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ABSTRACT 

The Highway Safety Manual (HSM) provides an algorithm, and associated knowledge, for predicting 

crashes for different facility types. This algorithm requires calibration to current local conditions to 

enhance transferability, using a procedure that is prescribed in the HSM. However, there is no 

procedure for assessing transferability. To fill this void, this paper is focused on the methodology for 

assessing the transferability of the key HSM algorithm components, the baseline Safety Performance 

Function (SPF) and the Crash Modification Factors (CMFs), using the Italian road network for an 

illustrative case study. The calibration of the HSM crash prediction model is investigated with a 

dataset for two-lane two-way rural highways, to demonstrate tools that could be used by jurisdictions 

around the world for assessing the validity and compatibility of the CMFs and base models, as well as 

the performance of the complete algorithm. A comparison with the results from a similar study carried 

out in Canada is provided in supplementing the conclusions on the transferability of the HSM 

algorithm outside the United States. 
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BACKGROUND 

In Europe and other parts of the world, road safety evaluation methods used by transportation 

professionals are traditionally descriptive, and are focused on summarizing and quantifying 

information about crashes that have occurred at a specific roadway site. In Italy, for instance, the 

official guidelines relating to road safety analysis do not provide analytical tools and techniques for 

quantifying the potential effects on crashes of decisions made in planning, design, operations, and 

maintenance of roadways (1). Recently the European Commission (EC) has adopted the directive 

2008/96/EC that requires the establishment of procedures relating to road safety impact assessments, 

and the results of its implementation in the member States is forthcoming (2). 

The recent evolution in road safety analysis from descriptive methods to quantitative and 

predictive analyses will greatly facilitate the EC directive. New North American initiatives such as the 

Highway Safety Manual (HSM) (3) are providing guidance, based on the best available factual 

knowledge, to professional engineers for quantitative crash analysis and safety evaluation. The HSM 

is becoming a standard of practice for highway safety professionals just as the Highway Capacity 

Manual currently is for traffic engineers, and is being implemented in state and local highway agencies 

in the US and other countries. A key issue in facilitating the worldwide application of the HSM is the 

transferability of the predictive models to different road networks in environments that are quite 

different from those in the US.  

While the HSM could be a valuable resource for fulfilling the EC directive, the European 

roadway systems, weather, animal populations, terrain, driver training and behavior, and crash 

frequencies and severity patterns can result in problematic crash predictions from the HSM algorithm, 

which was developed from US data. At a minimum, the algorithms presented in the HSM should be 

properly calibrated and validated, and, where necessary and possible, new statistically-based 

algorithms should be developed for environments that are substantially different from the US.  

Part C of the first edition of the HSM provides the crash prediction algorithm essentials – base 

models and CMFs – for segments and intersections for three types of facilities: rural two‐lane 

undivided (2U) highways, rural multilane highways, and urban and suburban arterials (3). 

According to the HSM procedure, the expected collision frequencies calculated using the 

baseline SPFs have to be modified, using Crash Modification Factors (CMFs) listed in HSM Part D 

(3), to help account for changes in features from baseline conditions at a specific site, such as lane or 

shoulder width for two-lane roads. This prediction is refined using the Empirical Bayes (EB) method 

(4) for facilities with a known crash history. Equation 1 summarizes the procedure for predicting the 

number of collisions (Npredicted) at a site (before applying the EB method): 

 

Npredicted = Cx × Nb × CMF1 × CMF2 × … × CMFn                                                                                 (1) 

 

where Nb is the number of crashes predicted by the SPF for specified base conditions, and Cx is a 

calibration factor for applying a base SPF from a different jurisdiction and/or time period. This factor 

can be simply calculated from the total number of crashes for a sample set from the jurisdiction of 

interest divided by the sum of the predicted crashes for the sample using Equation 1 without the 

calibration factor. The HSM documents details of this simple calibration procedure, including 

minimum sample sizes of 30-50 sites with 100 crashes per year. However, there is no methodology for 

assessing the validity of the results, i.e., the transferability of the algorithm to a specific jurisdiction. 

