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Robust Model Predictive Control via Scenario Optimization

Giuseppe C. Calafiore, Senior Member, IEEE, and
Lorenzo Fagiano, Member, IEEE

Abstract—This paper discusses a novel probabilistic approach for the de-
sign of robust model predictive control (MPC) laws for discrete-time linear
systems affected by parametric uncertainty and additive disturbances. The
proposed technique is based on the iterated solution, at each step, of a fi-
nite-horizon optimal control problem (FHOCP) that takes into account a
suitable number of randomly extracted scenarios of uncertainty and dis-
turbances, followed by a specific command selection rule implemented in a
receding horizon fashion. The scenario FHOCP is always convex, also when
the uncertain parameters and disturbance belong to nonconvex sets, and ir-
respective of how the model uncertainty influences the system’s matrices.
Moreover, the computational complexity of the proposed approach does not
depend on the uncertainty/disturbance dimensions, and scales quadrati-
cally with the control horizon. The main result in this work is related to
the analysis of the closed loop system under receding-horizon implementa-
tion of the scenario FHOCP, and essentially states that the devised control
law guarantees constraint satisfaction at each step with some a priori as-
signed probability p, while the system’s state reaches the target set either
asymptotically, or in finite time with probability at least p. The proposed
method may be a valid alternative when other existing techniques, either
deterministic or stochastic, are not directly usable due to excessive conser-
vatism or to numerical intractability caused by lack of convexity of the ro-
bust or chance-constrained optimization problem.

Index Terms—Model predictive control (MPC), randomized algorithms,
robustness, scenario optimization.

I. INTRODUCTION

In model predictive control (MPC), at each sampling time ¢, a plant’s
control input u¢ € R™ is computed by solving a constrained finite
horizon optimal control problem (FHOCP), according to a receding
horizon (RH) strategy, see, e.g., [1]. MPC has received an ever-in-
creasing attention in the last decades, mainly due to the possibility of
taking into account input and state constraints explicitly in the control
design. The study of robust MPC approaches, able to guarantee stability
and constraint satisfaction also in the presence of uncertainty/distur-
bances, is still a very active research area. For the case of linear time
invariant (LTI) discrete time models, an extensive literature has been
developed, considering the presence of either model uncertainty or ex-
ternal disturbances, see, e.g., [2]-[12]. Most of the existing approaches
are deterministic and aim to optimize a worst-case performance index,
while enforcing constraints for all possible outcomes of the uncertainty
[2]-[4] or disturbance [5]-[8]. These techniques guarantee that the de-
signed control law is able to cope with the considered uncertainty.
However, they rely on the assumption of convexity of the optimization
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problem, not only with respect to the control input, but also with respect
to the uncertain parameters and disturbances. Moreover, the computa-
tional complexity of deterministic approaches typically grows with the
complexity of the model set. In a recent and active research direction,
stochastic MPC techniques have also been studied, see, e.g., [9]-[12]
and the references therein. Stochastic MPC techniques exploit some
known statistical description of the uncertain parameters and/or of the
disturbance (e.g., the probability distribution, or the first and second
moments), yet they still employ deterministic algorithms and, in order
to maintain tractability of the optimization problem, they typically as-
sume that the system matrices are either perfectly known, or they have
a particular structure that preserves convexity.

We propose here a new randomized method for robust MPC design,
which is able to deal with both model uncertainty and additive distur-
bances. Similar to stochastic MPC techniques, we exploit information
on the statistics of the uncertain parameters and disturbances. How-
ever, we do not assume convexity or even connectedness of the model
set or of the disturbance set. Still, the optimization problem in our ap-
proach is always convex, and the control law is able to robustly en-
force constraints and trajectory convergence, with a probability higher
than a user-defined value p. Furthermore, for a given value of p, the
computational complexity of our approach is completely independent
of the complexity of the model set. The key point enabling to achieve
these features is a shift of paradigm, from a deterministic algorithm to
a randomized one, i.e., an algorithm that relies on random choices in
the course of its execution (see, e.g., [13]). Indeed, a key step in our
main algorithm (Algorithm 4.1) is the solution of a scenario FHOCP,
in which we do not consider all possible outcomes of uncertainty and
disturbances, but only a finite number M of randomly chosen instances
of them, named the “scenarios.” A randomized approach for MPC has
been studied also in [14], [15], by using a Monte Carlo technique. How-
ever, Monte Carlo approaches may be very computationally demanding
and can not handle in a straightforward way the presence of state con-
straints. Randomization has been used also in [16], in the context of
chance-constrained MPC. However, in [16] there is no guideline on
how to choose M in order to have the guarantee that the probability
of success is at least p (which is instead one of the features of the
present approach) and, moreover, the resulting optimization problem
is a mixed-integer linear program. On the contrary, the approach pro-
posed here, named MPCS (MPC via Scenario optimization), exploits
relatively recent results in Random Convex Programming (RCP, see
[17]-[20]) to provide an explicit link between M and p. Moreover, we
introduce a slack variable, the “constraint violation,” which renders the
scenario FHOCP always feasible, and that can be used to monitor the
extent of the (possible) violation of the involved constraints. Further,
we show how scenario optimization can be embedded in a receding
horizon scheme, in order to provide a feedback controller that gives
probabilistic guarantees of robust stability and constraint satisfaction.
The approach here proposed shall be particularly interesting in all those
cases where the assumptions underpinning the existing deterministic or
stochastic approaches for robust MPC are not met; for example, when
the dependence of the system matrices on the uncertain parameters is
not affine.

