an impulsive input that generates a non harmonic 
response.  
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Figure 6.5 – Magnitude of the transmission coefficient for a single joint versus the non-
dimensional joint thickness  

Figure 6.6 shows |TN| as a function of ζ for different number of joints (N=2, 3, 
5, 8) with MC, SMM and VWSM, where F=1/6, δ0=0.05. With increasing ζ, |TN| 
first increases to the maximum value prior to decreasing to a constant value. When 
ζ is large enough, the arriving time of the first transmitted wave and later 
transmitted waves is so large that later transmitted waves have no effects on |TN|, 
and therefore, |TN| does not change with ζ. When ζ is small, ζ has great effects on 
|TN|. When ζ  approaches zero, the N joints will act as one single joint with non-
dimensional thickness of N ζ. In most cases, |TN| decreases with increasing N, which 
accords with common sense. However, in certain cases, |TN| increases with 
increasing N, which is strange. This is caused by the time difference between the 
amplitude of the first transmitted wave and the later transmitted waves. When the 
time difference is small, the later transmitted waves have great effects on |TN|. 
While the time difference is large, the later transmitted waves have no effect on 
|TN|. The strange phenomenon happens when the time difference is small for large 
N but large for small N with the same ζ.  

This behaviour is essentially the same as obtained in Chapter 5 with the 
displacement discontinuity method. This statement is obvious because the DDM is 
an approximation of the TPLM which is valid for small values of joint thickness 
compared to the wavelength of the filling material (see Figure 6.2). As widely 
described in Chapter 5 the SMM, MC and VWSM implemented with the TPLM 



CHAPTER VI    Filled joints 141 

produce results that are essentially the same although the methods are very 
different. 
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6.4 Comparison with the results of tests performed with the 

Hopkinson pressure bar 
 
A modified split Hopkinson pressure bar (SHPB) test was recently performed to 
study wave propagation across a joint filled with sand (Li and Ma, 2009). It is 
therefore of interest to verify if the joint models as developed above are adequate to 
reproduce the available experimental data. 
 
6.4.1 Description of the Modified SHPB test 
 
The Split-Hopkinson Pressure Bar (SHPB), named after Bertram Hopkinson, 
sometimes also called a Kolsky bar, is an apparatus for testing the dynamic stress-
strain response of materials. SHPB is commonly used for testing different materials 
and to obtain material properties at higher strain rates. Moreover, the governing 
principles of SHPB include one dimensional wave propagation equation, uniaxial 

http://en.wikipedia.org/wiki/Bertram_Hopkinson
http://en.wikipedia.org/wiki/Stress_(physics)
http://en.wikipedia.org/wiki/Strain_(materials_science)
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stress relations, deformations and momentum of conservation. After development of 
the Hopkinson’s bar in early 1900’s by Bertram Hopkinson, who developed the 
device to test steel cylindrical bars (Kolsky, 1949) with very high velocity impacts, 
many derivatives were followed. Among them, the SHPB development is the most 
popular one. 

In the tests performed by Li and Ma (2009) a pendulum hammer generates a 
pulse loading. The intensity of the pulse loading can be changed by varying the 
swing-angles of the hammer. As shown in Figure 6.7, a sand layer was sandwiched 
between the incident and transmitted granite pressure bars. The two bars have the 
same diameter of 5 cm, and length of 97 and 100.5 cm. A pendulum hammer is 
used to generate a P-wave pulse applied to the left boundary of the incident bar. 
The sand layer is contained in a plastic tube to prevent outflow of the sand.  

The compressive stress waves generated from the hammer in the incident bar 
travel in a uniaxial direction to hit the sand layer. At this instance, the generated 
compressive stress wave by the incident bar is partially transmitted into the 
transmitted bar through the sand layer. However, some of the compressive stress 
waves in the incident bar would reflect back into it as a tensile stress wave. Strains 
are recorded from both the incident and transmitted bars with the help of four 
strain gages mounted on the bars. The strain gauges are glued on the incident and 
transmitter bar. The output of this test would generally be in the form of a plot of 
strain versus time or in the form of stress versus strain or stress versus strain rate. 

SHPB is commonly used to evaluate the mechanical properties of materials at 
higher strain rates up to 104 s-1. This is for the following reasons: 

 
1. Bars used in the experiments are longer to make sure the incident signal 

separates and transmits. 
2. To maintain one dimensional wave propagation the ratio between the 

length and diameter of the bars are generally high. 
3. Sensitiveness of mechanical dispersion towards signal resolution. 
 

 

 
Figure 6.7 – Schematics of modified split Hopkinson pressure bar (SHPB)  

(Li and Ma, 2009) 
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The impact caused by the hammer on the incident bar excites different 
frequencies on the incident bar which lead to different velocities within it. The 
velocity variations with respect to time are recorded by the strain gauges. The 
oscillations on the strain gauge recordings make the data difficult to obtain peaks 
of strain rates. 

As mentioned above the pressure bars geometry is more important in the SHPB 
set up. Among all the pressure bars, the incident bar is more sensitive to the 
geometry variations as this is the bar which transmits the stress wave to the test 
sample. The dimensions of the incident bar are important in terms of length and 
diameter so as to maintain a uniaxial stress state, homogeneous deformation in the 
sample or specimen while maintaining the elastic behaviour inside the pressure bar.  

To make it sure that a uniaxial, homogeneous deformation within the elastic 
limit of the pressure bar takes place, the equation below (Kaiser, 1998 and 
Swantek, 2000) has to be satisfied. 
 

 11
L

φ
≥  (6.16) 

 
where L is the length and φ is the diameter of the bar. 

Equation (6.16) states that length should be greater than equal to 10 times the 
diameter. Moreover, the diameter of the incident bar has to be greater than twice 
the wavelength of the generated compressive wave, to ensure that the pulses 
generated from the incident bar be separated as incident and reflected waves.  

The strain rates of the specimen are inversely proportional to the length of the 
incident bar. Thus we have: 
 

 *C

L
ε ∝  (6.17) 

 
where C* is a constant of proportionality.  

SHPB strain rates are approximately in the range of 104 s-1. To achieve this, the 
pressure bars have to be very small with respect to length and diameter. However, 
pressure bars with such small size make experiments practically impossible.  

Along with the geometric specifications discussed above, it is important to 
position and align the specimen precisely to capture the deformations in the 
experiments. Accurate positioning of the specimen in the centre has to be 
maintained in order to achieve separation and compressive of the stress waves. 
 
 
6.4.2 Mechanical properties of the samples 
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In this part, we consider the results obtained by Li and Ma (2009) with a swing-
angle of the hammer of 40°, a thickness of the filled sand of 3 mm, a water content 
of 5% and a density of 1592.2 kg/m3. The sand layer is composed by particle with 
size between 0.25 and 0.5 mm. The density of the granite is 2650 kg/m3 and the P-
wave velocity of the granite bar is 4758 m/s. The interfaces between the granitic 
bar and the sand layer were smooth and contacted firmly. 

The stress, strain rate and strain on the interfaces of the sand layer and the 
pressure bar are computed from the separated incident, reflected and transmitted 
strain waves according to the basic theory of the SHPB test. The stress-strain plot 
is shown in Figure 6.8. We can note that the trend of the curve is in accordance 
with the following exponential form (Li and Ma, 2009): 
 
 2

1 1aa e εσ ⎡ ⎤= −⎢ ⎥⎦
 (6.18) ⎣

 
where a1 and a2 are the curve-fitting coefficients that in this case are equal to 
1.39MPa and 12.53 respectively. 

 
Figure 6.8 – Stress-strain curves of the single sand layer under different 

 input energies (Li and Ma, 2009) 
 
 
6.4.3 Experimental results and curve fitting 
 
Figure 6.9 shows the incident, reflected and transmitted waves through the filled 
joint as obtained by Li and Ma (2009).  
To examine the spectral contents of the measured pulses, a window function (also 
known as the tapering function) is used to extract a particular pulse from the 
original one. The amplitude of the windowing function is zero everywhere except 
along a finite time interval with unit amplitude, defined as the width of the 
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window. The product of the windowing function and the original pulse results in 
the desired isolated pulse. 

 It should be noted that the same windowing function is used for the measured 
incident and transmitted waves to ensure that the results of the spectral contents 
are comparable with each other. In the present study, Hann window, whose 
function is , where n varies from 0 to N-1, is used as 
the window function (Harris, 1978). The amplitude spectra are then calculated by 
performing a fast Fourier transform (FFT) on the tapered waveforms. 

0.5 {1 cos[2 / ( 1)]}n Nπ× − −
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Figure 6.9 – Incident, reflected and transmitted waves through a filled joint (Li and Ma, 
2009) 

An algorithm that minimizes the least squares differences between these two 
series of values is used to achieve the best fit between the measured transmitted 
wave and the calculated transmitted wave derived from the analytical solutions. 
From these iterative computations, we have obtained, for each joint model 
assumed, the mechanical parameters that generate the best fit of the measured 
transmitted wave. The fitting computations are performed in frequency domain and 
the theoretical transmitted wave is obtained multiplying the FFT of the measured 
incident tapered wave and the transmission coefficient corresponding to the 
analytical model assumed. 

Figure 6.10 plots the curve fitting of the measured transmitted tampered wave 
obtained for various analytical models and in Table 6.1 the curve fitting 
parameters are shown. 
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The first model used for fitting is the linear elastic model. Also used have been 
the TPLM and the transmitted wave has been obtained from the transmitted 
coefficient shown in Equation (6.6). In the latter model the P-wave velocity of the 
filling material have been changed to perform the best fit. From this velocity we 
can compute the normal stiffness of the joint as follows: 
 

 
2 2
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15.81MPa
 (6.19) 

 
The results obtained by using Equation (6.19) highlight that the joint normal 

stiffness computed from the P-wave velocity obtained from the curve fit with the 
TPLM is essentially the same as that deduced directly with the spring model (see 
Table 6.1). This proves that either the TPLM or DDM can be used when the joint 
thickness ratio is small (<0.1λf). 
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Figure 6.10 – Spectra of the measured and predicted transmitted waves 

Figure 6.10 shows the results obtained by using the Kelvin-Voigt, Maxwell and 
Burger models. It is noted that the differences between the three models are small. 
Table 6.1 shows that the model that simulates better the filled joint behaviour is 
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the Burger model. We have found that a better curve fit is obtained with the 
Burger model if one adopts the same values of the parameters used in the Kelvin-
Voight and Maxwell models. 

However, a good accuracy in fitting is also obtained with the Kelvin-Voight and 
Maxwell models. The linear elastic models are also shown to give a good fitting 
when the viscosity part is small.    
 
 
 

Table 6.1 - Model parameters obtained from best fitting 

Model Parameters from  
curve fit 

Goodness of fit 
SSE R-square RMSE 

Linear elastic (DDM) knn= 38,201 GPa/m 8.42E-05 0.952499 6.57E-04 

TPLM VP= 269,700 m/s 8.41E-05 0.952518 6.57E-04 

Kelvin-Voigt (DDM) 
knn= 33,748 GPa/m 
hnn= 1,2919 MPa·s/m 8.06E-05 0.960346 6.38E-04 

 
Maxwell (DDM) 

 
knn= 31,566 GPa/m 
hnn= 150 MPa·s/m 

8.13E-05 0.956094 6.64E-04 

 
Burger (DDM) 

 
knn_kelv= 32,616 GPa/m 
hnn_kelv= 5,536 GPa·s/m 
knn_max= 32,616 GPa/m 
hnn_max= 5,536 GPa·s/m

1.41E-05 0.992063 2.71E-04 

   
 

In addition, the filled joint modelled in the present study also functions as a 
high-frequency filter. The high frequency components across the joint attenuate 
much more than the low frequency components. 
 
 
6.4.4 Numerical analyses 
 
The effects on wave propagation of a set of filled joints with the same properties as 
used above are now studied by using the SMM in which the DDM has been 
modified to account for the discontinuity of stresses (see Paragraph 6.2.2).  
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Without losing generality, a normally incident half-cycle sinusoidal P-wave is 
applied at the boundary of a filled joint set with viscoelastic behaviour 
 
 0( ,0) sin( )Iv t I tω= (6.20) 

 
where:  
I=1,  
ω0= 2π kHz.  

The analyses are performed for Kelvin and Maxwell joint models. 
The specific joint stiffness and viscosity of the Kelvin and the Maxwell joints 

are the same as those determined through the best fit in the previous section. With 
these parameters the normalized joint stiffness Knn=knn/ωZP and the normalized 
joint viscosity Hn=ηn/ZP are: 
 

- Knn=0.4 and Hn=0.1 for the Kelvin model; 
- Knn=0.4 and Hn=11.9 for the Maxwell model. 

 
The influence of the joint viscosity and the joint stiffness on the magnitude of 

the transmission coefficient for two joints |T2| represented with Kelvin and Maxwell 
models is shown in Figure 6.11. We have assumed a joint spacing ratio ζ=1/10. We 
can see that increasing the normalized stiffness of the joint |T2| increases. This 
means that |T2| increases with increasing the normal joint stiffness and with the 
decreasing of the frequency. In fact, this proves that the high frequency 
components across the joint attenuate much more than the low frequency 
components.  

Figure 6.11 also shows that the transmission coefficient |T2|, for the joint 
simulated with the Kelvin model first decreases to the minimum and then it 
increases with the increasing of Hn. |T2| is the same as that derived for dry joint 
when Hn=0. On the other hand |T2| approaches 1 if Hn is sufficiently large. The 
situation is different if we represent the joint with the Maxwell model: the 
transmission coefficient always increases with increasing the normalized joint 
viscosity and for high Hn the behaviour become the same as that of dry joints.  

Figure 6.12 and Figure 6.13 show the magnitude of transmission coefficients 
(|TN|) across N (N = 2, 3, 5, 8) Kelvin joints and N Maxwell joints, respectively, as 
a function of the non-dimensional joint spacing (ζ). The non-dimensional joint 
spacing is defined as the ratio of the joint spacing d to the incident wavelength for 
the intact rock λ. 

It is found that although the general changing trend of |TN| versus ζ is the same 
for the Kelvin and the Maxwell joints, the amplitudes are somewhat different. It 
indicates that even though both the Kelvin and the Maxwell models can be used to 
study P-wave propagation across a single viscoelastic joint filled with sand, the 
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seismic response of multiple parallel Kelvin and Maxwell joints is somewhat 
different.  
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Figure 6.11 – Magnitude of transmission coefficients across 2 joints for Kelvin and 

Maxwell joint models versus the normalized joint viscosity Hn with ζ = 1/10 
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Figure 6.12 – Magnitude of transmission coefficients across N (N = 2, 3, 5, 8) Kelvin joints 
versus the non-dimensional joint spacing (ζ) with Knn = 0.4 
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Figure 6.13 – Magnitude of transmission coefficients across N (N = 2, 3, 5, 8) Maxwell 

joints versus the non-dimensional joint spacing (ζ) with Knn = 0.4 

Further experiments on wave propagation across multiple parallel joints filled 
with saturated sand are needed to determine which model is better. For both the 
Kelvin and the Maxwell joints, with increasing ζ, |TN| first increases to the 
maximum value before it decreases to a constant. When ζ is sufficiently large, it 
has no effect on |TN|, which indicates that the multiple wave reflections among 
joints have no effect on |TN|. This is because the arriving time difference between 
the first transmitted wave and later transmitted waves is large enough to eliminate 
the influence of later arriving transmitted waves on |TN|. While ζ is small, the 
multiple wave reflections among the joints have great effects, and |TN| is dependent 
on ζ. It is also noted that |TN| decreases with increasing number of joints.  

Figures 6.12 and 6.13 give the results obtained for linear elastic joints. It is 
shown that the SMM and VWSM compare very satisfactorily. 
 
 
6.5 Summary 
 
The effects of filled joints on wave propagation are of considerable significance and 
engineering interest.  
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It is found that the TPLM is the best approach to model a filled joint and the 
DDM is an approximation. The two models can however be used indifferently when 
the joint thickness is about 0.1 of the wavelength of the filling material. In this case 
the loss in accuracy with the DDM is very small compared with the TPLM. 

As the density of the filled medium, e.g. a saturated clay or sand, is not 
negligible compared with the rock density, the DDM, with the stress discontinuity 
introduced, is found to be suitable to describe the seismic response of the filled 
joint. The stress discontinuity across the filled joint is caused by the normal and 
tangential mass, which further determine the acoustic impedance ratio of the filled 
joint. The displacement discontinuity across the filled joint results from the specific 
joint stiffness and viscosity, which further determine the normalized joint stiffness 
and viscosity. It should be noted that the physical implication and unit of the 
specific joint stiffness and specific joint viscosity are different from those of 
normally used stiffness and viscosity.  

The reflection and transmission coefficients across a single filled joint with 
viscoelastic behaviour are determined by the choice of the parameters being 
introduced, including the incident angle, the normalized joint stiffness, the non-
dimensional joint viscosity and the acoustic impedance ratio of the filled joint. The 
acoustic impedance ratio of the filled joint and the normalized joint stiffness are 
frequency dependent, while the normalized joint viscosity is not. In addition, the 
wave energy is dissipated due to the viscosity and the initial mass of the filled 
joint. 

The most significant difference between the seismic responses of the Kelvin and 
the Maxwell joint relates to the role played by both the normalized joint stiffness 
and the normalized joint viscosity in the wave reflection and transmission. When a 
wave propagates across a filled joint set, due to the presence of multiple wave 
reflections, the normalized joint spacing ratio is a dominating parameter. 

The satisfactory comparison between the results obtained with the modified 
SHPB tests and with the SMM shows that this method can well be used to 
represent the effects of filled joints on P-wave propagation. It is found that the best 
model to represent the behaviour of sand filled joints is the Burger model. 
Acceptable results can be obtained with the linear elastic DDM or TPLM models if 
the viscosity of the infilling is small. 

 
 
 
 
 
 
 
 
 
 



152       Filled joints CHAPTER VI 

 
 
 



Chapter 7   
 
Frictional joints 
 
 
7.1 Introduction    
 
If the shear stress along a joint reaches the shear strength, a non linear behaviour 
is generated. This is the case when we are near to a seismic source or in the 
presence of waves originated by explosions. 

In this chapter, the Coulomb slip behaviour is implemented in the SMM by 
using an equivalent linearization procedure. Obviously, an approximation of the 
non linear behaviour is obtained, which allows one to better understand the effects 
of frictional joints on wave propagation. 

As already mentioned in Chapter 2, Miller (1977-1978) used an equivalent 
linearization approach to analyse the wave propagation of an elastic plane wave 
through a frictional boundary. He assumed a Coulomb slip model of a fracture with 
infinite elastic shear stiffness.  

In this chapter, we extend the equivalent linearization to a general Coulomb slip 
model with finite elastic joint stiffness. The results obtained with the SMM will be 
compared with those derived numerically with the MC. 
 
 
7.2 Basic formulation of the equivalent linearization approach 

 
In general, linear systems are much easier than nonlinear ones to handle, but 

they also allow for a better understanding of the dynamic characteristics. For this 
reason, the equivalent linearization techniques (Caughey, 1960 and Iwan, 1973) 
have been utilized for determining the steady-state response of nonlinear hysteretic 
systems.   

Vestroni & Noori (2002) showed that a system is endowed with hysteresis if 
there is a lag in the arrival of the output with respect to the input, or if the output 
depends, in a rate-independent way, on the history of the input. The dependence 
on the history of the input manifests itself in the “non-local memory” character of 
hysteresis. The hysteretic friction is not a unique function of the displacement but 
depends on the previous history of the movement.  

The hysteretic frictional behaviour of a mass moving on ground as shown in 
Figure 7.1 can be represented with the single-degree-of-freedom system (SDOF) 
shown in Figure 7.2. The non linear frictional stress can be linearized as follows: 
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( ),F eq eqx x k x c xτ → +

( ),F gmx x x mxτ+ = −

eq eq gmx c x k x mxε+ + + = −

 (7.1)  
 
where: 
x are displacements relative to the base; 
keq and ceq are the equivalent stiffness and damping parameters that will be defined 
later. 

Moving direction 
Hysteretic 
contact

f(t) 
Mass

Ground 
 

Figure 7.1 – The hysteretic behaviour in the friction force for a mass moving on a ground 
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Figure 7.2 – Single-degree-of-freedom model of a mass moving on a ground 

Hence, the behaviour of the SDOF system (Figure 7.2) is represented by  
 
  (7.2) 

 
where is the ground surface acceleration due for example to an earthquake. 

g
x

The nonlinear Equation (7.2) is equivalently linearized with the two parameters, 
keq and ceq, introduced with the Equation (7.1): 
 
  (7.3) 

where ε represents the resulting residue from the linearization.  
Hence, the equivalent linear system is modelled by the Kelvin-Voigt model in 

which the equivalent stiffness and damping are connected in parallel.  
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One of the techniques for properly determining the two key parameters in the 
above linearized equation is to minimize the mean square of the resulting residue. 
With the mean square of the residue denoted as E[ε2], the conditions for 
determining the linearized parameters are: 
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From the above conditions we obtain: 
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The operator E[·] must satisfy certain conditions which assure the uniqueness of 
the approximate solution. 

When the system is excited by a stationary process, the linear response also 
becomes stationary, i.e. E[xx ] ≡ 0. In this case, the linearized stiffness and damping 
are given by: 
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⎣

 
The procedure based on the least square method, which has been briefly 

presented above, is called “Dynamic Stiffness Method” (DSM) (Jennings, 1968). 
Now we consider a SDOF system (Figure 7.2) exhibiting a type of bilinear 

hysteresis as depicted in Figure 7.3. This hysteresis is the most typical one for base 
isolation systems for buildings consisting of rubber bearings and dampers. This is 
the most general bilinear model that can be simplified in the Coulomb slip model 
by assuming k2 = 0.  
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Consider the case in which this nonlinear system is excited by a steady-state 
sinusoidal acceleration, i.e. 

g
x B . By assuming that such an excitation 

results in a steady-state response, the equation becomes: 
cosω= t

(
 

), cosF x x mB tτ ω+ = −

( )cosx X tω ϕ= −

xx

( )

mx  (7.9)  
 
with: 
 
  (7.10) 

τ 

 
Figure 7.3 – Bilinear hysteresis 

The equivalent linear parameters are found by the harmonic analysis of 
Caughey (1960) applying the averaging principle of Krylov and Bogolyubov (1947). 
This approach is also defined as the “method of the describing function” (Al-Bender 
et al., 2004). 

The required parameters for the linearized model are obtained based on the 
same procedure presented in the previous subsection, by utilizing the average 
principle for estimating E[x] and E[x ]. If Equation (7.10) is assumed, E[ ] 
becomes zero. E[·] is a logic averaging operator that is simply the average over one 
period of the solution (Iwan, 1973). Then we have: 
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where θ = ωt - ϕ. 

The solution of the Equations (7.11) and (7.12) is conveniently expressed in 
terms of the parameter Θ*, related to the amplitude via: 
 

 * 0cos 1 2
x

X
Θ = −  (7.13) 

 
Evaluation of the integrals gives the following expressions for the stiffness and 

damping parameters: 
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 (7.15) 

 
The linearized parameters given above clearly depend upon the maximum 

response value, X. The solutions of Equations (7.14) and (7.15) can be obtained 
iteratively. 

The bilinear model is composed by a first part (linear elastic) in which the slope 
of the line in Figure 7.3 is the joint shear stiffness kss while in the second part the 
behaviour is plastic and the slope of the line is k2. Equations (7.14) and (7.15) show 
that when the shear stress along the joint is smaller than τS the behaviour is elastic 
while when τ is greater than τS the behaviour is plastic. In the plastic part, the 
relative sliding between two surfaces of the joint occurs. 

A representative definition of the equivalent stiffness of the bilinear model 
shown in Figure 7.3 is the secant stiffness at the extremal displacements. Similarly, 
equivalent damping can be defined using the energy dissipated per cycle which is 
determined by the extremal displacement. Hence, the equivalent damping is given 
by: ceqω = loop area/πX2 , i.e. the damping force is equal to ceqωX = loop area/πX. 
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This amount of energy dissipation per cycle does not depend on the velocity, as 
in the case of viscous damping, but depends on the amplitude of the motion. The 
loop area per cycle is indeed independent of the velocity at which the cycle is 
traversed (Al-Bender et al., 2004).  

Now, we assume that the hysteretic contact between the mass and the ground 
of Figure 7.1 is represented by the Coulomb slip model (Figure 7.4).  

 
Figure 7.4 – Stress-displacement diagram for Coulomb frictional boundary 

In Figure 7.4, τS and x0 are the fracture shear strength and the corresponding 
shear displacement. k1 is equal to the joint shear stiffness kss. The Coulomb slip 
model is a bilinear model composed by two parts: a linear deformation portion and 
a slip portion with k2=0. When τ reaches τS the joint surfaces undergo relative 
sliding.  

The Coulomb slip model assumes k2=0 and the Equations (7.14) and (7.15) can 
be simplified as follows:  
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Miller (1977) has used a simplified Coulomb slip model in which kss is infinite. 
With this assumption, we can obtain the equivalent parameters of Miller from the 
Equations (7.16) and (7.17): 
 

0eqk = (7.18)  
 

 0 04 4
1 1ss S

eq

k x x
c

X X Xπω πω

⎛ ⎞ ⎛⎜ ⎜= ⋅ − =⎜ ⎜⎜ ⎜⎜ ⎜⎝ ⎠ ⎝

4S S

ssk X X

τ τ τ
πω

⎞⎟ ⎟⎟ ⎟− =⎟ ⎟⎟ ⎟⎠
(7.19) 

 
where τS = kss· x0. 

Thus, we have obtained the most general and appropriate Coulomb slip model 
to study rock joints. In this chapter, we will use this model with k1 = kss. 
  

 
7.3 Implementation in SMM 
 
Firstly, we assume that the media at both sides of the joint have the same 
mechanical elastic properties (Figure 7.5). A harmonic normal incident shear 
displacement wave j tu Ue ω=  is introduced (ϑinc = 0).  

As described in Chapter 4, the stress field in one of the two media is composed 
by the sum of the incident component and the reflected one: 
 

( )1inc
zx zx SHT T R= + (7.20)  

 
and the reflection coefficient for the joint A (Figure 7.5) is: 
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where: 
Tzx is the amplitude of the shear stress τzx; 
YS

m is the shear medium admittance; 
Y is the shear joint admittance.  
As described in the previous paragraph Y becomes: 
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that is the typical admittance of a Kelvin-Voigt joint model (see Equation 4.10) 
but with the equivalent stiffness and damping obtained with the linear equivalent 
model. 
 

x 

 
Figure 7.5 – Plane wave that impinges a joint with frictional behaviour 

As well known, we can write the stress as function of the incident velocity: 
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At this point we can write that: 

 
 

 
inc
xVU
jω
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( )j tx Xe ω ϕ−=

(7.24) 

 
where:  
Vx

inc is the amplitude of the incident particle velocity vx; 
U is the amplitude of the incident harmonic displacement wave u. 

We can assume that the linearized system has a steady-state solution of the 
form 
  
 (7.25) 
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where x is the relative displacement between two faces of the joint. 
The velocity field along the interface becomes: 
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and by substituting into the Equation (7.26) the Equations (7.22) and (7.25) we 
obtain:  
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The square modulus of Equation (7.27) provides:  
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The equivalent stiffness and damping are also function of X and for this reason 

X can be obtained by inserting the Equations (7.16) and (7.17) into Equation 
(7.28). In this way we obtain an equation with only one unknown that can be 
solved iteratively. Obviously, this iterative computation of the amplitude X of the 
displacements along the joint makes sense only if τ reaches τS. 

The phase angle ϕ  is equal to the phase of the denominator of the Equation 
(7.27): 
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The implementation of the Coulomb slip model in SMM can be performed in 

the following steps: 
 

1. Computation of the relative displacement amplitude X (Equation (7.28)).  
2. Computation of the equivalent stiffness and damping (Equations (7.16) 

and (7.17)
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3. Calculation of the joint admittance (Equation (7.22)). 
4. Definition of the transmission matrix A

 
and then computation of the 

scattering matrix S. 
 

This approach can be generalized for all wave polarizations and for any angle of 
incidence. The boundary conditions are as follows: 
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(7.30) 

 
If we have an oblique P or SV-wave impinging on a frictional joint, the normal 

behaviour is linear elastic while the shear behaviour is represented by Coulomb slip 
model. In this case the joint admittance Y becomes a 2x2 matrix:  
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At this point we have all the tools needed to compute the incident, reflected 

and transmitted waves. In presence of a frictional joint, part of the energy of the 
incident wave is absorbed by the friction along the joint. If EI, ER and ET represent 
the energy flux per unit area per cycle of oscillation associated with the incident, 
transmitted and reflected waves, respectively, we may compute the amount of 
energy absorbed (EA) from the frictional interface as follows: 
 
 1I R T AE E E E+ + + =  (7.32)

 

 
We can compute the transmission (T1), reflection (R1) and absorption (A1) 

coefficients from the corresponding energies: 
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7.4 Numerical analyses with SMM 
 
Numerical analyses with the SMM can now be performed in the frequency domain 
to understand the effects of a frictional joint on wave propagation. In accordance 
with Miller (1977), Figure 7.6 gives the plot of the transmission, reflection and 
absorption coefficients versus the shear stress ratio ωZsU/τS. The numerator of the 
shear stress ratio represents the maximum shear stress of the incident wave (τimax) 
and then this ratio can be written more simply as τimax /τS. This ratio is the rate 
between the maximum stress of the incident wave and the shear strength.  

We have applied a harmonic shear displacement wave with frequency ω and 
amplitude U. Figure 7.6 is obtained for a joint with Coulomb slip behaviour and 
with kss = ∞. When the shear stress ratio is smaller than 1, |T1| is equal to 1 and 
|R1| equal to zero. In this zone no slip occurs and the behaviour is linear elastic 
(welded interface). Miller (1977) has shown that the equivalent linearization 
provides results which are very close to the exact solution. 

As an extension of previous studies we have assumed a joint with Coulomb slip 
behaviour and with shear stiffness. Figures 7.7 to 7.9 show the transmission, 
reflection and absorption coefficients versus the shear stress ratio for different 
values of normalized shear joint stiffness (Kss=kss/ωZs). 