There has been some research related to the adoption of the HSM predictive techniques in 

different jurisdictions in the US such as Texas (5), Louisiana (6), Oregon (7), as well as in other 

countries like Italy (8), Canada (9) and New Zealand (10). With the exception of the Canadian study, 

these efforts have principally focused on estimating and evaluating the size of the calibration factor for 

different facility types. The results have shown a wide variability in this factor even across US 

jurisdictions. The first two calibrations used a complicated, but conceptually more robust calibration 

procedure outlined in the HSM prototype chapter (11). The results of those calibrations indicated a 

slight under-prediction of the algorithm for Texas (Cx=1.12) and a more marked one for Louisiana 

(Cx=1.63). The Texas research further analyzed a data subset of two-lane rural horizontal curves. In 

that case, the results were less encouraging, indicating a Cx that varied between 0.76 and 1.8 across the 
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state, suggesting that the use of the calibrated algorithm for curves in Texas could be problematic. The 

Louisiana research focused more on comparing observed and predicted number of crashes with and 

without the EB method which, as noted above, is used to refine the predictions from Equation 1 for 

facilities with a known crash count. Not surprisingly, the EB method produced better results. The 

Oregon study (7) used the HSM-first-edition simplified calibration procedure (3) and estimated 

calibration factors of 0.74 for total and 1.15 for fatal-plus-injury crashes.  

Outside the US, the algorithm was calibrated for a central-Italy dataset for rural two lane 

undivided (2U) highways (8) using the complex HSM prototype chapter procedure. Six calibration 

factors were estimated, indicating a sizable overprediction. Cx varied between 0.11 and 0.40 when it 

was estimated section-by-section and between 0.35 and 0.38 when estimated for aggregated segments 

with averaged CMFs. The New Zealand study also used the complex calibration procedure and 

estimated a value of Cx of 0.89 for rural 2U roads (10).  

The variability in the calibration factors across, and even within, jurisdictions suggests that an 

evaluation not only of Cx, but also of the validity of SPFs as well as CMFs should be conducted when 

the HSM models are considered for application in another jurisdiction, particularly outside the US. 

This is because a Cx value that is substantially different from 1.0 may be capturing the crash prediction 

differences from variability in crash reporting thresholds and road environments as well as a lack of 

suitability of the baseline SPFs and CMFs.  

 

OBJECTIVES AND METHODOLOGICAL APPROACH  

The primary objective of the study was to explore methodology for assessing transferability of HSM 

algorithm as a whole, as well as its components – the baseline SPFs and CMFs. The main context of 

this investigation and illustration is a case study for Italian two-lane rural roads.  

One secondary objective was a comparison with the results from a similar study carried out in 

Canada (9) to supplement the conclusions on the transferability of the HSM algorithm outside the 

United States. Another secondary objective was to document the methods and results as an illustration 

of what it takes for jurisdictions to assess the transferability of the HSM crash prediction algorithm. 

The first step in the methodological approach for meeting these objectives was simply the 

calculation and the analysis of the calibration factor, following the procedure outlined in the HSM 

2010 release. 

As suggested earlier, baseline models and CMFs should be evaluated separately to assess the 

transferability of the HSM algorithm as a whole. This goal was pursued with the estimation of a local 

baseline model and the evaluation of each CMF in turn, followed by a comparison of the results with 

equivalent HSM information. 

To assess the global performance of the recalibrated HSM algorithm, the most appropriate 

goodness-of-prediction measures were selected based on a literature review and applied. The 

combination ultimately selected included the Mean Absolute Deviation (MAD) (12), the value of the 

recalibrated dispersion parameter (9), and the Cumulative Residual (CURE) plots (13). Further 

discussion of these measures is presented in a later section.  

 

DATASET USED 

The dataset used pertains to the Province of Turin, one of the eight Piedmont provinces in North-

Western, Italy. It has more than 2 million inhabitants in an area of almost 7,000 km
2
 (2,700 mi

2
). The 

topography is characterized by mountainous as well as hilly and plain areas.  

The Province of Turin’s secondary network contains 3,084 km (1,916 mi) of rural 2U roads. 

