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Influence of the Line Characterization on 
the Transient Analysis of Nonlinearly 

Loaded Lossy Transmission Lines 
I. Maio, S. Pignari, and F. Canavero 

Absh-act-The analysis of nonlinearly terminated lossy trans- 
mission lines is addressed in this paper with a modified version 
of a method belonging to the class of mixed techniques, which 
characterize the line in the frequency domain and solve the non- 
linear problem in the time domain via a convolution operation. 
This formulation is based on voltage wave variables defined in 
the load sections. The physical meaning of such quantities helps 
to explain the transient scattering process in the line and allows 
us to discover the importance (so far often overlooked) of the 
reference impedance used to define the scattering parameters. 
The complexity of the transient impulse responses, the efficiency 
of the algorithms, and the precision of the results are shown 
to be substantially conditioned by the choice of the reference 
impedance. The optimum value of the reference impedance de- 
pends on the amount of line losses. We show that a low-loss line 
can be effectively described if its characteristic impedance or the 
characteristic impedance of the associated LC line is chosen as the 
reference impedance. Based on the physical interpretation of our 
formulation, we are able to validate the numerical results, and to 
demonstrate that, despite claimed differences or improvements, 
the formulations of several mixed methods are fundamentally 
equivalent. 

I. INTRODUCTION 
HE PROBLEM OF signal propagation along transmission T lines loaded by nonlinear elements has a central role in 

the modem technology of signal processing and transmission. 
Fast digital and analog circuits, at any level of integration, 
offer a wide choice of examples of single and multiconduc- 
tor transmission lines connected with nonlinear devices. The 
decreasing rise time of signal waveforms emphasizes the im- 
portance of the propagation effects, and the signal corruption 
caused by parasitic phenomena as losses and skin effect is now 
a relevant issue in many applications. On the other hand, the 
switching operation of nonlinear devices reduces the allowable 
tolerance to the signal degradation, increasing once more 
the sensitivity of the system performance to the propagation 
processes. As a result, in the last years a growing interest has 
developed for precise and fast (possibly capable of a CAD 
implementation) analysis methods to forecast the behavior of 
lossy and dispersive multiconductor lines in nonlinear circuits. 
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A full numerical “brute force” solution of the line equations 
with respect to space and time variables is the most direct 
approach to the problem (e.g., see [l]). A great advantage 
of this method is the absence of analytical work, but this 
translates into a weakness, because the direct numerization of 
the fundamental equations leaves a little space for a physical 
interpretation and a deeper insight into the transient process. 
The consequence is the need for an extensive validation, that 
guarantees the reliability of the outcome of the numerical 
procedure. Parallel to all-numerical methods, a great deal 
of work has been recently devoted to the development of 
mixed approaches that have some remarkable features. These 
methods exploit the natural formulation of both linear and non- 
linear electric systems; in fact, they adopt a frequency domain 
characterization for the line (which is the basic linear element 
of the system) and the time domain characteristic equations 
for the loads (where the nonlinearities are), and combine the 
two by means of a convolution operation [2]-[ 111. Of course, 
these methods are not free from numerical computations, since 
the presence of nonlinearities requires the use of numerical 
solvers. However, a basic feature of this class of methods 
is that the terms of the solution equations retain an evident 
physical meaning, so that their interpretation offers a way to 
check the final results: we use this property to validate our 
simulations in Section VI. The form of the equations of these 
mixed methods does not prevent their authors from finding 
efficient numerical algorithms, that can also be considered for 
the implementation in a CAD environment. In particular, [2], 
[6], [12] exploit the generalized method of characteristics and 
introduce simple line equivalents that do not need an ad hoc 
solver, but can be handled by a standard circuit simulator (e.g., 
SPICE). 

The wide variety of altematives proposed in the literature on 
mixed methods, however, can disorient the reader looking for 
a solution algorithm. All the mixed methods, in fact, have in 
common many fundamental aspects, but a critical comparison 
aimed at studying their equivalence and the effect of different 
parameter choices has never been attempted. 

In this paper, we present a critical review of the most 
important mixed methods proposed in the literature [3]-[ 1 11, 
examining their characterizing element, i.e. the set of transient 
equations on which they are built. The comparison is made 
with reference to a new set of transient equations that we 
propose here. Our new set originates from a modification of 
the method used in [4], and has the advantage of providing a 
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Fig. 1. 
E1 and Ea account for the system excitation, and the other quantities are defined in the text. 

Nonlinearly loaded scalar transmission line where the voltage waves (A’s and E’s),  relevant for our formulation, are indicated. The voltage sources 

deeper physical insight into the transient process. In particular, 
the physical interpretation of the transients allows us to discuss 
the influence of the line characterization on the equation final 
form that reflects on the complexity of the transient problem. 
We show that the line losses affect the choice of the reference 
impedance to be used in the definition of the scattering 
parameters. The consequence is that the optimum solution 
procedure is influenced by the line type: this is an important 
new result, since the authors of previous papers often led the 
readers under the impression that the reference impedance is 
not a relevant parameter. The ultimate objective of this paper 
is to present a unified point of view of the mixed methods 
proposed for the transient analysis of nonlinearly loaded lines, 
and to offer, through a better physical understanding of the 
process, a rationale for an efficient application to practical 
problems. 

A summary of the structure of the paper follows. Section 
I1 is devoted to the new transient equations, and the influ- 
ence of the line characterization and losses is discussed in 
Sections I11 and IV. The transient equations of the principal 
mixed methods are thoroughly reviewed in Section V, and the 
example of Section VI is used to evidence the relevance of 
our recommendations in a practical case. 

Finally, it is worthwhile to clarify the notations that are 
used in this paper. Lower case letters represent time domain 
variables and upper case letters indicate their counterparts in 
the frequency domain, e.g., ~ ( t )  FG1 X ( w ) ,  and .F denotes the 
Fourier transform operation. Als:, the boldface character is 
used for the collections of elements, and the superscript 
distinguishes matrices from vectors, i.e. a indicates a time- 
varying vector and Zo is a matrix in the frequency domain. 

11. SCATTERING TRANSIENT EQUATIONS 
The problem of analyzing the transient behavior of a trans- 

mission line terminated on nonlinear loads is summarized in 
Fig. 1, where a two-wire line is represented, for simplicity. 
The extension to multiconductor lines is postponed to the end 
of this section. 