The relative slip along the surfaces of the joint starts when |A1| becomes 
different from zero and then when ceq ≠ 0. At this point the maximum incident 
stress  τi,max  reaches the joint strength τS and then X becomes equal to x0. Hence, 
transmission and reflection coefficients may be computed by using Equations (4.23) 
for linear elastic joints. We can note as in the linear elastic zone the coefficients are 
constant until the stress along the joint reaches the shear strength. When the τS is 
mobilized along the joint the maximum amplitude τtrasm of the transmitted wave 
becomes equal to τS. Hence, we can write: 
 

 1 max
el

trasm iTτ τ= → if 
max

1

1i
trasm S el

S T

τ
τ

= → =τ τ  (7.34)
 

 
where |T1

el| is the transmission coefficient when the joint is linear elastic.  
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Equation (7.34) identifies the transition point from the linear elastic behaviour 
to the slip behaviour. This point changes position with the change of the 
normalized joint shear stiffness as shown in Figures 7.7 to 7.9 and computed in 
Table 7.1. The stress ratio, for which the frictional behaviour occurs, increases with 
decreasing the normalized joint shear stiffness and then with decreasing the joint 
shear stiffness and with increasing the incident frequency. 

Table 7.1 – Location of the transition points 

Normalized joint
shear stiffness 

Transmission
coefficient 

|T1
el| 

Stress ratio
τimax/τS 

0.1 0.196 5.102 
0.25 0.447 2.237 
0.63 0.783 1.277 
1.6 0.954 1.048 
∞ 1 1 

 
When slip along the joints occurs, the transmission coefficient decreases with 

increasing the shear stress ratio and the curves, computed for different Kss, 
converge to the same curve (Figure 7.7). A similar behaviour is exhibited by the 
reflection coefficient (Figure 7.8) which increases with increasing the stress ratio. 
Figure 7.9 shows that the absorption coefficient decreases with decreasing the 
normalized joint shear stiffness. 

From Equation (7.19) we may find that ceq is maximum when the ratio  τS/kssX 
is equal to zero and this condition is achieved when kss→∞. Now, we can state that, 
for high values of τimax/τS, the transmission, reflection and adsorption coefficients 
become independent from the shear joint stiffness. 
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Figure 7.6 – Transmission, reflection and absorption coefficients versus the shear stress 

ratio for a Coulomb slip interface with kss = ∞ 
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Figure 7.7 – Transmission coefficient versus the shear stress ratio for different values of Kss  
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Figure 7.8 – Reflection coefficient versus the shear stress ratio for different values of Kss  
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Figure 7.9 – Absorption coefficient versus the shear stress ratio for different values of Kss  
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7.5 Comparison between SMM and MC 
 
Some numerical analyses performed with the SMM have been compared with the 
results obtained by Zhao et al. (2006) who used the MC to study the Coulomb slip 
joint behaviour. As already described, the MC is a method that solves numerically 
the wave equation in time domain.  

A one-cycle sinusoidal incident shear displacement wave u = U · sin(ωt) which 
impinges a frictional joint with Coulomb slip behaviour is applied. The incident 
wave has frequency f = 50 Hz and amplitude U = 1. 

The incident wave in time domain is transformed in the frequency domain with 
the FFT. At this point, in SMM, we apply the equivalent linearization theory and 
we compute the scattering matrix for all frequencies. Then, we perform the IFFT 
to obtain the transmitted and reflected wave forms.  

Figures 7.10 to 7.12 give the transmission, reflection and absorption coefficients 
versus the shear stress ratio τimax/τS . It is shown that the magnitude of the 
transmission coefficient decreases with increasing the shear stress ratio (Figure 
7.10). In this situation the energy transmitted decreases and the remaining part of 
energy is reflected and dissipated from the frictional joint. |T1| increases with 
increasing the normalized joint shear stiffness Kss as occurs for linear elastic joints. 
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Figure 7.10 – Magnitude of the transmission coefficient versus the shear stress ratio: 

comparison between SMM and MC  

The magnitude of the reflection coefficient versus the ratio τimax /τS is plotted in 
Figure 7.11. Obviously, |R1| increases with increasing of the shear stress ratio and 
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decreases with increasing Kss. For low Kss the variation with τimax /τS is less evident 
and less energy is adsorbed as shown in Figure 7.12. The absorption coefficient 
firstly increases with τimax /τS and after a peak decreases. The peak values move 
toward the right with decreasing of the normalized shear joint stiffness.   

Figures 7.10 to 7.12 also highlight the favourable comparison between SMM and 
MC. Obviously, the MC, being a numerical method which accounts for the non 
linear behaviour more accurately, provides results that are more accurate than 
those obtained with the linear equivalent approach implemented in SMM.  
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Figure 7.11 – Magnitude of the reflection coefficient versus the shear stress ratio: 

comparison between SMM and MC  
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Figure 7.12 – Magnitude of the absorption coefficient versus the shear stress ratio: 

comparison between SMM and MC  

 
 
7.6 Summary 
 
Wave propagation across a frictional joint has been studied in this chapter. An 
equivalent linearization technique has been used to implement the frictional joint 
behaviour in the SMM.  

This linearization of a non linear problem has shown to provide quite accurate 
results based on the comparison with the MC. Moreover, we have demonstrated 
that SMM can be used to analyse with good accuracy wave propagation across a 
frictional joint of a harmonic or a transient wave. 

An extension of the problem studied by Miller (1977) has been also given. We 
have implemented in the SMM the linear elastic behaviour that the joint exhibits 
before the relative slip between the surfaces of the joint occurs.  
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Chapter 8   
 
Discrete Element Modelling 
 
 
8.1  Introduction 
 
The purpose of this chapter is to compare the Scattering Matrix Method (SMM) 
with the Discrete Element Method (DEM) as implemented in the UDEC and 
3DEC codes of the Itasca Consulting Group. This is done by focussing on the 
evaluation of the effects of joints on wave propagation.  

Given that the SMM has been effectively developed, as shown in the previous 
chapters, to compute in a number of cases wave propagation in a medium 
containing discontinuities, this method will also be used in the following to 
optimize the discretized numerical model as adopted in the DEM codes. 
 
 
8.2  Distinct Element Codes: UDEC and 3DEC 
 
8.2.1 Universal Distinct Element Code (UDEC) 

 
The Distinct Element Method (DEM) was presented and developed by Cundall 
(1971) and was later implemented in the numerical code UDEC (Universal Distinct 
Element Code), (Cundall 1980; Cundall & Hart 1985) for both static and dynamic 
analyses of rock mechanics problems. Later on, research by Cundall (1983) yielded 
to the development of the three dimensional distinct element code 3DEC (Cundall 
1988; Hart et al. 1988). For rock mechanics problems, a key issue is the behaviour 
of discontinuous masses that include one or more joint sets or other discontinuity 
features. 

This behaviour is difficult if not impossible to be included in a continuum 
formulation. Some numerical codes are able to implement certain features using 
interface elements or incorporate ubiquitous joint formulations. Despite this fact, 
the full simulation of the true mass is not achieved and often numerical difficulties 
may occur since these models may not be able to handle efficiently multiple 
discontinuities (Itasca, 2006). According to the architects of the method the main 
aspects behind the formulation of the distinct element analysis are: 

 
- Ability to calculate infinitesimal strains, rotational behaviour of blocks 

including complete separation. 
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- Automatic recognition of new contacts between the blocks. 
 

In this method, the domain is simulated by a group of “discrete” blocks and 
joints which are introduced as boundary conditions between the blocks, thus 
representing explicitly a fractured rock mass behaviour. The independent blocks 
can be rigid or deformable. For the latter case the blocks are discretized into 
elements following a finite element or finite difference formulation. In the Distinct 
Element Method, the governing differential equations dictate the kinematics of the 
blocks in the assemblage. The numerical solution targets in converging to an 
acceptable displacement in order for grid forces to equilibrate. At that state out of 
balance forces are minimized. Therefore, the individual blocks can interact 
following some behavioural model and deformations can also occur in the blocks 
thus the complete mass can be better modelled approximating the true conditions. 
Gutierrez & Barton (1994)) advice the use of the DEM method for rock mechanics 
problems when 0.1<Q<100. 

The distinguishing features of UDEC are described below (Stephansson et al., 
1996): 

 
- Simulation of large displacements (slip and opening) along distinct surfaces 

in a discontinuous medium (e.g., jointed rock masses); 
- Discontinuous medium treated as an assemblage of discrete (convex or 

concave) polygonal blocks with rounded corners; 
- Explicit solution scheme, giving a stable solution to unstable physical 

processes; 
- Rigid or deformable blocks (can be mixed); 
- Library of material models for deformable blocks (e.g., elastic, Mohr-

Coulomb plasticity, ubiquitous joint, double-yield and strain-softening); 
- Library of material models for discontinuities (e.g., Coulomb slip, 

continuously-yielding and Barton-Bandis); 
- Full dynamic capability, with absorbing boundaries and wave input; 
- "Null" blocks for excavation and backfill simulation; 
- Coupled fluid flow in joints and pressure in cavities; 
- Boundary-element coupling for "infinite domain" problems; 
- Structural elements (including non-linear cables), with general coupling to 

continuum blocks (spatially extensive) or discontinuities (local 
reinforcement); 

- Tunnel generator and statistically based joint-set generator. 
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8.2.2 3-Dimensional Distinct Element Code (3DEC) 
 

3DEC (3-Dimensional Distinct Element Code) is a three-dimensional numerical 
program based on the distinct-element method (DEM) for discontinuum modelling. 
The basis for this code is the extensively tested numerical formulation used by 
UDEC (2006). The distinguishing features of 3DEC (Itasca, 2007) are described 
below: 
 

- Simulation of large displacements (slip and opening) along distinct surfaces 
in a discontinuous medium (e.g., jointed rock masses); 

- Discontinuous medium treated as an assemblage of discrete (convex or 
concave) polyhedra; 

- Discontinuities treated as boundary conditions between blocks; six modes 
of contact automatically recognized; 

- Relative motion along discontinuities governed by linear and non-linear 
force-displacement relations for movement in both the normal and shear 
directions; 

- Explicit solutions to unstable physical processes; 
- Rigid or deformable blocks (cannot be mixed); 
- Five basic block constitutive models types of material models for 

deformable blocks (null; elastic, isotropic; elastic, anisotropic; Mohr-
Coulomb plasticity and bilinear strain-hardening/softening ubiquitous-joint 
plasticity; 

- Two types of material models for discontinuities (Coulomb-slip or 
continuously-yielding); 

- Full dynamic capability, with absorbing boundaries and wave input; 
- "Null" blocks for excavation and backfill simulation; 
- Pre-processor program available to read AutoCAD (from Autodesk) files of 

solid objects and output 3DEC data files to generate polyhedra; 
- Joint structure viewed separately from block structure; vectors and 

contours plotted on joint plane; 
- Interactive manipulation of screen images (shaded perspective views, cross-

sections, wire frames, vectors, tensors, contours, etc.); 
- Inner/outer region coupling and automatic, radially graded mesh 

generation within polyhedra for modelling "infinite domain" problems; 
- Structural elements (including grouted cables), with general coupling to 

continuum blocks (spatially extensive) or discontinuities (local 
reinforcement) and triangular plate elements to model concrete or shotcrete 
linings; 

- Tunnel generator and statistically based joint-set generator. 
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8.3 Numerical models developed 
 
The impedance concept is fundamental for understanding the procedure to define 
the maximum size of each element discretizing the numerical model. In the first 
part of this paragraph the meaning of the impedance of a system will be specified. 
 
 
8.3.1 Definition of the impedance  
 
In general, the impedance of a system is the ratio between the force applied in a 
point and the velocity in that point. The impedance influences the wave 
propagation phenomenon. There are different types of impedance depending on the 
field of analysis: 
 

- Mechanical impedance is used in the study of the vibrating mechanical 
systems, i.e. studies of rigid vibrating bodies or loaded with forces but with 
only one value of velocity in each point.   

- Acoustic impedance is used in the coupled study between an acoustic 
source and a fluid in contact; the source is characterized by a global 
parameter that is the acoustic discharge (equal to the product between the 
velocity and the source area) and a uniform value of pressure. 

- Electrical impedance: is the ratio between the electric voltage and the 
electric current. 

 
In general, the impedance generates two main effects: 

 
1. Attenuation: the magnitude of the signal in output depends on the 

frequency of the input signal; 
2. Phase-shift: the output signal cannot be in phase with the input signal but 

it can be forward or backward in function of frequency of the signal.   
 

In dispersive systems, not all of the input energy is converted in the output 
signal. Each system has its own “reaction time” that produces a phase-shift. Part of 
energy is stored to be transferred in another form. 

Two components compose the impedance: 
 

1. Resistance: is the part of total impedance responsible of the energy 
dissipation;  

2. Reactance: is the part of total impedance responsible of the energy 
transformation without dissipation. 
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The attenuation of the response of a physical system is due to the simultaneous 
presence of resistance and reactance terms. The phase-shift is only due to reactive 
terms. We can identify two types of reactance: 
 

- capacitive reactance: attenuates low frequencies but not the high 
frequencies (the phase-shift of the output is in forward of 90° than the 
input); 

- inductive reactance: attenuates high frequencies but not the low frequencies 
(the phase-shift of the output is in backward of 90° than the input). 

 
 
8.3.2 Definition of the mesh element size 
 
Transient forces, such as generated from earthquake sources, usually contain a wide 
band of significant frequencies. For this reason, it is necessary to choose a correct 
size of the finite element mesh to model the wave propagation carefully. 

Shipley et al. (1968) observed that the finite element models behave like low 
pass filters having definite passing bands and cut-off frequencies which depend 
upon the wave type and the finite element mesh. It was noted also that wave 
propagation through a continuum at frequencies above the cut-off frequency cannot 
propagate through the finite element mesh associated with the particular cut-off 
frequency. 

Take as an example, a semi-infinite elastic homogeneous rod (Figure 8.1a). As 
well known in an infinite rod a harmonic P-wave travelling in the positive direction 
would impose normal stresses on a fictitious boundary that separates the rod in 
two semi-infinite rods: τzz=ρVP . These normal stresses are identical to those 
which would exist if the semi-infinite rod on the right side of the boundary were 
replaced by a dashpot of coefficient cp=ρVP. Hence a dashpot is applied at the right 
side of the rod to simulate the perfect absorption of the normally incident elastic 
wave imposed to the left side. The constant of this dashpot (

u

Figure 8.1a) coincides 
with the characteristic impedance of the not discretized media and then the 
dashpot simulates the infinite extent of the rod. 

The study of the response of a continuous, homogeneous, isotropic and perfectly 
elastic semi-infinite rod (Figure 8.1a) in the mechanical field is more complex. It is 
convenient to build up the equivalent electric circuit (Figure 8.1b) of the 
mechanical model of the rod to simplify the problem. Characteristic equations of 
the mechanical field are formally the same of those that represent the equivalent 
electric systems. The electric systems can be represented by models with 
concentrated parameters composed by inductive and capacitive elements. 
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Z∞=cp=ρVP 

F=ejωt

Δz 
(a) 
 

 
(b) 

cell 1 cell i cell n 

Figure 8.1 – (a) Finite element model and (b) equivalent electric circuit 

A physical system subjected to wave propagation can be studied by analyzing 
the equivalent electric circuit that is called “ladder network”.  

The “ladder network” is an infinite electric circuit that is composed by n cells. 
The electric iterative impedance of the single cell i (Figure 8.2) can be computed as 
follows: 
 

 2
1

2

Z Z
Z Z

Z Z
∞

∞
∞

= +
+

 (8.1) 

 
from which: 
 

2
1 1

1 22 4

Z Z
Z Z Z∞ = + +  (8.2) 

 
where: 
Z∞ is the characteristic impedance that in this case is also the input impedance of 
the line (Figure 8.2); 
Z1 and Z2 are two local impedances. 

For simplicity, we can rebuild the “ladder network” of Figure 8.1b as plotted in 
Figure 8.3. In these conditions, the input impedance at the point B-B is as follows: 
 

2
1

1 24

Z
Z Z Z∞ = +  (8.3) 



CHAPTER VIII    Discrete Element Modelling 177 

 

cell i

Z1

Figure 8.2 – Electric circuit for the computation of the iterative impedance of the cell i 
 

 
Figure 8.3 - Equivalent circuit of that shown in Figure 8.1b 

At this point, we can transform the ladder network of Figure 8.3 in a LC ladder 
network (Figure 8.4), composed by inductors and capacitors, by considering: 
 

 1Z jω= L  2
1

Z
j Cω

=  (8.4) 

 
where L is the inductance and C the capacitance.  

If we substitute the Equations (8.4) in the Equation (8.3), we obtain the 
characteristic impedance of the LC ladder network: 
 

 
2 2

4

L L
Z

C

ω
∞ = −  (8.5) 

  
From Equation (8.5), we can identify a critical circular frequency ωc for which: 

 

 Z∞  is real if 2
c

LC
ω ω< = (8.6) 

Z2 Z∞

Z∞ 

cell 1

B 
Z1/2Z1/2Z1/2 Z1/2A 

Z2 Z2

B A Z∞ 
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2
c

LC
ω ω> = is imaginary if  Z∞

2
c

LC
ω ω= = if  0Z∞ =

 
 

 

cell 1 

L/2 

Figure 8.4 – Ladder network LC 

The characteristic impedance shown in Equation (8.2) can also be obtained for 
the mechanical system by using the Maxwell analogy. The Maxwell analogy relates 
the electrical quantities with mechanical quantities as follows: 
 

Capacitance C  spring 1/k 
Inductance L  mass m 

Resistance R  damping coefficient c 
Current I  velocity v 
Voltage V  stress T 

 
If we consider the semi-infinite rod shown in Figure 8.1a, the equivalent single 

cell i, for the mechanical system, is represented by the system shown in Figure 8.5 
that is analogous to the single cell of the electric circuit in Figure 8.2. 

 

cell i

F m
k cp

 
Figure 8.5 – Mechanical circuit for computation of the iterative impedance of the cell i 

L/2 L/2 L/2 A 

A 

 B 

B 

C C

Z∞ 

cell i 

k cpF m
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The equation of motion of the mechanical system, shown in Figure 8.5, is as 
follows: 
 

 
1

1

p

V F

k c
ω

⎛ ⎞⎟⎟⎟⎟⎟⎟ =⎟⎟⎟⎟+ ⎟⎟⎟⎝ ⎠

kcmz f f j m
j

ω

⎜⎜⎜⎜⎜+ = → +⎜⎜⎜⎜⎜⎜⎜  

 (8.7) 

 
where: 
v = Vejωt is the velocity; 

f = Fejωt is the sinusoidal force; 
fkc is the force related to the spring and dashpot connected in series.  

We can assume that the constant of the dashpot, in Equation (8.7), is equal to 
the characteristic impedance Z∞. Hence, the input impedance of the single cell i is 
equal to the output one in the semi-infinite bar. In this way we can obtain the 
expression of the characteristic impedance of the single cell i:  
 

 1

p

F

2

1 1

1 1 1
j m

j V
k c

ω
ω

+ = → Z Z

Z Z

∞

∞

+ =
+ +

 
(8.8) 

 
From the Equation (8.8), we can obtain the same equation of the characteristic 

impedance of the system previously derived for the equivalent electric circuit (see 
Equation (8.1)).  

We have shown the analogy between the mechanical and the electrical systems. 
By the Maxwell analogy, we can rewrite the Equation (8.3) as follows: 
  

2 2

4

m
Z mk

ω
∞ = −  (8.9) 

 
and the critical frequency becomes: 
 

 
2

c
m k

ω =  (8.10) 
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Going back to the electric circuit, we take the cell n of the “ladder network”, 
plotted in Figure 8.1b, to compute the ratio between the electric voltages in input 
Vn and in output Vn+1 in a unit cell n: 
 

n
n n n

V
V Z I I

Z∞
∞

= → =  and 1
1 1n n n n

Z
V V I Z V

Z+
∞

− = =  and then 

 

 1 11
V Z Z Z

V Z Z
∞

+ ∞ ∞

−
= − =

1

n

n

 (8.11) 

 
These electric voltages are equivalent to the stress before and after the cell i for 

a mechanical system. 
At this point, we can compute the propagation factor of the “ladder network”: 

 

 

2
1 1

1 2

1 1
1 2

4 2

4 2

Z Z
Z Z

C

Z Z
Z Z

C

α
+ −

= =

+ +

2 2

2 2 2

4 2

4 2

L L L
j

L L L
j

ω ω

ω ω

− −

− +  

 (8.12) 

 

where the factor α has modulus 1 if 2
c

LC
ω ω< = . 

We can write:  
 
 je δα −=  (8.13) 

 
with: 
 

 
2 2

22

4

L

arctg
L L
C

ω

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥

δ ⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎦

 

 (8.14) 

⎣
 

On the other hand, if ω > ωc, α becomes a real value < 1: 
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2 2

2 2

4 2

4 2

L L L
C

L L L
C

ω ω

α
ω ω

− −
=

− +  

 (8.15)  

 
which can be written as in Equation (8.13) but with δ imaginary (Im (δ) < 1): 
 

 

2 2

2 2

4 2ln

4 2

L L L
Cj

L L L
C

ω ω

ω ω

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥=δ ⎢ ⎥
⎢ ⎥− +⎢ ⎥⎣ ⎦

m zρ= Δ

 

 (8.16) 

 
This means that Vn tends to zero exponentially with increasing n. The signal 

cannot propagate because the inductances and the capacitances are not matched. 
Hence, this ladder network is a low pass filter. 

Now we can define the maximum allowable size Δzlim (evaluated in the direction 
of wave propagation) of the single element discretizing a mechanical system for 
correctly representing the wave propagation through the semi-infinite rod plots in 
Figure 8.1a. We can assume for the mechanical system that: 
 

  jjCk
z

=
Δ

 (8.17) 

 
where Cjj = C11 for compressional waves and Cjj = C44 for shear waves. 

The mass in the Equation (8.17) is computed assuming a unitary transversal 
area of the single element. After substituting in the Equation (8.10) we can obtain 
the maximum allowable element size: 
 

 
,2

2 P S
c c

jj

V

zz
z
C

ω π

ρ

= = = →
ΔΔ

Δ
lim

2 1
f z λ

π
Δ =

 

 
(8.18) 

 
The equation of characteristic impedance of the mechanical system obtained by 

substituting the terms (8.17) in the Equation (8.9) is the following: 
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( )22

4jj

z
Z C

ω ρ
ρ

Δ
= − 

∞  (8.19) 

 
which can be expressed as function of the element size ratio Δz/λ

 
as follows: 

 

( )2 2 22
2 21 1
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Z C C Z
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ρ ρ π

λ λ∞ ∞
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π ⎟⎟

 

(8.20) 

where Z∞ND is the characteristic impedance of the not discretized mechanical 
system. 

Similar considerations can be developed for the propagation factor α and for the 
phase-shift δ (on the tract Δz): 
 

- If ω < ωc, |α| = 1 
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 (8.21) 
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 (8.22)  

 
- If ω > ωc, α < 1 
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 (8.23) 
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 (8.24) 

 
When Δz → 0, ωc → ∞ there is not the attenuation band and the stress and 

velocity becomes continuous. In these conditions πΔz 1 and then the phase-shift 
δ (Equation (8.22)) can be approximated as: 
 

 
2

21
2 1

2

z z
δ π π

λ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎟⎜Δ Δ ⎟⎟ ⎟⎜ ⎜⎜ ⎟⎟ + ⎟⎜ ⎜⎜ ⎟⎟ ⎟⎜ ⎜⎟⎜ ⎟ ⎟⎝ ⎠ ⎝ ⎠ ⎟⎜⎝ ⎠
 (8.25) 

 
Equation (8.25) is obtained from the Equation (8.22) by remembering that for 

small values  and ( )arctg x x 1 1 1 1 2y y− + . 

Kuhlmeyer & Lysmer (1973) stated that the maximum element length equal to 
one-eighth of the wavelength of the slowest body wave propagating in the elastic 
material is recommended (based upon the experience) for analysis of layered media.  

The above analysis is related to a model that is discretized with concentrated 
parameters (masses and stiffnesses).  

 
Let us now give an example of definition of the element size. Take the model as 

composed of a semi-infinite rod (see Figure 8.1a) loaded by a harmonic P-wave and 
with the mechanical properties shown in Table 8.1.  

Figures 8.6 to 8.8 show the comparison between the quantities obtained for the 
not discretized and discretized models for a fixed value of input frequency of 50Hz. 
The dashed lines highlight the position of the element size ratios 1/8 (as suggested 
by Kuhlemeyer & Lysmer (1973)) and 1/π. 

In order to have a general expression, the characteristic impedance, shown in 
Figure 8.6, is divided by the characteristic impedance of the not discretized system: 
 

 
2

21
ND

Z z
π

λ
∞

∞

⎛ ⎞Δ ⎟⎜= − ⎟⎜ ⎟⎜ ⎟⎝ ⎠Z
 (8.26) 

 
The curves of the characteristic impedance versus element size ratio are shown 

in Figure 8.6. As previous mentioned, the characteristic impedance of the not 
discretized model is Z∞ND = ρVP. The gap between the curves of the impedance for 
the not discretized and the discretized systems increases with the increasing of 
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Δz/λ. Moreover we can note that the characteristic impedance of the discretized 
system decreases with the increasing of the element size ratio.  

Table 8.1 – Properties of the discontinuous medium 

Mass density 2650 kg/m3 

Bulk modulus 44 GPa 

Shear modulus 39 GPa 

Velocity of the propagating P-wave 5830 m/s 

Velocity of the propagating S-wave 3840 m/s 

 
If we pay attention to Figure 8.7 it is evident that over the limit value Δzlim = 

1/πλ the wave is attenuated and then the magnitude of the propagation factor 
becomes smaller than 1. These results prove the correctness of using an element 
size Δz = 1/8λ as Kuhlmeyer & Lysmer (1973) suggested. In fact for this element 
size the accuracy of the wave propagation across the discretized model is good 
because the error done is minimal (about 8%). 
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Figure 8.6 – Impedance ratio versus the ratio between the element size and the wavelength 

(f = 50Hz) 
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Figure 8.7 – Magnitude of the propagation factor versus the ratio between the element size 

and the wavelength (f = 50Hz) 

If we divide the phase-shift δ on the tract Δz for λ, we can obtain an equivalent 
propagation constant ke. The variation of ke versus the element size ratio is shown 
in Figure 8.8. In this graph we can see that ke is constant for the not discretized 
system because it becomes equal to the well known propagation constant kP=ω/VP 
(that for shear waves the propagation constant becomes kS=ω/VS). 
 

-0.10

-0.06

-0.02

0.02

0.06

0.10

0.00 0.20 0.40 0.60 0.80

k e

Δz/λ

Not discretized
Discretized 

1

8  

kP 

1

π  

 
Figure 8.8 – Equivalent propagation constant versus the ratio between the element size 

and the wavelength (f=50Hz) 
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In summary, we can say that the element size of the discretized model must be 
smaller than Δz = 1/8λ. After that the error in the accuracy of the wave 
propagation in the discretized model increases exponentially. Over the Δz = 1/πλ, 
the wave travelling across the discretized model undergoes an attenuation that 
grows exponentially. 

Then the correct element size which ensures the accuracy of the numerical 
model is defined. It is found that the element size and the time step observe 
Courant-Freidrichs-Lewy (CFL) Stability Criterion: 
 

 2 2 2

1

1 1 1y zΔ + Δ + Δ

n P nV vτ ρ= −

s

,P S

t
V x

Δ <  (8.27) 

 
where the time increment Δt has a specific bound relative to the spatial 
discretization Δx, Δy and Δz.  
 
 
8.3.3 Boundaries of the model 

 
To prevent the reflection of outward propagating waves back into the model, 
absorbing boundaries are applied along the base and the top of the models. UDEC 
and 3DEC use the quiet-boundary scheme developed by Lysmer and Kuhlemeyer 
(1969): it is based on the use of dashpots attached independently to the boundary 
in the normal and shear directions. They provide viscous normal and shear 
tractions given by: 
 

  
s SV vτ ρ= −

(8.28)
 

 
where vn and vs are the normal and shear components of the velocity at the 
boundary. 

In fact, when a wave hits a viscous boundary, a symmetric wave that cancels 
the incoming one is generated. This symmetric wave is materialized by imposition 
of equivalent forces such as in the velocity-stress equation (8.28). These viscous 
terms can be introduced directly into the equations of motion of the grid points 
lying on the boundary.  

A different approach, however, was implemented in UDEC and 3DEC, whereby 
the tractions τn

 
and τs are calculated and applied at every time-step in the same 

way as boundary loads are applied. This is more convenient than the former 
approach, and tests have shown that the implementation is equally effective. The 
only potential problem concerns numerical stability, because the viscous forces are 
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calculated from velocities lagging by half a time-step. In practical analyses to date, 
no reduction of time-step has been required by the use of the non-reflecting 
boundaries. Time-step restrictions demanded by small zones are usually more 
important. 

Taking into account that quiet boundaries are not completely effective at 
absorbing body waves approaching the boundary at angles of incidence smaller 
than 30° or for surface waves, we need to place the boundaries at some distance 
from the region of interest to minimize the effect of reflected waves. In fact, it is 
well known that viscous absorbing boundaries loose efficiency as the angle of 
incidence decreases.  

One restriction when using quiet boundaries is that one cannot apply a velocity 
record along the same boundary because the effect of the quiet boundary would be 
nullified. To input seismic motion at a quiet boundary, the velocity wave is 
converted to a stress wave using the formula: 

 
2n P nV vσ ρ=

2s S sV vσ ρ=
 
 

(8.29)
 

 

 
Hence, if a dynamic load is to be introduced simultaneously in the same place of 

an absorbing boundary, it must be set as a force loading. Because half of the load 
will be absorbed by a viscous boundary the load magnitude must be doubled. 
 