Official data for motor vehicle crashes available from the Italian National Institute of Statistics 

(ISTAT) pertain to 472 km (293 mi) (14) of this network. These are roads with an interprovincial 

service or those that link cities, large towns and other significant traffic generators, and include 

freeways and two-lane rural highways. According to the Italian Road Design Standard (15), the 

definition of rural 2U highways in the HSM matches two different typologies: the so-called functional 

type “C” minor collectors that attract traffic over medium distances, and type “F” local roads that 

primarily provide access to adjacent land and to the collector network.  
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Geometric and Traffic data 

Geometric characteristics and the annual average daily traffic volumes (AADT) are the main data 

required for the use of the HSM algorithms. According to the HSM, a highway must be divided into 

individual homogenous roadway segments with a minimum length of 160 m (0.10 mi) in order to 

apply Equation 1. Changes in factors such as AADT, lane and shoulder width, the beginning or end of 

a horizontal curve, and the point of vertical intersection for a crest or sag vertical curve are among the 

triggers for demarcating consecutive homogeneous roadway segments. 

To enable the fragmentation of segments, traffic volume reports and a geographical 

information system (GIS) provided by the Province of Turin were used. Road network features are 

expressed as vectors by points and polylines (road centerline). In addition, that database was combined 

with satellite imagery, aerial photographs, local cartography, and similar mapping sources for 

estimating parameters like driveway density (DD), roadside hazard rating (RHR), lane width, shoulder 

width/type, and presence of two-way left-turn lanes (TWLTLs). 

The summary statistics in Table 1 indicate the range of values for the key variables obtained 

for this study. Table 1 also indicates if data for a certain variable are required or are just desirable for 

the HSM calibration procedure.  

Overall, 242 homogeneous sections, totaling 115.35 km (71.67 mi), were defined. The 

freeway network was omitted from the 472 km of data mentioned above. Moreover, it was decided to 

omit segments in more mountain environments. This enabled closer matching of the radii of horizontal 

curve range with that for the data used for estimating the rural 2U segment SPFs that were used to 

derive the base models provided in the HSM (16). In addition, sites with an AADT of more than 

20,000 were omitted to match the domain of the HSM baseline SPF.  

 

Motor vehicle collision data 

The main source was the official collision data provided by ISTAT, which contains only those crashes 

involving at least one vehicle traveling on the road network and a personal injury, i.e., fatal plus injury 

crashes (F+I). The data are assembled by progressive kilometric stations, and no information is 

provided on whether or not a collision is intersection-related. That missing information was obtained 

from a second database provided by the Province of Turin (on which the ISTAT report is based on). 

The analysis period adopted, 2005 to 2008, had a total of 236 collisions recorded, and was the most 

recent one for which data were available. 

 

HSM CALIBRATION EFFORT 

As mentioned earlier, the Cx can be calculated when observed crashes are known for a specific site. 

Equation 2 recaps what was already stated, but also shows the parameters estimated from the segment 

homogenization process discussed above: 

  

Cx = Σ Nobserved / Σ Npredicted                                                                                                                      (2) 

 

where Σ Nobserved is the sum of the observed number of crashes, and Σ Npredicted is the sum of predicted 

crashes for the homogenous segments. The prediction for each segment comes from two basic steps: 

the estimate of Nb (from Equation 1), and then the adjustment of Nb by multiplying by the appropriate 

CMF values if there are differences from baseline conditions.  

 Table 2 depicts the results of that procedure for a study period of four years. The HSM 

recommends use of between three to five years of data and the random selection of between 30 and 50 

sites, but since this is a research investigation rather than an actual HSM application, all available sites 

have been used for the calibration. In fact, due to the inability to meet the recommended minimum of 

100 observed crashes per year in the calibration data, that choice was consistent with other HSM 

calibration studies (7) (17). (The HSM recommendations are somewhat arbitrary and, if nothing else, 

this study and the others mentioned, do provide the basis for fine-tuning the HSM recommendation in 

future editions, in particular, for the fatal plus injury collisions used in this study, for which smaller 

samples may suffice, given that these data are more reliable than those based on all crashes.) 
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The estimated Cx shows an overprediction of collisions by the HSM model by a factor larger 

than two. This overestimation was also found in the Canadian research cited earlier, which was based 

on 77.9 km of rural 2U roads in Ontario, and which estimated a fatal plus injury (F+I) calibration 

factor equal to 0.74 (9). 

A visual overview of predicted-versus-observed collisions for the data used in this calibration 

procedure is shown in Figure 1, disaggregated by AADT ranges. Since AADT is the only covariate of 

the HSM baseline model, it stands to reason that it will affect the predictive ability of the algorithm as 

a whole.  

The analysis of the plot reveals that the predictive ability for higher AADTs is not so good. 