The unknowns of the problem are the voltages q ( t ) ,  vz(t), 
and the currents il(t), i2(t) at the line ends. The load networks 
are represented by Thevenin-like equivalents, whose possible 
nonlinearity is described by the functions (or operators) -i, = 
gp(uep),  p = 1,2.  The transmission line is characterized by 
the impedance Zo(w)  and the propagation constant K ( w ) :  
the frequency dependence of these functions arises from line 
losses, and purely dispersive lines, addressed in [ 5 ] ,  can be 
considered as a special case of lossy lines. 

Before writing the key expressions of our formulation, we 
shall review some features of the scattering parameters, that are 
essential elements for the derivation. We adopt the following 
form for the relationships between voltage waves and voltages 
and currents at port p of an electrical network [ 131: 

1 

1 
A p  = ~ ( v p  + z r r p )  

B - -(Vp - Z r l p )  
, - 2  

and 
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where Z,(w) is the reference impedance, Y, is the correspond- 
ing admittance (Y, = l/Z,), and the usual factor l/& in 
the definition of the wave variables has been dropped here. 

The voltage waves at the line ends (see Fig. 1) are related by 
the scattering equations, whose transient expression becomes 

b i  = ~ i i r  * ai + ~ 2 1 ,  * a2 

b2 = ~ 2 1 r  * ai + sii, * a2 ( 3 )  

where the symbol * indicates a convolution, and spqr are the 
time-domain scattering parameters that, however, are usually 
defined in the frequency domain, as Spqr = Bp/Aq (p = 1,2; 
q = 1,2). 

In (3), the symmetry of the line is exploited (s11, = s~, ,  
sal, = ~ 1 2 , ) .  The label T in spq, reminds that the scattering 
parameters depend on the reference impedance 2, selected to 
define the voltage waves. In fact, sZlr (sll,) represents the line 
transmission (reflection) response to the impulse a1 = S ( t ) ,  
when the line end 2 is closed on the reference impedance, i.e. 
a2 = 0. 

Our formulation of the problem is based on the voltage 
waves defined in the load sections, instead of at the line ends 
(section !p instead of p in Fig. 1.) The relationships between 
the voltage waves of these two sections are 

1 
2 

a, = atp + -ep 

1 
2 

bp = bep + -ep (4) 

where the first expression is readily obtained by comparison 
of the first line of (1) and Atp = !j (V, + Z r l p ) ;  similarly the 
second expression is deduced by comparison of the second 
line of (1) and Be, = f(Vep - Z,I,). 

The transient scattering equations relating the load voltage 
waves are obtained from ( 3 ) ,  with the use of (4), i.e., 

bei = siir * aei + s21r * at2 

( 5 )  
1 1 + +‘ - S ( t ) )  * el  + 5s21r * e2 

he2 = szi, * aei + siir * ae2  
1 1 

2 
The set of transient equations for the wave variables alp and 

be, is completed by the equations describing the reflections 
from the two terminal circuits that load the line: 

-3, * (aep - b e p )  = gp(atp + be,), 

+ 2 ~ ~ 1 ,  * el + -(sH, - S ( t ) )  * ez. 

P = 1, 2 (6) 

where y T ( t )  is the transient expression of the reference ad- 
mittance. The wave reflected from the load is caused by the 
“mismatch” between the reference admittance and the load 
characteristic g,. 

A relevant feature of our formulation is that the generator 
terms are included in the linear subset of the system equations, 
i.e. in the line scattering equations (5). In fact, the signals 
that enter and propagate along the line are decomposed into 
two contributions: one, alp, is due to the waves reflected by 
the loads, and the other, + e p ,  depends on the excitation of 
the generators. The advantage of such decomposition results 
both in clarifying the physical mechanisms involved in the 

transient process, and in helping the explanation, carried out 
in the next section, of the role of the reference impedance 
2, in the solution procedure. The usual definition of the 
wave variables at the line ends would, however, include the 
generators in the nonlinear load equations and obscure the 
physical interpretation: the implications of this choice are 
discussed in Section V.A 

For multiconductor lines, the unknown variables become the 
vectors vl, v2, i l ,  iz ,  that contain the voltages and currents at 
line ends 1 and 2 for each of the N conductors. The voltage 
waves 

v, = ap + b, 
i, = y: * (a, - b,), p = 1 ,2  (7) 

are defined with respect to a reference impedance matrix, 
usually specified in the frequency domain, i.e. Y,“ = (Z:)-’. 
The transient scattering equations relate the voltage waves at 
the two line ends: 

where sFl, and spl, are the N x N scattering matrices of 
the line, that is characterized by its impedance matrix Z:(w) 
and its mode propagation constants {Ki(w)},  i = 1,. . . , N 
[18]. Finally, the terminal loads are assumed to be multiport 
networks described by the nonlinear vector characteristics 

Although the multiconductor case is of paramount impor- 
tance in the applications, the basic features of the problem 
are already contained in the scalar case and, for the sake of 
simplicity, we will refer to the latter wherever possible. 

-Ip = g , ( v e p ) 7  P = 172. 

111. EFFECTS OF THE REFERENCE IMPEDANCE 

As anticipated in the previous section, the choice of the 
reference impedance 2, affects the actual form of various 
elements of the transient equations (5) and (6). The reference 
impedance need not be the same at the two line ends and, as 
a general rule, reference impedances similar to the line loads 
reduce their reflections and simplify the load equations at the 
expense of the complexity of the line characterization, i.e. of 
the impulse response functions sll, and ~ 2 1 , .  

In order to illustrate this idea, we consider a simplified, 
linear form of the problem defined in Section 11. We assume 
el(t) = e,S(t), e2(t) = 0, -21 = l/Rvei, --i2 = l/Rvez, ( R  
being the value of the linear termination resistances), and the 
two extreme cases: (1) 2, = Z,, (2 )  2, = R. 

Case (I): The line response is the simplest possible: 
Sllr = 0, S21, = H ( w )  = exp{-jK(w)C}, which amount 
to a null reflection impulse response and to a delayed single- 
peak transmission impulse response h(t) .  It is worthwhile to 
notice that h(t)  = 0, for t < T = L m ,  L and C being 
the per-unit-length inductance and capacitance of the line, 
respectively [ 141. 

The load equations are given by the reflection coefficient of 
the resistance load R with respect to the reference impedance 
2, = Z,, which is frequency dependent, and they take the 
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complicated expression 

The transients along the line are described by (5) that, in 
this case, assume a simpler form: 

which we can interpret as a multiple reflection process of the 
input impulse between the two mismatched loads. 

The load equations are the simplest possible, 
since 2, = R force the reflected wave at the load to be zero, 
atp = 0. The complete solution solely depends on the bep 
terms, i.e. 