 
8.3.4 Geometrical and mechanical properties 
 
The models implemented in UDEC and in 3DEC in order to study wave 
propagation in a jointed medium are shown in Figure 8.9 and 8.10 for the case of a 
single joint. The DEM models were built with deformable blocks, which were 
subdivided into a mesh of finite difference elements, which satisfies the requirement 
of accuracy. 
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Figure 8.9 – UDEC two-dimensional model with a single joint 

The UDEC model size is 400m in y direction and 80m in x direction. On the 
other hand, the three-dimensional 3DEC model has the same size of the UDEC one 
in the xy plane, but in addition it has a width of 10m in z direction. 

The medium was modelled with elastic, fully deformable blocks. The blocks are 
separated by planar discontinuities extending in the xz plane for the 3DEC model 
and parallel to x in the UDEC model. The blocks were internally discretized into 
tetrahedral zones. 
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80m

Figure 8.10 – 3DEC model for the case of a single joint 

As described in the previous paragraph, no-reflection boundaries are applied at 
the bottom and top of the UDEC model, while the lateral boundaries are fixed in 
the y direction (direction normal to the wave propagation). Vertical movement at 
the lateral boundaries is constrained to prevent formation of surface waves. No-
reflection boundaries were applied to consider an infinite medium in the y direction. 

In the 3DEC model, non-reflecting boundary conditions were introduced at the 
top and bottom of the model. Displacements were restrained in the z direction in 
the xy plane at z=0 and z=10m to simulate plane strain conditions. In UDEC only 
P or SV-plane elastic waves can be applied (the code does not allow for SH-wave 
propagation).  

The input is applied at the bottom of two numerical models and it is a one-cycle 
sinusoidal incident shear stress wave with amplitude of 1MPa and frequency of 
50Hz (Figure 8.11).  

y

zx

Rock 
joint 

B

A

   S-wave 

10m

400m



190       Discrete Element Modelling CHAPTER VIII 

 
-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0 0.02 0.04 0.06

St
re

ss
 [
M

P
a]

Time [s]

Figure 8.11 – Input shear stress wave 

As discussed in the previous paragraph, the magnitude of the incident shear 
stress wave has been doubled in the numerical models to account for the 
simultaneous presence of the non-reflecting boundary at the bottom of the models. 

The properties of the discontinuous medium are summarized in Table 8.1. 
No material and geometrical damping is considered because the object here is to 

study only the changes in the wave form due to the joints. 
 
 
8.4 Wave propagation across linear elastic joints 
 
With the intent to compare the results obtained with the UDEC and 3DEC models 
with those given by the Scattering Matrix Method (SMM), joints with a linear 
elastic behaviour are considered. As in Chapter 5, the reflection and transmission 
coefficients are computed versus the joint stiffness (kss), the number of joints (N) 
and the joint spacing (d). 

 
Single joint 
Let us consider first a one-dimensional wave propagation through a model with a 
single joint. The shear stress wave impinges normally the joint. The magnitude of 
the reflection |R1| and transmission |T1| coefficients for a single joint are plotted in 
Figure 8.12 versus the normalized joint shear stiffness Kss = kss/ωZS. A very good 
agreement between the DEM and SMM results is found. 
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Figure 8.12 – Magnitude of the transmission and reflection coefficients as function of the 
normalized joint shear stiffness for a single joint 

The transmission and reflection coefficients were defined respectively from the 
ratio between the maximum amplitudes with the corresponding waves and the 
incident waves. The transmitted wave is recorded at the point B while the reflected 
one at the point A (see Figures 8.9 and 8.10). The point A is located at 1m from 
the bottom of the model while point B is at 1m from the joint.  

 
Set of N parallel equi-spaced joints 
Let us take the case of a set of N parallel equi-spaced linear elastic joints. A large 
number of simulations for different values of the joint spacing ratio ζ = d/λ, Kss 
and number N of joints has been considered.  

Figure 8.13 plots some transmitted wave forms obtained for different values of 
the joint parameters. The transmitted shear stress waves are recorded in UDEC 
and in 3DEC at 1m following the last joint. The models, with more joints, are built 
from the same model used for a single joint. The other joints are added above and 
below the joint in the middle of the model. 
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Figure 8.13 – Transmitted wave forms - Comparison between analytical and numerical 
results obtained with different values of Kss, ζ and number of joints 
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The results obtained with UDEC and 3DEC which are plotted in Figure 8.13 
are shown to be very close to those obtained with the SMM. In particular, the 
transmitted wave from a set of N=2 and N=10 joints for two different value of ζ 
with an assumed Kss = 1.6 is shown.  

Of interest are the results shown in Figure 8.14 and 8.15 which have been 
obtained with a great number of numerical analyses (performed with an half-cycle 
sinusoidal incident shear stress wave). Figure 8.14 plots the magnitude of the 
transmission coefficient of a set of two parallel joints as a function of ζ for different 
values of the normalized joint shear stiffness. The results obtained with UDEC and 
3DEC, which are essentially the same as shown by the square symbols, are in close 
agreement with those given by the SMM solution.  
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Figure 8.14 – Magnitude of the transmission coefficient for two joints versus the joint 
spacing ratio for various Kss values. Comparison between DEM and SMM results  

The transmission coefficient |TN| for a set of N joints versus the joint spacing 
ratio as computed with UDEC and 3DEC is plotted in Figure 8.15. Once again the 
results obtained are shown to agree satisfactorily with those given by the SMM 
solution. It is of interest to note that as for the case of two joints the peak value of 
the transmission coefficient increases with the increasing of the number of joints 
unlike what happens after the peak.  
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Figure 8.15 – Magnitude of the transmission coefficient for N joints versus the joint 

spacing ratio with Kss = 1.6. Comparison between DEM and SMM results 

Additional analyses 
At this point, we have performed the same analyses with UDEC and 3DEC by 
applying a one-cycle sinusoidal normal stress P-wave with frequency 50Hz and unit 
amplitude. The models shown in Figures 8.9 and 8.10 have been modified to 
simulate P-wave propagation. Quiet boundaries were applied along the bottom and 
the top of the models. Lateral boundaries were fixed only in the x direction in the 
UDEC model rather than in the y direction (Figure 8.16). Same considerations 
were done for the 3DEC model.  

As expected, the results of these analyses have shown that the diagrams of 
Figures 8.12 to 8.15 can be also applied for a P-wave that impinges normally the 
joints. In fact, it is sufficient to replace the value of the joint shear stiffness with 
the normal stiffness and the impedance ZS with ZP. 
 
Discussion 
In conclusion, we have shown that the results obtained with SMM, UDEC and 
3DEC compare very satisfactorily. Hence the SMM can be considered as an 
excellent tool to evaluate, in first approximation, the correctness of the numerical 
models. These results are indeed of special interest as the SMM, although operating 
in the frequency domain, provides results that are very near to those obtained with 
DEM which operates in the time domain. On the other hand, we can state that 
DEM codes simulate very well wave propagation through jointed media.  
 



CHAPTER VIII    Discrete Element Modelling 195 

 
Figure 8.16 – UDEC model for mono-dimensional P-wave propagation analyses 
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8.4.1 Plane wave with oblique incidence  
 
The wave propagation of an SH-wave with oblique incidence is analysed in the 
following. This problem is studied with the 3DEC code and the results obtained are 
compared again with the SMM.  

The creation of the numerical model is now more complex than in the case of a 
normally incident wave. Particular attention need be placed on the boundary 
conditions and on the application of the oblique incident wave. 

The geometry of the model is shown in Figure 8.17. The size of the model has 
been chosen so as to limit the computational time. An element size of the mesh of 
6m has been taken in order to ensure accurate wave propagation through the 
numerical model.  

A linear elastic joint has been generated in the middle of the model. In this case 
the material and the geometrical damping are not considered as the interest is now 
to study the effect of the joint on wave propagation. 
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Quiet boundary conditions have been applied on the planes yz and xy. The 
direction z on the plane xz has been taken as fixed. These boundary conditions 
allow one to model correctly the wave propagation of an SH-wave with particle 
velocity in the y direction. 

 

 300m

   300m

   24m 

B

A

Rock 
joint 

 S-wave

Figure 8.17 – 3DEC model for oblique SH-wave propagation 

Particular attention has to be taken in this case to the application of the plane 
SH-wave at the bottom plane xy of the model. Along this boundary a one-cycle 
sinusoidal shear wave velocity has been applied as follows: 
 

( ) ( )0 0 ˆ, sinincv x t t x yω ξ= −  (8.30)
 

 

where: 
ω0 = 314.16 rad/s with f = 50Hz; 
ξ0 = ks· sinϑinc is the transverse wave vector. 

It is noted that the incident wave applied along the bottom of the model 
depends not only on the time t but also on the space x. Thus, in order to apply 
correctly the oblique incident wave, it is necessary to consider that at the same 
time the input wave is different at any node of the bottom of the model (Figure 
8.18). Hence, a “fish” function in 3DEC has been built that allows one to apply a 
different input for each node of the bottom along the x direction.  
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Moreover, due to the limited extension of the model in the x direction, the 
applied SH-wave is not exactly a plane wave. In fact, for each node of the model 
the wave is not applied exactly with an angle of incidence ϑinc but waves are 
introduced with different directions close to ϑinc.  

On the other hand, if the extension of the model was infinite these directions 
converged all in the correct direction ϑinc. For this reason, some modifications in 
the SMM needed be introduced in order to allow the comparison with the 3DEC 
results. In the SMM, the input wave (see Equation (8.30)) is normally transformed 
in the frequency domain with the FFT. In this case another FFT in space has been 
performed to move from x to ξ space.  
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Figure 8.18 – Example of variation of the input wave (ϑinc = 40°) with the position x 
along the bottom of the 3DEC model  

The plot of the magnitude of the transmission coefficient versus the angle of 
incidence is shown in Figure 8.19. It is observed that the results obtained with 
3DEC (square symbols) are very close to those computed with the SMM. It is 
noted that the SMM results are obtained for a joint stiffness ratio Kss = 0.25 and 
normalized with respect to the cosine of the angle of incidence (cos ϑinc). For this 
reason, we should obtain a constant transmission coefficient with the variation of 
the angle of incidence. However, the transmission coefficient is not perfectly 
constant because we have not applied a pure plane wave.  
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Figure 8.19 – Magnitude of the transmission coefficient versus the angle of incidence 

In conclusion, we can say that the 3DEC model allows one to simulate oblique 
wave propagation, although some difficulties in the definition of the size and 
boundary conditions of the model have been encountered.  
 
 
8.5 Wave propagation across frictional joints 
 
Finally, in line with the theoretical developments given in Chapter 7, the case of 
wave propagation through a Coulomb slip joint is considered in the following. Once 
again the interest is to compare the results obtained with the UDEC code and 
those derived with the SMM.  

Two homogeneous, isotropic, semi-infinite elastic regions separated by a planar 
discontinuity with given shear strength have been considered. The geometry and 
boundary conditions of the DEM model are the same as shown in Figure 8.9. The 
properties of the medium are summarised in Table 8.1. 

A one-cycle sinusoidal shear stress wave, with amplitude 0.1MPa, is applied at 
the bottom of the model. The direction of propagation is assumed to be normal to 
the bottom boundary. 

Figures 8.20 and 8.21 show the recorded wave form at the points A and B (see 
Figure 8.9). The wave forms obtained by both the SMM and DEM with a 
normalized joint stiffness of 1.6 and a shear strength of 0.05 MPa are compared. In 
this case the shear stress ratio between the maximum amplitude of the incident 
shear stress wave and the shear strength (τimax/τS) is equal to 2.  It is clear that the 
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SMM results approximate those obtained with the UDEC code. In fact, the 
transmitted wave in the DEM analysis, when it reaches the shear strength of the 
joint, does not exceed this value but it remains constant until the incident stress 
decreases below the shear strength. In this zone the slip develops between the two 
surfaces of the joint.  
 

 
-0.10

-0.05

0.00

0.05

0.10

0.00 0.04 0.08 0.12

St
re

ss
 [
M

P
a]

Time [s]

SMM
UDEC

Figure 8.20 – Incident and reflected wave forms recorded at the point A  
(Kss=1.6 and τimax /τS=2) 
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Figure 8.21 – Transmitted wave form recorded at the point B 
(Kss=1.6 and τimax/τS=2) 
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Figures 8.22 to 8.24 illustrate the magnitude of the transmission, reflection and 
absorption coefficients versus the shear stress ratio for various values of Kss. When 
the amplitude of the transmitted shear stress wave τtrasm reaches the τS value, slip 
occurs. In the linear elastic zone the transmission and reflection coefficients are 
constant and they are located where τtrasm< τS. 

The last step of this study was the computation of the transmitted, reflected 
and absorbed waves from a set of N parallel joints. Figures 8.25 to 8.27 show the 
magnitude of the transmission, reflection and absorption coefficients versus the 
shear stress ratio as function of the number of the joints.  

Here, we have assumed that in a set of joints only the first one reaches the joint 
shear strength while the others remain with linear elastic behaviour. It is clear from 
Figure 8.27 that most of the incident energy is absorbed from the first joint. The 
influence of the number of joints on the transmission and reflection coefficients 
decreases with the shear stress ratio increasing, i.e. when the shear strength of the 
joints is mobilized. In fact, the greatest influence is where the behaviour is linear 
elastic. 
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Figure 8.22 – Magnitude of the transmission coefficient versus the shear stress ratio as 

function of the normalized shear joint stiffness 
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Figure 8.23 – Magnitude of the reflection coefficient versus the shear stress ratio as 

function of the normalized shear joint stiffness 
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Figure 8.24 – Magnitude of the absorption coefficient versus the shear stress ratio as 

function of the normalized shear joint stiffness 
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Figure 8.25 – Magnitude of the transmission coefficient versus the shear stress ratio as 

function of the number N of joints (Kss = 1.154, ζ = 0.3) 
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Figure 8.26 – Magnitude of the reflection coefficient versus the shear stress ratio as 

function of the number N of joints (Kss = 1.154, ζ = 0.3) 
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Figure 8.27 – Magnitude of the absorption coefficient versus the shear stress ratio as 

function of the number N of joints (Kss = 1.154, ζ = 0.3) 

Figures 8.22 to 8.27 show that once again the SMM and DEM results compare 
very satisfactorily. Then we can state that the DEM code (UDEC or 3DEC) is a 
valid tool in order to study the wave propagation problems considered. Also the 
SMM is a good tool of analysis although it uses an equivalent linear approximation 
of the Coulomb slip behaviour of the joint. 
 

 
8.6  Summary 
 
The Scattering Matrix Method (SMM) as developed in this thesis has been 
compared with the Discrete Element Method (DEM) as implemented in the UDEC 
and 3DEC codes of the Itasca Consulting Group. This has been done by focussing 
on the evaluation of the effects of joints on wave propagation. Given that the SMM 
has been effectively developed to compute in a number of cases wave propagation 
in a medium containing discontinuities, the method has also been used to optimize 
the discretized numerical model as adopted in the DEM codes. 

The definition of the size of the mesh for a dynamic problem is an important 
point to allow for correct wave propagation studies. We have therefore proven 
analytically that the element size of 1/8λ, prescribed by Kuhlemeyer & Lysmer 
(1973), can be used to avoid wave attenuation across the mesh. In particular, we 
have used a transmission line approach and transformed the electrical quantities 
into mechanical ones by using the Maxwell analogy.  
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SMM results have been compared with DEM (UDEC and 3DEC) in the case of 
linear elastic and Coulomb slip joints. The analyses performed highlight that the 
SMM is a good tool for the study of wave propagation through discontinuous media 
and it can be effectively used to check the numerical models and to evaluate if the 
element size is adequate to allow for a correct wave propagation and if the 
boundary conditions are appropriate. 
 
 



Chapter 9   
 
Use of the Resonant Column Apparatus for wave 
propagation studies 
 
 
9.1 Introduction    

 
The SMM has been developed in Chapters 3 to 7 for the study of wave propagation 
in a discontinuous rock mass containing a single joint or a set of parallel joints 
having different types of behaviour. The DEM in either 2D or 3D conditions has 
been used successfully for the purpose of comparative analyses with the SMM.  

The obvious interest in the research programme carried out so far has been to 
look for a testing equipment which could allow for the evaluation of the effects of 
joints on wave propagation. Such a system used for the first time in rock dynamics 
testing is the Resonant Column Apparatus (RCA) which allowed one to test intact 
and jointed rock specimens. 

In this chapter, following a description of the mechanical properties of the rock 
specimens used for testing, the results obtained by using the RCA are discussed in 
terms of the shear wave velocity and material damping. Then, a 3D DEM model is 
described which allows one to compare the numerical results with the experimental 
data. Finally, the comparison is extended to the use of the SMM. 
 
 
9.2 Mechanical and physical properties of the rock tested 
 
The tests were performed on specimens of “Diamante Bateig stone”. This rock is a 
biocalcarenite extracted in the Alicante Province (Spain) which is used as an 
ornamental stone in new-building construction and as a cladding for existing 
buildings. It is homogeneous and isotropic.  

Biocalcarenites are rich in foraminifers (mainly Globigerinae) ranging in size 
from 0.2 to 0.5mm. Foraminifera shells are generally filled with glauconite and/or 
siliceous cement. The terrigenous fraction comprises quartz, feldspars, micas, 
dolostone and other rock fragments. Both interparticle and intraparticle porosity 
vary. The most abundant type of cement present is equant-equicrystalline mosaics 
of calcite spar.  

Uniaxial compression tests (Figure 9.1a) and ultrasonic tests (Figure 9.1b) were 
performed on 5 intact rock specimens to obtain the static and dynamic mechanical 
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properties of the rock investigated. Uniaxial compression tests performed under 
radial strain controlled conditions allowed one to the Young’s modulus and the 
Poisson’s ratio. Ultrasonic tests were performed with the ultrasonic pulse technique 
method to obtain the P-wave velocity. The physical and mechanical properties 
obtained with these laboratory tests are summarized in Table 9.1 and 9.2. 

 

Table 9.1 – Physical properties of the Diamante Bateig stone 

Physical properties 
Porosity 7-0.005ium (%) 17.79
Porosity 200-7ium (%) 0.41 

Mineral cal,c 
CaCO3 (%) >87 
MgCO3 (%) >1 

A. absorption (%) 5.8 
Density (kg/m3) 2169 

 

Table 9.2 – Mechanical properties of the Diamante Bateig stone 

Mechanical properties 
Uniaxial compressive strength (MPa) 42.1 

Tangent Young’s modulus (MPa) 15316 
Average Young’s modulus (MPa) 15615 
Secant Young’s modulus (MPa) 18302 

Poisson’s ratio 0.244 
P-wave velocity (m/s) 3416.8
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        (a)                                                       (b) 

Figure 9.1 – Laboratory apparatus for (a) uniaxial compression and  
(b) ultrasonic tests 

 
 
9.2.1 Rock specimens used for RCA tests 
 
Intact and jointed rock specimens were prepared to perform the resonant column 
tests as follows: 
 

- A: intact cylindrical specimens with height 100mm and diameter 50mm 
(Figure 9.2); 

- B: cylindrical specimens with smooth fractures; 
- C: cylindrical specimens with tooth fractures. 

 
The B specimens were prepared with one, two and three parallel smooth 

fractures, named B1, B2 and B3 respectively, as shown in Figure 9.3. The C 
specimens (Figure 9.4) were prepared with one (C1) and two (C2) tooth fractures 
with the following geometrical characteristics (Figure 9.5): 

 
- Height of teeth: 1.5mm; 
- Spacing between teeth: 6mm; 
- Width of teeth: 5mm; 
- Contact width of the tooth: 1mm. 
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Figure 9.3 – Specimens with smooth fractures (B): (a) specimen B1, (b) specimen B2 and 
(c) specimen B3 

   
      (a)                                        (b) 
Figure 9.4 – Specimens with tooth fractures (C): (a) specimen C1 and (b) specimen C2 
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(a)            (b) 
Figure 9.5 – Detail of the tooth fracture: (a) photo of the fracture and  

(b) geometric dimensions 
 
 
9.3 The Resonant Column Apparatus (RCA)  
 
The Resonant Column Apparatus (RCA) used is that available at the DIPLAB 
(DIsaster Planning LABoratory) of the Structural and Geotechnical Engineering 
Department of the Politecnico di Torino.  

As well known, a resonant column test is used to measure the dynamic 
properties of soils. The basic principle of the resonant column test is to vibrate a 
cylindrical soil specimen in a fundamental mode of vibration, usually in torsion. 
Once the fundamental mode is established, measurements of resonant frequency 
and amplitude of vibration are made.  

Shearing strain amplitude during vibration is determined using measurements of 
acceleration and frequency of vibration. Velocities of wave propagation and elastic 
moduli are calculated using the measurements of resonant frequency, specimen size 
and drive-system mass using relationships derived from the theory of elasticity. 
Viscous damping is measured from the decay of free vibrations.     

The resonant column apparatus (Figure 9.6) used is of the type fixed-free with 
the specimen fixed at the base and free at the top. The excitation system is 
composed by a structure with magnets and coils (Figure 9.7). These magnets 
interact with the coils when the coils are crossed from current and transfer to the 
specimen a cyclic torsion of equal frequency to that of the arrival signal. The 
response of the system is measured by an accelerometer that is placed over the 
head of the specimen in the drive-system. 

The resonant column apparatus was modified suitably to perform tests on intact 
and fractured rock specimens. The first problem to solve was the connection 
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between the ends of the specimen and the apparatus. To this end the two porous 
stones were substituted with two disks of stainless steel which were used to allow 
pasting the ends of the specimen (Figure 9.8). In this way we have realized a glued 
connection between the bottom of the specimen and the base of the apparatus and 
between the head of the specimen and the top cap. This procedure was to ensure 
that the ends of the specimen do not slip on the “porous stones” during testing.  
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Figure 9.6 – Views of the resonant column apparatus 

With the membrane placed around the specimen (Figure 9.9), three o-rings were 
positioned to fix the membrane to the apparatus. In the tests performed with 
specimens C1 and C2, the fractures were filled with water to ensure that the 
membrane does not enter into the fractures. The next step is the mounting of the 
components of the resonant column apparatus and the connection with the 
acquisition data system. 
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Figure 9.8 – Detail of the specimen with the ends pasted to the test apparatus 
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Figure 9.9 – Specimen preparation before the test 

 
9.4 Dynamic properties of the biocalcarenite with RCA 
 
In the RCA tests, a sinusoidal torque was applied at the head of the specimen. The 
amplitude was kept constant while the frequency was changed to find the resonant 
frequency of the system. The electrical signal applied and the correspondent 
torsional moment generated are shown in Figure 9.10. The input motion is 
composed by a cycle of rest, 20 load cycles and 20 free vibration cycles. The first 
step was the definition of the shear modulus at small strains of the biocalcarenite.    

The measured transfer function obtained with the resonant column test for the 
intact specimen A is shown in Figure 9.11. The measured spectra have some 
irregularities probably due to small lacks in the connection of the specimen to the 
RCA. A fitting curve was drawn to define more accurately the frequency of 
resonance fn. We can see that the resonant frequency where we have the maximum 
amplitude of the response spectra is about 374Hz for the intact specimen. The RCA 
tests were repeated four times to check the repetitiveness of the experimental 
results.   

By using the classical interpretation procedure of the RCA, we can compute the 
shear modulus and the shear wave propagation velocity of the biocalcarenite rock: 

 
- G  = 3489.00 MPa (γ = 1.56⋅10-6) 
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- VS = 1268.24 m/s 
 

Then, the material damping ratio D was calculated by using the half-power 
bandwidth method and the amplitude decay method. 

The half-power bandwidth method requires one to compute the frequencies f1 
and f2 for which the amplitude of the response spectra (see Figure 9.11) is 1/√2 
times the amplitude at the resonance frequency fn. In this case the material 
damping ratio is 2.941% that it is computed with f1 = 362.5Hz and f2 = 384.5Hz. 

On the other hand, the amplitude decay method allows one to compute the 
damping ratio from the attenuation of free vibrations. Figure 9.12a shows the 
recorded free vibration decay response curve and the diagram used to compute the 
logarithmic decrement δ. δ is equal to the slope of the line of best fit through the 
data points (Figure 9.12b). The material damping ratio obtained from the 
decrement δ = 0.1561 is 2.484%. The damping ratio derived with the two methods 
is quite similar and it is typical for this type of rock. 
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Figure 9.10 – Torsional wave applied to the head of the specimen: (a) electrical signal in 
volt and (b) torque in Nm 
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Figure 9.11 – Measured transfer function for intact specimen A 
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9.5 DEM modelling of the resonant column apparatus 
 
To interpret the results of the RC tests a DEM model was created. This model was 
generated with the 3DEC code in 3D conditions, with the purpose to reproduce 
quite closely the resonant column apparatus. The numerical simulations were 
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performed so as to apply as closely as possible the same procedure used in the 
laboratory tests.  

The numerical model is composed by joined deformable blocks. The head of the 
specimen was joined with the drive-system while the bottom was fixed in all 
directions. The excitation was generated by forces applied at each node of the 
blocks that compose the magnets. Forces were computed by dividing the torque 
applied in the laboratory tests (Figure 9.10b) for the distance between the point of 
force application and the axis of rotation. The geometry of the tooth fracture in the 
specimens C1 and C2 has been faithfully reproduced as shown in Figure 9.14.  

A Rayleigh material damping was assumed and it was defined from the 
damping ratio obtained in the RCA tests. 
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Figure 9.13 – 3DEC model of the resonant column apparatus 

The fractures in the DEM model were given a linear elastic behaviour. Normal 
and shear joint stiffness were suitably computed. The shear stiffness of the joints 
was determined firstly by considering the deformational response of a crack in an 
elastic solid (Brady at al., 1985). This was done by assuming the RCA as a single-
degree-of-freedom (SDOF) system. In this preliminary computation, we have 
considered the shear stiffness and not the torsional one because in 3DEC the joint 
is modelled with the shear stiffness.  
 

http://acronyms.thefreedictionary.com/Point+of+Force+Application
http://acronyms.thefreedictionary.com/Point+of+Force+Application
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(a)  (b) 
 

(c) 

Figure 9.14 – Details of the fracture modelling: (a) real specimen, (b), (c) DEM model 

The stiffness of the intact sample (kA) can be computed from the resonant 
frequency of the intact specimen (A), obtained from the laboratory tests, as follows: 
 

( )22A nk f mπ=  (9.1)  

 
where m is the mass of the drive-system and fn is the measured resonant frequency 
of the intact specimen = 374 Hz.  

The shear joint stiffness kss of the specimen B1 was estimated as: 
 

 
1B A ssk k k S
= −

1 1 1 1
ss

c ss c

h
k

GS k S
= − →  (9.2) 

 
where: 
kB1 was computed assuming the ensemble specimen B1 + drive-system as a SDOF 
system, substituting kA with kB1 in Equation (9.1) and using the resonant frequency 
measured for the specimen B1;  
S is the cross-section area of the cylindrical specimen while Sc is the contact area of 
the joint. 
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With Equation (9.2) we have obtained a first attempt value of kss for all the 
fractures of the specimens tested. To evaluate the correct value of kss, gravity was 
applied to the resonant column model in the horizontal direction to compute the 
natural frequency of the system. This frequency must be more or less equal to the 
resonant frequency computed experimentally.  

The values of natural frequency of oscillation of the model were calculated by 
recording the horizontal displacements at the top of the numerical model versus the 
dynamic time. The recorded time history at the top of the model for the intact 
specimen A is shown in Figure 9.15. We can see that the period of oscillation is 
2.69E-3s and the natural frequency of the model is 372Hz. In this analysis the 
material damping is assumed to be zero. 

In this way we have computed the correct values of the shear stiffness by 
performing for all the specimens the analysis previously described for the specimen 
A. The values of the joint shear stiffness are kss = 6N/mm3 for smooth fractures 
and kss = 1500N/mm3 for tooth fractures. As will be shown in the paragraph below, 
these values of joint stiffness allow one to obtain satisfactory results if compared 
with those measured in laboratory tests. 

In the DEM model, the response of the system is measured in terms of the 
displacements at the point P indicated in Figure 9.13. The measured response of 
the system was compared with that obtained with the DEM analysis. This 
comparison was possible with the unit conversion of the accelerometer recorded 
amplitudes. This conversion can be performed through the computation of the 
rotation of the head of the specimen: 
 

 
( )2
2

2 a

a mv rms g

a

a

r f ACF rπ
ϑ

⎡ ⎤⋅ − ⋅Δ ⎣ ⎦= =
⋅ ⋅

radx r ϑΔ = ⋅

 (9.3) 

 
where: 
Δa is the displacement of the accelerometer; 
a is the rms acceleration amplitude obtained from the acceleration measurements of 
the accelerometer; 
ACF is the calibration factor of the accelerometer = 2500 pk-mv/pk-g; 
ra is the radial distance between the axis of rotation and the point in which is 
located the accelerometer in the laboratory apparatus (= 50mm).  

Finally, the displacements measured in the laboratory tests were computed as 
follows: 
 
  (9.4) 

 
where r = 55mm is the distance between the axis of rotation and the point P 
(Figure 9.13). 
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Figure 9.15 – Plot of horizontal displacements versus time recorded at the top of the 

3DEC model for the intact specimen A 

 
9.6 Comparison of experimental results with DEM modelling 
 
The results obtained with the RCA tests and DEM can now be summarized and 
compared. Figure 9.16 shows the measured transfer function for the intact and 
fractured specimens (smooth joint type). The amplitudes of the measured spectra 
were transformed in displacements to compare them with the DEM modelling 
results.  

We can note in Figure 9.16 that the resonant frequency decreases with the 
number of fractures increasing. This reduction of the resonant frequency is 
probably due to the reduction of the stiffness of the specimen. In fact, the resonant 
frequency of a specimen in the resonant column device subjected to torsional 
excitation can be also computed analytically (SDOF system) as follows: 
 

1

2
i

n
T

k
f

Iπ
=  (9.5)  

where: 
ki is the torsional stiffness of the specimen i; 
IT is the mass polar moment of inertia of the top cap and the drive-system 
(39.25g·cm·s2). 

As an example the stiffness of the specimen A is: 
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( )  
4 32GGJ

m
πφ

222.46Ak N
h h

= = =  (9.6) 

 
and with the Equation (9.5) we can obtain a resonant frequency fn = 375.28Hz (the 
resonant frequency measured experimentally was 374Hz). J is the area polar 
moment of inertia of the cross-section of the specimen, φ is the diameter and h is 
its height. In this case, we have assimilated the resonant column as a SDOF system 
and the results prove that this assumption is quite accurate. 