II. PROBLEM FORMULATION
Consider the following uncertain, discrete time LTI model:
41 = A(f)zy + B(8)u + B, (0)n 1)

where ¢ € Z is the discrete time variable, z;+ € R" is the system state,
u, € R™ is the control input, v+ € I' C R™” is an unmeasured
disturbance vector, § € © C RY is the vector of uncertain parameters,



and A(#), B(#), B,(8) are matrices of suitable dimensions. Let us
consider the followmg assumptions.

Assumption 1: (Uncertainty description) The sets I' and
Y = {A(9), B(9), B4(8) : 8§ € O} are bounded. We assume
~¢ and ¢ to have stochastic nature, and we let Py denote the probability
measure on O, and P, the probability measure on I'. Variables ¢ and
~¢ are independent. Moreover = {+0,71,...} is an independent
identically distributed (i.i.d.) sequence and we let P3° denote the

probability measure on this sequence. |
Assumption 2: (Robust stabilizability) The pair A(#), B(6) is sta-
bilizable for any # € O. |

The control problem is to regulate the system state to a neighborhood
of the origin, subject to (possibly uncertain) input and state constraints
x¢ € X(#), uy € U(#), Vt. The next assumption characterizes the
constraint sets.

Assumption 3: (State and input constraints) For any § € O,
the sets X(#) C R"™ and U(#) C R™ are convex; they contain
the origin in their interiors and they are representable by: X(6) =
{x €R": fx(x.8) 0}, UF) ={u e R™: fu(u,8) < 0}, where
=< denotes element-wise inequalities, each entry of the functions
fx tR"x0 = R", fu : R" x ® — RY is convex in = and u,
respectively, and r, ¢ are suitable integers. |

The parameter # has been included in the constraints to account for
practical applications where, for example, a convex function of the
states (e.g., energy, load) has to be limited below some threshold, and
some parameter in the function or the threshold itself depend on un-
certain physical quantities (e.g., maximal energy, breaking load). As-
sumptions 1 and 3 are quite mild, since © may be unbounded and of
any form, no assumption on X, I' is made except for boundedness, no
restrictions on how the parameter 6 influences matrices A(#), B(6),
B.,(6) are imposed, as long as the system is stabilizable, and finally no
assumption on the shape of the convex sets X(6), U(8) (e.g., polytopic,
ellipsoidal, ...) for given # € © is made. Mixed constraints of the form
(z,u) € Xu(8),where Xy (#) C R™ xR™ is a convex set, are not con-
sidered here for simplicity, but they can be straightforwardly included
in our problem settings. Due to the presence of the generally nonzero
unmeasured disturbance ., regulation of the system state to the equi-
librium # = 0, W = 0 can not be attained. Rather, we can require
regulation to a neighborhood of the origin, described by a terminal set,
which is robustly positively invariant under a terminal control law.

Assumption 4: (Terminal set and terminal control law) A convex set
X and a linear terminal control law v = Ky =, Ky € R™>" exist for
system (1), such that Xy = {x : fx,(2) < 0}; A(§)a+ B(#) Kz +
B,(f)y € X5,V0 € ©,Vy € I',Vx € Xy; finally fx(z,0) <0,
fo(Kpz,0) £0,V¥0 € ©,Ve € Xy, where fx, : R" — R’ has
convex components, and [ is a suitable integer. |

A possible method for constructing a terminal set and a terminal con-
trol law satisfying Assumption 4 is to apply results in quadratic stability
and rejection of bounded disturbances for uncertain LTI systems, see,
e.g., [21], [22] and the references therein. Moreover, there is a number
of contributions in the literature concerned with the computation of ap-
proximations of the (minimal) robust positively invariant terminal set
Xy, see, e.g., [23], [24] and the references therein. In the rest of this
note, we parameterize the control input as

ue = Kypxe + 4 2)
where Ky is the terminal control law of Assumption 4 (which is as-

sumed to be known and given), and v¢ is a control correction to be
designed. Plugging (2) into (1), we obtain the discrete-time model

Ti41 = Acl(H)mt + B(l‘))?)t =+ BW((.))'W (3)

with 4 (9) =
opments.