Case (2): 

where the voltage waves result in sequences of echoes that are, 
in general, of complicated form. In other words, the transient 
is described with a fictitious matched scattering process such 
that the load information is completely contained in the line 
responses spqr.  

These two cases suggest the following interpretation of the 
general problem (3, (6). When a reference impedance different 
from 2, is adopted, the actual scattering process is replaced by 
an equivalent one where the load reflection is determined by 
the mismatch of the load with respect to 2, and the scattering 
functions spqr account for the difference between 2, and 2,. 
Reference impedances that reduce the load reflections, i.e. 
such that the functions Igp(aep + bep)  - yr * (atp + b e p ) [  are 
small, result in a better matched scattering process, where 
part of the load effects is already included in the multiple 
echo scattering functions. Of course, this choice implies a 
simplification of the load equations at the expense of the 
line impulse response functions. In practice, the scope of 
reducing the load reflections can be achieved by appending 
the linear part of the loads to the line section, as suggested 
in [lo], and/or equating 2, to the impedance of the nonlinear 
load linearized around its working point. The analysis of the 
transient problem is then performed in two successive steps: 
the composite impulse responses are first evaluated via an 
inverse transformation of the transfer functions computed in 
the frequency domain, and the simplified scattering process is 
then solved in the time domain. Obviously, this technique is 
advantageous only for scattering functions with non critical 
inverse transforms. Finally, it should be remarked that the 
properties of the scattering process discussed in this section are 
inherent in the transient equations (3, (6), and the complexity 
of the computation is expected to depend on the behavior of 
the scattering parameters, irrespective of the algorithm used 
for their solution. 

TABLE I 
PARAMETER VALUES OF THE EXAMPLE 

line length I L = 0.5 m 
f vot O < t < . 5 n s  I 

.5 c t c 5.5 ns 1 e ( t )  = { !vo(t - t o )  5.5 < t < 6 ns voltage source 

0 otherwise 

line R matrix 
I R12 = Rzl = 1.35 x Slim 

Iv. REFZRENCE IMPEDANCE FOR LOSSY LINES 

In order to decide whether a simple line characterization or 
simple load equations are preferable, the characteristics of the 
matched-line impulse response must be considered: line losses 
are the primary factors affecting the decision. 

We limit the analysis to transmission lines in ideal dielectric 
media, for which two cases of particular relevance are distin- 
guished. Appendix I is devoted to a discussion of the rationale 
for this classification. The first case refers to a high-loss 
line, whose impulse response h( t )  is mainly due to the wire 
DC resistance; this case is individuated by RDCC > ~ Z L C ,  
where RDC is the line DC resistance per unit length and 
ZLC is the characteristic impedance of the line without losses 
(ZLC = limw+m 2,). The second case, individuated by the 
complementary condition RDCC < ~ Z L C ,  denotes a low-loss 
line, whose response h(t) is influenced by the high frequency 
skin losses. Examples of high-loss lines are the micrometric 
connections on integrated circuits, whereas all other types of 
interconnects usually satisfy the above low-loss condition (see 
Table I of [15] for typical numerical values of RDC and C). 

For high-loss lines, the duration of the time response h( t )  
is comparable or larger than the line propagation delay (see 
Appendix I) and, therefore, the impulse responses spqr are well 
behaved functions, readily obtainable from the corresponding 
functions in the frequency domain, via an inverse FFT. This 
means also that the load equations (6)  can be effectively 
simplified by including all possible linear parts of the loads 
in the line characterization, and by numerically computing 
the impulse responses of the resulting two-port circuit (as 
already recommended in [lo]). It is ought to remark that 
the normalization with respect to different impedence levels 
at the two line ends or the inclusion of linear parts of the 
loads in the line characterization breaks the symmetry relations 
S i l r  = s22r9 S z l r  = S12r9 and requires the evaluation of 
four impulse responses instead of two. The overall complexity 
of the solution procedure, however, is not affected, since the 
evaluation of the line response amounts to four convolutions 
in any case. 

Low-loss lines, on the other hand, require special care for 
their characterization, since the high frequency losses produce 
a fast structure, with a duration w much smaller than 7, in 
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the early stages of the line response (see Appendix I). In this 
case, any choice of the reference impedance different from 2, 
produces multiple-echo impulse responses that are made of 
short pulses (duration tu), spaced by many times their duration. 
Impulse responses with these characteristics are unpractical 
for two reasons. Firstly, it is extremely difficult to obtain such 
responses via an inverse FFT, because the required Nyquist 
frequency is on the order of 1/w and their spectra must 
be described with a frequency resolution 1 / ~  << l / m ,  thus 
requiring a large amount of data: this inversion problem arises 
already for impulse responses composed of simply two peaks 
spaced by 7. Secondly, the same large amount of data needed 
for a correct frequency approximation is required for the time 
representation of the impulse responses, and this lengthens the 
convolution computation of the transient solutions of (5) and 
(6). The optimum characterization of low-loss lines is therefore 
defined by 2, = Z,, leading to s1lr = 0, sal, = h(t) .  

However, this characterization implies also the computation 
of a second function, i.e. the transient admittance y,(t), that 
appears in the convolution of the load equations (6). Such 
function can be hardly obtained via the FFT, since Y,(w) 
does not vanishes for w + 00 and, yo diverges for t + 
0, due to the skin effect (see Appendix 11). The transient 
admittance, however, can be effectively computed through 
numerical inversion of its Laplace transform, by means of 
Pad6 approximation method [16], or Hosono algorithm [ 171 '. 
In Appendix I1 it is also shown that, for transient signals 
shorter than a characteristic time t,, the admittance yo can be 
approximated by yo M YLcS(~) ,  with YLC = ~ / Z L C .  The time 
scale t ,  is inversely proportional to the factor assessing the 
line losses (i.e. RDcC/ZLC). and for very low-loss lines (i.e. 
RDCC << ZLC) it can be longer than the signal duration. Thus, 
for very low-loss lines, the convolution involving yo in (6) 
can be avoided and the line can be completely specified by its 
impulse response h(t) ,  and the constant parameter YLC only. 
This line characterization is equivalently defined by 2,. = ZLC 
and by approximating the responses spqr with those of the 
perfectly matched line (~21,. M h, sll, x 0). 