The quantity that changes in the Equation (9.5) if we generate a fracture in the 
specimen is the stiffness. Instead, the inertia of the system remains essentially 
constant. 
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Figure 9.16 – Measured transfer functions for intact and fractured specimens 

Moreover, the amplitude of the response increases with increasing the number of 
fractures. Probably, the amplitude recorded at the head of the specimen increases 
because increasing the number of fractures also increases the rotations of the head 
of the specimen. 

For each specimen the resonant frequencies and the shear wave propagation 
velocities are summarized in Table 9.3. We have used for the fractured specimens 
the classical procedure to compute the shear wave velocity in the RCA tests. The 
results obtained for the specimens with tooth fractures (C1-C2) are shown in Table 
9.3. As discussed below, the specimen C2 with two parallel tooth fractures does not 
give correct results. The RC tests were repeated three-four times for each specimen.  
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Table 9.3 – Shear wave velocities from RCA tests 

Specimen

Resonant
frequency

fn 
[Hz] 

Shear wave
velocity 

VS 
[m/s] 

A 374 1268.24 
B1 270 913.15 
B2 244 825.22 
B3 146 490.06 
C1 194 656.12 
C2 388 - 

 
The comparison between the measured transfer function and that obtained 

numerically with 3DEC is shown in Figure 9.17 to 9.21. The DEM results 
reproduce quite well the experimental results. Small differences in the resonant 
frequency values can be found. The amplitudes obtained numerically are smaller 
than those measured. 

The experimental results, obtained with all the specimens, were found to be 
repeatable. Difficulties were found during testing of specimen C2. These difficulties 
are due essentially to the irregularities of the contact between the surfaces of the 
fractures because they produce small movements that affect the results. Moreover, 
the measured resonant frequency for specimen C2 is greater than the resonant 
frequency of the intact specimen. This is not possible and can be motivated from 
the fact that the specimen is not completely subjected to torque because the 
fractures very likely do not allow the transmission of the motion to all parts of the 
specimen. In fact, the upper parts of the sample C2 (Figure 9.4b) can be rotated on 
the part fixed on the base of the resonant column apparatus and do not transmit 
the torsional wave. This generates an increase of the resonant frequency and then 
of the stiffness of the system. This increase is only possible if the height of the 
equivalent SDOF system decreases and this proves that probably the fixed part of 
the specimen on the base of the resonant column is not mobilized. 
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Figure 9.17 – Measured and numerical transfer function for intact specimen A 
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Figure 9.18 – Measured and numerical transfer function for fractured specimen B1 
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Figure 9.19 – Measured and numerical transfer function for fractured specimen B2 
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Figure 9.20 – Measured and numerical transfer function for fractured specimen B3 
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Figure 9.21 – Measured and numerical transfer function for fractured specimen C1 

Therefore, with the DEM analyses, we have proven that in the specimens all 
parts of the specimen are mobilized with the exception of the specimen C2. As an 
example, the distribution of the horizontal displacements in the specimen B2 
(specimen with two parallel smooth fractures, Figure 9.3b), evaluated at an instant 
of time during the RCA analysis, is shown in Figure 9.22. We can see clearly the 
discontinuity of displacements along the fractures in the same as we have assumed 
with the analytical methods (typically with the SMM). Figure 9.22 only shows the 
specimen while the drive-system and the top cap have been hidden. 

Then, we have compared the decay of the response, recorded at the top of the 
specimen, obtained experimentally and numerically. This comparison is shown in 
Figure 9.23 where we can see that the DEM results reproduce very well the 
experimental ones and the decay of the response curve is essentially the same. This 
can be also noted in Figures 9.17 to 9.21, where the width of the spectra, at 1/√2 of 
the maximum amplitude, obtained experimentally is quite similar to that obtained 
with DEM analyses.  

To evaluate the attenuation of energy due to the fractures we have computed 
the damping ratio for both the fractured specimens and the intact one. Hence, the 
damping ratio computed for specimens with smooth fractures is 3.96% for B1, 
4.03% for B2 and 3.62% for B3. On the other hand, the damping ratio for the 
specimen C2 is about 2.76%. By comparing the damping ratio of the intact 
specimen A (2.48%) we have found the part of energy attenuation due to fractures. 
However, it is not easy to evaluate, from these experimental results, the influence 
of a single fracture on the attenuation of energy but it is quite evident that the 
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damping ratio increases from intact specimen to fractured ones. Hence we can state 
that probably the greatest part of energy attenuation due to the fractures is 
produced by the first fracture (see frictional joints in chapter 8 paragraph 5).  
 

 
Figure 9.22 – Discontinuity of horizontal displacements in the specimen B2 evaluated in 

an instant of time of DEM resonant column analysis 
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Figure 9.23 – Measured and DEM responses at the resonant frequency for the specimen A 
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9.7 Correction of the results 
 
The RCA is generally suitable for soils. The use of this apparatus to test stiff 
materials such as rocks can be generate errors. 

Xiaoming et al. (2006) showed that in the resonant column tests the shear 
modulus on stiff specimens can be underestimated. In fact, they found that when 
the specimen stiffness is compatible with that of the testing system, the tested 
resonant frequency of the stiff specimen is lowered and the Equation (9.7), 
normally used in the interpretation of the resonant column tests, underestimates 
the shear modulus:  
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where β is a parameter that satisfy Equation (9.8): 
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where IS is the mass polar moment of inertia of the specimen. 

Therefore, Xiaoming et al. (2006) modified the Equation (9.7) as follows: 
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 (9.9) 

 
where Q is the correction factor of the shear modulus of the stiff material. 

Xiaoming et al. (2006) evaluated the correction factor by testing six cylindrical 
steel specimens with the same height but different diameter. These computations 
are dependent from the factor β that is function of the inertia of the drive-system 
of the resonant column apparatus used. For this reason, the correction factor, 
obtained by Xiaoming et al. (2006) versus the resonant frequency, cannot be 
applied in our tests.  

In our case the correction factor was computed by performing numerical DEM 
analyses with the model of the resonant column apparatus on 8 aluminium 
cylindrical hollow specimens. The geometrical characteristics of the specimens are 
shown in Table 9.4. The mechanical properties of the aluminium material are given 
in Table 9.5. The calibration of these numerical analyses was done by comparing 



CHAPTER IX   Use of the Resonant Column Apparatus 227 

the results with those obtained experimentally with the aluminium specimen P1 
shown in Figure 9.24. The DEM model implemented to compare the experimental 
results is illustrated in Figure 9.25. The measured transfer functions are reported in 
Figure 9.26.  

The numerical DEM analysis performed on the specimen P1 has allowed to 
obtain a resonant frequency very near to the 34Hz deduced experimentally.  

Table 9.4 – Geometrical properties of the aluminium cylindrical hollow specimens 

Specimen Height
[mm] 

External
diameter 

[mm] 

Internal
diameter 

[mm] 
P1 165 12.2 10.5 
P2 165 20.0 10.5 
P3 165 25.0 10.5 
P4 165 30.0 10.5 
P5 165 33.5 10.5 
P6 165 40.0 10.5 
P7 165 45.0 10.5 
P8 165 50.0 10.5 

Table 9.5 – Mechanical properties of the aluminium material 

Mass density 2727.0 kg/m3

Young modulus 74.2 GPa 
Poisson ratio  0.33 

Shear modulus 27.9 GPa 
 

Following this initial calibration, the DEM analyses were continued by 
computing the resonant frequency of the other seven specimens. Table 9.6 
summarizes the shear moduli and the correction factors obtained for each specimen 
from the numerical simulation. The correction factors were computed by the ratio 
between the correct shear modulus of the aluminium (Table 9.5) and the shear 
moduli obtained from RCA tests (Table 9.6). 

The numerical DEM models were fixed at the base and the maximum size of the 
element edge of the mesh was assumed 17mm. The procedure used for simulation of 
the numerical resonant column test is the same as described above.  

The inertia of the drive-system IT is computed by considering that the top cap 
in stainless steel used in the test on rock specimens is substituted with another one 
in aluminium as shown in Figure 9.24.  
 



228       Use of the Resonant Column Apparatus CHAPTER IX 

 
Figure 9.24 – Aluminium specimen P1 
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 Cross-section A-A 

Figure 9.25 – 3DEC model of the resonant column with the aluminium specimen P1 
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Figure 9.26 – Measured transfer functions of the aluminium specimen P1 

Table 9.6 – Shear moduli and correction factors of the aluminium specimens obtained 
numerically by DEM analyses 

Specimen 

Inertia 
sample 

I  S
[g·cm·s²] 

Inertia 
RCA  
I  T

[g·cm·s²] 

β 
[-] 

Resonant 
frequency 

f  n
[Hz] 

Shear 
modulus 

G 
[MPa] 

Correction 
factor 

Q 
[-] 

P1 0.005 37.737 0.0110 34.75 29439.33 0.95 
P2 0.067 37.737 0.0420 127.01 26824.87 1.04 
P3 0.170 37.737 0.0672 192.10 23990.32 1.16 
P4 0.359 37.737 0.0974 253.09 19781.23 1.41 
P5 0.562 37.737 0.1217 307.35 18696.06 1.78 
P6 1.148 37.737 0.1735 369.30 13281.70 2.10 
P7 1.842 37.737 0.2191 449.55 12339.74 2.26 
P8 2.810 37.737 0.2695 514.98 10703.60 2.61 

 
The correction factor Q versus the resonant frequency is plotted in Figure 9.27.  
We can state that when the stiffness of the specimen increases the error in 

computation of the shear modulus increases and then the shear modulus obtained 
with the resonant column test is underestimated. It is clear that for frequencies less 
than about 120Hz the correction factor is essentially equal to 1. This proves that 
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for soil specimens the classical procedure for computing the shear modulus is 
applicable with accuracy. 
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Figure 9.27 – Correction factor versus the resonant frequency 

It might be noted that the trend of the plot in Figure 9.27 is similar to that 
proposed by Xiaoming et al. (2006) although the numerical values are not equal 
because the experimental apparatus used is different.  
 
 
9.8 Discussion  
 
The shear modulus and the shear wave velocity of the biocalcarenite obtained from 
resonant column tests have to be corrected. The resonant frequency is 374Hz for 
the intact rock specimen and then from Figure 9.27 we obtain a correction factor of 
about 2.1. This correction is necessary to reduce the underestimation of the shear 
modulus due to the high stiffness of the specimen.  

Table 9.7 gives the corrected values of the shear wave velocity shown before in 
Table 9.3. The corrected shear wave velocity can be obtained directly by 
multiplying the incorrect one for √Q as derived by Equation (9.9). 
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Table 9.7 – Corrected shear moduli and shear wave velocities 

Specimen 

Resonant
frequency

fn 
[Hz] 

Correction
factor 

Q 
[-] 

S-wave 
velocity
VS-COR 
[m/s] 

A 374 2.10 1837.86
B1 270 1.52 1125.81
B2 244 1.45 993.70 
B3 146 1.07 506.92 
C1 194 1.20 718.74 

 
Hence, we have computed from the RCA tests a corrected shear modulus G of 

the biocalcarenite rock to be 7326.89MPa and a corrected shear wave velocity of 
1837.86m/s. 

It is known that the modulus of deformation for rock is not constant but 
depends on the load and on the strain level. Hence, static and dynamic elastic 
constants were computed respectively from the results obtained from uniaxial 
compression tests, ultrasonic tests and resonant column tests. 

The dynamic constants of the intact rock can be calculated by using the theory 
of elasticity as follows: 
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The dynamic Poisson’s ratio was assumed to be equal to the static one obtained 

with the uniaxial compression tests. With νd= 0.244 and P-wave velocity deduced 
from ultrasonic tests, equal to 3416.8m/s, we can use Equation (9.10) to compute 
the shear wave velocity of the biocalcarenite to be 1989.0m/s. This can be assumed 
as the reference value of the shear wave velocity to evaluate the accuracy of the 
RCA results. The errors in the determination of the VS are: 

 
- 36.24% for VS computed without correction factor Q; 
- 7.60% for VS computed with correction factor Q. 
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Hence, we can state that the correction procedure of the results of the RCA 
tests allow to reduce drastically the underestimation of the shear modulus and then 
of the shear wave velocity.  

From Equation (9.11), the dynamic modulus of deformation Ed is 21340MPa 
that is obviously greater that the static one of 15316MPa (see Table 9.2). 

To prove the reliability of the correction procedure we have rerun the 3DEC 
analyses with the corrected rock parameters (Ed= 21340MPa and νd= 0.244).  
Obviously, these analyses provide resonant frequencies that are greater (of a factor 
√Q) than those showed previously in Figures 9.17 to 9.21 deduced from the 
uncorrected rock parameters. In Figures 9.28 and 9.29 are plotted the simulated 
transfer function obtained with 3DEC for the sample A and B1. In Table 9.8 are 
summarized the results obtained for all specimens. Hence, we have proven that the 
resonant frequencies, provided from 3DEC analyses with the corrected mechanical 
parameters, agree very well with the resonant frequencies estimated with the 
correction procedure. 
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Figure 9.28 – Numerical transfer function for intact specimen A obtained with the 
corrected mechanical parameters of the rock 
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Figure 9.29 – Numerical transfer function for fractured specimen B1 obtained with the 
corrected mechanical parameters of the rock 

Table 9.8 – Uncorrected and corrected resonant frequencies obtained from RCA laboratory 
tests and from 3DEC analyses 

Specimen 

Uncorrected 
resonant 
frequency 
from RCA 

[Hz] 

Correction 
factor Q 

[-] 

Corrected 
resonant 
frequency 
from RCA 

[Hz] 

Corrected 
resonant 
frequency 

from 3DEC 
[Hz] 

A 374 2.10 542 544 
B1 270 1.52 333 331 
B2 244 1.45 294 295 
B3 146 1.07 151 152 
C1 194 1.20 213 228 

 
Finally, a comparison of the RCA results with the scattering matrix method will 

be executed.  
As already described, the fractures generate an attenuation effect that increases 

with the increasing number of fractures (see Figure 9.16 and Table 9.7).  
Moreover, each fracture generates a group time delay that causes a velocity 

dispersion phenomenon. The phase and the group velocities are equivalent in an 
elastic half-space and then we can compute the velocity dispersion from the ratio 
between the effective velocities and the intact group velocity (VS). Hence, the 
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effective shear wave velocity for the sample B1 is smaller of 38%, for B2 of 46% 
and for B3 of 72% than the intact group velocity (VS). The dispersion of the shear 
wave velocity can be also estimated with the analytical approach proposed by 
Pyrak-Nolte et al. (1987) or with the Scattering Matrix Method (Perino & Barla, 
2010a). Unlike of the procedure proposed by Pyrak-Nolte et al. (1987), the SMM 
considers all multiple reflections in the evaluation of the time delay due to the 
fractures. The first step, of this approach, is the computation of the phase shift ΘT 
of the transmission coefficient TN obtained for a set of N fractures or joints. 

 
( ), ( )T Nangle Tω ϑΘ =

( )

 (9.12)  
 
where: 
ω is the angular wave frequency; 
ϑ is the angle of incidence of the elastic wave; 

The second step is the evaluation of the group time delay due by the fractures 
(tfrac) for the transmitted wave with Equation (9.13): 
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The effective shear wave velocity (VS,eff) is obtained from the effective group 

travel time (teff): 
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where: 
li is the travelled distance normal to the fractures before the first and after the last 
fracture from the ends of the specimen of length L; 
Vg is the group velocity of the intact homogeneous isotropic rock (=VS). 

Here, VS,eff is computed for a rock with fractures with the assumption that no 
dispersion in the intact part of rock is developed. 

The results computed from Equation (9.14) are obtained by assuming the joint 
shear stiffness used in 3DEC analyses and L equal to the height of the specimens 
(100mm). The frequencies are assumed equal to the resonant frequencies obtained 
experimentally for various types of specimens. In fact, the effective wave velocity is 
frequency and joint stiffness dependent. The results obtained with SMM and RCA 
tests are summarized in Table 9.9. 
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Table 9.9 – Rate of decrease of the shear wave velocity 

Specimen RCA
[%] 

SMM
[%] 

B1 38.7 41.8 
B2 45.9 58.5 
B3 72.4 68.0 

 
 
9.9 Summary  

 
With the resonant column tests on intact and fractured specimens described in this 
chapter we have attempted to understand if this apparatus is applicable on rock 
specimens and if one is in position to find the effects of fractures on wave 
propagation. The implementation of the DEM model has been also a way for 
understanding if the experimental results obtained are acceptable or not. 

In conclusion, we can state that the RCA allows one to: 
 
- compute, with a correction procedure, the shear modulus and the shear 

wave velocity for materials with stiffness comparable with that of the 
resonant column apparatus and then with high values of resonant 
frequency;  

- evaluate the effects of fractures on wave propagation.  
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Chapter 10   
 
Distinct Element Modelling of the Tel Beer Sheva 
cavern in static conditions 
 
 
10.1 Introduction 
 
This chapter is intended to study the stability of the underground water storage 
cavern at the archaeological site of Tel Beer Sheva, excavated in a highly jointed 
chalk in the Negev Desert, in Israel. 

By using the distinct element method (DEM) and the UDEC and 3DEC codes, 
the failure of the roof of the cavern is back analysed in both two and three 
dimensional conditions.  

Attention is given to the evidences of the archaeological researches that have 
shown that the roof of this cavern had collapsed during the time of construction 
and that a massive support pillar was erected in the centre of the cavity to support 
the remaining roof. 

The analyses performed are intended as preliminary to the seismic analyses of 
the same cavern discussed in the subsequent Chapter 11. The interest stems from 
the fact that the same cavern with the pillar in place has remained stable through 
the centuries notwithstanding a number of seismic events that did take place in the 
area. 
 

10.2 Location and description of the cavern 
 

The underground water storage cavern is part of the water system of Tel Beer 
Sheva, an archaeological site (Iron age 1200-700 bc) located approximately 3km 
East of the modern city of Beer Sheva, near the communities of Tel Sheva and 
Omer, in Israel. The mound represents an urban ruling centre from the biblical 
period in the southern part of the country, where excavation in modern times 
revealed a system of walls and gates along with public and residential buildings, a 
storehouse and a water system. 

Figure 10.1 shows the present archaeological site. Some authors suggest that a 
well at the gate of the city is associated with that mentioned in the Bible, in the 
book of Genesis. The oath sworn at the well gave the city its name: in Hebrew 
"sheva" means both seven and oath, "beer" means well. 
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Figure 10.1 – Photograph of Tel Beer Sheva archaeological site 

Situated on a hilltop at an elevation of 307m asl, the site is in the centre of a 
wide valley on the northern bank of Beer Sheva streambed (south), near its 
confluence with the Hebron streambed (north). Tel Beer Sheva was declared a 
national park in 1986, covering a total area of approximately 44.5 acres. In 2005, 
UNESCO listed the biblical tels, including Tel Beer Sheva, as a World Heritage 
Site. A schematic layout of the archaeological site and the under-lying water 
reservoir are shown in Figure 10.2. 

Together with the Arad Valley, the Beer Sheva Valley, identified with the 
biblical region of "Negev of Judah", is a wide plain covered with loess. The two 
valleys divide the Judean Mountains in the north from the Negev Highlands and 
the Sinai in the south. In the past, streambeds served as main passageways through 
the region, because they were both easy to traverse on foot and represented an 
under-ground water source readily available (by digging wells). 

The moderate topography of the Beer Sheva Valley made it a convenient 
throughway, from the Arava and the Dead Sea to the Mediterranean Sea, and from 
the Sinai and the Negev towards the central and northern parts of the country. 
The history of Tel Beer Sheva and of the other settlements in the valley reflects 
periods in which settlement was possible either due to a more comfortable climate 
or through the initiative of the central government. 
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Figure 10.2 – Schematic representation of Tel Beer Sheva archaeological site 

Excavations at Tel Beer Sheva were carried out from 1969 to 1976 by the Tel 
Aviv University Institute of Archaeology. In 1990, extensive restoration works were 
carried out by the National Park Authority, with the assistance of the Negev 
Tourism Development Administration. Excavation on the mound was undertaken 
from 1993 to 1995 under the direction of Professor Ze'ev Herzog to complete the 
uncovering of the water systems. 

During the first stage, the well near the city gate was excavated. The water 
level was found to be 69m below the surface. During the second stage, the water 
system in the northeastern part of the city was revealed in its entirety: a stepped 
shaft some 17m deep was uncovered almost to the top, and a plastered water 
system was found out as it was abandoned over 2,000 years ago. Following the 
completion of extensive conservation works by the Israel Antiquities Authority, the 
Israel Nature and Park Authority opened the water system to the public in 2003. 

The water system, dated to 1000 BC, was established as part of the city's 
fortifications. It consists of three components: a shaft 17m deep, lined with stones 
with a flight of steps along its sides; a reservoir divided into five spaces, with a 
total capacity of about 700m3; and a winding feeder channel that led flood waters 
from the spring into the reservoir. 

Whilst the water system was built to serve the inhabitants of the city mainly 
during the time of siege, the well excavated near the city gate met their daily 
needs. Today, it is possible to descend the stairways and enter the underground 
storage cavern, being amazed by its size, the thick plaster that prevented the water 
from seeping out and the ancient support walls built to hold up the ceiling after the 
collapse. The exit from the water system is through a secondary cavity, which was 
excavated during the work on the system in the olden times and blocked after its 
completion. It was reopened during excavation and now serves as an exit from the 
mound. 
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The real excavation sequence of the water storage cavern is unknown. However, 
modern excavation of the underground water system revealed that the roof had 
collapsed, probably during the time of construction, and at that time the engineers 
had erected a massive support pillar in the centre of the opening to support the 
remaining roof. Also, the plaster coating that was explored on the sidewalls at 
ground level was discovered to be above the original roof, indicating the proximity 
of the failure episode to the original time of excavation. 

The large storage cavern beneath the city was fed by seasonal run-offs from the 
Hebron streambed through a tunnel running beneath the city walls. From within 
the city, the access to the water reservoir was through a large vertical shaft. The 
intake capacity, without considering the support elements, is approximately 250m3. 
The water reservoir layout is shown in Figure 10.3. 
 

 

b 

b

a

a

Figure 10.3 – Schematic layout of the water storage cavern after Hatzor & Benary (1998) 
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10.3 Geological and rock mass conditions at the Tel Beer Sheva 
site 

 
The geological engineering of Tel Beer Sheva was previously studied by Hatzor and 
Benary (1998). The water storage cavern is shown to have been excavated in the 
sedimentary Gareb formation (Upper Cretaceous), which comprises horizontal 
layers of chalk, 0.3-0.8m thick, alternating with some thinner (up to 0.1m) layers of 
marly chalk of low plasticity and swelling potential. 

A detailed geological mapping of the rock mass was performed both within the 
underground water storage cavern and in nearby outcrops. Four joint sets were 
mapped: the bedding planes, which are horizontal with a mean spacing of 0.50m, 
and the J1, J2 and J3 sets having a mean spacing of 0.20m, 0.25m and 0.60m, 
respectively (Table 10.1 and Figure 10.4). The strike of joint set J1 is nearly 
parallel to the axis of the intake tunnel, whilst J2 is perpendicular to J1 and co-
linear with the reservoir walls. The strike direction of the joint set J3 is similar to 
that of the joint set J2. The intersection of the closely spaced joints with the 
bedding planes forms a network of nearly equidimensional cubic blocks. 

Table 10.1 – Principal joint sets in the water storage cavern (Hatzor and Benary, 1998) 

Set Dip 
[°] 

Strike 
Direction

[°] 

Room 
(see Figure 10.4 )

Mean 
spacing

[cm] 

J1 90 39-61 1, 2, 3, 4 20 

J2 90 124-127 1, 2 25 

J3 90 107-112 3, 4 60 
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Figure 10.4 – A map of the underground water storage system with the strike of the joints 

as mapped underground and joint spacing distribution (Hatzor & Benary, 1998) 

As depicted in the cross section of Figure 10.5, the roof of the water storage 
cavern is known to have collapsed by leaving the shape of a dome. Three distinct 
levels were mapped: 
 

-  excZone 1: the original
 intermediate failure level at 287m elevation. 

Zone the u

avation level at 286m elevation. 
- Zone 2: the
-  3: pper failure level at 288m elevation. 
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All the zones are developed along natural bedding planes. The transition 
bet

nt with trace 
lin

sess the peak friction angle which was available at the time of 
def

ass classification methods yields are evaluated from 
Ha

rent nature of the horizontal bedding planes and 
of 

 rock properties are as follows: elastic modulus E = 2GPa, Poisson’s 
rat

 

ween the different levels ranges from vertical to step like, running along block 
boundaries, defined by the intersections of joints and bedding planes. 

Both the bedding planes and the joints in chalk are very persiste
e length greater than the cavern size. The joints are clean and tight with planar 

surfaces. The roughness of the joint planes was evaluated and the mean JRC value 
is estimated at 8-10. The mean residual friction angle is between 35 and 36°. Tilt 
tests performed on mating natural joints as found in the field yielded values 
between 49-71°.  

In order to as
ormation the empirical criterion of Barton (1973) is used by Hatzor and Benary 

(1998): τ = σn tan[JRC log10(JCS/σn)+φr] with the following input parameters: 
JRC = 8-10; JCS = 7MPa; σn= 0.5-2.5MPa; φr = 35° where σn  is the maximum 
normal stress active on the joints that is a function of beam thickness. Hatzor and 
Benary (1998) estimated σn from output of Voussoir beam analysis (Beer & Meek, 
1982) for a beam with span of 7m and thickness between 0.5 and 2.5m. Hatzor and 
Benary (1998), using the criterion of Barton, the dilation angle was estimated to 
vary between 3.6 and 11.4° and, therefore, the peak friction angle was assumed to 
vary between 38.6 and 46.4°.  

The input data for rock m
tzor and Benary (1998) and they obtained a Q value between 0.4 and 4.0 and 

RMR value of 43. These values indicate a fair to poor rock with an expected stand 
up time of 1 to several days. The estimated rock mass classification values help 
explain the historic failure; with the given lithological conditions and considering 
modern experience we do not expect the rock mass to have been able to sustain the 
loads which were induced by the attempted excavation for a significant period of 
time (Hatzor and Benary, 1998). 

Hence, to distinguish the diffe
the joint sets, the discontinuity parameters (according to the Mohr-Coulomb 

yield surface) cohesion cj and friction angle ϕj may be assumed to be different as 
shown in Table 10.2, where also given are the normal stiffness knn and shear 
stiffness kss.  

The intact
io ν = 0.1 and unit weight γ = 19kN/m3. 
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(a) 
 

 
(b) 

Figure 10.5 – Cross sections of the water storage cavern: (a) longitudinal section showing 
the ancient support pillar and (b) transversal cross section b-b as shown in Figure 10.3, after 

Hatzor & Benary (1998) 

 
 
 
 
 

Cross section b-b 
m 290

 289

 288

 287

 286

 285
-1 0 1 2 3 4 5 6 7 8 m 

Zone 3

Zone 2

Zone 1

Roof

Room 2

Cross section a-a 

0 2 4 6 8 10 12 14 m -2 
280

282

284

286

288

290

292

m 294

 chalk 

Zone 1 

    Zone 3 

Zone 2

 conglomerate

Loosened 
zone 



CHAPTER X    Static analyses 245 

Table 10.2 - Mechanical parameters of bedding planes and vertical joints 

 ϕ 
[°]

knn 
[GPa/m]

kss 
[GPa/m]

c 
[MPa]

σt 
[kPa]

Bedding planes 38 3.0 1.5 2.0 1.0 

Vertical joints 42 3.0 1.5 0.1 0.001
 

 
10.4 DEM analyses of a laminated Voussoir beam  
 
The roof failure of the water storage cavern was previously analysed by Hatzor and 
Benary (1998) using the classical Voussoir beam theory and discontinuous 
deformation analysis (DDA). The study was focused on the shear failure along the 
vertical abutments due to developed vertical shear stresses, rather than on failure 
by crushing at the hinge zones due to induced axial compressive stresses. 

The DDA model used was finalised to reproduce the geometry of a beam 
representing the cavern roof, with a given span and overall height, however 
accounting for the presence of the individual horizontal layers, each with a given 
thickness (t) and vertical joint spacing (s). With the intention to model the water 
storage cavern in static conditions, similar analyses as with DDA were carried out 
with DEM. 

Modelling was undertaken in plane strain conditions by using the UDEC code. 
As for the DDA analyses, the geometry of the failed roof in the cavern was used 
assuming the active span to be 7m. The overall beam thickness was taken to be 
about 2.5m, which is the height of the loosened zone shown in Figure 10.5. The 
individual layer thickness (t) was assumed to be equal to the average bedding 
thickness, about 0.5m. Therefore, the geometric parameter used as variable was the 
mean joint spacing (s). The mechanical parameter was the joint friction angle (ϕ). 

Figure 10.6 shows the DEM two-dimensional model adopted for the case of 
vertical joint spacing equal to 25cm and individual beam thickness of 0.5m. It is 
noted that, as for DDA analyses, the model comprises a beam, which is subdivided 
into blocks (each block with a block dimension ratio s/t) and is free to move under 
gravity loading. The abutments in the model are represented by two vertical 
blocks, each 1.0m wide and 7.0m high. These blocks together with a top block, of 
length 9.0m and height 1.0m, form a fixed frame for the beam. 

As for the DDA analyses, the joints were assumed to be elastoplastic, with a 
Mohr-Coulomb yield criterion. The rock blocks were given a linearly elastic 
behaviour. With the joints considered to be planar with zero cohesion and tensile 
strength, the friction angle of the horizontal bedding planes and vertical joints was 
assumed to be equal. The input material parameters for the blocks were the same 
as reported above for the intact rock. Seven mean joint spacing values (s) were 
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analysed: 25, 50, 87.5, 116, 175, 350 and 700cm. The friction angle was taken to 
range between 20° and 90°. 