A(f)+ B(8)K ¢, which will be the basis of our devel-

III. SCENARIO-BASED FINITE-HORIZON
OPTIMAL CONTROL PROBLEM

Suppose that, at a given time instant ¢, the state x+ of (3) is observed.
We consider the problem of determining a corrective control sequence
on a horizon of N instants forward in time. To this end, we build a
randomized finite-horizon optimal control problem, as described next.
Let V be the chosen horizon length, and let v, j = 0,1,..., N — 1,
be the NV predicted control corrections to be applied to (3), from ¢ to
t+ N —1, given the knowledge of the state at time ¢. From (2), the corre-
sponding predicted control input sequenceis ujj; = Ky +vj,J =
0,1,..., N—1.Byusing model (3), we thus obtain the predicted values
of the states as linear functions of the current state x,, of the predicted
(to-be-determined) control sequence V; = ['zv(;rl ¢ v 1] JT €
R™™  and of the disturbance sequence ~

zip= AL+ OV + Y000y, j=1,....N (4

where ®,(f), Y;(#) are suitable functions of the model matrices,
Aa(8), B(#), and B.(6). However, the predictions obtained via
model (3) are uncertain, since they depend on # and on ~. In our
approach, we deal with this issue by considering a discrete set of
predicted state and input trajectories, obtained for a number M of
randomly extracted scenarios of # and ~ at time f. More precisely, let
us collect these random parameters in § = (6,7),8§ € A = © x '™,
As a consequence of Assumption 1, we have that 6 has a probability
measure that we denote with P, which is the product measure of
Ps and the measure P5° on v: P = Py x P°. Consider then M
independent extractions 6( U 6”1) of &, constituting the sce-
narios, where each scenario has the probability distribution P, and
let w, = ( 651% o, 6 denote the “multisample” of scenario
extractions at time t. The probability distribution on w; is given by
P*. Based on the random scenarios, we obtain M different state and

input predictions from (4), namely, for: = 1,..., M
) =0
oy = AL )+ 200V + T, 007) "
j=1,...,1 N,
5Q_AWM+UW j=0,...,.N—1 5)

where (950 , vf” )= 6Ei) . Let us now introduce the following cost func-

tion:
N—1 N—1
J(zi,wis Vi) = vmaxM<Z d(r]‘t Xy¢) + Z v]rtJX1:jt> (6)
=0 j=0

where d(z, Xy ) is the distance between « and the terminal set X ¢, com-
puted in some norm || - ||: d(z, X§) = l]élixn |lz—y A=AT >0
yEXy

is a weighting matrix chosen by the control designer. In the following,
with a slight abuse of notation, we indicate the state and input con-
straint sets as X(&), U(§), respectively, and the related convex func-
tions in Assumption 3 as fx (x, ), fu(u, é). Moreover, we transform
the hard constraints of Assumption 3 into soft ones, by introducing a
slack variable ¢, € R, ¢, > 0. Then, the scenario-based FHOCP is a
random convex program (see [20]) defined as follows:

P(ae,we): min  z¢ + age (7a)
Vi,zt,qt
subject to
J(l’t Wi, Vt) S Zt (7b)
Fx(a).00)) =10 20; j=1,....N-1.i=1...M
(70)



fu("ﬁﬁ”) —1¢;, <%0; j=0,....,.N—-1,i=1,...,. M
(7d)
P @y ) =1 20, i=1,... 00 (Te)
q: 2 0. (76)

In (7a), the weighting scalar « > 0 is chosen by the control designer,
and 1 denotes a column vector of appropriate length containing all
ones. We denote with V{ (2¢,we) = {0g)¢seees Un_1je)s 25 (Tes wi)
and ¢ (¢, w¢) an optimal solution to (7).