As a simple extension, in low-loss multiconductor transmis- 
sion lines the optimum reference impedance matrix is ZF, and 
ZFc = limu+m Z:(w) is recommended for very low losses 
and fast excitation signals. Diagonal reference impedance 
matrices (i.e. matching networks made of series impedances) 
are not appropriate, since they produce a mismatch sufficient 
to cause multiple-echo impulse responses, even for very low- 
loss lines and moderate coupling among the conductors (see 
the example in Section VI). 

v. COMPARISON WITH OTHER 'lkANSIENT EQUATION SETS 

In this section, we review other published methods for the 
transient analysis of nonlinearly loaded transmission lines, 
in order to compare the different formulations and their 
features, without considering the solution algorithms proposed, 
which are, in general, independent of the formulation. The 

' These algorithms are also well suited for the description of the line impulse 
response, in the case of low losses, since the FFT may be inefficient to 
reproduce both the early-time fast behavior and the late-time evolution of 
h ( t ) .  

structure of Fig. 1 (or its multiconductor extension), and the 
system scattering equations discussed in Section I1 are taken 
as the reference elements for the comparisons. A striking 
result of this section is that the reference impedance 2, is 
the key parameter accounting for the differences among the 
formulations. The order in which the various methods are 
analyzed reflects the apparent differences with respect to our 
formulation. 

A. Scattering Parameter Method 141, [7], [9] 
The transient equations proposed by Schutt-Aine and Mittra 

in [4], [7] and by Komuro in [9] are the same, and do not 
significantly differ from ours. In fact, the variables are the 
voltage waves at the line ends defined in ( l ) ,  the line equations 
are the scattering equations (3), and the load equations are 

-Yr * ( a p  - b p )  = g p ( a p  + b p  - e p ) , ~  = 132, (12) 

which differ from (5) and (6) only for the position of the 
generator terms. 

From the computational point of view, the two sets of 
equations can be considered equivalent. In both cases, one pro- 
ceeds by using the line equations (5) or (3) to eliminate the b 
variables from the load equations (6) or (12), respectively. This 
results in two nonlinear integral equations for the a unknowns, 
and the complexity of this problem, in term of number of 
convolution and nonlinear operations, is the same for the two 
formulations (5) and (6) or (3) and (12). With our formulation, 
however, the physical insight in the transient process is easier, 
because the contributions to terminal reflection terms of both 
the load reflection and generator act separated in (5) and (6), 
while they are lumped together in (12). 

For the reference impedance used to define the voltage 
waves, Schutt-Aine and Mittra recommend 2, = ZLC for the 
single line problem [4], and ZF = ZFc for the multiconductor 
case [7], whereas Komuro [9] does not give any indications. 
The above form of the transient equations and the normal- 
ization suggested for the scattering parameters agree with 
our results of Sections I1 and IV, and constitute an effective 
method of analysis of very low-loss multiconductor lines. 

B. Modified Scattering Parameter Method [5], [lo] 

In [5], [lo],  Gu et al. proposed a set of transient scattering 
equations with unknown voltages and currents. More precisely, 
in [lo], the variables are the voltages and currents ut,, i, 
(p = 1,2) ,  defined in the load sections (Fig. l), and the line 
equations are obtained by replacing in (5) the load voltage 
waves with their definitions in terms of voltages and currents, 
i.e. 

( W I  - 2, * i l )  = ~ l l r  * (ut1 + Zr * i l )  + ~ 2 1 r  * (VPZ + 2.p * i 2 )  

+ (S l lr  - h ( t ) )  * e l  + s z l r  * e2 

+ ~ 2 1 r  *el + ( S l l r  - h ( t ) )  * e2. 

(ut2 - 2, * i 2 )  = SZlr * (ut1 + zr * i ~ )  + ~ l l r  * (u t2  + 2, * iz) 
(13) 

Since the line impulse responses are still the scattering pa- 
rameters spqr, the structure of the line equatiqns remain similar 
to (5) and the method appears computationally equivalent to 
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1 

0 

0 

L , - , - - - - - - - - - - J  
Fig. 2. 
and vu's are the virtual voltages. 

Network representation suitable for the Y parameters method [3]  and its modified version [SI. The dashed box defines the augmented line, 

those using voltage waves. The equivalence can be verified 
with the elimination of i l  and 22 in (31) through the use of the 
load characteristics, -2, = g p ( v e p ) ,  p = 1,2. For example, in 
the simple case 2, = Z,, the final equation for vel is 

and must be compared with the final equation for atl, obtained 
by eliminating bel of (5) in (6), 

The complexity of the two equations is equivalent, although 
the variables are not the same. On the other hand, the physical 
interpretation is helped when voltage waves are used. 

With respect to the choice of the reference impedance, Gu 
et al. use ZF = diag{ ZFc} in [5 ] ,  which is devoted to purely 
dispersive lines, while in [ 101 they use ZF = diag{ Z,i}, where 
Z,i is the characteristic impedance of the line connected to 
the i-th load. As discussed in Section IV, for low-loss lines, 
this choice can lead to multiple-echo impulse responses even 
for weakly coupled conductors. Finally, the inclusion of all 
possible linear load component in the line characterization is 
suggested in [lo]. 

C. Admittance YParameter Method [3]  

et al. [3] is a pioneering one 
on the subject of nonlinearly loaded transmission lines. The 
unknowns of their transient equations are the voltages and 
currents at the line ends, and the line response is described in 
terms of the admittance Y parameters. 

The use of the Y parameters was subsequently criticized, 
as they were believed to yield impulse responses with infinite 
many echoes. The criticism, however, is not appropriate, 
since it does not take into account the particular definition 
of the Y parameters, that are defined in [3] with respect to 
auxiliary variables with a special physical meaning, called 
virtual voltages and indicated in Fig. 2 with the symbols v,~G, 
v , i ~ ,  (i = 1 , .  . . , N), where the G and L subscripts stand for 
the generator and load side of the line, respectively, and N is 
the number of conductors. In fact, the virtual voltages coincide, 
apart from a factor two, with the voltage waves reflected by 
the loads and defined with respect to the reference impedances 
ZTi = Zci;. This is readily shown in the scalar case ( i.e. i = 1 
only), for which the frequency domain virtual voltages are 

The work of Djordjevic 

As a consequence, the Y parameters are simple linear 
combinations of the line scattering parameters defined for 
2, = 2,. Again, this result is readily shown for the scalar case, 
in the frequency domain. The Y parameters are defined with 
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reference to the network in the dashed box (the augmented 
line) of Fig. 2, i.e. 