 
Figure 10.6 – Details of the DEM model of the cavern roof with span 7.0m. Individual 

beam thickness 0.5m; vertical joint spacing 0.25m 

The DEM analyses were performed for each model having a given block 
dimension ratio s/t, by keeping the side vertical boundaries fixed and by changing 
the joint friction angle until the system showed stability. As for DDA analyses,  the 
stability of the roof was defined by a specific value of maximum deflection at the 
mid-section of the beam, the magnitude of which would not change, regardless of 
the number of computation steps. The roof was considered to achieve stability with 
a maximum deflection at the mid-section of the beam of up to 5.5cm.    

A comparison of the present DEM and DDA results is shown in Figure 10.7, 
where the required friction angle for stability is plotted versus the block length or 
joint spacing. It is noted that for the DEM analyses, the results are plotted 
depending on the degree of discretization adopted for the grid in the model, ranging 
from 0.0625m minimum to the maximum equal to the block size as side length of 
each triangle used. Inspection of this figure indicates that the DEM results agree 
well with the DDA results. 

Note that with coarse discretization (element size in UDEC equal to grid edge), 
UDEC and DDA results agree very well for the large blocks (joint spacing >350cm) 
because modelling accurate stress and strain distribution in large blocks is limited 
in DDA due to the ‘‘simply deformable blocks’’ assumption, and in UDEC here due 
to the choice of coarse discretization. When higher discretization is introduced into 
UDEC, the demand for higher friction for the static stability of larger blocks is 
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relaxed, most probably due to the added stability gained by individual beam 
bending that can better be modelled in UDEC with high discretization. For smaller 
blocks, however (joint spacing smaller than 100cm), the DDA “simply deformable 
blocks” assumption is less restricting, because the relatively high number of 
individual blocks in the mesh allows more accurate stress and strain distribution 
and thus a better agreement with UDEC when run with high discretization of 
elements.  
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Figure 10.7 – Comparison of present DEM results and DDA results by Hatzor & Benary 
(1998). Plot of required friction angle for stable roof versus joint spacing for a layer thickness 

of 50cm 

The comparison between UDEC and DDA clearly indicates that the required 
friction angle for stability presents a minimum for 30°–35°: it decreases with 
increasing joint spacing, i.e., with decreasing the number of blocks in each 
individual layer, and increases again with the decreasing number of blocks. DEM 
appears not to agree with DDA for the maximum joint spacing, when ultimately 
each individual layer consists of a single block. 
 
 
10.5 Back analysis of roof failure by DEM 
 
As shown in Figure 10.3 and Figure 10.5, the cavern during construction was 
characterised, in the cross-section a-a, by a maximum total span of 12.8m and, in 
the cross-section b-b, by a total span of 15.0m. After failure and construction of the 
massive supporting pillar in the centre of the cavern (see description of inferred 
sequence above), the roof was divided in two parts to stabilise it. As shown in the 
cross section a-a (Figure 10.5a), the beam with span 12.8m was divided into two 
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shorter beams: one on the left side spanning 7.2m and one on the right side 
spanning 4.6m, which have remained stable until the present time. The same holds 
true for section b-b (Figure 10.5b) where the support pillar erected has divided the 
roof in two shorter parts with the same span of 7m. 

The stability of the water storage cavern has been analysed firstly in two 
dimensions and then in three-dimensions by modelling the entire cavern.  
 
 
10.5.1 2D static analyses 
 
The 2D analyses were carried out to study the stability of the cavern along cross 
sections a-a and b-b using the UDEC code. As shown in Figure 10.8 and 11.9, the 
cavern roof was assumed to be 13m below the ground surface. A superficial soil 
layer of 3m of thickness and below a conglomerate layer of 5m were assumed. Their 
mechanical properties are shown in Table 10.3. 

Table 10.3 - Mechanical properties of the superficial layers 

Layers ρ 
[kg/m3]

E 
[MPa] ν 

Soil 1800 20 0.2

Conglomerate 1800 100 0.2
 

The first static analysis was intended to evaluate the stability conditions of the 
cross-sections a-a (Figure 10.8) and b-b of the cavern with span respectively 12.8m 
and 15.0m, whereas the second one was to analyse the present conditions, with the 
supporting pillar in the centre (Figure 10.9a-b). These analyses were performed as 
follows: 
 

- Initialisation of the DEM model. 
- Simulation of the cavity as in the past: excavation in a single step. 
- Simulation of the cavity at present: activation of supporting pillar (about 

1m thick and 7m high). 
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Figure 10.8 – Details of the DEM model of the cavern before collapse (cross-section a-a) 

 

 
(a) 
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(b) 

Figure 10.9 – Details of the DEM model of the cavern following collapse: (a) cross-sections 
a-a and (b) b-b 

As for the analysis above, the joints were assumed to be elastoplastic, with a 
Mohr-Coulomb yield criterion. The rock blocks were given an elastic behaviour. 
The assumed mechanical properties are given in Table 10.2. The stress ratio K0, 
i.e., the ratio between the horizontal and vertical initial stress, was taken to be 
equal to 0.5. 

As shown in Figure 10.10, points P1, P2, P3 and P4 in the rock mass above the 
cavern, in cross-section a-a, undergo a vertical displacement of different magnitude 
as excavation takes place (i.e., as time steps increase). It is noted that a stable 
condition is reached, meaning that all the rock layers above point P1 and up to the 
surface undergo progressive deformations without falling down. 

The roof deformation process and the initiation of the arching mechanism in the 
roof are depicted in Figure 10.11a-d, where the rock blocks in the immediate roof 
collapse while the overlying layers have already ended the downward movement 
and arching takes place. The lower rock layer inflects first like a beam and starts to 
detach from the upper one. The arch-forming mechanism is well reproduced and all 
the rock blocks falling down can be singled out. 

As shown in Figure 10.12, with equilibrium being reached gradually, the roof 
configuration, in the cross-section a-a, obtained with the model reproduces that of 
the cavern, as visible nowadays. While the central section of the roof collapses, the 
sidewalls remain stable. In a similar manner, when the analysis is performed with 
the present configuration of the cavern roof supported by the pillar in the centre 
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(Figure 10.3), with the reservoir being subdivided in two openings (with 7.2m 
span, the left one, and 4.6m span, the right one), a new stable condition is 
reached. 
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Figure 10.10 – Plot of the vertical displacement monitored at points P1-P4 above the 

cavern – Cross-section a-a 

 

  
            (a) After 1s                                        (b) After 2s 
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             (c) After 3s                                        (d) After 5s 

Figure 10.11 – Plots showing progressive instability of the cavern roof – cross-section a-a 

 

Real roof 
shape 

Figure 10.12 – Roof configuration of the cross-section a-a resulting from DEM modelling 
compared with the present configuration following collapse 

The same analyses, performed above for the cross-section a-a, were performed 
for the cross-section b-b. In this section the vertical joint set J2 is not considered as 
the vertical joint set J1 with mean spacing 0.20m is introduced. The horizontal 
bedding planes are assumed with spacing 0.50m as in the previous analyses. The 
back-analysis of the cavern was performed leading the cavern roof to collapse as 
well illustrated in Figure 10.13.  

For this cross-section the roof deformation process and the initiation of the 
arching mechanism (Figure 10.13) are very similar to those described for the cross-
section a-a. Also in this cross section, the rock blocks in the immediate roof collapse 
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while the overlying layers have already ended the downward movement and 
arching has taken place. 
 

 
Figure 10.13 – Roof configuration of the cross-section b-b resulting from DEM modelling  

The vertical deflections of the beams, identified by the bedding planes, are 
shown in Figure 10.14a. We can see that the first five beams collapse and then the 
vertical displacements increase without reaching stability. In the stable beams, the 
maximum vertical displacements, evaluated in the mid span, decrease to reach the 
stability condition with the deflections remaining constant during the 
computational time. On the other hand, the horizontal compressive stresses 
decrease approaching the immediate roof (Figure 10.14b). 

The distribution of the principal stress immediately after the excavation in a 
single step (0.7s of gravitational loading) is plotted in Figure 10.15a, whereas 
Figure 10.15b illustrates the principal stress trajectories during the collapse (8s). 
We can see the compressive arch that is generated as the equilibrium configuration 
is being reached. Below the compressive arch, a stress-free zone is evidenced which 
is undergoing collapse.  

The extension of the collapsed area in the cross-section b-b and the values of 
the vertical displacements are greater than those in the cross-section a-a. This is 
due to larger span and the smaller spacing of the vertical joints.   
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(a) 

 
(b) 

Figure 10.14 – Development of vertical deflections (a) and of horizontal compressive 
stresses (b) of the bedding layers during the numerical computation in the cross-section b-b 

(numbers indicate the location of points in which we have measured the vertical 
displacements while letters identify the beams)  
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(a) 

principal stresses         
       minimum = -1.475E+06
       maximum =  6.504E+04

0  2E  6      

 
(b) 

Figure 10.15 – Phases of instabilization of the section b-b. Principal stresses (Pa) 
trajectories configuration after (a) 0.7s and (b) 8s of gravitational loading 

As shown in Figure 10.16, as equilibrium is being gradually reached, the stable 
roof configuration obtained with the model reproduces well the real one, as 
presently observed. Only the central part of section b-b collapses while the other 
parts remain stable. To guarantee stability a support pillar is activated in the 
centre of the cavern, as actually done in the past (Figure 10.9).  

principal stresses         
       minimum = -2.008E+06
       maximum =  8.278E+04

0  2E  6      

The support pillar consists of chalk blocks. The analyses performed for both 
the cross-sections a-a and b-b with the pillar activated show that this 
configuration is stable (Figure 10.17). It is of interest to plot in Figure 11.18 the 
new principal stress distribution which is attained, showing that the column 
generates compressive arches at two side of the pillar in the centre. 

Opening of the vertical joints in the column is recorded (see Figure 10.19). 
These joint openings are well visible due to the modelling of the pillar with rock 
blocks not arranged with staggered joints. Some small joint openings in the roof 
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and along the abutments were detected in the numerical analyses. The same 
considerations made for cross-section b-b are also true for cross-section a-a. 

 

 

Real roof 
shape 

Figure 10.16 – Roof configuration of the cross-section b-b resulting from DEM modelling 
compared with the present configuration following collapse 
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Figure 10.17 – Vertical deflections of the bedding layers during the numerical computation 
in the cross-section b-b 

 
Figure 10.18 – Final principal stress (Pa) trajectories in the cavern with the support pillar. 
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Figure 10.19 – Model of the cavern with the massive pillar in its centre following 

gravitational loading. Opening of the vertical and horizontal joints is shown. Cross - section 
b-b 

 
10.5.2 3D static analyses 
 
In order to represent more accurately the collapse and the actual configuration of 
the cavern, DEM analyses were also performed in three dimensional conditions. 
The stability of the entire water storage cavern was investigated. The steps of the 
analyses performed by using the 3DEC code are the same as for the 2D analyses 
with UDEC.  

The simulation of the cavern excavation takes place in a single step according to 
the model shown in Figure 10.20. Figure 10.21 underlines the shape of the cavern 
with the blocks created to reproduce it in detail. It is noted that these blocks first 
were joined together to create a continuum and then they were cut to create a 
discontinuum. 

The yz planes of the boundaries of the model (Figure 10.20) are fixed in x 
direction, the xz planes in y direction and the bottom in the z direction.  

The first step was intended to evaluate the stability of the cavern without the 
support pillars being present as shown in Figure 10.3. The stability problem was 
analysed in the following stages: 

 
1.  and iequilibrium stage

excavation of 
stability anal

n-situ stress initialization; 
2. the cavern in a single step; 
3. ysis under gravitational loading. 
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Figure 10.20 – 3D DEM model of the cavern 

 

 
Figure 10.21 – View of the excavation of the 3D model of the cavern 

The analyses were performed firstly with the large size model shown in Figures 
10.20 and 10.21. It is noted that the presence of the discontinuities is introduced at 
the roof of the cavern only, while the other parts of the model are assumed as 
continuous. This assumption was needed to reduce the number of blocks in the 
model and then the computation time. The first analysis was performed with a 
spacing of 0.50m for the bedding planes and a spacing of 0.40 and 0.50m for the 
vertical joints sets J1 and J2 respectively.  
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Another model was also created as shown in Figure 10.22 by considering only 
the roof which was discretized according to its real shape in blocks with size 
0.50x0.20x0.25m. The size of the blocks was defined based on the in situ average 
spacing of the joints sets. It is noted that in the model the joint sets were 
implemented with correct strike and dip directions. The extension and the 
characteristics of this model were evaluated from the results obtained with the first 
model previously described. 

 

 
Figure 10.22 –View of the 3D model limited to the roof of the cavern 

In the 3D analyses, the cavern is shown to be stable for a stress ratio K0 equal 
to 0.5, in contrast with the 2D stability analyses. This may be motivated by the 
fact that the two-dimensional analyses are performed in plane strain conditions as 
the 3D analyses allow one to account for the confinement and the arching effect in 
all the horizontal directions.  

Moreover, it is of interest to say that we have verified that the roof does not 
collapse by reducing the friction angle of the vertical joints down to 38.6° 
(minimum friction angle evaluated by Hatzor & Benary, 1998) and by maintaining 
K0 equal to 0.5. In fact, by decreasing the friction angle from 42° to 38.6° the 
maximum vertical displacement at the mid-section of the cavern increases from 8.0 
to 8.6cm.  

Hence, in the 3D analyses, with the purpose to induce the collapse of the cavern 
roof, the value of K0 was reduced down to 0.3. This produced an increase of the 
vertical displacements of about two times.  

By comparing the results obtained with the two 3D models with blocks size of 
0.50x0.40x0.50m and 0.50x0.20x0.25m respectively, the influence of the vertical 
joint spacing is clear. In fact, the vertical displacements at the mid-section of the 
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cavern increase of about 2 to 2.5 times, if the vertical joint spacing is reduced from 
0.40 to 0.20m for joint set J1 and from 0.50 to 0.25m for J2. 

The collapsed area obtained with 3D numerical analyses is depicted in Figure 
10.23, where this is compared with the structural map of the roof as shown in 
Figure 10.3. Two cross sections a-a and b-b of the collapsed roof are plotted in 
Figure 10.24.  

 

 
Figure 10.23 – View of the roof of the cavern with support system activated – Plot of 

vertical displacements magnitude and comparison of the collapsed area with the measured 
structural map of the roof showed in Figure 10.3 

It is shown that the 3D model reproduces very well the three-dimensional dome 
formed in the cavern after the collapse. As in the 2D analyses, a compressive arch 
develops in three dimensions, i.e. a compressive dome is originated as well shown in 
Figure 10.25. This sustains the upper rock mass and identifies the stress-free zone 
where the collapse will develop.  

The histories of the vertical displacements along the vertical in the middle of 
the cavern are shown in Figure 10.26. It is observed that the first three “beams”, 

b 
b 

a

Zone 2

Zone 2
Zone 3

Zone 1Zone 1 

a
Real roof shape 
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identified by the bedding planes, undergo collapse while stability is attained for the 
upper beams. The induced vertical displacements decrease with increasing of the 
vertical distance from the intrados of the roof.    

 

 
(a) 

 
(b) 

Figure 10.24 – Plots of vertical displacements magnitude and comparison of the collapsed 
zone, obtained with 3D analyses, with the measured structural roof showed in Figure 10.5 

and with UDEC roof shape for the cross-section a-a (a) and cross-section b-b (b) 

 
Figure 10.25 – 3D view of the principal stress (MPa) trajectories (dome effect) 

UDEC
roof shape

Real 
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Figure 10.26 – Vertical displacements along the vertical passing through the point located 

at the middle of the cavern versus the computational time  

As for the 2D analyses, 3D analyses of the cavern were also performed with the 
supporting pillars in place. Figure 10.27 shows the view of the excavation of the 3D 
model implemented in 3DEC. The support system is composed by one big pillar in 
the centre of the cavern and other lateral pillars constructed for reducing the 
cavern spans, thus reproducing in detail the in situ conditions. 

The computed vertical displacements are shown in Figures 10.28 to 10.30. The 
maximum vertical displacements are about 2-3mm and then the cavern can be 
considered stable. A stability condition is achieved as illustrated in Figure 10.31 
where the vertical displacements, at points located along the vertical directions 
passing through the six locations shown in Figure 10.28 at the roof, were monitored 
during the computational time.  
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Figure 10.27 – View of the excavation of the 3D model of the cavern with support system 

 

 Hystory locations 

A

F

C B

D E

Figure 10.28 – View of the roof of the cavern with support system activated – Plot of 
vertical displacements (m) 
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Figure 10.29 – Cross-section a-a of the cavern with support system activated – Plot of 

vertical displacements (m) 

 
Figure 10.30 – Cross-section b-b of the cavern with support system activated – Plot of 

vertical displacements (m) 
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Figure 10.31 – Vertical displacements at the locations of the roof indicated in Figure 10.28 
versus the computational time after the construction of the support system 

 
 
 
 



CHAPTER X    Static analyses 267 

10.6 Summary 
 
By comparing 2D and 3D analyses carried out with DEM and by using the UDEC 
and 3DEC codes, the shape of the collapsed roof in the cavern is shown to be quite 
similar. 2D analyses provide however, as expected, a more cautious estimate than 
3D analyses. In UDEC the roof collapse occurs with a stress ratio K0 = 0.5 while in 
3DEC this does not takes place, with the strength properties along the joints being 
the same. It is shown that greater vertical displacements are necessary to develop 
the collapse in the 3D analyses due the likely stabilizing effect which develops in 
the out-of-plane direction.  

The role of K0 appears to be very important in relation to the degree of lateral 
confinement which is provided, as is the case reported by Barton et al. (1994) with 
a thorough stability analysis of the Olympic Ice Hockey cavern at Gjøvik, Norway. 
This underground opening has a span of 62m and a cover of about 25m and is 
located in a rock mass with high horizontal stresses (K0 of 1-4) that restrain 
horizontal movements. Barton et al. (1994) underlined that the key properties 
favourable to large cavern construction are the high horizontal stresses, the 
roughness or waviness of foliation planes and the more continuous joints.  

Hence, we have verified that the fundamental parameter to evaluate correctly 
the stability of a near surface cavern is the level of the horizontal stress, although 
the size of blocks identified from the joint sets plays a very significant role in 
determining the stability condition in a good rock mass environment.  
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Chapter 11   
 
Distinct Element Modelling of the Tel Beer Sheva 
cavern in dynamic conditions 
 
 
11.1 Introduction 
 
As a follow-up of the previous chapter, DEM dynamic analyses were performed for 
the Beer-Sheva water storage cavern in both two-dimensional and three-
dimensional conditions. The results obtained are described in the following.  

With the understanding that wave propagation in a discontinuous medium is 
well simulated if the size, degree of subdivision and boundary conditions of the 
DEM models are optimized, comparative analyses with the SMM are performed.  

The seismic analyses are intended to study the stability conditions of the cavern 
in its present configuration with the supporting pillar in its centre as discussed in 
Chapter 11, The recorded accelerations of the Nuweiba earthquake, occurred in 
1995, are taken as representative for the site. 
 
 
11.2 Stability of underground openings during earthquakes 
 
Underground structures are generally considered resistant to earthquakes. 
Nevertheless, some underground structures have undergone relevant damages in 
recent large earthquakes, including the 1995 Kobe, 1999 Chi-Chi, 1999 Kocaeli, 
2004 Chuetsu, 2005 Kashmir and 2008 Wenchuan earthquakes.   

Several studies have documented earthquake damage to underground structures 
(Duke and Leeds (1959), Stevens (1977), Dowding and Rozen (1978), Owen and 
Scholl (1981), Sharma and Judd (1991), Power et al. (1998), Kaneshiro et al. 
(2000) and Hashash et al. (2001)).  

Sharma & Judd (1991) generated a database of seismic damage to underground 
structures using 192 case histories. We have extended this database to include 348 
case histories (Perino, 2007 and Corigliano, 2007) and updated the illustrative 
diagrams proposed by Sharma & Judd (1991) as given in Appendix B.  

The entity of the damage was classified in four levels: none, slight, moderate 
and heavy. For each case history, the effects on the damage level of the overburden 
depth, surrounding rock type, type of internal support, earthquake magnitude, 
epicentral distance and surface PGA (peak ground acceleration) were identified. In 
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addition we have analysed the effects on the damage of the surface PGV (peak 
ground velocity) and of the distance between the underground structure and the 
fault. 

This extensive work has shown that the greater part of underground structures 
was heavily damaged when: 

 
1.  isurface PGA

Richter magn
Epicentral
Distance bet

arger than 15cm/s; 
Overburd
 

Hence, from this study and the previous ones, the following considerations about 
the

- underground structures are less vulnerable than surface structures. 
uctures 

 more damaged than 

 sufficient to resist to high underground shaking 

el due to shaking can be reduced by stabilizing the 

GV, magnitude, epicentral distance 

ore efficient if subjected to symmetric 

 at and near tunnel portals may be significant due to slope 

ure and then large deformations are strongly related to the 

ss can be due to 

s greater than 0.35g; 
2. itude is between 7-8; 
3.  distance is less than 50km; 
4. ween underground structure and fault is less than 30km; 
5. Surface PGV is l
6. en depth is less than 50m. 

 underground structures subjected by seismic excitation can be made: 
 

- Damage level decreases with increasing overburden depth. Deep str
are more earthquake resistant than the shallow ones. 

- Underground structures in weak rock masses can be
those in competent rock. 

- A concrete support is not
and fault slip. However, lined and grouted structures suffer less damage 
than unlined ones.  

- Damage of the tunn
ground around it and by improving the contact between the lining and the 
surrounding ground through grouting. 

- Damage level depends on the PGA, P
and tunnel-fault distance. 

- Underground structures are m
loading. Improving the stiffness of the lining without stabilizing the 
surrounding poor ground can generate an excess of seismic forces in the 
lining. 

- Damage
instability. 

- Fatigue fail
duration of strong-motion shaking during the earthquake. 

- Local spalling of rock or concrete along planes of weakne
high frequency motion. These frequencies attenuate rapidly with distance 
and may be expected mainly at small distances from the fault. 
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- Amplification of the ground motion can be generated if wavelengths are 
between one and four times the tunnel diameter or the main dimension of 
the underground structure. 
 

 
11.3 Seismic event  
 
The Tel Beer Sheva archaeological site is located in the zone shown in Figure 11.1. 
Many seismic events were observed in Israel and neighbouring countries, especially 
along the Dead Sea Fault, near the Arava Rift Valley. The seismic event 
considered in the following is the Nuweiba earthquake, from the name of an 
Egyptian city near the Red Sea. This earthquake occurred on 22 November 1995, 
about 90km south of Eilat, where the original data was recorded. The earthquake 
magnitude was Mw = 7.1 and its main rupture, at a depth of 12.5km, consisted of 
two sub-events, 4s apart (Shamir, 1996; Baer et al., 1999).  
 

Beer Sheva

Eilat

 
Figure 11.1 – Map of Israel showing the Dead Sea Fault 
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The fault plane solution suggests a nearly pure strike-slip earthquake, with a 
small normal component, on a steeply dipping fault, striking NNE (Shamir, 1996). 
The effects of the earthquake were observed throughout Israel and neighbouring 
countries, especially along the Dead Sea Fault, within and near the Arava Rift 
Valley. The most significant damages due to this earthquake included triggering of 
landslides and cracking of buildings (Wust, 1997). Changes in water levels near the 
Dead Sea itself (Zilberbrand et al., 1996) and farther north, near the Sea of Galilee, 
were also observed. 

Accelerations were recorded throughout a period of 60s in three directions 
(vertical, N-S and W-E) as shown in Figure 11.2. The Eilat seismological station is 
situated on a thick fill layer of Pleistocene alluvial fan deposits. The recorded 
accelerogram therefore represents the response of a site situated on deep fill layer 
rather than on sound bedrock. For this reason, direct application of the original 
Eilat record to the case of the Tel Beer Sheva rock site would be inappropriate.  

Therefore, a deconvolution of the signal recorded at Eilat during the Nuweiba 
earthquake was performed. To this end, the software EERA was used (Bardet et 
al., 2000), which implements the well-known concepts of equivalent linear 
earthquake site response analysis and requires as input the original accelerogram 
(in this case the deconvoluted one) and ground characteristics. The output is an 
accelerogram involving site effects at each point of the stratigraphic model being 
used. 

The model comprises a conglomerate layer of 8m and a chalk layer of 32m. The 
chalk parameters (Table 11.1), not being available for the site of interest, were 
based on the results of laboratory tests performed on a chalk from the Givat 
Shemen site, in the Negev desert, not far from Tel Beer Sheva (Barla et al., 1991). 
Accordingly, a linear change of these properties versus depth was assumed by 
subdividing the chalk layer in sub-layers.  

Table 11.1 – Mechanical properties of the site 

Layer 
Layer 

thickness
[m] 

Mass 
density
[kg/m3]

Shear wave
velocity 
[m/s] 

Conglomerate 8 1800 220 

Chalk 1 15 1900 692 

Chalk 2 17 1900 1735 

Chalk 3: “bedrock” - 2000 2200 
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Figure 11.2 – Recorded accelerations in Eilat 

EERA considers shear waves propagating vertically in a viscoelastic linear 
system, containing a certain number of layers extending to infinity in the 
horizontal direction. Each layer, homogeneous and isotropic, is characterised by the 
following parameters: thickness h, density ρ, shear modulus G and damping ratio 
D. G and D are assumed to change with  shear strain as shown in Figure 11.3. As 
already noted, the magnitude of the seismic event (Nuweiba earthquake) is Mw = 
7.1 (Yechieli et al. 2002). 

EERA calculates the rock response to a seismic event and gives as output the 
highest absolute acceleration reached, the highest relative acceleration in each 
layer, the relative displacement, velocity, and absolute acceleration diagrams. It is 
noted that the absolute acceleration and relative velocity are used in the DEM 
model as dynamic input at the base boundary.  

The trend for acceleration found gives values lower than 0.1g, near the values 
expected in the area of Tel Beer Sheva, as shown in Figure 11.4, which illustrates a 
seismic hazard map of Israel. Tel Beer Sheva is located in the area where PGA is 
around 0.1g. 
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Figure 11.3 – Variation of G and D versus strain for chalk (Barla et al., 1991) 

 
11.4 DEM modelling 
  
Following the static analyses described in Chapter 11, dynamic analyses of the 
water storage cavern were performed in the present configuration with the support 
pillar system already described in the centre. To ensure that the most appropriate 
methods of modelling are used, the following main issues had to be addressed: 
 

1. The DEM model is to satisfy the requirements for accurate wave 
transmission. The results of wave propagation through a DEM model 
without cavern are to be validated with SMM.  

2. Appropriate mechanical damping, representative for the materials under 
study, and input frequency range, need be introduced. UDEC and 3DEC 
require two parameters to define the amount of Rayleigh damping: the 
minimum critical damping ratio ξmin and the minimum frequency fmin. ξmin is 
taken equal to 2%, according to the average value of natural material 
damping in dynamic conditions. fmin is taken equal to 7.5Hz. 

3. Correct boundary conditions are to be applied in any analysis including the 
appropriate input for dynamic loading. In order to simulate an infinitely 
extended medium, viscous boundaries (Lysmer & Kuhlmeyer 1969) are 
introduced at both the vertical sides of the model. Dynamic loading has 
been applied at the bottom as horizontal and/or vertical wave velocity. 
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Beer Sheva

Eilat

Figure 11.4 – Seismic hazard map of Israel. The Beer Sheva location is shown 

Starting from the DEM models used in static analyses and following the 
previous suggestions, the DEM models for dynamic analyses were implemented. 
The UDEC model is 23m high and 60m wide as shown in Figure 11.5 while the 
3DEC model is 23m high and 45m wide in two horizontal directions (Figure 11.20). 
In the 3DEC model, viscous boundaries were applied along the lateral boundaries 
and in x, y, z directions. The bottom was fixed in the vertical direction z.  

The input motion was applied at the bottom of the models. It was filtered for a 
frequency corresponding to a wavelength (λ) 10 times the maximum length of a 
single element in the mesh (see Chapter 8) in order to allow correct wave 
propagation. A maximum size of the single element in the mesh less than λ/10 was 
assumed.  

In the UDEC model the chalk is entirely discretized with blocks of 0.50x0.25m 
for cross-section a-a and 0.50x0.20m for cross-section b-b while two superficial 
layers are modelled as continuous. On the other hand, the 3DEC model is 
composed of an inner discontinuous zone and surrounded by a continuous one. The 
discontinuous zone is limited to the roof of the cavern while the other zones are 
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continuous (see Figure 11.6). The blocks are assumed of size 0.50x0.40x0.50m as 
smaller blocks would lead to an unacceptable exptension of the computational time.  
 
 
11.5 Validation analysis of the free surface response 
 
The accuracy of the DEM model used for dynamic analyses was verified using the 
DEM models without the cavern. The E-W component of Nuweiba earthquake was 
applied at the bottom of the models to evaluate the free surface response. These 
results are compared with the SMM developed in this thesis. As described in the 
previous paragraph the seismic input is obtained after an adequate deconvolution 
of the accelerogram recorded during the Nuweiba earthquake. The validation 
analyses are performed by considering only the bedding planes.  
 

 

Soil 

Figure 11.5 – 2D DEM model of the cross-section b-b 

 
Figure 11.6 – 3D DEM model – View of the cross-section a-a 
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The UDEC model is 23m high and it is composed of 46 horizontal 
discontinuities with spacing 0.50m. The deconvoluted signal was integrated to 
obtain the input in terms of velocities because UDEC does not allow the 
application of accelerations. The input can be assumed as a plane shear wave that 
impinges normally the set of horizontal bedding planes. 

The free surface response obtained with the UDEC analyses was compared with 
that given by the SMM as illustrated in Figure 11.7. The SMM allows one to 
obtain results that are very near to those given by UDEC. Thus, the UDEC model 
can be considered adequate to represent the shear wave propagation problem.  