Remark 3.1: (Worst-case cost and constraint violation) Due to the
presence of constraint (7b), the value z; is an upper bound of the worst
case cost with respect to all the M extracted scenarios. We thus refer
to z; as the “worst-case cost.” Moreover, we note that the use of the
soft constraints (7¢)-(7e) imply that (7) is always feasible. In partic-
ular, by using a sufficiently high value of « (e.g., 10" times higher than
the typical value of z;), the optimal value of ¢; turns out to be neg-
ligible whenever the problem with hard constraints (i.e., with ¢; set a
priori to zero) is feasible. Contrary, when the problem with hard con-
straints is not feasible, the variable ¢; provides an indication on “how
much” some of the constraints are violated. For this reason, we refer to
¢+ as the “constraint violation™ level. Finally, we note that there is no
constraint violation in (7b), i.e., z; is always greater than all the cost
functions corresponding to the sampled scenarios, and in particular it
is always an upper bound of the distance between the state x; and the
terminal set Xy [see (6)]. This feature is important for our convergence
result in Section IV. |

Remark 3.2: (Choice of cost function and input parameterization)
Prediction of the state trajectories in a closed loop fashion is quite
common in the context of robust MPC, see, e.g., [5], [25]. In partic-
ular, we adopt here the input parameterization (2), and we optimize
over the control corrections v;¢, j = 0,...,N — 1, ie., over N'm
decision variables. Moreover, we chose as stage cost the distance be-
tween the state and the terminal set, plus a quadratic penalty on the
control correction. Indeed, these choices of control parameterization
and cost function are not meant to be the sole possibility, neither the
optimal, for the proposed approach. Generalization to other kinds of
input parameterization (e.g., disturbance-feedback [8], [25]) and cost
function (like a standard quadratic stage cost) can be done with some
technical modifications in the proofs of the results reported in this note.
|

The optimization problem 7(r:,w;) can be rewritten in a more
compact standard form. By collecting the optimization variables
(Vi, zt,q¢) in vector s; € HmNJrz, the cost can be expressed as
z + aq = ¢! s, where ¢ = [0,...,0,1,a]". Moreover, it can
be noted that, for any fixed value of 6,, due to linearity of (5), the
constraints (7b)-(7f) are convex in the decision variable s; and in
the state x;. Finally, these constraints can be formally expressed
compactly as h(s;,z¢, 6 ) < 0, for all i = 4,...,M, where
ho: ROV % R x A > R is defined as h(s;, a1, 60)) =
max{j OIIldX {f)( (,13‘1 5(1)) —1q., fu (qut 6( )) . 1(_[t}

Y

fo(’rtz,-f\f“> Laqw, —qe, J (v, w3 Vi) — zt}. Notice that

h(se, 2, 651)) is convex in both s, and ¢, since it is the point-wise
maximum of convex functions. The scenario FHOCP can hence be
rewritten as

Plae, we) : minc' s
st
subject to : h(et,frt, ) <0,i=1,..., M. 8)
We denote with s7 (@, w¢) = (VI,z,¢f) an optimal solution of

P(x¢,w:). Notice that, due to the way it has been defined, problem

P(ay,we) is always feasible. We further assume that this problem
always attains a unique optimal solution.

A. Properties of the Scenario FHOCP

‘We now consider the following problem: suppose that, given the state
x+, we solve problem P(z;, w¢). Then, we ask what is the probability
that the computed optimal control sequence Vi (z¢, w;) is able to sat-
isfy all state and input constraints over the chosen horizon, and to drive
the state trajectory to the terminal set at the end of the horizon, within
the computed optimal constraint violation g; . Formally, this is the prob-
ability (with respect to &) with which h(s;, 2+, §) < 0, where we notice
that & is now evaluated at the optimal scenario solution sy, and the state
and input trajectories that enter the definition of & are the “actual,” un-
certain, ones, obtained from model (3) at a random 6 = (4, ~). So, we
define the reliability R of the scenario-FHOCP as

R =P{6: h(s{,zt,8) <0}

Notice that R € [0, 1] is itself a random variable, since it depends on
sy, which in turn depends on the random multiextraction of the sce-
narios wy, hence R = R(w:). Indeed, for some extractions w; the re-
liability can be good (close to one), and for other extractions it can be
bad. It is therefore critical to assess the a priori likelihood of these two
situations, that is to precisely quantify bounds on the probability of the
“bad” event where {R < p}, being p some a priori assigned level of
reliability. To this purpose, we exploit the fact that problem P (x¢, wy)
belongs to the class of so-called Random Convex Programs (RCP) (see,
e.g., [17]-[20]) and, in particular, the result in Theorem 1 of [19], con-
cerned with feasible random convex programs, applies to our context.
The following key result directly follows from [19, Theorem 1], see
also [20, Theorem 3.3].