11 = YIlLG + y2lKL = yIl(v1 f 2711) + YZl(v2 + 2 ~ 1 2 )  
1 2  YZlKG + YllVvL = YZl(v1 + 2~11) f yll(h + z~12) 

(17) 

where the simmetry of the line is exploited, and (16) are used. 
The scattering equations (3), written in the frequency domain 
and in terms of voltages and currents with the help of ( l ) ,  
become 

(VI - Z,1l) = S11,(K + 2711) + SZlr(Vz + ~ T I Z )  

(Vz - Z J z )  = szir(Vi + Z J i )  + Siir(Vz + Z J 2 )  (18) 

and can be cast, after a little manipulation (i.e. addition of 
the terms -(VI + Z,11) and -(V2 + 2J2) to the first and 
second equation above, respectively, and division by -22,), 
in a form comparable with (17). The comparison shows the 
direct relationship between Y and S parameters: 

821, Y21 = - 
-22, ' -22, 

S l l T  - 1 Yl1 = ~ 

For a multiconductor line, the same results hold, provided 
that ZF = diag{Z,ii}. Since in [3] the impedances Zcii rep- 
resent the diagonal elements of the matrix ZFc, the reference 
impedance of this method is ZF = diag{ZFc}, that can 
however produce multiple-echo impulse responses. 

Finally, a further criticism to the method of [3] concems 
the negative impedance -2,ii needed to define the augmented 
line. Numerical instabilities in the solution of low-loss lines 
have been attributed to the presence of such impedances [5], 
but they do not seem to be the cause, since the line equations 
hold independently of these impedances. We rather believe that 
numerical instabilities may be due to a line characterization 
that implies a multiple-echo impulse response. In fact, as 
discussed in Section 111, a choice of 2, different from the 
load value causes the actual solution to arise from multiple 
back-and-forth reflections of the line impulse response, and in 
such case instabilities may develop. 

D. Modijied Y Parameter Method [S] 
et al. propose in [8] a modified version of 

the previous method. They replace the Y parameters with the 
scattering ones in the line characterization, in an attempt to 
obtain better-behaved impulse response functions. Of course, 
it is illusory that such change can make the difference, since 
the Y and S parameters are strictly related (see (19)), and 
the reference impedance is the only element that controls the 
behavior of the impulse responses. 

The line equations of [8], written for the scalar case and in 
the frequency domain (our symbols Z,, V v ~ ,  V v ~  stand for 
Z,, Vi, Vi of [SI), are 

Vi = G I I K G  + G z ~ K L  
v2 = G2lVvG + GllVvL (20) 

that are a non conventional description of the linear elements 
contained in the dashed box of Fig. 2 and the G,,'s represent 
the transfer functions, 

Winkelstein 

The relationship between the transfer functions Gpg(w) and 
the scattering parameters defined for 2, = 2, can be obtained 
with the same steps of Section V.C (i.e. addition of (Vl+2,11) 
and (V2 + ZJ2) to the first and the second equation (18), 
respectively), and become 

A comparison of (21) and (19) indicates that this formulation 
is essentially equivalent to [3]. Therefore, despite the claims 
of [8], the introduction of the scattering parameters (whose 
reference impedance value 2, is not specified in [SI) yields 
no advantages with respect to [3]. 

E. Method of Characteristics [2,  61 
In [2 ,  61, the generalized method of characteristics is ex- 

ploited for the line characterization, and a simple equivalent of 
the line is proposed. This approach was then followed by many 
other authors (e.g., see [12] for a remarkable generalization 
that extends the method to hybrid-mode structures) and its 
formulation is now one of the most established in the study 
of transmission lines. 

The approach of the method of characteristics is equivalent 
to a scattering parameter characterization defined for 2, = 2,. 
In fact, with reference to the notation of [6], the equivalent 
circuit for the line is defined by 

(Vl - ZOl1l) = e"'V2 + 2 0 2 1 2 )  

(V2 - 2 0 2 1 2 )  = eO*(V1 + 2 0 1 1 1 )  (22)  

where ZOl, ZO2 are the line characteristic impedances at 
the ends 1 and 2, respectively (the method can account for 
nonuniform asymmetric lines), and the exponential functions 
are the transmission transfer functions of the matched line. 

For a uniform line (i.e. 201 = 2 0 2  = Z,, 81 = 82 = 
- jK(w)C>,  the above equations coincide with the scattering 
equations (see 18), provided that the reference impedance 
is 2, = Z,, so that S1lr = 0 and S Z ~ ,  = H ( w )  = 
exp { - j K (  w )C} . 

In conclusion, this approach can effectively handle low 
loss lines, since it is based on a characterization that uses 
2, = 2, (see Section IV). Also, the simple equivalent circuit 
introduced by this method turns out to be useful for CAD 
implementations. 

F. Chain Parameter Matrix Method [ I  I ]  
Recently, Mao and Li [ 1 11 published an analysis of nonuni- 

form transmission lines, possibly terminated on nonlinear 
loads, by means of the chain parameter matrix, 

A B  (2) = (c D)(-!2) 

where 
1 
2 

2 

A = -(exp{+jKL} + exp{-jKC}) 

B = - (  ' 0  exp{+jKC} - exp{-jKC}) 
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wire # 1 1 OQ 

1 iv= t 
Fig. 3. Network for the numerical example of Section VI. The time function of the source, the diode characteristic and the line parameters are listed in Table I. 

C = - 1 (exp{ +jKL} - exp{ -jK,C}) 

V = - (exp{ +jK,C} + exp{ - j K C } ) .  

of the propagation exponentials deletes the propagation delay 
effect and gives always rise to a transmission impulse response 
with non causal parts (e.g., this is clearly seen in the plot of 
the variable V4, in Fig. 6 of [l 11). 

220 
1 
2 

These equations connect directly the voltages and currents at 
the two ends of the line, and are suitable for the response 
computation of cascaded lines. Also, (23) yields particularly 
simple transient equations, in the time domain. 

Although the transfer functions A, B, C, and 2) are related 
to the line scattering parameters (it is readily shown that 
(23) is obtained from (18), for 2, = Z,, so that Sllr = 0 
and S21, = H ( w )  = exp{-jK(w)C}), they have different 
properties. 

In order to focus on the physical meaning of the impulse 
responses obtainable in this case, let us consider the voltage 
behavior at the near end of an ideal transmission line (i.e. one 
with K ( w )  = w/w), whose far end is left open. The result 

[ w ~ ( ~ ) ] , ~ = o  = 2 ( 6 6  + $) + S(t - k)) * ~ ( t )  (24) 

is the time domain expression of the first equation of (23), 
and depends on both past and future values of vz(t). Such 
non-causality of the impulse responses complicates the use 
of a time stepping algorithm for the solution of the transient 
equations. 