On the other hand, the 3DEC model in this validation study was modified from 
that used in the following dynamic analyses (Figure 11.6). The model which is 13m 
height and 20m wide contain 26 parallel horizontal discontinuities. The comparison 
between the SMM and 3DEC results is not reported for brevity but the results are 
as good as those obtained in the SMM-UDEC comparison. 
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Figure 11.7 – Free surface response - Comparison of SMM and DEM modelling: (a) 
velocity time history and (b) response spectra with ratio of critical damping of 5% 



278       Dynamic analyses CHAPTER XI 

As widely described in Chapters 4 and 5, the wave transmitted by a set of 
parallel joints depends on the joint spacing ratio ζ (= ratio between joint spacing d 
and wavelength λ). With the SMM the diagram of the transmission coefficient, for 
an incident sinusoidal shear wave pulse, versus the normalized joint spacing ratio 
can be obtained. This shows that in this case the transmission coefficient is 
essentially invariant with the increase of the number of parallel joints because ζ = 
0.003. In fact, a very small value of ζ means that the wavelength is much larger 
than the joint spacing and the transmission coefficient becomes independent of the 
number of joints. 

The numerical models containing the horizontal bedding only can be considered 
adequate to simulate the problem to be studied in both two dimensional and three 
dimensional conditions. Considering that the rock mass containing the cavern is 
characterised by the presence of the vertical joint sets these were included in both 
the UDEC and 3DEC models. By performing the same analyses as described above 
with the horizontal joints only we have found that the free surface response when 
two joint sets are present in the model is reduced of about 15-20%.  
 
 
11.6 2D analyses of the cavern 
 
A series of dynamic analyses with the UDEC model shown in Figure 11.5 were 
performed first, with sinusoidal particle velocity inputs applied at the bottom of the 
same model. These analyses are performed by starting from the stable configuration 
of the cavern with the support pillar in its centre as shown in the cross-section b-b 
of Figure 10.16).  

Sinusoidal P and S-waves with a frequency of 4Hz were applied. The amplitude 
of the acceleration waves was varied from 0.1g to 0.6g. These acceleration waves 
are not applied directly to the UDEC model but were integrated to obtain the 
velocity waves because this code allows only the application of velocity or stress as 
input.  

Figure 11.8 shows the deformed shapes of the cavern generated by an S-wave 
and a P-wave with vertical directions of propagation. These shapes are for an input 
amplitude of 0.60g but similar shape configurations could be obtained for other 
amplitudes.  
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(a) 

 
(b) 

Figure 11.8 – Amplified deformed shapes of the cavern generated by an incident S-wave (a) 
and a P-wave (b) with vertical direction of propagation 

The opening of the joints around the cavern is a good tool to evaluate the 
effects of the input waves. Figure 11.9 shows the extension of the joint openings 
and the falling down of blocks for incident S-waves obtained with different 
amplitudes. The extension of the joints opening zone and the collapsed area 
increases with the amplitude of the incident wave increasing. These analyses were 
performed with an input composed by 10 complete sinusoidal cycles.  

As discussed in paragraph 11.2, the damage level is dependent on the duration 
of ground shaking. Figure 11.10 shows the comparison between the results obtained 
for a shear sinusoidal wave composed by 3 and 10 complete sinusoidal cycles and 
with amplitude of 0.40g. The influence of the number of cycles of ground shaking 
on the stability of the cavern is evident. 



280       Dynamic analyses CHAPTER XI 

 
                           (a) amax=0.10g                (b) amax=0.25g 

Initial shape after static
analysis 

 

       
                           (c) amax=0.40g                (d) amax=0.60g 

 
Figure 11.9 – Opening of the joints and falling down of blocks from the roof  

for an incident S-wave 
 

Ground-shaking generated by the shear waves induces a redistribution of the 
stresses around the cavern. Figure 11.11 shows the principal stress trajectories 
following the end of shaking due to shear waves with amplitude 0.25 and 0.60g 
respectively. The collapse zone is located below the compressive arch which is 
generated in the static analyses when a stable configuration is attained. The shear 
wave with amplitude 0.60g induces a complete falling down of the blocks below this 
compressive arch (Figure 11.11b). 

 

 
                                 (a)                                               (b) 

Figure 11.10 – Opening of the joints and falling down of blocks from the roof obtained by 
applying an incident vertical S-wave composed by 3 (a) and 10 (b) complete sinusoidal 

cycles and with amplitude of 0.40g 

Initial shape after static analysis
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                               (a)                                                      (b) 

Figure 11.11 – Principal stress (Pa) trajectories following the end of shaking due to S-
waves with amplitudes 0.25g (a) and 0.60g  

The analyses performed with an incident plane P-wave with vertical direction of 
propagation are shown in Figure 11.12. The damage produced by the P-waves on 
the cavern is evident also for low values of amplitude of motion. When the collapse 
of the cavern occurs the vertical displacements measured at free surface are 
significant. Already for an input vertical acceleration of 0.25g the collapse of the 
roof is nearly complete.  

By comparing the effects of the S and P-waves on the cavern we can observe 
that the P-waves produce a much greater damage than the S-waves.  

Finally, we can state that the vertical or horizontal shaking produces the falling 
down of the blocks of the roof that are below the compressive arch. Indeed, the 
compressive stresses are low between these blocks. 

 
 

 
                         (a) amax=0.10g                  (b) amax=0.25g 
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                        (c) amax=0.40g                               (d) amax=0.60g 
Figure 11.12 – Opening of the joints and detachment of blocks from the roof for a vertical 

incident P-wave 

Some parametrical analyses are conducted to evaluate the influence of the 
frequency of the applied wave on the damage. These analyses have shown that the 
damage decreases with the increasing of the frequency. As an example, low damage 
is evidenced if we apply a P-wave (composed by 10 sinusoidal cycles) with 
frequency of 50Hz and amplitude of 0.4g while if the frequency decreases the 
extension of collapsed zone on the roof of the cavern increases.  

Initial shape after static analysis 

At this point we have run the same analyses, however by applying at the 
bottom of the model the deconvoluted accelerograms of the Nuweiba earthquake as 
shown in Figure 11.2. The deconvoluted E-W (amax = 0.048g) and vertical (amax = 
0.069g) components were applied. The model used has the same size as in the 
previous analyses. Both the cross-section a-a and b-b were analysed. Given that the 
results obtained are very similar, only the results for cross-section b-b will be 
illustrated in the following.  

The application of the horizontal component of motion generates the opening of 
joints and a change of the principal stress trajectories as shown in Figure 11.13. We 
can see that in this case only few blocks fall down from the roof of the cavern. The 
deformed shape is similar to that shown in Figure 11.8a. The distribution of 
horizontal and vertical displacements following the application of the maximum 
amplitude of the shear wave is depicted in Figure 11.14. It is observed that the 
vertical displacements due to the dynamic input motion are limited to 1-1.3mm.  

With the vertical component of the deconvoluted accelerogram applied, the 
opening of the joints and the principal stress trajectories are as illustrated in Figure 
11.15. In this case, a more significant falling down of blocks from the roof can be 
observed. The vertical displacement at free surface is about 3.3cm, much greater 
than the vertical displacements developed with the horizontal component of motion 
being applied.  
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                               (a)                                                         (b) 

Figure 11.13 – Opening of joints and principal stress (Pa) trajectories after the horizontal 
motion of the Nuweiba earthquake 

            
(a) 

             
(b) 

Figure 11.14 – Horizontal and vertical displacements (in m) distribution after the 
application of the maximum of the horizontal motion of the Nuweiba earthquake 
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                               (a)                                                       (b) 

Figure 11.15 – Opening of joints and principal stress (Pa) trajectories after the vertical 
motion of the Nuweiba earthquake  

Initial shape after static analysis

y p
principal stresses         
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         Figure 11.16 – Vertical displacements (in m) distribution after the application of 

the maximum vertical motion of the Nuweiba earthquake 

An additional analysis with the horizontal and vertical components of the 
seismic motion simultaneously applied was also performed. It is shown that in such 
a case it is the vertical component that generates the greater damage. These 
analyses prove indeed that it is the vertical component of earthquake that needs 
more attention in the stability analyses and design analyses.  
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It is known that in reality the cavern did not experience any significant damage 
following the earthquake. The damage in the cavern as predicted by the numerical 
analyses performed with the seismic vertical component of motion applied, can be 
explained by the absence of any out-of-plane confinement. To verify this, three 
dimensional analyses were performed with the 3DEC code. 
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11.7 3D analyses of the cavern 
 
The 3D analyses of the entire water storage system were performed with the three 
components of the Nuweiba earthquake being applied to the DEM model. We have 
assumed a horizontal stress ratio K0 = 0.3 as in the static analyses. The dynamic 
analyses were performed by starting with the stable configuration of the cavern 
with the support system present. A vertical and two horizontal components of 
motion (Nuweiba earthquake) were applied at the bottom of the 3D model. 

The main problem of the 3D dynamic analyses is the computer time needed. 
Obviously, the size of the model cannot be reduced as in the static analyses. 
Therefore, the decision was to perform the 3D analyses with blocks size 
0.50x0.40x0.50m. The 3D model implemented in 3DEC code is shown in Figure 11.6 
and 10.27. The external dimensions are shown in Figure 10.20. 

Figures 11.17 and 11.18 show the magnitude of the displacements at the roof in 
cross-sections a-a and b-b. The maximum vertical and horizontal displacements at 
the roof are computed to be about 2.5mm and 3.5mm. No rock blocks fall down 
from the roof and the final configuration of the 3D cavern is stable.  

  

 
Figure 11.17 – Roof view: displacements magnitude (in m) distribution after the 

application of the Nuweiba earthquake 
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(a) 
 

 
(b) 

Figure 11.18 – Displacements magnitude (in m) distribution after the application of the 
Nuweiba earthquake: (a) cross-section a-a and (b) cross-section b-b 

 

11.8 Summary 
 

The stability of the underground water storage cavern of the archaeological site of 
Tel Beer Sheva, considered in the previous chapter in static conditions, has been 
analysed in this chapter with DEM and the UDEC and 3DEC codes in dynamic 
conditions. 

The dynamic analyses have been carried out to study the present configuration 
of the cavern, with the stabilizing pillar in its centre, when subjected to shaking 
with the Nuweiba earthquake, a magnitude 7.1 event occurred in 1995, taken as 
representative for the site conditions. 

Close attention has been given to the appropriate simulation of the rock mass 
conditions at the site, where the chalk formation comprises horizontal layers, 0.3m 
to 0.8m thick, alternating with some thinner (up to 0.1m) layers of marly-chalk. 
Three joint sets are present including the bedding planes, which are horizontal with 
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mean spacing 0.50m, and two vertical joint sets having as mean spacing 0.20m and 
0.25m respectively.  

The modelling of wave propagation has been shown to be well performed by 
appropriate comparative studies of SMM and DEM analyses. The effects of shear 
and compressional waves having different amplitude, frequency and duration on the 
stability of the cavern have been assessed with DEM analyses. The cavern has been 
shown to be more sensitive to vertical shaking than to horizontal one.  

When the same analyses are performed in 2D conditions with the Nuweiba 
deconvoluted records applied, the vertical motion induces falling of blocks from the 
roof of the cavern, unlike it has been observed in situ. On the other hand, the 
results obtained with the corresponding 3D analyses demonstrate the overall 
stability of the cavern. This proves the existence of a three dimensional effect at 
the roof of the cavern which cannot be neglected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



288       Dynamic analyses CHAPTER XI 

 
 
 



 

Chapter 12  
 
Summary and conclusions 
 
 
12.1 Summary 
 
The following main tasks have been accomplished in the present thesis: 
 

- A detailed bibliographic study of wave propagation in rock masses was 
carried out. First, a description of the theories and the theoretical 
approaches used to solve wave propagation problems, with the main 
interest in discontinuous media, was given. Numerical methods used to 
model wave propagation phenomena were also described.  

 
- The Scattering Matrix Method (SMM) was implemented and modified to 

allow one to simulate wave propagation through a single joint or a set of 
joints. All multiple reflections between the joints were considered. Dry, 
filled and frictional joints were modelled and parametric analyses were 
performed to evaluate the dependence of the quantities characterizing the 
joints on wave propagation.    

 
- The validation of the SMM with other analytical, numerical and 

experimental methods was performed. The Discrete Element Method with 
the UDEC and 3DEC codes was also considered in detail with specific 
reference to the adequacy in modelling elastic wave propagation (single 
element size of the mesh, boundary conditions and model size). 
 

- The Resonant Column Apparatus (RCA) was used to test intact and 
fractured rock specimens of a soft rock. Following a brief description of the 
equipment and of the interpretation procedures, the experimental results 
for intact or jointed rock specimens (containing up to three joints) were 
illustrated and compared with three-dimensional DEM modelling. 
Considerations about the dispersion of the shear wave velocity in fractured 
specimens were derived also in relation to the use of the SMM.   
 

- The study of the influence of rock joints on the stability of the 
underground structures in static and dynamic conditions was carried out 
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by using the DEM in two and in three dimensional conditions. The UDEC 
and 3DEC codes were used to analyse the stability of the water storage 
cavern of the Tel Beer Sheva archaeological site in Israel.  

 
- Static analyses were carried out to simulate the roof collapse undergone 

during construction and the stability of the present configuration of the 
cavern. Preliminary dynamic analyses were intended to study the 
dependence of the damage level on the amplitude, duration, frequency and 
direction of the dynamic motion in both horizontal and vertical directions. 
Finally, two and three-dimensional analyses were performed to evaluate the 
stability of the cavern in its present configuration with the application of 
the horizontal and vertical deconvoluted components of the Nuweiba 
earthquake (1995).  

 
 

12.2 Conclusions 
 

It is the purpose of the present chapter to draw some conclusions on the work 
presented. The following main aspects will be considered: 
 

- Analytical approaches: the Scattering Matrix Method. 
- Laboratory testing.  
- Discrete Element Modelling of the Tel Beer Sheva cavern. 

 
 
12.2.1 Analytical approaches: the Scattering Matrix Method 
 
The Scattering Matrix Method (SMM) was developed with the intent to 
understand and to describe wave propagation through jointed rock masses. The 
following considerations can be made: 
 

- The SMM is a simple tool which can be used effectively to analyse the 
influence of joints/discontinuities on wave propagation. The transmitted 
and reflected waves generated from an interface for an incident elastic 
wave can be analysed. All types of wave polarization (P, SV, SH) can be 
considered. 
 

- SMM operates in frequency domain but can be also applied to transient 
waves (after FFT). This was proven to be true by comparing the SMM 
with numerical methods such as DEM and the Method of Characteristics. 
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- The Displacement Discontinuity Method (DDM) and the Thin Plate Layer 
Method (TPLM) were shown to model satisfactorily a joint only when its 
thickness d is much smaller than the wavelength λ (d / λ < 0.1).  
 

- Linear elastic, viscoelastic and Coulomb slip models were implemented 
successfully with the SMM in order to simulate dry, filled and frictional 
joints. It was found that the admittance or compliance of the joint is the 
most significant parameter that influences the magnitude of the 
transmission and reflection coefficients. 

 
- The Kelvin, Maxwell and Burger models, based on the modified split 

Hopkinson pressure bar (SHPB) tests and curve fitting, were found to 
describe satisfactorily the seismic response of viscoelastic joints filled with 
sand for P-wave incidence. 

 
- When a periodic spatial distribution of joints is considered, the Bloch 

waves were found to be particularly appropriate for studying the wave 
propagation phenomenon. Simple expressions of the transmission and 
reflection coefficients for N joints were derived. 
 

- Transmitted and reflected waves are significantly affected by the frequency 
content, angle of incidence, stiffness, viscosity, thickness, number and 
spacing of the joints. The filled joints response is also influenced by the 
impedance ratio between filling material and rock. 

 
- The amplitude of the transmitted wave increases with the increasing of the 

joint stiffness and decreases with the increasing of the frequency and the 
number of joint. Moreover, |T| decreases with the increasing of the joint 
thickness. The transmission coefficient becomes essentially independent 
from the number of joints when the ratio between the joint spacing and the 
wavelength is small. 

 
- The effects of frictional joints on wave propagation were investigated. The 

Coulomb slip model was implemented to simulate the joint behaviour when 
non linear deformations are mobilised. The shear strength of the joint is 
the quantity that governs this problem. In fact, the transmission coefficient 
decreases with the increasing of the joint shear stress ratio. This is the 
ratio between the maximum of the incident shear stress wave and the shear 
strength.  

 
- When slip occurs part of the incident energy is dissipated. This dissipation 

is evaluated with an absorption coefficient that increases rapidly for low 
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values of the shear stress ratio and tends to a constant value for large ones. 
Some considerations on the influence of the number of joints and the joint 
spacing on the transmission and reflection coefficients were given. 
 

- The Maxwell analogy, that relates the electrical quantities with the 
mechanical quantities, allows one to prove analytically that the element 
size of 1/8λ of the mesh of the numerical model, prescribed by Kuhlemeyer 
& Lysmer (1973), can be used to model correctly the wave propagation 
across the mesh. In this case the error is assessed to be approximately 8%. 
Obviously lower values produce smaller errors in wave propagation 
modelling. 

  
- With a comparative study with the SMM, the DEM codes such as UDEC 

and 3DEC are found to simulate accurately the wave propagation 
phenomena in rock masses. Some additional difficulties are experienced in 
the modelling of an oblique incident wave. 
 
 

12.2.2 Laboratory testing 
 
Laboratory tests, performed with the Resonant Column apparatus (RCA), have 
highlighted that: 
 

- If the stiffness of the specimen becomes comparable with that of the RCA 
the shear modulus and then the shear wave velocity, obtainable from the 
interpretation of the experimental data, are underestimated. This problem 
does not occur with soil specimen where the stiffness of the specimen and 
then the resonant frequency are low. The correction factor depends on the 
inertia of the drive-system of the equipment. The RCA can be used 
without any correction if the resonant frequency measured for the specimen 
tested is lower than about 120Hz. When accounting for the correction 
factor, the error in the estimation of the shear wave velocity in intact 
specimens is reduced 4.8 times. 

 
- The 3DEC code is able to model the RCA and to reproduce very well the 

experimental results. The RCA can be used for testing intact rock 
specimens and apparently can be also adopted for testing fractured 
specimens, as demonstrated by comparing the experimental results with 
the DEM results.  

 
- The resonant frequency decreases with the increasing of the number of 

fractures. The entity of the effective velocity wave propagation is verified 
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with DEM and SMM analyses. Hence, the shear wave velocity decreases 
with increasing the number of fractures. A greater reduction of the shear 
wave propagation velocity occurs in the specimen with a single tooth 
fracture than that with a single smooth fracture. The maximum amplitude 
of the response increases with increasing the number of fractures.  

 
- The free vibration decay of the response curves measured in laboratory 

tests is found to be very similar to that obtained with the DEM modelling 
of the RCA tests. Hence, the damping ratios of the material obtained 
experimentally and numerically are very similar. 
 

- The attenuation of the wave energy due to the fractures is also observed in 
the damping ratio values. In fact, the damping ratios obtained for fractured 
specimens with the classical methods (half-power bandwidth method or 
amplitude decay method), are found to be greater than the damping ratio 
of the intact specimen. We think that part of the energy is likely to be 
attenuated by friction along the fractures.   
 

- We have proven that the specimen is not completely loaded by torsional 
excitation when the resonant frequency of a fractured specimen becomes 
greater than that of an intact one. In these conditions the fractured 
specimen cannot be tested with the RCA. 

 
 
12.2.3 DEM modelling of the Tel Beer Sheva cavern 
 
A series of numerical analyses were carried out to study the stability of the water 
storage cavern of the Tel Beer Sheva archaeological site (Iron age 1200-700bc) 
located approximately near the modern city of Beer Sheva in Israel. The numerical 
DEM analyses were performed in two and in three dimensional conditions 
respectively with the DEM codes (UDEC and 3DEC) and were based on: 
 

1. Back analyses of the cavern roof collapse as developed during the 
construction stages under gravitational loading. 

2. Stability analyses of the cavern in the present configuration i.e. with the 
system of support pillars in place. 

3. Seismic analyses of the cavern in the present configuration. 
  

The analyses have highlighted that: 
 

- The shape of the water storage cavern following failure can be simulated 
satisfactorily with DEM codes in two and three dimensional conditions.  
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- The analyses performed showed that the arching effect in the out-of-plane 
direction plays a very important role in the assessment of the cavern 
stability.  

 
- The level of the in-situ horizontal stresses is the key parameter for the 

stability of large span caverns. The stability however is also influenced by 
the joint spacing and the joint orientation.  

 
- The cavern in the present configuration with the supporting pillar system 

in place is stable under gravitational loading. The amplitude, the duration, 
the direction and the frequency of the applied dynamic motion have a large 
influence on the level of damage of the cavern. 
 

- It is noted that the stability of the cavern is influenced by the vertical 
component of motion more than from the horizontal one. The horizontal 
motion produces shear deformations of the cavern while the vertical 
component generates compression and tension. Around the cavern, 
especially at the roof, the area where the joints are open increases with the 
increasing of the amplitude of the motion. The damage level increases with 
the increasing of the duration of the applied motion and decreases with the 
increasing of the frequency. 

 
- As in the static analyses, also the dynamic analyses show that 2D 

modelling is more cautious than 3D modelling. In fact, with the cavern 
subjected to the Nuweiba earthquake (1995) the roof collapses in 2D 
conditions and with the vertical component of motion and does not develop 
any damage in 3D conditions. 

 
- The dynamic analyses, performed in this thesis, show indeed that the 

vertical component of the earthquake motion needs more attention when 
performing design analyses for the assessment of stability of underground 
structures. 

 
 
12.3 Recommendations for further developments 
 
Further developments are needed as some open questions remain to be addressed 
for the study of wave propagation in rock masses and their effects on the stability 
of geotechnical structures. The following points are raised: 
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- Extension of the SMM to other more complex joint models. Evaluation of 
the effects on wave propagation of the presence of two joint sets mutually 
perpendicular or nearly perpendicular. 
 

- Additional Resonant Column tests to be carried out for other geometries of 
fractures and for a greater number of fractures. Definition of the correction 
factors for the RCA by performing laboratory RCA tests on aluminium or 
steel specimens. 

 
- Additional 3D dynamic analyses to evaluate the effects of the seismic 

motion on the Tel Beer Sheva cavern. 
 

- Extension of 3D analyses to other case studies to better evaluate the effects 
of the earthquake especially on large underground openings. Hence, the 
definition of the link between the level of damage and the shape, the 
orientation of joints, the stress ratio, the frequency and the amplitude of 
the motion.  

 
- The study of possible reinforcement systems to improve the stability of 

caverns or underground structures in general under dynamic loading. 
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Appendix A 
 
 
Definition of the normalization coefficients 
 
 
In this appendix, the normalization coefficients of plane wave polarization vectors 
will be defined. These coefficients guarantee that a unit amplitude wave carries a 
power density P = 1W/m. 
The state vector in which are stored the velocity and the tractions can be defined 
as follows: 
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where 
c+ and c- are the amplitudes of the incident and reflected waves. 
The power density of a wave can be expressed as: 
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Obviously the components of the power depend on the wave polarization 
considered. 
 
A.1 Computation of the normalization coefficients for a P wave: 
 
The first step is the definition of the components of the power defined in the 
Equation (A.2) 
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And then the other terms are the following: 
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The normalization coefficients can be defined: 
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11

P P

zP

N N
C k

ω+ −= =  if  is imaginary ( )  zPk α= −j 0α >

 
A.2 Computation of the normalization coefficients for a SV 

wave: 
 
By following the previous procedure used for P-waves we obtain: 
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After the definition of the terms of the power of the wave, we can compute the 
normalization coefficients for having a unit power. 
By assuming NSV+ = NSV- we obtain the final expression of the normalization 
coefficients for the forward and the backward waves: 
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A.3 Computation of the normalization coefficients for a SH 
wave: 

 
The terms of the wave power can be defined for a SH wave with the same 
procedure used before for a SV wave:  
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Finally the normalization coefficients are the following: 
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Appendix B 
 
 
Database of seismic damage to underground 
structures 
 
The database of seismic damage to underground structures (see Table B.1-B.2-B.3), 
obtained through a research of documented case histories, is reported in the 
following.  

In Figure B.1-B.8 we can see respectively the graphs showing the effects of the 
overburden depth, of the surrounding rock type, of the type of internal support, of 
the earthquake magnitude, of the epicentral distance, of the surface PGA, of the 
surface PGV and of the distance between the underground structure and the fault 
on the damage level. The number of case histories analysed in the Figures B.1-B.6 
is 348 while for Figures B.7-B.8 is only 129 because we did not find all the data 
about the fault necessary to compute the distance underground structure – fault 
and the surface PGV. 
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Figure B.1 - Effects of overburden depth on damage level 
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Figure B.2 - Effects of surrounding rock type on damage level 
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Figure B.3 - Effects of type of internal support on damage level 
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Figure B.8 - Effects of surface PGV on damage level 

 

Table B.1 – Legend for the database summarized in Table B.2 

Damage level Characteristics 
1 None Damage not detected 
2 Slight Formation of cracks, displacement, strain small-scale 

3 Moderate 
Formation of significant cracks, detachment of the 

lining and strong deformations of the 
roof and rupture of the tunnel invert 

4 Heavy Collapse of the underground structure 
 

Rock type  Rock support type 
Rock (?) R  Unlined 1 

Sedimentary S  Timber 3 
Igneous I  Masonry/Brick 4 

Metamorphic M  Concrete  5 
Colluvium C  Reinforced concrete 6 
Unknown N  Unknown 9 
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Table B.2 – Database of seismic damage to underground structures 

N° Earth-
quake Date Name  

tunnel 

Dama
-ge 

level 

Cover 
[m] 

Rock 
type

Rock 
sup.
type

Mom. 
Magni
-tude 

PGA  
[g] 

Epic. 
dist. 
[km] 

1 Sonoka, 
Mexico 

03/05/
1887 

Tombstone 
Mine, 

Arizona, USA
2 46 R 1.00 7.4 N 130.00 

2 Sonoka, 
Mexico 

03/05/
1887 

Tombstone 
Mine, 

Arizona, USA
2 152 R 1.00 7.4 N N 

3 Sonoka, 
Mexico 

03/05/
1887 

Tombstone 
Mine, 

Arizona, USA
2 152 R 1.00 7.4 N N 

4 
San 

Francisco, 
CA 

18/04/
06 

Wrigth 
Tunnel #2 
near Los 
Gatos 

1 206 R 4 7.8 0.13 135.80 

5 
San 

Francisco, 
CA 

18/04/
06 

Wrigth 
Tunnel #1 
near Los 
Gatos 

1 214 R 4 7.8 0.13 135.00 

6 
San 

Francisco, 
CA 

18/04/
06 SF #1 1 24 R 4 7.8 0.41 45.00 

7 
San 

Francisco, 
CA 

18/04/
06 SF#3 2 46 R 4 7.8 0.41 46.00 

8 
San 

Francisco, 
CA 

18/04/
06 SF#4 1 24 R 1 7.8 0.43 47.00 

9 
San 

Francisco, 
CA 

18/04/
06 SF#5 2 24 R 4 7.8 0.45 50.00 

10 
San 

Francisco, 
CA 

18/04/
06 CorteM.T, 2 60 R 4 7.8 0.38 52.00 

11 
San 

Francisco, 
CA 

18/04/
06 

PilarcitosRes
#1 2 68 R 4 7.8 0.65 55.00 

12 San 
Francisco 

18/04/
06 

PilarcitosRes
#2 2 152 R 3.00 7.8 0.65 60.00 

13 
San 

Francisco, 
CA 

18/04/
06 

PilarcitosRes
#3 2 137 R 3.00 7.8 0.69 135.00 

14 Kanto, 
Japan 

01/10/
23 Terao Tunnel 2 N N 1 7.9 0.47 31.60 

15 Kanto, 
Japan 

01/10/
23 

Hichigama 
Tunnel 1 N R 4 7.9 0.42 36.40 
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N° Earth-
quake Date Name  

tunnel 

Dama
-ge 

level 

Cover 
[m] 

Rock 
type

Rock 
sup.
type

Mom. 
Magni
-tude 

PGA  
[g] 

Epic. 
dist. 
[km] 

16 Kanto, 
Japan 

01/10/
23 Taura Tunnel 1 15 N 4 7.9 0.47 31.60 

17 Kanto, 
Japan 

01/10/
23 

Numana 
Tunnel 2 N N 4 7.9 0.35 46.00 

18 Kanto, 
Japan 

01/10/
23 

Nokogiri-
Yama Tunnel 2 N S 1 7.9 0.24 70.70 

19 Kanto, 
Japan 

01/10/
23 

Kanome-
Yama Tunnel 2 N N 5 7.9 0.52 26.90 

20 Kanto, 
Japan 

01/10/
23 Ajo Tunnel 2 N N 1 7.9 0.55 25.00 

21 Kanto, 
Japan 

01/10/
23 

Ippamatzu 
Tunnel 3 N N 1 7.9 0.55 25.00 

22 Kanto, 
Japan 

01/10/
23 Nagoye 2 30 N 9.00 7.9 0.4 30.00 

23 Kanto, 
Japan 

01/10/
23 

Meno- 
Kamiana 3 17 R 4.00 7.9 0.6 16.50 

24 Kanto, 
Japan 

01/10/
23 

Yonegami  
Yama 2 50 R 4.00 7.9 0.66 50.00 

25 Kanto, 
Japan 

01/10/
23 

ShimomakiMa
tsu 3 29 S 4.00 7.9 0.69 29.00 

26 Kanto, 
Japan 

01/10/
23 

Happon-
Matzu 3 20 N 9.00 7.9 0.73 20.00 

27 Kanto, 
Japan 

01/10/
23 

Nagasha-
Yama 3 90 N 4.00 7.9 0.73 90.00 

28 Kanto, 
Japan 

01/10/
23 Hakone#1 2 61 N 5.00 7.9 0.72 61.00 

29 Kanto, 
Japan 

01/10/
23 Hakone#2 3 61 N 9.00 7.9 0.72 15.60 

30 Kanto, 
Japan 

01/10/
23 Komine 2 6 R 6.00 7.9 0.52 26.90 

31 Kanto, 
Japan 

01/10/
23 Fudu San 3 18 R 6.00 7.9 0.5 24.00 
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N° Earth-
quake Date Name  

tunnel 

Dama
-ge 

level 

Cover 
[m] 

Rock 
type

Rock 
sup.
type

Mom. 
Magni
-tude 

PGA  
[g] 

Epic. 
dist. 
[km] 