Theorem 3.1: Letd = mN + 2 be the number of decision variables
in problem P (x¢, wy ), letp € (0,1) be a given desired reliability level,
let 3 € (0,1) be a given small probability level (say, 3 = 10™?), and
let M be an integer such that

B(p,d, M) < ©)

with ®(p.d. M) = Y720 (M)(1 = p)’p™ /. Then, it holds that
PY {wi: R(w) 2 p} > 1- 5. (10)
m

Remark 3.3: (Number of scenarios and “certainty equivalence”) The
practical importance of the result in Theorem 3.1 stems from the fact
that the number M of scenarios necessary to fulfill condition (9) grows
mildly with the inverse of 3. More precisely, [20, Corollary 5.1] states
that condition (9) is implied by M > (2/(1 —p)) (In 37" + d), thus
M grows at most logarithmically with 3~ [tighter values of M for
given 3 and p can be obtained by inverting numerically (9)]. This means
in turn that the parameter 5 may be fixed by the designer to a very
low level, say 5 = 1072, or even 8= 10712, and still the number
M of scenarios necessary to guarantee (10) remains manageable. With
such small values of 3, we may safely say that, to all practical engi-
neering purposes, the event { R(w;) > p} is the “certain” event. In
other words, the possibility that { R(w;) > p} is not satisfied by the
scenario problem is so remote that, before having any concern about
it, the designer should better verify the validity of many other assump-
tions and approximations in the model. We will adopt such a “certainty
equivalence” principle in the following, and we will use the expression
“with practical certainty” as a synonym of “with probability larger than
1 — 3. where 5 > 0 is some extremely small value. This simplifies
greatly the practical application of scenario techniques, and makes the



whole approach more clear and understandable by both theoreticians

and control practitioners. |
The properties of the scenario FHOCP are resumed in the following
proposition.

Proposition 3.1: (Finite horizon robustness) Given the state x; of
(3) at time ¢, consider the scenario problem P (x¢, w;) as an instrument
to derive a finite-horizon control sequence Vi = {vgs, ..., U _1)¢}
to be applied to the (3) at the subsequent instants ¢, t+1,...,t4+ N —1.
Let the number M of scenarios in problem P (x;, w;) be chosen so to
satisfy (9) for given reliability level p € (0,1) and very small 5 €
(0,1). Then, with practical certainty it holds that the computed control
sequence:
a) steers the state of system (3) to the terminal set X in /V steps
with probability at least p and constraint violation ¢; , i.e., : P{6 :
Fx (rein,8) = 1g; 20} > pr

b) Satisfies all state constraints with probability at least p and con-
straint violation g7, i.e.,: P{6 : fx(w+j,6) —1g; 2 0,Vj €
[LN]} > p

c) Satisfies all input constraints with probability at least p and con-
straint violation ¢/, i.e.,: P{6 : fu(uiy;,8) — 1gf 2 0,Vj €
0,8 = 1]} > p.

|

The proof of this result follows immediately from Theorem 3.1 :
(10) states that, with practical certainty, the optimal solution s; of the
scenario problem satisfies i(s;, z;,8) < 0 with probability at least p,
which indeed implies that points a)—c) in the corollary hold.

Remark 3.4: (Relationship with deterministic approaches) In a de-
terministic approach to robust MPC, a problem similar to (7) has to be
solved for all possible values of 6 € A. When the problem is convex
with respect to  (which happens, for instance, when the uncertain ma-
trices and/or the additive disturbance belong to polytopes [2], [7]), de-
terministically robust approaches are indeed well-established and shall
be preferred to the scenario approach, especially if deterministic ro-
bustness is critical in the considered application. In all other cases, de-
terministic approaches are generally intractable, unless the problem is
manipulated so to satisfy convexity assumptions, at the cost of higher
conservativeness and reduced feasibility. In these situations, the sce-
nario approach proposed here is a viable alternative to deterministic
techniques, since it is always convex and it can be efficiently solved
also with a large number of samples, while still giving probabilistic
guarantees on the robustness of the solution, as shown in the example
of [26]. |

The remaining part of this note is devoted to analyzing what hap-
pens when a scenario FHOCP is solved repeatedly in time and used to
control the plant in a receding-horizon fashion. In a receding-horizon
approach, which is the key feature of MPC, only the first control cor-
rection in the optimal sequence V; is applied at time ¢, and then the
FHOCP is solved again at time ¢ 4 1, by exploiting the knowledge of
the state @41, etc. In the next section, we propose a technique for incor-
porating the scenario FHOCP into a suitable receding-horizon scheme,
and we derive probabilistic guarantees of asymptotic convergence and
constraint satisfaction for the resulting closed-loop system.