This problem worsens when real dispersive or lossy lines 
are considered. In this case, a(t) = ;F-'{exp(+jKL) + 
exp(-jK(C)} does not exist, since exp{jK(w)L} is expo- 
nentially growing for (wI + 00. In [l l] ,  this difficulty does 
not appear, because the exponentials of the transfer functions 
are approximated with truncated power series, resulting in 
analytical approximations of the impulse response functions. 
These approximations certainly hold for input signals having 
a bandwidth small with respect to the bandwidth of H ( w ) ,  
but this aspect is not discussed quantitatively in [ll]. A final 
remark is in order here, that a power series approximation 

The line description with the chain parameter matrix, there- 
fore, does not seem to have significant advantages, when 
compared with the conventional scattering parameter descrip- 
tion. 

VI. NUMERICAL EXAMPLE 
The scope of this section is to illustrate with an example 

the concepts that are extensively discussed in Section IV, 
i.e. the influence of the line characterization on the solution 
method and on the accuracy of the results. In particular, we 
compare the features of the solutions obtained with different 
normalizations (i.e. ZF = diag{Zzc}, ZF = Z:, and ZF = 
ZFc), for a low-loss weakly coupled multiconductor line. 

A. Network Characteristics 

The network of the example is shown in Fig. 3 and contains 
a symmetric line made of two conductors and a ground plane, 
with linear loads at one end, and nonlinear elements at the 
other end. We adopt the same example of the fundamental 
paper by Djordjevic et al. [3], in order to compare the results. 
The numerical values of the source, load and line parameters 
are summarized in Table I. The line conductance matrix given 
in [3] is neglected, as it affects only the very high frequency 
part of the line characterization. 

For convenience, we adopt a modal representation to de- 
scribe the signal propagation along the line. A short summary 
of the properties of the even and odd modes of a three- 
conductor line is given in Appendix IV. The advantage of 
the modal description is that it allows a direct generalization 
of the treatment of the scalar problem. The transfer function 
H and the characteristic impedance 2, of the scalar case are 
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even mode odd mode 

R, = 2.23 x nJs/rad %, = 1.95 x lo-' n\/s/rad 

TABLE I1 
MODAL PARAMETERS 

W 

7 

PLC,,, = d i a g ( Z l c . ,  Z L C ~ )  

W. M 1.6 ps 
re = 3.373 ns 
ZLC. x 49 R 

w, M 1.6 ps 
r,, = 3.287 ns 

ZLC0 w 43.7 n 

reference 
in Sec. 6 in [3] 

Zo, = diag(ZuLc} M 

impedance [a] 

sampling pitch 
number of 
samples in sWr 
number of 
samdes in W. 

I 46d4 4604) 

variable 20 ps 
13 over 512 
250 ps 
5 over 
10 ns 

I I \ I 

modal reference I ZDrm = Zo, = I 

impedance [RI I (: 404) I 

simply replaced by the transfer functions H e ,  H ,  and the 
characteristic impedances Z,,, Zoo for the even and the odd 
mode. The modal parameters computed from the data of Table 
I are summarized in Table 11. 

Although the inequalities of Appendix I cannot be applied 
directly to this example, because the DC resistance is not 
known, the transfer functions He and H, are of low-loss 
type, since they are mainly determined by the skin effect 
(see Appendix I and data of Table 11). The line impulse 
responses he, h, are then computed analytically as described 
in Appendix I and, consistently, their durations appear much 
shorter than the mode delays (see Table 11). The impulse 
response he(t)  is shown by the dotted line of Fig. 4: its 
peak is located around t = T, + 0.5 ps and its fast part 
extinguishes within a few ps. The odd-mode response h,(t) 
is barely distinguishable from he, and is not shown. For 
the numerical solution, the transient scattering parameters he, 
h, are represented with piecewise linear functions defined 
on nonuniformly spaced time samples, as shown in Fig. 4. 
The location and the number of samples are selected to be 
compatible with a sufficient reproduction of both the fast 
initial part and the long tail of the functions. The cut-off time 
of the he, ho tails are selected so that the pulse areas are 
approximately 1, as it is required by H ( 0 )  = 1. The same 
considerations apply for the transient admittances Yoe, yo,, 
which however are represented analytically for small values 
of t, where they are singular. The parameters of the line 
characterization used for the solution are reported in Table 
3, where data of [3] are also given for comparison. 

A final remark concerns the effects of the normalization 
adopted by r31. Their choice of the reference imuedance leads 

3.37 339 

Fig. 4. Transmission impulse response for the even mode of the line in Fig. 3 
(dotted line) and its piecewise linear representation adopted by the numerical 
solution (solid line). The approximation curve is scaled so that the correct 
pulse area is maintained. Please notice that the time axis begins at t = 3.37 
ns, due to the mode delay. 

to the following diagonal modal scattering matrices: 

S?lTm = diag{SR(Ze, z o e ,  He), S ~ ( z ~ o , z o o ,  Ho)} 
s;lTm = diag{ST(z,e, zo,, H e ) ,  S T ( Z T O ,  z o o ,  H o ) } ,  

with Z,, = Z,, = 46.4 Cl and ST, S, defined in Appendix 111. 
The time evolutions of such scattering parameters are affected 
by multiple reflections, while those of our proposed solution 
(for which SFlvm = 0 and Sg,, = diag{He, H,)}) show the 
regular behavior of Fig. 4. 

B. Comparison of Results 

The voltage waveforms obtained with the above parameters 
in the time interval 0 5 t 5 10 ns are shown in Figs. 5 and 6, 
for both ends of wire 1 and 2, respectively. The solid curves 
refer to the results obtained for the normalization ZF = Zy, 
while the dashed lines are for YF NN d i a g { Y L ~ , , Y ~ ~ ~ } .  
A small difference between the two solutions arises for the 
long pulses, while the shape of short pulses is unaffected 
by the approximation of the characteristic admittance. This 
is justifiable, since the parameter that measures the time 
scale on which the error build up (see Appendix I1 for 
a precise definition) is t ,  x 3.5 ns, comparable with the 
duration of the excitation signal e ( t ) .  This result confirms 
that very low-loss lines can be effectively described with a 
reflectionless characterization and a frequency independent 
reference imDedance zo = z?,. 
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-0.1 
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t rns1 

Fig. 5. Computed time domain voltage waveforms at the near end (1111) 
and far end ( .u12) of wire 1 in Fi 3. The solid curves refer to the results 
obtained for the normalization Z h  = ZF, while the dashed lines are for: 
Y: M d i a g l Y m , , Y i c o ) .  