32 Kanto, 
Japan 

01/10/
23 Hakone#3 4 46 R 9.00 7.9 0.56 17.20 

33 Kanto, 
Japan 

01/10/
23 Hakone#4 4 46 S 9.00 7.9 0.54 19.70 

34 Kanto, 
Japan 

01/10/
23 Hakone#7 4 31 R 9.00 7.9 0.63 22.40 

35 Kanto, 
Japan 

01/10/
23 Yose 2 20 S 9.00 7.9 0.33 26.90 

36 Kanto, 
Japan 

01/10/
23 Doki 3 N S 9.00 7.9 0.25 61.00 

37 Kanto, 
Japan 

01/10/
23 Namuya 2 75 N 9.00 7.9 0.52 63.00 

38 Kanto, 
Japan 

01/10/
23 

Mineoka-
Yama 2 150 M 9.00 7.9 0.26 65.00 

39 
Kita-

Tango, 
Japan 

1927 railway tunnel 4 N M 9.00 7.3 N N 

40 Kita-Izu, 
Japan 

26/11/
30 

Tanna 
Tunnel, 
Japan 

2 150 I 6.00 7 N N 

41 N. Idaho, 
USA 

09/05/
44 

Morning Mine,
Idaho, USA 3 1350 R 1.00 5 N N 

42 Fukui, 
Japan 1948 Kumasaka 2 N N 4.00 7.2 0.3 25.00 

43 Tokachi-
oki, Japan 1952 railway tunnel 2 N N 4.00 8 N N 

44 
Kern 

County, 
CA 

21/07/
52 Saugus 1 40 R 1 7.3 0.06 N 

45 
Kern 

County, 
CA 

21/07/
52 

SanFrancisqui
to 1 160 R 1 7.3 0.08 N 

46 
Kern 

County, 
CA 

21/07/
52 Elizabeth 1 250 R 1 7.3 0.1 55.15 

47 
Kern 

County, 
CA 

21/07/
52 Antelope 1 30 R 1 7.3 0.16 136.67 
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48 
Kern 

County, 
CA 

21/07/
52 

S.P.R.R.  
Tunnel #3 1 46 M 1 7.3 0.24 25.81 

49 
Kern 

County, 
CA 

21/07/
52 

S.P.R.R.  
Tunnel #4 1 38 M 5.00 7.3 0.24 36.88 

50 
Kern 

County, 
CA 

21/07/
52 

S.P.R.R.  
Tunnel #5 1 76 M 5.00 7.3 0.24 59.77 

51 
Kern 

County, 
CA 

21/07/
52 

S.P.R.R.  
Tunnel #6 1 15 M 5.00 7.3 0.24 77.10 

52 Kita-Mino, 
Japan 1961 Aqueduct 

tunnel 1 N C 9.00 7 N N 

53 Kita-Mino, 
Japan 1962 Powerhouse 2 N C 9.00 7 0.25 32.00 

54 Niigata, 
Japan 1964 Nezugaseki 2 N C 9.00 7.5 N N 

55 Niigata, 
Japan 1964 Terasaka 2 N C 9.00 7.5 N N 

56 
Great 

Alaskan, 
USA 

27/03/
64 

Whittier RR 
Tunnel #1, 
Alaska, USA 

2 400 R 3 8.4 0.22 75.00 

57 
Great 

Alaskan, 
USA 

27/03/
64 

Whittier RR 
Tunnel #2, 
Alaska, USA 

2 350 R 3 8.4 0.21 75.00 

58 
Great 

Alaskan, 
USA 

27/03/
64 Seward#1 2 20 R 1 8.4 0.25 85.00 

59 
Great 

Alaskan, 
USA 

27/03/
64 Seward#2 1 20 R 1 8.4 0.25 85.00 

60 
Great 

Alaskan, 
USA 

27/03/
64 Seward#3 1 20 R 1 8.4 0.25 100.00 

61 
Great 

Alaskan, 
USA 

27/03/
64 Seward#4 1 20 R 1 8.4 0.25 100.00 

62 
Great 

Alaskan, 
USA 

27/03/
64 Seward#5 1 20 R 1 8.4 0.25 110.00 

63 
Great 

Alaskan, 
USA 

27/03/
64 Seward#6 1 20 R 3.00 8.4 0.25 115.00 
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64 Koyna, 
India 

10/12/
67 

Koyna Power 
Station, India 2 150 I 9.00 7 N N 

65 Tokachi-
Oki, Japan 1968 railway tunnel 2 N C 9.00 7.9 N N 

66 Tennessee, 
USA 

13/07/
69 

Zinc Mine, 
Tennessee, 

Usa 
2 305 M 1.00 3.5 N N 

67 
San 

Fernando, 
CA 

09/03/
75 SanFernando 2 45 S 6.00 6.6 0.69 N 

68 
San 

Fernando, 
CA 

09/03/
75 Tehachapi#1 1 30 R 1 6.6 0.04 70.00 

69 
San 

Fernando, 
CA 

09/03/
75 Tehachapi#2 1 30 R 1 6.6 0.04 73.00 

70 
San 

Fernando, 
CA 

09/03/
75 Tehachapi#3 1 30 R 1 6.6 0.04 73.00 

71 
San 

Fernando, 
CA 

09/03/
75 Saugus 1 40 R 1 6.6 0.3 23.00 

72 
San 

Fernando, 
CA 

09/03/
75 

SanFrancisqui
to 1 160 R 1 6.6 0.24 24.50 

73 
San 

Fernando, 
CA 

09/03/
75 Elizabeth 1 250 R 1 6.6 0.15 51.82 

74 
San 

Fernando, 
CA 

09/03/
75 Antelope 1 30 R 1 6.6 0.1 240.45 

75 
San 

Fernando, 
CA 

09/03/
75 Balboa 2 5 R 1 6.6 N N 

76 
San 

Fernando, 
CA 

09/03/
75 

PacoimaDamS
pillway 

Tunnels,CA 
2 43 S 1.00 6.6 0.69 N 

77 

Izu-
Oshima-
Kinkai, 
Japan 

14/01/
78 

Inatori railway 
tunnel 3 100 M 6.00 7 N N 

78 

Izu-
Oshima-
Kinkai, 
Japan 

14/01/
78 

Tomoro 
Tunnel 3 100 M 6.00 7 N N 
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79 

Izu-
Oshima-
Kinkai, 
Japan 

14/01/
78 

Izu-Atagawa 
Tunnel 3 100 M 6.00 7 N N 

80 

Izu-
Oshima-
Kinkai, 
Japan 

14/01/
78 Kawazu 2 100 M 6.00 7 N N 

81 

Izu-
Oshima-
Kinkai, 
Japan 

14/01/
78 

Izu-Kitagawa 
Tunnel 2 100 M 6.00 7 N N 

82 

Izu-
Oshima-
Kinkai, 
Japan 

14/01/
78 

Shirata 
Tunnel 3 100 M 5.00 7 N N 

83 
EPRM, 
South 
Africa 

21/04/
78 

ERP Gold 
Mine, South 

Africa 
4 3000 I 1.00 3.7 N N 

84 Tangshan, 
China 

28/07/
78 

Tangshan 
Coal Mine 3 40.5 R 1.00 7.8 N N 

85 Tangsham, 
China 

28/07/
78 

Lai Luan Coal 
Mines, China 3 700 R 1.00 7.8 N N 

86 Fresno, 
California 

25/05/
80 

Helms Project 
Tunnel, 

California, 
USA 

2 250 I 1.00 6.1 N N 

87 Irpinia, 
Italy 

23/11/
80 

Helms Project 
Tunnel 
ag=0,3g 

2 400 R 4.00 6.9 N N 

88 Loma 
Prieta, CA 

17/10/
89 

FortBaker-
Berry 1 61 R 5 6.9 0.04 293.35 

89 Loma 
Prieta, CA 

17/10/
89 PresidioPark 1 22 R 6 6.9 0.04 N 

90 Loma 
Prieta, CA 

17/10/
89 

AlamedaCreek
Div 1 300 N 9 6.9 0.12 49.90 

91 Loma 
Prieta, CA 

17/10/
89 CoastRange 1 240 R 5 6.9 0.09 N 

92 Loma 
Prieta, CA 

17/10/
89 Pulgas 1 92 R 5 6.9 0.09 60.64 
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93 Loma 
Prieta, CA 

17/10/
89 Irvington 1 122 R 5 6.9 0.1 N 

94 Loma 
Prieta, CA 

17/10/
89 

CrystalSprBay
pass 1 76 R 6 6.9 0.09 N 

95 Loma 
Prieta, CA 

17/10/
89 DowntownS.F. 1 N R 9 6.9 0.05 N 

96 Loma 
Prieta, CA 

17/10/
89 

StanfordLinea
rCollider 1 N R 5 6.9 0.25 N 

97 Loma 
Prieta, CA 

17/10/
89 LomitaMall 1 N S 5 6.9 0.14 N 

98 Loma 
Prieta, CA 

17/10/
89 SantaTeresa 1 N R 6 6.9 0.26 14.88 

99 Loma 
Prieta, CA 

17/10/
89 Tunnel#5 1 N R 3 6.9 0.4 N 

100 Loma 
Prieta, CA 

17/10/
89 Tunnel#6 1 N R 3 6.9 0.28 N 

101 Loma 
Prieta, CA 

17/10/
89 Caldecott 1 243 R 6 6.9 0.04 94.42 

102 Loma 
Prieta, CA 

17/10/
89 MacArthur 1 46 R 9 6.9 0.04 N 

103 Loma 
Prieta, CA 

17/10/
89 Stanford 1 23 R 6 6.9 0.14 N 

104 Loma 
Prieta, CA 

17/10/
89 Hillsborough 1 62 R 6 6.9 0.08 N 

105 Loma 
Prieta, CA 

17/10/
89 SunolAqud.#1 1 N R 5 6.9 0.09 N 

106 Loma 
Prieta, CA 

17/10/
89 SunolAqud.#2 1 N R 5 6.9 0.09 N 

107 Loma 
Prieta, CA 

17/10/
89 SunolAqud.#3 1 N R 5 6.9 0.09 N 

108 Loma 
Prieta, CA 

17/10/
89 SunolAqud.#4 1 N R 5 6.9 0.09 N 
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109 Loma 
Prieta, CA 

17/10/
89 SunolAqud.#5 1 N R 5.00 6.9 0.09 N 

110 Urakawa-
oki, Japan 1982 railway tunnel 1 N N 9.00 7.1 N N 

111 
Nihonkai-

chubu, 
Japan 

1983 railway tunnel 1 N N 9.00 7.7 N N 

112 Kanto, 
Japan 1984 railway tunnel 2 N R 5.00 6.8 N N 

113 
Chibaken-
toho-oki, 
Japan 

1987 railway tunnel 1 N N 9.00 6.7 N N 

114 Petrolia, 
CA 

25/04/
92 Tunnel#40 1 N S 5 7 0.13 N 

115 Petrolia, 
CA 

25/04/
92 Tunnel#39 1 N R 5 7 0.25 N 

116 Petrolia, 
CA 

25/04/
92 Tunnel#38 2 N R 5 7 0.21 N 

117 Petrolia, 
CA 

25/04/
92 Tunnel#37 1 N R 5 7 0.15 N 

118 Petrolia, 
CA 

25/04/
92 Tunnel#36 1 N R 5 7 0.13 N 

119 Petrolia, 
CA 

25/04/
92 Tunnel#35 1 N R 5 7 0.12 N 

120 Petrolia, 
CA 

25/04/
92 Tunnel#34 2 N R 3 7 0.12 N 

121 Petrolia, 
CA 

25/04/
92 Tunnel#31 1 N R 3 7 0.08 246.23 

122 Petrolia, 
CA 

25/04/
92 Tunnel#30 1 N R 5 7 0.08 246.24 

123 Petrolia, 
CA 

25/04/
92 Tunnel#29 1 N R 5 7 0.06 271.70 

124 Petrolia, 
CA 

25/04/
92 Tunnel#28 1 N R 3 7 0.06 245.38 
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125 Notohanto
-oki, Japan 1993 road tunnel 1 N N 9.00 6.6 N N 

126 
Hokkaido-
nansei-oki,  

Japan 
1993 Seikan road 

tunnel 1 N N 6.00 7.8 0.32 N 

127 Northridge
, CA 

17/01/
94 PershingSqSt. 1 N R 6 6.7 0.27 N 

128 Northridge
, CA 

17/01/
94 McArthurSt. 1 N R 6 6.7 0.27 N 

129 Northridge
, CA 

17/01/
94 CivicCenterSt. 1 N R 6 6.7 0.27 N 

130 Northridge
, CA 

17/01/
94 

Tun#25@I-
5/14 2 92 R 5 6.7 0.67 N 

131 Northridge
, CA 

17/01/
94 SantaSusana 1 N R 5 6.7 0.47 10.06 

132 Northridge
, CA 

17/01/
94 Chatworth 1 N R 5 6.7 0.5 N 

133 Northridge
, CA 

17/01/
94 Chatworth 1 N R 5 6.7 0.5 N 

134 Northridge
, CA 

17/01/
94 

NearI15atCajo
nJunc 1 N R 9 6.7 0.1 N 

135 Northridge
, CA 

17/01/
94 Balboainlet 1 N R 6 6.7 0.67 N 

136 Northridge
, CA 

17/01/
94 Balboaoutlet 1 N R 9 6.7 0.58 N 

137 Northridge
, CA 

17/01/
94 Castaic#1 1 N R 6 6.7 0.29 31.58 

138 Northridge
, CA 

17/01/
94 Castaic#2 1 N R 6 6.7 0.36 32.68 

139 Northridge
, CA 

17/01/
94 Saugus 1 N S 6 6.7 0.54 N 

140 Northridge
, CA 

17/01/
94 Placerita 1 N R 6 6.7 0.62 N 
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141 Northridge
, CA 

17/01/
94 Newhall 4 N R 6 6.7 0.68 14.84 

142 Northridge
, CA 

17/01/
94 SanFernando 1 N S 6 6.7 0.5 N 

143 Northridge
, CA 

17/01/
94 Sepulveda 1 N R 6 6.7 0.27 N 

144 Northridge
, CA 

17/01/
94 Hollywood 1 N R 9 6.7 0.22 N 

145 Northridge
, CA 

17/01/
94 SanRafael#1 1 N R 6 6.7 0.16 N 

146 Northridge
, CA 

17/01/
94 SanRafael#2 1 N R 6 6.7 0.18 N 

147 Northridge
, CA 

17/01/
94 Pasadena 1 N S 6 6.7 0.15 298.05 

148 Northridge
, CA 

17/01/
94 SieraMadre 1 N S 9 6.7 0.13 N 

149 Northridge
, CA 

17/01/
94 

Monrovia#1,
#2 1 N R 6 6.7 0.09 N 

150 Northridge
, CA 

17/01/
94 Monrovia#3 1 N R 6 6.7 0.1 N 

151 Northridge
, CA 

17/01/
94 Monrovia#4 1 N R 6 6.7 0.1 N 

152 Northridge
, CA 

17/01/
94 Glendora 1 N S 6 6.7 0.07 63.94 

153 Northridge
, CA 

17/01/
94 Oakhill 1 N R 9 6.7 0.15 N 

154 Northridge
, CA 

17/01/
94 Ascat 1 N R 9 6.7 0.14 N 

155 Northridge
, CA 

17/01/
94 Tonner#1 1 N R 6 6.7 0.06 N 

156 Northridge
, CA 

17/01/
94 Tonner#2 1 N R 6 6.7 0.06 N 
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157 Northridge
, CA 

17/01/
94 LAAqueduct 2 46 R 5 6.7 0.67 42.93 

158 Kobe, 
Japan 

17/01/
95 

Maico Road 
Tunnel 3 50 I 5 6.9 N 5.34 

159 Kobe, 
Japan 

17/01/
95 

Munobiki 
Road Tunnel 2 240 I 5 6.9 N N 

160 Kobe, 
Japan 

17/01/
95 

Bantaki Road 
Tunnel 1 250 I 5 6.9 N 33.90 

161 Kobe, 
Japan 

17/01/
95 

Rokko 
Shinkansen 

Road Tunnel 
1 400 I 5 6.9 N 31.56 

162 Kobe, 
Japan 

17/01/
95 

Shioya-
Danigawa 

River Tunnel 
1 80 R 5 6.9 N N 

163 Kobe, 
Japan 

17/01/
95 Rokkou(#1) 2 460 R 5 6.9 0.6 31.32 

164 Kobe, 
Japan 

17/01/
95 Kobe(#2) 1 272 R 5 6.9 0.57 19.06 

165 Kobe, 
Japan 

17/01/
95 Suma(#3) 1 45 N 5 6.9 0.53 N 

166 Kobe, 
Japan 

17/01/
95 Okuhata(#4) 1 90 N 5 6.9 0.5 N 

167 Kobe, 
Japan 

17/01/
95 

Takatsukay(#
5) 3 85 N 5 6.9 0.49 N 

168 Kobe, 
Japan 

17/01/
95 Nagasaka(#6) 4 20 N 5 6.9 0.48 18.97 

169 Kobe, 
Japan 

17/01/
95 

Daiichinas(#7
) 4 150 N 6 6.9 0.55 N 

170 Kobe, 
Japan 

17/01/
95 Ikuse(#8) 4 250 N 5 6.9 0.57 N 

171 Kobe, 
Japan 

17/01/
95 

Daiichitaked(
#9) 3 95 N 5 6.9 0.43 N 

172 Kobe, 
Japan 

17/01/
95 Arima(#12) 2 25 N 5 6.9 0.46 N 
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173 Kobe, 
Japan 

17/01/
95 Gosha(#13) 1 40 N 5 6.9 0.41 N 

174 Kobe, 
Japan 

17/01/
95 

Kitakami(#14
) 1 350 N 5 6.9 0.51 N 

175 Kobe, 
Japan 

17/01/
95 Iwataki(#15) 1 135 N 5 6.9 0.58 N 

176 Kobe, 
Japan 

17/01/
95 

Nunohiki(#18
) 1 260 I 5 6.9 0.58 19.14 

177 Kobe, 
Japan 

17/01/
95 

DainiNun(#19
) 2 240 I 5 6.9 0.58 N 

178 Kobe, 
Japan 

17/01/
95 Hirano(#20) 2 85 I 5 6.9 0.58 17.81 

179 Kobe, 
Japan 

17/01/
95 

K.Daiichi(#21
) 1 32 I 5 6.9 0.58 N 

180 Kobe, 
Japan 

17/01/
95 K.Daini(#22) 4 25 N 5 6.9 0.58 N 

181 Kobe, 
Japan 

17/01/
95 

Kamoetsu1(#
23) 4 29 N 5 6.9 0.55 N 

182 Kobe, 
Japan 

17/01/
95 

Kamoetsu2(#
24) 3 40 N 5 6.9 0.55 N 

183 Kobe, 
Japan 

17/01/
95 

Kamoetsu3(#
25) 1 47 N 5 6.9 0.55 N 

184 Kobe, 
Japan 

17/01/
95 Hiyodori(#26) 1 40 R 5 6.9 0.54 16.45 

185 Kobe, 
Japan 

17/01/
95 

Shin-
kobe1(#27) 2 330 R 5 6.9 0.49 20.89 

186 Kobe, 
Japan 

17/01/
95 

Shin-
kobe2(#28) 1 330 R 5 6.9 0.49 21.25 

187 Kobe, 
Japan 

17/01/
95 Karaki(#29) 2 145 R 5 6.9 0.42 N 

188 Kobe, 
Japan 

17/01/
95 Arino1(#30) 1 25 I 5 6.9 0.39 28.24 
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189 Kobe, 
Japan 

17/01/
95 Arino2(#31) 1 35 N 5 6.9 0.38 28.44 

190 Kobe, 
Japan 

17/01/
95 

Rokkousan(#
32) 1 280 N 5 6.9 0.51 25.66 

191 Kobe, 
Japan 

17/01/
95 

Shinohara(#3
3) 1 15 N 5 6.9 0.55 8.68 

192 Kobe, 
Japan 

17/01/
95 Hiyodori(#34) 1 67 N 5 6.9 0.59 16.24 

193 Kobe, 
Japan 

17/01/
95 Suma(#36) 1 140 N 5 6.9 0.44 N 

194 Kobe, 
Japan 

17/01/
95 Sumaext 1 N I 5 6.9 0.58 N 

195 Kobe, 
Japan 

17/01/
95 Ibuki(#38) 1 20 N 5 6.9 0.43 N 

196 Kobe, 
Japan 

17/01/
95 

Taizanji,1E(#
39) 1 53 N 5 6.9 0.44 N 

197 Kobe, 
Japan 

17/01/
95 

Taizanji,1W(
#40) 1 37 N 5 6.9 0.44 N 

198 Kobe, 
Japan 

17/01/
95 

Taizanji,2E(#
41) 1 25 N 5 6.9 0.45 N 

199 Kobe, 
Japan 

17/01/
95 

Taizanji,2W(
#42) 1 17 N 5 6.9 0.45 N 

200 Kobe, 
Japan 

17/01/
95 Aina,E(#43) 1 68 I 5 6.9 0.46 17.18 

201 Kobe, 
Japan 

17/01/
95 Aina,W(#44) 1 65 N 5 6.9 0.46 17.64 

202 Kobe, 
Japan 

17/01/
95 

Nagasaka.,E(
#45) 1 68 N 5 6.9 0.42 N 

203 Kobe, 
Japan 

17/01/
95 

Nagasaka.,W(
#46) 1 68 N 5 6.9 0.42 N 

204 Kobe, 
Japan 

17/01/
95 

T.Higa.,TOK(
#47) 1 62 N 5 6.9 0.58 39.67 
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205 Kobe, 
Japan 

17/01/
95 

T.Higa.,KYU(
#48) 1 59 N 5 6.9 0.58 39.76 

206 Kobe, 
Japan 

17/01/
95 

T.Nishi,TOK(
#49) 1 42 N 5 6.9 0.57 38.87 

207 Kobe, 
Japan 

17/01/
95 

T.Nishi,KYU(
#50) 1 42 N 5 6.9 0.57 38.72 

208 Kobe, 
Japan 

17/01/
95 

Takak.,1TOK(
#51) 1 97 N 5 6.9 0.59 10.12 

209 Kobe, 
Japan 

17/01/
95 

Takak.,2TOK(
#52) 1 86 R 5 6.9 0.59 9.77 

210 Kobe, 
Japan 

17/01/
95 

Takak.,KYU(
#53) 1 87 R 5 6.9 0.59 10.39 

211 Kobe, 
Japan 

17/01/
95 

Tsuki.,TOK(
#54) 1 43 R 5 6.9 0.6 11.66 

212 Kobe, 
Japan 

17/01/
95 

Takak.,KYU(
#55) 1 34 R 5 6.9 0.6 10.11 

213 Kobe, 
Japan 

17/01/
95 

Omoteyama1(
#61) 1 41 R 5 6.9 0.41 N 

214 Kobe, 
Japan 

17/01/
95 Ochiai(#63) 1 N R 5 6.9 0.56 N 

215 Kobe, 
Japan 

17/01/
95 Yokoo,1(#64) 1 N R 5 6.9 0.59 N 

216 Kobe, 
Japan 

17/01/
95 Yokoo,2(#65) 1 N N 5 6.9 0.6 N 

217 Kobe, 
Japan 

17/01/
95 

Shiroyama(#6
6) 1 N N 5 6.9 0.58 N 

218 Kobe, 
Japan 

17/01/
95 Nashio2(#67) 1 N N 5 6.9 0.48 N 

219 Kobe, 
Japan 

17/01/
95 Takedo2(#68) 1 N N 5 6.9 0.4 N 

220 Kobe, 
Japan 

17/01/
95 Douba1(#69) 1 N N 5 6.9 0.4 N 
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221 Kobe, 
Japan 

17/01/
95 Douba2(#70) 1 N N 5 6.9 0.37 N 

222 Kobe, 
Japan 

17/01/
95 Douba3(#71) 1 N N 5 6.9 0.36 N 

223 Kobe, 
Japan 

17/01/
95 Keietu(#76) 1 N N 6 6.9 0.58 N 

224 Kobe, 
Japan 

17/01/
95 

Nakayama(#7
7) 1 N N 9 6.9 0.58 N 

225 Kobe, 
Japan 

17/01/
95 

Kadoyama(#7
8) 1 N N 9 6.9 0.58 N 

226 Kobe, 
Japan 

17/01/
95 Kudari(#79) 1 N N 5 6.9 0.54 N 

227 Kobe, 
Japan 

17/01/
95 

Kik,Nobori 
(#81) 1 N N 5 6.9 0.54 17.42 

228 Kobe, 
Japan 

17/01/
95 

Tanigami(#82
) 1 N I 5 6.9 0.41 N 

229 Kobe, 
Japan 

17/01/
95 Kobe(#84) 1 N I 5 6.9 0.56 19.07 

230 Kobe, 
Japan 

17/01/
95 Aina(#85) 1 N I 5 6.9 0.48 16.71 

231 Kobe, 
Japan 

17/01/
95 

Tetsukaiy(#8
7) 1 20 N 5 6.9 0.6 N 

232 Kobe, 
Japan 

17/01/
95 Taisanji(#88) 1 50 I 5 6.9 0.44 N 

233 Kobe, 
Japan 

17/01/
95 Kaibara(#89) 1 20 N 5 6.9 0.36 N 

234 Kobe, 
Japan 

17/01/
95 

Shimohata(#9
1) 1 20 N 5 6.9 0.6 N 

235 Kobe, 
Japan 

17/01/
95 Fukuchi(#92) 1 20 I 5 6.9 0.36 N 

236 Kobe, 
Japan 

17/01/
95 

Sumadera(#9
3) 1 15 N 5 6.9 0.6 N 
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237 Kobe, 
Japan 

17/01/
95 

ShinArima(#9
5) 1 20 I 5 6.9 0.48 N 

238 Kobe, 
Japan 

17/01/
95 

HigashiAina(
#96) 1 10 I 5 6.9 0.43 N 

239 Kobe, 
Japan 

17/01/
95 

Fukuyama(#9
7) 1 15 I 5 6.9 0.59 N 

240 Kobe, 
Japan 

17/01/
95 Minoya(#98) 1 20 N 5 6.9 0.4 N 

241 Kobe, 
Japan 

17/01/
95 

Iwayama(#99
) 1 30 I 5 6.9 0.56 N 

242 Kobe, 
Japan 

17/01/
95 

Tamasaka 
(#100) 1 10 I 5 6.9 0.58 N 

243 Kobe, 
Japan 

17/01/
95 

Fukiage(#101
) 4 30 N 4 6.9 0.44 N 

244 Kobe, 
Japan 

17/01/
95 

Maesaki(#102
) 3 10 I 9 6.9 0.43 N 

245 Kobe, 
Japan 

17/01/
95 

Nishikou2(103
) 1 20 N 6 6.9 0.39 N 

246 Kobe, 
Japan 

17/01/
95 

Fusehatagami 
(104) 1 30 N 5 6.9 0.47 N 

247 Kobe, 
Japan 

17/01/
95 

Fusehatashita 
(105) 1 30 I 6 6.9 0.47 N 

248 Kobe, 
Japan 

17/01/
95 

Enoshitayama
(109) 1 37 N 5 6.9 0.6 N 

249 Kobe, 
Japan 

17/01/
95 

Motoyama(11
0) 4 96 I 5 6.9 0.59 N 

250 Kobe, 
Japan 

17/01/
95 N.ofItayadaSt. 2 N I 5 6.9 0.6 N 

251 Kobe, 
Japan 

17/01/
95 NearNatani 1 N I 5 6.9 0.6 N 

252 Kobe, 
Japan 

17/01/
95 KoigawaRiver 4 N N 6 6.9 0.6 N 
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253 Kobe, 
Japan 

17/01/
95 Hosoyadani 2 6 N 6 6.9 0.59 N 

254 Kobe, 
Japan 

17/01/
95 Sennomori 2 30 N 5 6.9 0.59 N 

255 Kobe, 
Japan 

17/01/
95 Shioyadani 4 25 I 4 6.9 0.59 N 

256 Kobe, 
Japan 

17/01/
95 

Kabutoyama-
Ashiya 4 25 N 4 6.9 0.58 N 

257 Kobe, 
Japan 

17/01/
95 

SannomiyaSt.
St.3 2 25 I 5 6.9 0.59 N 

258 Kobe, 
Japan 

17/01/
95 

NTT@Chuo-
ku@Chuo-ku 2 N N 5 6.9 0.6 N 

259 Kobe, 
Japan 

17/01/
95 

KansaiElectric
Electric 4 N I 5 6.9 0.6 N 

260 Kobe, 
Japan 

17/01/
95 

HIGASHIYA
MA(#10)(#10

) 
1 8 R 6 6.9 0.7 N 

261 Kobe, 
Japan 

17/01/
95 

EGEYAMA(
#11)(#11) 1 13 N 6 6.9 0.68 N 

262 Kobe, 
Japan 

17/01/
95 

MAIKO(UP)(
#16)(UP)(#1

6) 
1 50 R 6 6.9 0.62 N 

263 Kobe, 
Japan 

17/01/
95 

MAIKO(DO
WN)(#17)(D
OWN)(#17) 

1 50 R 6 6.9 0.62 N 

264 Kobe, 
Japan 

17/01/
95 

SHIOYA-
DAN(#35)(#

35) 
1 80 N 5 6.9 0.7 N 

265 Kobe, 
Japan 

17/01/
95 

SEISHIN(2)(
#58)(2)(#58) 1 7 R 5 6.9 0.36 N 

266 Kobe, 
Japan 

17/01/
95 

SEISHIN(1)(
#59)(1)(#59) 1 3 R 5 6.9 0.37 N 

267 Kobe, 
Japan 

17/01/
95 

OMOTEYAM
A 

(2)(#60) 
3 N N 5 6.9 0.41 N 

268 Kobe, 
Japan 

17/01/
95 

KODERA(#6
2) 1 7 N 6 6.9 0.47 N 
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269 Kobe, 
Japan 