IV. MPC SCHEME BASED ON SCENARIO OPTIMIZATION

We here introduce a receding-horizon implementation of a con-
trol algorithm based on the scenario FHOCP, as described next.
The notation is set as follows: “x” variables, such as z;, ¢/,
Vi ={v)i»--+»VN_1):}» denote the optimal solution of the scenario
optimization problem P(z,,w;) at time ¢, given x; “~" variables,
Zts Gty );'t, denote, respectively, two scalar values and a sequence of
N vectors of dimension m, as defined in the algorithm below; finally
plain variables, z., ¢, V., denote the running values of the variables
z, ¢ and of the sequence V = {vg,...,vn—1}¢} in the algorithm.

The first entry in V;, namely v ¢, is the actual control correction that
is applied to the system (3) at time ¢. The subsequence composed
by the last N — 1 elements of V; is denoted with vy.n_1),. We are
now in position to describe the algorithm for MPC based on Scenario
optimization (MPCS).

Algorithm 4.1: (MPCS algorithm)

(Initialization) Choose a desired reliability level p € (0,1)
and “certainty equivalence” level 3 € (0,1) (say, 3 = 1077, or
8 = 107'?). Let M be an integer satisfying (9). Choose = € (0,1]
(see Remark 4.1 below for the meaning of = and for guidelines on
its choice). Given an initial state x, extract wy according to IF"M,
solve problem Pas(zo,wo) and obtain the optimal control sequence
Vo = {vj0:vijo---»¥N_1)0}, and the optimal objective z; and
constraint violation ¢g. Set 2o = 25, o = 4, Vo = V{, and apply to
the system the control action ug = Krxzo + vgjo.

1) Let ¢ = t + 1, observe wx:, and set ];'t =

{’Ul\z—le---71\\’—1\1—1,0} = {vlzl\f—1|t—l-/0},
Zy = max (0, z—1 — d(z—1, X)), Gt = qi—1;
2) Extract the multisample w; according to P and solve problem
Prr(ze, we). Let (V' 21, qi') be the obtained optimal solution.
3) Evaluate the following collectively exhaustive and mutually ex-
clusive cases:
3.21) If Zt* > (Zf,_1 — Ed(;rf_1 7Xf)) and 5f < (l(l’f,, Xf),
thenset V, = Vi; 2, = 0; qr = qt;
3b) If ZZ > (:’Zt71 - Ed(iL’tfl,Xf)) and z"t 2 d(.’l’t, Xf),
then set Vi = Vi) 2¢ = 245 qr = §1;
3.0)If 2f < (zi—1 —ed(@i—1,Xy)), thenset V, = V/; 2z, =
20540 = 4f
4) Apply the control input u; = Ky ¢ + o, then go to 1).
|

Remark 4.1: The inequality z; < (z¢—1 — 2d(x¢—1, Xy)), checked
at step 3) of the MPCS algorithm, can be interpreted as a verifica-
tion of a required minimum improvement, in terms of worst-case cost,
achieved by the newly computed optimal solution (V/, =7, ¢;) of the
scenario problem at time step ¢, with respect to the previous step. The
user-defined parameter ¢ € (0, 1] influences such a requirement: the
closer the value of ¢ is set to 0, the more likely it is that case z; <
(zt—1 — ed(z+—1. X)) is met, so that the MPCS algorithm relies, at
each time step, on the newly computed optimal solution. Vice-versa,
the closer is the value of £ to 1, the more likely it is that the comple-
mentary condition z; > (z;—1 — ed(xi—1,Xy)) is detected, so that
the MPCS algorithm employs the previously computed solution. Wl

The next results is concerned with the guaranteed properties, in terms
of constraint satisfaction and convergence to the terminal set, of the
closed loop system obtained by applying Algorithm 4.1. A numerical
example is given in [26].

Theorem 4.1: (Properties of Scenario MPC) Let Assumptions 1 — 4
be satisfied and let p € (0, 1) be a chosen reliability level. Let vy, t =
0,1, ... denote the sequence of control actions produced by Algorithm
4.1, and consider the closed loop system obtained by applying to (1)
the control law u; = Kyx: + vg¢. Then:

(a) With practical certainty, at all time steps ¢ = 0, 1, .. ., the prob-
ability that the state and input constraints are satisfied with con-
straint violation ¢, is atleast p, thatis P{6 : fx (w¢41,6)—1gs =
0N fuug,6) —1ge K0} > p, t=0,1,...