100 I I 

I 

k 

-50 - 

Y 

-100 I . I , I I I I  

0 2 4 6 8 10 

t b l  
Fig. 6. Computed time domain voltage waveforms at the near end (viz) 
and far end (2'22) of wire 2 in Fi 3 The solid curves refer to the results 
obtained for the normalization $ = ZF, while the dashed lines are for 
Y: = diag{YLc,, Y i c 0 } .  

A comparison of the results of Figs. 5 and 6 with Fig. 5 
of [3] indicates that the two solutions agree in their steady 
state levels, while there are differences in the shape and in the 
duration of the transient parts caused by the generator ramps. 
The differences are larger for the non-driven line, and this is 
almost certainly due to the insufficient precision with which 
the line impulse responses are represented in [3]. 

This lack of precision typically comes from the difficul- 
ties of the numerical evaluation and of the representation 
of multiple-echo impulse responses for low-loss lines, as 
discussed in Section IV. In fact, the reference impedance 
ZF = diag{ Z&} adopted by [3] produces impulse responses 
with multiple echoes, that were numerically approximated 
with 512 samples spaced by 20 ps. We believe that this 
choice was forced by the consideration that convolutions with 
a larger number of points can considerably slow down the 
computer solution of the problem. However, this choice has 

two weaknesses: (1) the total duration of the impulse response 
is 10 ns that corresponds to almost three times the line delay, 
thus including only the transmitted pulse and its first reflected 
echo; (2) the time step of 20 ps is clearly insufficient to 
accurately represent the shape of the impulse response shown 
in Fig. 4. 

In the network under analysis, the only memory effect 
comes from the visible duration of the impulse responses he, 
h, (approximately 20 ps, see Fig. 4) and from the difference 
of the mode delays along the line (nearly 80 ps). Therefore, 
the allowed duration of the v21 and vzz transients due to the 
first arrival of the generator rising ramp is 0.6 ns, as it is 
in our solution. The anomalous duration of the transients in 
[3] (approximately 0.9 ns) are caused by contributions from 
non-causal tails of their impulse responses. Such noncausality, 
however, is evidenced by the non zero values of v21 at times 
shorter than the line delay. 

The time plots of the even and odd components of the 
voltage wave vectors bz, (impinging on load 2) and az, 
(reflected from load 2) shown in Fig. 7 are particularly useful 
because allow us to gain a physical insight into the effects that 
the nonlinearities produce on transients. At the transient start, 
the voltages at the far-end terminals are low and the apparent 
resistance of the diodes are much greater than Z L C ~  and ZLC~.  
However, since the two conductors are weakly coupled, the 
evolution is dominated by the characteristic of the load on 
the driven wire. Thus, for the initial part of the transient, the 
reflection coefficients in the far-end section are almost unity, 
i.e. aze x bze and azo x bz,, and the terminal voltages become 

These expressions constitute a useful mean to explain the 
numerical results shown in Figs. 5 and 6. For example, as 
the voltage w21 grows, the apparent resistance of the diode on 
wire 1 decreases, and so does the load reflection coefficient. 
This, in turn, reduces the voltage growth and stabilizes v21 
to the value for which the load on wire 1 nearly matches 
the characteristic impedance of the wire. On the other wire, 
the evolution of vz2 is controlled by the difference between 
the even and odd component of the impinging voltage wave 
vector. The final state (for t > 3.8 ns) depends only on the final 
values of the impinging voltage waves, which are controlled 
by the transmission impulse response areas. 

The sensitivity of the solution of the non-driven wire to 
the impulse response accuracy grows when the difference 
between the mode delays reduces. In fact, if the two mode 
delays were equal, the starting slope of the 2122 transient would 
be decided by the difference between the synchronous peaks 
of the functions he and h, (see the second of (25)), and 
this is highly dependent on the precision of the calculations. 
Thus, the use of poorly represented impulse responses for low- 
loss symmetric multiconductor lines in homogeneous dielectric 
media, for which the mode speeds are equal [18], can lead to 
large errors on the nondriven wires. 
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Fig. 7. Time domain behavior of the even (solid line) and odd components 
(dotted line) of the incident (bzm) and reflected (az,) voltage wave vectors 
at the far end terminal of the line of Fig. 3. 

The discussion of our example leads to the conclusion 
that the accurate representation of the impulse responses of 
low-loss lines affected by skin effect is difficult. The choice 
of Z: = z:, or Z? = zFc for very low-loss lines, 
and the analytic evaluation of the impulse responses offer 
numerical efficiency and improved accuracy not only for 
strongly-coupled multiconductor lines (which is trivial), but 
also for weakly-coupled multiconductor structures. Besides, in 
symmetric and homogeneous multiconductor lines, for which 
all modes have the same speed, the use of multiple-echo 
impulse responses is critical and is expected to produce large 
errors in the electrical quantities of the nondriven wires. 

VII. CONCLUSION 

In this paper, the influence of the reference impedance 
parameter on the structure of the transient equations that 
predict the signal evolution in nonlinearly loaded transmission 
lines is discussed. 

The analysis is based on the new set of transient equations 
( 5 )  and (6), that allow a deeper physical interpretation of the 
nonlinear process in the presence of distributed circuits. We 
show that the line classification according to the losses is 
relevant for the optimal choice of the line characterization, 
which in turn affects the solution algorithm. A precise defini- 
tion of high- and low-loss lines and the implications on the 
corresponding transfer functions are given in Appendix I. The 
inclusion of linear parts of the loads in the line subcircuit, with 
the aim at simplifying the scattering process [lo], is found to 
be advantageous for high-loss lines and potentially harmful to 
low-loss ones. The latter are better described with Zp = Z:, 
or with Z? = ZFc for very low losses and fast driving signals, 
thereby avoiding multiple echoes in the line impulse responses. 

A comparative analysis of the main mixed methods pub- 
lished in the literature shows that all, except the one based 
on the chain parameter matrix [ll],  refer to a scattering 
parameter formulation. However, the fundamental role of 
the reference impedance is often overlooked. As far as the 
line is characterized with the scattering parameters, there are 

d 
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1 n-3 a" 

id id 10' id 106 107 108 109 
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Fig. 8. Frequency behavior of the loss factor aL = -Sm{h'(w)}L for a 
RG-213N coaxial cable with L = 92 m. 

no appreciable computational differences in using voltages 
and currents or voltage waves as equation variables, but 
the latter are preferred, since they have a higher physical 
significance and help to better understand the process. The 
chain parameter matrix method is apparently simpler, but, 
owing to the non-causality of its impulse responses, is found 
to have a computational complexity comparable with the 
scattering parameter method. Also, an inappropriate criticism 
to the Y parameter method [3] is corrected by proving the 
equivalence of Y and S parameters. 