17/01/
95 

OBU(#86)(#
86) 1 50 I 5.00 6.9 0.55 N 

270 Kobe, 
Japan 

17/01/
95 

AINA(#90)(#
90) 2 2 N 5.00 6.9 0.43 N 

271 Kobe, 
Japan 

17/01/
95 

FUTATABI(
#94)(#94) 2 20 R 5.00 6.9 0.7 N 

272 Kobe, 
Japan 

17/01/
95 

SENGARI(#1
11)(#111) 2 25 I 5.00 6.9 0.6 N 

273 Kocaeli, 
Turkey 

17/08/
99 Bolu tunnel 2 N S 6.00 7.4 0.41 168.78 

274 Chi-Chi, 
Taiwan 

21/09/
99 

Shih-Gang 
Dam  
Water 

conveyance 
tunnel 

4 N R 5 7.6 0.6 54.05 

275 Chi-Chi, 
Taiwan 

21/09/
99 Highway 8 1 N R 5 7.6 0.58 35.10 

276 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 8, 
Li-Lang 
Tunnel 

1 N R 5 7.6 0.48 38.60 

277 Chi-Chi, 
Taiwan 

21/09/
99 Highway 8 3 N N 5 7.6 0.4 44.00 

278 Chi-Chi, 
Taiwan 

21/09/
99 Highway 8 3 N N 5 7.6 0.4 44.00 

279 Chi-Chi, 
Taiwan 

21/09/
99 Highway 8 3 N N 5 7.6 0.37 44.80 

280 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 8,
 old Ku-Kuan 

Tunnel 
3 N N 5 7.6 0.36 44.80 

281 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 8, 
No.1 old Maa-
Ling Tunnel 

4 N N 5 7.6 0.58 45.91 

282 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 8, 
No.1 Maa-

Ling Tunnel 
4 N R 5 7.6 0.58 45.88 

283 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 8, 
No.2 Maa-

Ling Tunnel 
4 N R 5 7.6 0.58 46.14 

284 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 8, 
No.3 Maa-

Ling Tunnel 
4 N R 4 7.6 0.54 46.38 
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285 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 8, 
No.4 Maa-

Ling Tunnel 
1 N R 9 7.6 0.54 47.81 

286 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 8, 
No.4 old Maa-
Ling Tunnel 

4 N R 6 7.6 0.41 47.75 

287 Chi-Chi, 
Taiwan 

21/09/
99 Highway 8 4 N R 5 7.6 0.56 48.30 

288 Chi-Chi, 
Taiwan 

21/09/
99 Highway 8 2 N R 6 7.6 0.48 48.26 

289 Chi-Chi, 
Taiwan 

21/09/
99 Highway 8 4 N N 5 7.6 0.6 48.44 

290 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
Shuang-Fu 

Tunnel 
1 N N 5 7.6 0.44 19.71 

291 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
Gang-Lin 
Tunnel 

4 N N 5 7.6 0.36 19.78 

292 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
Gang-Lin 
Tunnel 

1 N R 5 7.6 0.6 19.77 

293 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
Yu-Ler 
Tunnel 

1 N R 6 7.6 0.36 18.98 

294 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
Yu-Ler 
Tunnel 

1 N R 6 7.6 0.6 18.97 

295 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
Pei-Shan 
Tunnel 

1 N R 5 7.6 0.48 15.93 

296 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
No.1 Kuan-
Yin Tunnel 

1 N R 4 7.6 0.43 17.01 

297 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
No.1 Kuan-
Yin Tunnel 

1 N R 4 7.6 0.59 17.08 

298 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
No. 2 Kuan-
Yin Tunnel 

1 N R 5 7.6 0.4 17.45 

299 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
No. 2 Kuan-
Yin Tunnel 

1 N R 5 7.6 0.56 17.40 

300 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
No. 3 Kuan-
Yin Tunnel 

3 N R 5 7.6 0.58 17.65 
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301 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 14, 
No. 3 Kuan-
Yin Tunnel 

1 N R 6 7.6 0.44 17.58 

302 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 16, 
Chi-Chi 
Tunnel 

1 N R 6 7.6 0.43 6.15 

303 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 16, 
New Chi-Chi 

Tunnel L 
1 N R 6 7.6 0.39 6.42 

304 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 16, 
New Chi-Chi 

Tunnel R 
4 N R 6 7.6 0.47 6.35 

305 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 21, 
Da-Yuan 
Tunnel L 

1 N R 5 7.6 0.47 14.02 

306 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 21, 
Da-Yuan 
Tunnel R 

1 N R 5 7.6 0.6 14.10 

307 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 21, 
Shue-Sir 
Tunnel L 

1 N R 5 7.6 0.59 8.47 

308 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 21, 
Shue-Sir 
Tunnel R 

1 N R 5 7.6 0.6 8.63 

309 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 21A, 
No. 1 Huan-
Hu Tunnel 

1 N R 6 7.6 0.6 9.26 

310 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 21A, 
No. 2 Huan-
Hu Tunnel 

1 N R 5 7.6 0.6 9.29 

311 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 149, 
Tsao-Ling 
Tunnel 

4 N N 5 7.6 0.59 31.09 

312 Chi-Chi, 
Taiwan 

21/09/
99 

Highway 149, 
Ching-Shue 

Tunnel 
4 N N 5 7.6 0.59 32.06 

313 Chi-Chi, 
Taiwan 

21/09/
99 

Tou-6 
highway, No. 
1 Tu-Cheng 

Tunnel 

1 N N 5 7.6 0.59 15.46 

314 Chi-Chi, 
Taiwan 

21/09/
99 

Tou-6 
highway, No. 
2 Tu-Cheng 

Tunnel 

2 N N 5 7.6 0.58 15.24 

315 Chi-Chi, 
Taiwan 

21/09/
99 

Tou-6 
highway, 

Shuang-Lung 
Tunnel E 

2 N N 5 7.6 0.59 15.10 
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316 Chi-Chi, 
Taiwan 

21/09/
99 

Tou-6 
highway, 

Shuang-Lung 
Tunnel W 

1 N N 5 7.6 0.6 15.16 

317 Chi-Chi, 
Taiwan 

21/09/
99 

Tou-6 
highway, No. 

1 Shuang-
Tung Tunnel 

3 N N 5 7.6 0.6 15.11 

318 Chi-Chi, 
Taiwan 

21/09/
99 

Tou-6 
highway, No. 

2 Shuang-
Tung Tunnel 

1 N N 5 7.6 0.7 15.19 

319 Chi-Chi, 
Taiwan 

21/09/
99 

Chi-Chi line 
railway, No. 1 

tunnel 
1 N N 5 7.6 0.68 6.14 

320 Chi-Chi, 
Taiwan 

21/09/
99 

Chi-Chi line 
railway, No. 2 

tunnel 
1 N N 4 7.6 0.62 0.78 

321 Chi-Chi, 
Taiwan 

21/09/
99 

Chi-Chi line 
railway, No. 3 

tunnel 
3 N N 9 7.6 0.62 4.50 

322 Chi-Chi, 
Taiwan 

21/09/
99 

Chi-Chi line 
railway, No. 5 

tunnel 
3 N N 6 7.6 0.7 4.50 

323 Chi-Chi, 
Taiwan 

21/09/
99 

Da-Kuan 
power station, 

headrace 
tunnel 

4 N N 5 7.6 0.36 8.47 

324 Chi-Chi, 
Taiwan 

21/09/
99 

New Tien-Lun 
power station, 

headrace 
tunnel 

4 N N 6 7.6 0.37 39.78 

325 Chi-Chi, 
Taiwan 

21/09/
99 

Mountain line 
railway, No. 1 
San-I Tunnel 

4 N N 5 7.6 0.41 55.10 

326 Chi-Chi, 
Taiwan 

21/09/
99 

Mountain line 
railway, No. 2 
San-I Tunnel 

1 N R 5 7.6 0.47 49.71 

327 Chi-Chi, 
Taiwan 

21/09/
99 

Mountain line 
railway, No. 3 
San-I Tunnel 

1 N R 5 7.6 0.55 49.38 

328 Chi-Chi, 
Taiwan 

21/09/
99 

Mountain line 
railway, No. 4 
San-I Tunnel 

1 N N 5 7.6 0.43 48.87 

329 Chi-Chi, 
Taiwan 

21/09/
99 

Old mountain 
line, railway, 
No. 1 San-I 

Tunnel 

1 N R 6 7.6 0.7 58.94 
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330 Chi-Chi, 
Taiwan 

21/09/
99 

Old mountain 
line, railway, 
No. 2 San-I 

Tunnel 

1 N R 6 7.6 0.6 57.96 

331 Duzce, 
Turkey 

12/11/
99 Bolu tunnel 4 600 C 6 7.2 0.8 49.76 

332 Western 
Tottori 

06/10/
00 

Tottori Head 
Race Tunnel 2 200 R 5 7.3 N N 

333 Niigata, 
Japan 

23/10/
04 

Joetsu 
Shinkansen 

Tunnel 
3 32 C 5 6.8 0.41 19.26 

334 Niigata, 
Japan 

23/10/
04 

Takitani 
Tunnel 2 30 C 5 6.8 0.38 7.02 

335 Niigata, 
Japan 

23/10/
04 

Myoken 
Tunnel 2 24 C 5 6.8 0.39 4.73 

336 Niigata, 
Japan 

23/10/
04 

Tsukayama 
Tunnel 1 12 C 5 6.8 0.42 18.36 

337 Niigata, 
Japan 

23/10/
04 

Uonuma 
Tunnel 1 3 15 C 6 6.8 0.41 3.34 

338 Niigata, 
Japan 

23/10/
04 

Uonuma 
Tunnel 2 2 26 C 6 6.8 0.41 2.16 

339 Niigata, 
Japan 

23/10/
04 Tenno Tunnel 2 31 C 6 6.8 0.43 4.03 

340 Niigata, 
Japan 

23/10/
04 

Ushigashima 
Tunnel 2 12 C 6 6.8 0.41 4.22 

341 Niigata, 
Japan 

23/10/
04 

Uchigamachi  
Tunnel 3 16 C 5 6.8 0.44 6.96 

342 Niigata, 
Japan 

23/10/
04 

Myokozan 
Tunnel 1 17 C 5 6.8 0.41 9.07 

343 Niigata, 
Japan 

23/10/
04 

Takabayama 
Tunnel 1 19 C 5 6.8 0.41 7.47 

344 Niigata, 
Japan 

23/10/
04 

Wanazu 
Tunnel 2 22 C 5 6.8 0.40 5.19 

345 Niigata, 
Japan 

23/10/
04 

Horinouchi 
Tunnel 3 26 C 6 6.8 0.39 6.94 
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346 Niigata, 
Japan 

23/10/
04 

Shinhatsu 
 Canal Tunnel 3 31 C 6 6.8 0.36 16.79 

347 Niigata, 
Japan 

23/10/
04 Urasa Tunnel 3 33 C 6 6.8 0.31 13.21 

348 Niigata, 
Japan 

23/10/
04 

Fukuyama 
Tunnel 3 35 C 6 6.8 0.31 14.40 

 

Table B.3 – Database for the computation of the PGV obtained from the attenuation 
relationship of Bray & Rodriguez-Marek (2004) (a= 4.51; b= 0.4; c= -0.57; d= 7) 

N° Earthquake Date Name  
tunnel 

Name  
fault 

R 
[km] Mw 

PGV  
[cm/s] 

1 Kern 
County, CA 21/07/52 Elizabeth White Wolf 55.24 7.4 11.51 

2 Kern 
County, CA 21/07/52 Antelope White Wolf 128.15 7.4 4.44 

3 Kern 
County, CA 21/07/52 S.P.R.R. Tunnel #3 White Wolf 23.80 7.4 28.95 

4 Kern 
County, CA 21/07/52 S.P.R.R. Tunnel #4 White Wolf 19.91 7.4 34.81 

5 Kern 
County, CA 21/07/52 S.P.R.R. Tunnel #5 White Wolf 5.61 7.4 92.31 

6 Kern 
County, CA 21/07/52 S.P.R.R. Tunnel #6 White Wolf 29.26 7.4 23.23 

7 
San 

Fernando, 
CA 

09/03/71 Elizabeth Cucamonga 
fault 105.55 6.6 4.22 

8 
San 

Fernando, 
CA 

09/03/71 Antelope Cucamonga 
fault 289.30 6.6 1.34 

9 Loma Prieta, 
CA 17/10/89 FortBaker-Berry 

Tunnel 7  279.71 6.9 1.54 

10 Loma Prieta, 
CA 17/10/89 AlamedaCreekDiv  39.39 6.9 14.16 

11 Loma Prieta, 
CA 17/10/89 Pulgas  41.16 6.9 13.49 

12 Loma Prieta, 
CA 17/10/89 SantaTeresa  9.19 6.9 58.36 

13 Loma Prieta, 
CA 17/10/89 Caldecott  76.37 6.9 6.74 

14 Petrolia, CA 25/04/92 Tunnel#31 Cascadia 242.97 7 1.87 

15 Petrolia, CA 25/04/92 Tunnel#30 Cascadia 243.06 7 1.87 



APPENDIX B    Database of seismic damage to underground structures 333 

N° Earthquake Date Name  
tunnel 

Name  
fault 

R 
[km] Mw 

PGV  
[cm/s] 

16 Petrolia, CA 25/04/92 Tunnel#29 Cascadia 266.27 7 1.69 

17 Petrolia, CA 25/04/92 Tunnel#28 Cascadia 242.26 7 1.88 

18 Northridge, 
CA 17/01/94 SantaSusana  13.91 6.7 38.78 

19 Northridge, 
CA 17/01/94 Castaic#1  10.39 6.7 49.72 

20 Northridge, 
CA 17/01/94 Castaic#2  11.37 6.7 46.23 

21 Northridge, 
CA 17/01/94 Newhall  5.53 6.7 73.20 

22 Northridge, 
CA 17/01/94 Pasadena mine  277.33 6.7 1.45 

23 Northridge, 
CA 17/01/94 Glendora mine  53.05 6.7 9.50 

24 Northridge, 
CA 17/01/94 Los Angeles 

Aqueduct  24.41 6.7 22.21 

25 Kobe, Japan 17/01/95 Maico Road Tunnel Nojima Fault 0.70 6.9 102.71 

26 Kobe, Japan 17/01/95 Bantaki Road Tunnel Nojima Fault 0.43 6.9 103.08 

27 Kobe, Japan 17/01/95 Rokko Shinkansen 
Road Tunnel Nojima Fault 0.47 6.9 103.04 

28 Kobe, Japan 17/01/95 Rokkou(#1) Nojima Fault 1.23 6.9 101.53 

29 Kobe, Japan 17/01/95 Kobe(#2) Nojima Fault 1.00 6.9 102.12 

30 Kobe, Japan 17/01/95 Nagasaka(#6) Nojima Fault 4.76 6.9 83.18 

31 Kobe, Japan 17/01/95 Nunohiki(#18) Nojima Fault 1.28 6.9 101.39 

32 Kobe, Japan 17/01/95 Hirano(#20) Nojima Fault 1.04 6.9 102.03 

33 Kobe, Japan 17/01/95 Hiyodori(#26) Nojima Fault 0.27 6.9 103.22 

34 Kobe, Japan 17/01/95 Shin-kobe1(#27) Nojima Fault 0.25 6.9 103.23 

35 Kobe, Japan 17/01/95 Shin-kobe2(#28) Nojima Fault 0.58 6.9 102.90 

36 Kobe, Japan 17/01/95 Arino1(#30) Nojima Fault 5.43 6.9 79.01 

37 Kobe, Japan 17/01/95 Arino2(#31) Nojima Fault 5.79 6.9 76.73 

38 Kobe, Japan 17/01/95 Rokkousan(#32) Nojima Fault 0.77 6.9 102.61 

39 Kobe, Japan 17/01/95 Shinohara(#33) Nojima Fault 0.40 6.9 103.12 

40 Kobe, Japan 17/01/95 Hiyodori(#34) Nojima Fault 0.35 6.9 103.15 

41 Kobe, Japan 17/01/95 Aina,E(#43) Nojima Fault 3.82 6.9 89.03 
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42 Kobe, Japan 17/01/95 Aina,W(#44) Nojima Fault 3.81 6.9 89.09 

43 Kobe, Japan 17/01/95 T.Higa.,TOK(#47) Nojima Fault 4.82 6.9 82.79 

44 Kobe, Japan 17/01/95 T.Higa.,KYU(#48) Nojima Fault 4.96 6.9 81.93 

45 Kobe, Japan 17/01/95 T.Nishi,TOK(#49) Nojima Fault 3.89 6.9 88.62 

46 Kobe, Japan 17/01/95 T.Nishi,KYU(#50) Nojima Fault 3.72 6.9 89.62 

47 Kobe, Japan 17/01/95 Takak.,1TOK(#51) Nojima Fault 1.40 6.9 101.01 

48 Kobe, Japan 17/01/95 Takak.,2TOK(#52) Nojima Fault 1.56 6.9 100.50 

49 Kobe, Japan 17/01/95 Takak.,KYU(#53) Nojima Fault 1.75 6.9 99.80 

50 Kobe, Japan 17/01/95 Tsuki.,TOK(#54) Nojima Fault 1.88 6.9 99.29 

51 Kobe, Japan 17/01/95 Takak.,KYU(#55) Nojima Fault 1.84 6.9 99.43 

52 Kobe, Japan 17/01/95 Kik,Nobori(#81) Nojima Fault 0.76 6.9 102.61 

53 Kobe, Japan 17/01/95 Kobe(#84) Nojima Fault 0.99 6.9 102.14 

54 Kobe, Japan 17/01/95 Aina(#85) Nojima Fault 3.79 6.9 89.22 

55 Kocaeli, 
Turkey 17/08/99 Bolu tunnel 

North 
Anatolian 

Fault - Kocaeli 
Fault 

70.86 7.4 8.70 

56 Chi-Chi, 
Taiwan 21/09/99 Shih-Gang Dam Water 

conveyance tunnel 
Che-Lung-Pu 

Fault 3.71 7.6 113.78 

57 Chi-Chi, 
Taiwan 21/09/99 Highway 8 Che-Lung-Pu 

Fault 9.00 7.6 75.15 

58 Chi-Chi, 
Taiwan 21/09/99 Highway 8, Li-Lang 

Tunnel 
Che-Lung-Pu 

Fault 9.94 7.6 69.86 

59 Chi-Chi, 
Taiwan 21/09/99 Highway 8 Che-Lung-Pu 

Fault 17.01 7.6 43.56 

60 Chi-Chi, 
Taiwan 21/09/99 Highway 8 Che-Lung-Pu 

Fault 17.01 7.6 43.56 

61 Chi-Chi, 
Taiwan 21/09/99 Highway 8 Che-Lung-Pu 

Fault 17.22 7.6 43.05 

62 Chi-Chi, 
Taiwan 21/09/99 Highway 8, old Ku-

Kuan Tunnel 
Che-Lung-Pu 

Fault 17.22 7.6 43.05 

63 Chi-Chi, 
Taiwan 21/09/99 Highway 8, No.1 old 

Maa-Ling Tunnel 
Che-Lung-Pu 

Fault 17.00 7.6 43.59 

64 Chi-Chi, 
Taiwan 21/09/99 Highway 8, No.1 Maa-

Ling Tunnel 
Che-Lung-Pu 

Fault 18.24 7.6 40.68 

65 Chi-Chi, 
Taiwan 21/09/99 Highway 8, No.2 Maa-

Ling Tunnel 
Che-Lung-Pu 

Fault 18.20 7.6 40.77 

66 Chi-Chi, 
Taiwan 21/09/99 Highway 8, No.3 Maa-

Ling Tunnel 
Che-Lung-Pu 

Fault 17.01 7.6 43.57 
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67 Chi-Chi, 
Taiwan 21/09/99 Highway 8, No.4 Maa-

Ling Tunnel 
Che-Lung-Pu 

Fault 18.55 7.6 39.99 

68 Chi-Chi, 
Taiwan 21/09/99 Highway 8, No.4 old 

Maa-Ling Tunnel 
Che-Lung-Pu 

Fault 18.16 7.6 40.85 

69 Chi-Chi, 
Taiwan 21/09/99 Highway 8 Che-Lung-Pu 

Fault 18.73 7.6 39.61 

70 Chi-Chi, 
Taiwan 21/09/99 Highway 8 Che-Lung-Pu 

Fault 18.29 7.6 40.55 

71 Chi-Chi, 
Taiwan 21/09/99 Highway 8 Che-Lung-Pu 

Fault 18.72 7.6 39.64 

72 Chi-Chi, 
Taiwan 21/09/99 Highway 14, Shuang-

Fu Tunnel 
Che-Lung-Pu 

Fault 7.97 7.6 81.63 

73 Chi-Chi, 
Taiwan 21/09/99 Highway 14, Gang-Lin 

Tunnel 
Che-Lung-Pu 

Fault 8.57 7.6 77.77 

74 Chi-Chi, 
Taiwan 21/09/99 Highway 14, Gang-Lin 

Tunnel 
Che-Lung-Pu 

Fault 9.19 7.6 74.06 

75 Chi-Chi, 
Taiwan 21/09/99 Highway 14, Yu-Ler 

Tunnel 
Che-Lung-Pu 

Fault 9.05 7.6 74.87 

76 Chi-Chi, 
Taiwan 21/09/99 Highway 14, Yu-Ler 

Tunnel 
Che-Lung-Pu 

Fault 12.42 7.6 58.26 

77 Chi-Chi, 
Taiwan 21/09/99 Highway 14, Pei-Shan 

Tunnel 
Che-Lung-Pu 

Fault 10.39 7.6 67.51 

78 Chi-Chi, 
Taiwan 21/09/99 Highway 14, No.1 

Kuan-Yin Tunnel 
Che-Lung-Pu 

Fault 11.68 7.6 61.40 

79 Chi-Chi, 
Taiwan 21/09/99 Highway 14, No.1 

Kuan-Yin Tunnel 
Che-Lung-Pu 

Fault 10.45 7.6 67.19 

80 Chi-Chi, 
Taiwan 21/09/99 Highway 14, No. 2 

Kuan-Yin Tunnel 
Che-Lung-Pu 

Fault 11.75 7.6 61.09 

81 Chi-Chi, 
Taiwan 21/09/99 Highway 14, No. 2 

Kuan-Yin Tunnel 
Che-Lung-Pu 

Fault 10.41 7.6 67.40 

82 Chi-Chi, 
Taiwan 21/09/99 Highway 14, No. 3 

Kuan-Yin Tunnel 
Che-Lung-Pu 

Fault 11.77 7.6 60.99 

83 Chi-Chi, 
Taiwan 21/09/99 Highway 14, No. 3 

Kuan-Yin Tunnel 
Che-Lung-Pu 

Fault 12.22 7.6 59.07 

84 Chi-Chi, 
Taiwan 21/09/99 Highway 16, Chi-Chi 

Tunnel 
Che-Lung-Pu 

Fault 4.61 7.6 106.71 

85 Chi-Chi, 
Taiwan 21/09/99 Highway 16, New Chi-

Chi Tunnel L 
Che-Lung-Pu 

Fault 4.55 7.6 107.23 

86 Chi-Chi, 
Taiwan 21/09/99 Highway 16, New Chi-

Chi Tunnel R 
Che-Lung-Pu 

Fault 4.32 7.6 109.04 

87 Chi-Chi, 
Taiwan 21/09/99 Highway 21, Da-Yuan 

Tunnel L 
Che-Lung-Pu 

Fault 14.04 7.6 52.24 

88 Chi-Chi, 
Taiwan 21/09/99 Highway 21, Da-Yuan 

Tunnel R 
Che-Lung-Pu 

Fault 13.84 7.6 52.93 

89 Chi-Chi, 
Taiwan 21/09/99 Highway 21, Shue-Sir 

Tunnel L 
Che-Lung-Pu 

Fault 11.29 7.6 63.12 

90 Chi-Chi, 
Taiwan 21/09/99 Highway 21, Shue-Sir 

Tunnel R 
Che-Lung-Pu 

Fault 11.22 7.6 63.48 
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91 Chi-Chi, 
Taiwan 21/09/99 Highway 21A, No. 1 

Huan-Hu Tunnel 
Che-Lung-Pu 

Fault 11.72 7.6 61.21 

92 Chi-Chi, 
Taiwan 21/09/99 Highway 21A, No. 2 

Huan-Hu Tunnel 
Che-Lung-Pu 

Fault 11.39 7.6 62.69 

93 Chi-Chi, 
Taiwan 21/09/99 Highway 149, Tsao-

Ling Tunnel 
Che-Lung-Pu 

Fault 3.43 7.6 115.91 

94 Chi-Chi, 
Taiwan 21/09/99 Highway 149, Ching-

Shue Tunnel 
Che-Lung-Pu 

Fault 5.15 7.6 102.44 

95 Chi-Chi, 
Taiwan 21/09/99 Tou-6 highway, No. 1 

Tu-Cheng Tunnel 
Che-Lung-Pu 

Fault 4.19 7.6 110.10 

96 Chi-Chi, 
Taiwan 21/09/99 Tou-6 highway, No. 2 

Tu-Cheng Tunnel 
Che-Lung-Pu 

Fault 4.92 7.6 104.25 

97 Chi-Chi, 
Taiwan 21/09/99 Tou-6 highway, 

Shuang-Lung Tunnel E
Che-Lung-Pu 

Fault 4.34 7.6 108.89 

98 Chi-Chi, 
Taiwan 21/09/99 

Tou-6 highway, 
Shuang-Lung Tunnel 

W 

Che-Lung-Pu 
Fault 4.93 7.6 104.17 

99 Chi-Chi, 
Taiwan 21/09/99 Tou-6 highway, No. 1 

Shuang-Tung Tunnel
Che-Lung-Pu 

Fault 5.54 7.6 99.30 

100 Chi-Chi, 
Taiwan 21/09/99 Tou-6 highway, No. 2 

Shuang-Tung Tunnel
Che-Lung-Pu 

Fault 4.85 7.6 104.78 

101 Chi-Chi, 
Taiwan 21/09/99 Chi-Chi line railway, 

No. 1 tunnel 
Che-Lung-Pu 

Fault 4.64 7.6 106.47 

102 Chi-Chi, 
Taiwan 21/09/99 Chi-Chi line railway, 

No. 2 tunnel 
Che-Lung-Pu 

Fault 6.77 7.6 89.93 

103 Chi-Chi, 
Taiwan 21/09/99 Chi-Chi line railway, 

No. 3 tunnel 
Che-Lung-Pu 

Fault 5.48 7.6 99.82 

104 Chi-Chi, 
Taiwan 21/09/99 Chi-Chi line railway, 

No. 5 tunnel 
Che-Lung-Pu 

Fault 5.48 7.6 99.82 

105 Chi-Chi, 
Taiwan 21/09/99 

Da-Kuan power 
station, headrace 

tunnel 

Che-Lung-Pu 
Fault 11.28 7.6 63.18 

106 Chi-Chi, 
Taiwan 21/09/99 

New Tien-Lun power 
station, headrace 

tunnel 

Che-Lung-Pu 
Fault 10.13 7.6 68.84 

107 Chi-Chi, 
Taiwan 21/09/99 Mountain line railway, 

No. 1 San-I Tunnel 
Che-Lung-Pu 

Fault 37.46 7.6 18.99 

108 Chi-Chi, 
Taiwan 21/09/99 Mountain line railway, 

No. 2 San-I Tunnel 
Che-Lung-Pu 

Fault 33.29 7.6 21.61 

109 Chi-Chi, 
Taiwan 21/09/99 Mountain line railway, 

No. 3 San-I Tunnel 
Che-Lung-Pu 

Fault 32.74 7.6 22.01 

110 Chi-Chi, 
Taiwan 21/09/99 Mountain line railway, 

No. 4 San-I Tunnel 
Che-Lung-Pu 

Fault 32.05 7.6 22.53 

111 Chi-Chi, 
Taiwan 21/09/99 

Old mountain line, 
railway, No. 1 San-I 

Tunnel 

Che-Lung-Pu 
Fault 26.81 7.6 27.31 

112 Chi-Chi, 
Taiwan 21/09/99 

Old mountain line, 
railway, No. 2 San-I 

Tunnel 

Che-Lung-Pu 
Fault 25.36 7.6 28.97 
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113 Duzce, 
Turkey 12/11/99 Bolu tunnel 

North 
Anatolian 

Fault - Duzce 
Fault 

21.25 7.2 30.41 

114 Niigata, 
Japan 23/10/04 Joetsu Shinkansen 

Tunnel Obiro Fault 17.84 6.8 31.67 

115 Niigata, 
Japan 23/10/04 Takitani Tunnel Obiro Fault 38.46 6.8 14.05 

116 Niigata, 
Japan 23/10/04 Myoken Tunnel Obiro Fault 36.32 6.8 14.97 

117 Niigata, 
Japan 23/10/04 Tsukayama Tunnel Obiro Fault 45.67 6.8 11.61 

118 Niigata, 
Japan 23/10/04 Uonuma Tunnel 1 Obiro Fault 30.08 6.8 18.39 

119 Niigata, 
Japan 23/10/04 Uonuma Tunnel 2 Obiro Fault 32.27 6.8 17.03 

120 Niigata, 
Japan 23/10/04 Tenno Tunnel Obiro Fault 32.01 6.8 17.19 

121 Niigata, 
Japan 23/10/04 Ushigashima Tunnel Obiro Fault 31.19 6.8 17.68 

122 Niigata, 
Japan 23/10/04 Uchigamachi  Tunnel Obiro Fault 28.93 6.8 19.18 

123 Niigata, 
Japan 23/10/04 Myokozan Tunnel Obiro Fault 30.13 6.8 18.35 

124 Niigata, 
Japan 23/10/04 Takabayama Tunnel Obiro Fault 29.30 6.8 18.92 

125 Niigata, 
Japan 23/10/04 Wanazu Tunnel Obiro Fault 28.31 6.8 19.63 

126 Niigata, 
Japan 23/10/04 Horinouchi Tunnel Obiro Fault 26.80 6.8 20.82 

127 Niigata, 
Japan 23/10/04 Shinhatsu  Canal 

Tunnel Obiro Fault 33.82 6.8 16.18 

128 Niigata, 
Japan 23/10/04 Urasa Tunnel Obiro Fault 21.43 6.8 26.32 

129 Niigata, 
Japan 23/10/04 Fukuyama Tunnel Obiro Fault 20.48 6.8 27.57 
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