(b) Algorithm 4.1 either: (i) makes the state trajectory converge
asymptotically to the terminal set, i.e., tliuolo d(xe,Xy) = 0, or
(i) there exists a finite time #* such that, with practical certainty,
the control sequence {vo|+,Vo|g*41,---Vojesyn—1) drives
the state of the closed-loop system to the terminal set at time
t" + N — 1, with probability at least p and constraint violation
qe-.

]



Proof:

Preliminaries: Notice first that, for any + > 0, if ; € X then
the optimal solution to problem P (x¢, w) is (V/, z{, q7 ) = (0,0,0),
since the terminal control law (i.e., with V; = 0) is able to keep the
predicted state trajectory in the terminal set while satisfying all con-
straints. Also, if z; = 0 is the optimal objective of problem P (z¢, w¢),
then z¢+ € Xy, since z; is an upper bound of d(z¢, Xy) (see also Re-
mark 3.1), therefore 2z = 0 <= 2+ € Xy. Let then 2:¢ & X;.

Proof of Statement (a): At time ¢ = 0, Proposition 3.1 guar-
antees with practical certainty that the first control correction satisfies
the constraints on uy and 21 with probability no less than p and con-
straint violation q¢; = g¢{. At any generic time step ¢t > 1, the vari-
ables (lNJt, Z¢, q¢) are computed. Then, two cases may occur. If z; <
(zt—1 — ed(x¢+—1, X)), then case 3.c) is detected, and the first element
vy ¢ of the optimal sequence V{ is applied to the system. Being this se-
quence the solution of a scenario optimization problem, with practical
certainty the probability of satisfying state and input constraints is no
less than p, with constraint violation ¢; = ¢; . If, on the other hand,
zf > (2e—1 —ed(x¢—1,Xy)), then we are either in case 3.a) or 3.b),
and in both cases the element v}, for some & € [1, N — 1], is ap-
plied to the system. Being this value part of the solution sequence V;_;,
with corresponding constraint violation g;_;,, again the probability of
satisfying state and input constraints is no less than p, with constraint
violation ¢; = ¢: = g;j_;,. Thus, in any case, with practical certainty,
at each time step the MPCS algorithm guarantees satisfaction of state
and input constraints with probability no less than p and constraint vi-
olation ¢;.

Proof of Statement (b): Each run of Algorithm 4.1 may have
one of two possible behaviors, depending on whether or not there ex-
ists a finite time ¢ > O such that z; > (z(—1 — ed(7xi—1, X¢)) and
Zy < d(w:,Xy), that is, whether or not the situation in step 3.a is
ever satisfied. We then name A the situation when condition in step
3.a is met at some finite ¢ > 0, and A the complementary situation
when this condition is not satisfied at any finite time, that is when
zi < (z—1 —ed(&—1,Xy)) or Z¢ > d(&,Xy) holds for all £ > 0.

I Let us first consider the situation of case A. Consider a
generic time t. At step 3) of the MPCS algorithm, if
zi > (ze—1 — ed(x+—1,Xy)), then, since it is assumed that we
are in situation 4, it must hold that Z; > d(x:, Xy), thus case
3.b) occurs, and the values V; = ))t and z; = Z; are set. Now,
recalling that Zx = max(0, z+—1 — d(x+—1,Xy)), two cases
may occur: either 2, = 0 or 2, = z—1 — d{zi—1, Xy) > 0.
If Zz = 0, we have 0 = Z; > d(ay, Xy), ie., d(xe, X5) = 0,
which would imply that the terminal set has been reached.
Otherwise, if Z; = 21 — d(wf_l, Xy) > 0, then we have:

=% > d(@,Xy) 20 an
and
Zt— Z—| =E — Zi—1 = Zi—1 — d(iL’i—lv Xf) - Zt—1
= — d(xi=1, X5).
Thus
2t — 2p—1 < — S(l(fjjtfl.X_[)-/ Vai—1 € Xf (12)
and 2z — 21 =0 <= a1 € Xy. (13)

On the other hand, if at step 3) of the MPCS algorithm it hap-
pens that z{ < (z,—; — ed(@,—1,Xy)), then case 3.c) occurs,
and the optimal values V;" and z; are retained, i.e., z; = z;,
V; = V7. In this case, it is straightforward to note that (11)—(13)
still hold true. The same reasoning can be repeated for any time
step, as long as the case z; < (z¢—1 — ed(w+—1,X5)) or Z¢ >

d(x¢, Xy) holds true as assumed, so that we can conclude that
the variable z; enjoys the following properties:
ze > d(ze,X5) > 0,Vt >0
2 =0 <= 2 € Xy
zipt — 2 < —ed(xe, Xy), Ve € X5, VE>0
s — 2 =0 <= 2 € X (14)

Properties (14) are sufficient to prove convergence of the state
2 to the set Xy:

0< tlim d(ze, Xy) < tlim 2z =0, tlim d(z¢,Xy) = 0.