The numerical example of Section VI is used to validate our 
findings of Sections I11 and IV and to check the performance 
of our approach in comparison with [3], where problems 
are expected to arise due the use of multiple-echo impulse 
responses. The results demonstrate that the normalizations 
suggested for low-loss lines, i.e. Z: = ZF and ZF = ZEc, 
are largely preferable for the computational efficiency and 
precision, even for weakly coupled transmission lines. Also, 
the example makes it evident that, for symmetric lines with 
homogeneous dielectric having the same speed for all modes, 
the solutions of non-driven wires are sensitive to the line 
description, and our formulation is more robust with respect to 
those describing the line with multiple-echo impulse responses. 

APPENDIX I 

The propagation constant of a transmission line with metal 
losses and ideal dielectric is 

K ( w )  = J-(R(w) + jWL)jWC = - w /  1 - j- R(w)v (26) 
WZLC 

where R ( w )  is the line resistance per unit length, and w = l/m. As an example of the frequency behavior of (261, 
Fig. 8 shows the attenuation crL = -9;m{K(w)}L of the 
transfer function H ( w )  = exp{-jK(w)C}, for a RG-213/U 
coaxial cable. 

In the low-frequency straight part of the log( a)-curve, the 
function R ( w )  is determined by the ohmic DC losses, i.e., 
R ( w )  % RDC, where R D ~  is the line DC resistance per unit 
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length, and the propagation constant is approximated by and 

In the high frequency straight part of the curve, skin losses 
are ,/'E is the skin parameter (the value of the coefficient 
IC, depends on the transverse geometry of the conductor [19]). 
For w > w, (with G R ,  = RDC) ,  the propagation constant 
is approximated by 

The transient admittance yo(t) is then given by yo(t) = 
j I R o f i ?  where Ro = YLC(6(t)+y(t)), where ij(t) is such that c(t) + -m*&, 

o for t --t 0, 00 respectively. Since it must be J, y,(t)dt = 
0, consistently with Yo(0)  = 0, the compensation of the 
contribution of the &function depends on the area A,@) = 
- J:jj(t')dt', and as fas as A,  << 1 the jj term can be 

W R O  (28) neglected2. We introduce a time scale t ,  for which the jj 
term reduces the area of the 6-function by about 3% (i.e. 

R(w) ( l  

K ( w )  x K, = - + ( 1  - j ) - &  
2ZLC 

The level of the plateau region in the log(&)-curve is 
R D c C / ~ Z L C  and its value decides the bandwidth of H ( w ) .  
If R D c L / ~ Z L C  > 1 the bandwidth of H ( w )  is limited to the 
low frequency part of K ( w )  and the line is not influenced by 
skin losses (high-loss line), whereas if R D c C / ~ Z L C  < 1 the 
part of K ( w )  dominated by skin losses contributes to H ( w )  
(low-loss line). 

For high-loss lines the width of the impulse response w can 
be estimated as w M l/w,, where -Sm{Kst(w,))C = 1 /3 ,  
i.e. w M ~ W T ,  and is therefore comparable or larger than 
T .  In low-loss lines the high-frequency approximation of H ( w )  
is exp{- jK,(w)&},  which results in a short time part of h(t)  
given by [ 181 

exp  { -;} 1 1  
h,(t) x -- 

7)- 

which is a fast pulse of time duration w = 27) = 
+ F & ~ ; T  << T (the factor IC, varies in the range 
[10-8,5 x R/m s). Besides, for very low-loss lines, 
e.g. RDCC < 0 . 1 Z ~ c ,  the low frequency part of K ( w )  is a 
negligible portion of the total bandwidth of H ( w )  and h(t)  can 
be globally approximated with h,(t). We wish to point out that, 
in the very low-loss case, the numerical inverse transformation 
can hardly improve this approximation because the differences 
between K ( w )  and K,(w) are confined in the range w < w, 
and w, << wmax, w,, being the angular frequency 
where H ( w )  vanishes (e.g., if -%m{K,(wmax)}C = di6, 
wmax / u s  10 (2 ZLC /RDcC)  2>. 

APPENDIX I1 
The characteristic impedance of a line with pure metal losses 

is 

The corresponding characteristic admittance is 

Yo(w)  = l / Z O ( W )  = Y L C / d l  + Rov YLC = 1/ZLC 
JWZLC' 

(31) 

Ay(ty)  = -0.03): 

For very low-loss lines, when t, is larger than the dura- 
tion of the pulses of the transient, yo(t) can be effectively 
approximated by Y L C ~ ( ~ ) .  

APPENDIX I11 
For a scalar transmission line, the scattering parameters, 

defined with respect to a reference impedance Z,., are 

with P(&, Zo) = 2;z. In low-loss lines, for which the 
bandwidth of H ( w )  is larger than w, (see Appendix I), the 
choice 2,. # ZLC leads to multiple reflection resonances in 
the Spqr functions. 

APPENDIX IV 

Signal propagation on the symmetric three-conductor struc- 
ture of Fig. 3 can be represented in terms of an even and an 
odd mode, indicated by the subscripts e and 0, respectively. 
The two modes are decoupled, and are described by the 
eigenvectors 

( 1 )  U,= -( 1 1 )  (35) 
ue=/z ' fi -1 

and by the propagation constants 

where U; = l/m, R e  = RI1 f R12, L z  = L11 f L I Z ,  
Ce = C11 f C I ~ ,  ando&,, L,,, Gpq are the elements 
of'the line resistance, inductance and capacitance matrices, 
respectively [18]. The modal quantities x, (e .g .  voltages, or 

21t must be Ay(m)  = 1, for the exact compensation of the &function 
contribution. 
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currents, or voltage waves) are related to the corresponding 
physical quantities x by 

x, = (::) = Enx (37) 

where EO = {U,, U,} is the self-orthogonal matrix of the 
mode eigenvectors U, and U,. Similarly, the modal matrix 
parameters x: (e.g. scattering or impedance matrices) are 
related to the corresponding physical quantities xu by x: = 

In the modal representation, the characteristic impedance 
is diagonal, i.e. Z7m = diag{Z,,(w), Zoo(w)} = diag{&, 
Ke%,  z~c,,K,%}, and the choice ZF = Z: implies that 
!3FlTm is the null matrix and SylTm = diag{H,,H,} = 
diag {exp (-jKeC),exp(-jKoL)}, where He,  H ,  are the 
transmission transfer functions of the two modes. 

EOXO( EO) - l .  
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