Therefore, we obtain that in case A the MPCS algorithm guar-
antees that tlimﬂ d(ze, X5) = 0.

II. Let us next analyze what happens in case A. Let £ > 0 be the

time instant at which the case z{ > (z—1 — ed(xi—1,Xy)) and
Z < d(xy, Xy) is met for the first time, and let t* < 7 be the last
time at which case z; < (z¢—1 — ed(x¢—1, Xy)) was satisfied,
that is the last time previous to ¥ when an optimal command
sequence was retained, together with its constraint violation ¢; ,
according to case 3.c) of Algorithm 4.1;let ¢ = # — " > 1.
According to step 3.a) of the MPCS algorithm, we set

Vi=Vy, 2 =0, ¢ = . (15)

By

Thus, at step 4) of the algorithm, the control move u; = K ya+
vo|z is applied to the system at time t, where VoF = vf‘t*, ie.,
o7 is the optimal correction predicted for time t* + ( = ¢,
computed at time t*. At time step t = % + 1, the state vari-
able 7, is observed and (f/’%H , Zix1. Giy1) are computed as
Zip1 = max(0, zz — d(w7, X5)), Gi41 = a1,

l>t+1 = {7)131\’71\17 0}

Since (15) holds, it must be % = 0. Then, 2/, ¢/, and
Vi, are computed at step 2), and we notice that, by definition,
z{4, > 0. Therefore, at step 3) of the algorithm either (i) case
3.a) {zy > (27 —ed(xs, Xy)) and Zpy < d(@i4q, Xp)}
is detected again, or (ii) one of cases 3.b) or 3.c) are detected,
which would imply, respectively, 0 = 2,1y > d(x,q, Xy),
or 0 < d(@341,Xy) < 274y = %41 = 0. Hence (in either
case) i1 € Xy, so that convergence to the terminal set would
be achieved. Consider then case (i): the values V;; = );'tH,
241 = 0, and ¢z = ¢; are set in the algorithm, and the con-
trol move w4y = Kyageq + vp 11j¢+ 18 applied to the system.
Now, the same circumstances actually reproduce for all time
stepst =+ k, k > 0, so the algorithm is such that the optimal
input sequence V;, computed at time ¢* by solving a scenario
FHOCEP, is the one actually next applied to the system, and the
related constraint violation ¢; is retained for all #+ > #*. Thus, in
case A, there exists a finite time ¢* such that the sequence V;
is applied to the system for all subsequent instants t = ¢* + k,
k=0,...,N —1.Now, the sequence V- is the result of the so-
lution of the scenario-FHOCP P (x;+ , w+ ), and Proposition 3.1
states that, with practical certainty, we have R(w¢+) > p, where
R is the reliability defined in Section III-A of the technical note,
which means that P{6 : hi(s}, 2+, 6) < 0} > p. Therefore, in
the situation .A, there exists a finite time ¢* at which an optimal
control sequence is computed by solving a scenario-FHOPC and
next applied to the actual system for the subsequent N time in-
stants: we can hence claim with practical certainty this sequence



will satisfy the problem constraints and reach the terminal set
within the time window from ¢~ to #* + N, with probability at
least p and constraint violation g; .

u
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Vector Measures of Accuracy for Sampled
Data Models of Nonlinear Systems

Diego S. Carrasco, Graham C. Goodwin, Fellow, and Juan
1. Yuz, Member,

Abstract—In this technical note, we introduce several novel vector mea-
sures of accuracy for sampled-data nonlinear models. The new definitions
of truncation error assign a unique error bound to each component of the
state vector. We argue that this new definition of truncation error is well
suited to control and system identification problems where certain combi-
nations of states, e.g., the system output, are of particular interest. We apply
the new measures of accuracy to a recently developed model described in
[1] and establish several associated properties which were previously un-
recognized.

Index Terms—Nonlinear systems, numerical analysis, sampled data con-
trol.

[. INTRODUCTION

Obtaining an exact sampled-data model for a continuous time non-
linear system is an intractable problem [2]. Hence some form of nu-
merical integration is typically used to obtain approximate solutions
[3], [4], e.g., Euler or Runge-Kutta methods. Under these conditions,
the accuracy of the approximate model is of importance. However, this
raises the question, “Accuracy in what sense?”. In the current technical
note we introduce several measures of accuracy which reflect the in-
tended application.
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