Also, in accord with results from other studies (5) (8), it is evident that the HSM model tends to 

overestimate crash frequency for sections with few collisions and to underestimate it for those ones 

with more collisions. So it is not surprising that some authors have concluded that a constant value of 

Cx is not a suitable option for valid model transferability (8). However, for this case study, the use of a 

calibration function rather than a constant factor does not appear necessary since the majority of data 

are above the best fit line, as highlighted by the ellipse in Figure 1. The data points outside the ellipse 

are likely due to the extreme random fluctuation in the recorded collision count, an intrinsic feature of 

collision data. (The apparent outlier, with 19 observed crashes and just 3.10 predicted, does not 

materially affect the results or conclusions, so has been retained for the remaining analysis.)  

  

TRANSFERABILITY ASSESSMENT 

As suggested earlier, baseline models and CMFs should be evaluated separately to assess the 

transferability of the HSM algorithm as a whole.  
 

Local baseline model estimation and evaluation 

For this exercise, a model directly estimated from local data, considering only base conditions (such as 

absence of horizontal curvature, RHR=3, DD=5 per mile), was compared to the equivalent HSM base 

model. The data used are the same as that for applying the HSM calibration procedure, but this time 

the sites with AADTs higher than those applicable for the HSM baseline model were used to enlarge 

the dataset. Generalized linear modeling through maximum likelihood methods was chosen to estimate 

local model coefficients, using the Statistical Analysis System (SAS) software package and assuming 

the negative binomial error distribution for the observed crashes. The dispersion parameter of that 

distribution, which applies to a unit length of road according to the most recent literature (12), was 

also estimated in this process for use, as noted earlier, as a goodness of fit measure. 

Table 3 summarizes the results and the domain of validity of the local model. It also provides 

a comparison between the model estimated and the HSM one (with segment length converted to SI 

units). The local base model has an AADT exponent significantly larger (p=0.09) than the value of 1.0 

that was assumed, a priori, in the HSM model estimation.  

The local and HSM models are visually depicted in Figure 2. In calibrating the HSM baseline 

model, the multiplier, 0.440, from Table 2, was applied. Since the SPF domains are different, a 

comparison can only be made for AADTs between 5,000 and 17,800. The HSM baseline model, as 

expected, shows an over-prediction compared to the local one, and this bias is reduced when the 

calibration factor is applied. But the trend of the recalibrated HSM model appears similar to the 

estimated local one only for low AADTs. This is evidently due to the difference in AADT exponents. 

 

Evaluation of CMFs 
The procedure, which has been used for the Canadian study (9), consists of a separate evaluation of 

each CMF in turn. For this case study, it was possible to evaluate the CMFs related to the length, 

radius, and the presence or absence of spiral transitions for horizontal curves (CMF3r), driveway 

density (CMF5r), and roadside design (CMF10r) (3). As is evident in Table 1, other road features were 

considered in the segment homogenization, so the CMFs for such features could not be evaluated.  

For this procedure as applied, sites were initially grouped by the levels of the CMF in 

question, such as 1.0, 1.1, 1.2, etc. Then, to remove the “effect” of the CMF, its value was changed to 
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1.0 for all sites and new values of predicted collisions were estimated. With these new results, for each 

level, the sum of observed collisions was divided by the sum of predicted collisions (just estimated). 

This derived multiplier for each level was divided once again by the multiplier for the base condition 

level to normalize the result. The resulting ratio simply represents the influence of omitting the proper 

CMF value from the prediction algorithm for that specific level. A comparison between the 

normalized multiplier and the original CMF than indicates the suitability of the HSM CMF to describe 

local conditions for that specific level. When “the ratio compared to baseline” matches “the original 

CMF”, the CMF is suitable. However, these comparisons should be interpreted in the context of the 

standard deviation of the ratio of observed to predicted crashes, which was also calculated. Table 4 

shows the results of applying the procedure. The highlighted columns indicate the values that are 

being compared. 

It is difficult to come to conclusions given the relatively small number of collisions for most 

CMF groups and the high standard deviation of the ratio of observed to predicted crashes. 

Nevertheless, it is still informative to present and discuss the results, especially in the context of those 

from the Canadian study, which are reproduced in Table 5. 

For the Italian case study, for horizontal curvature, only the middle range of ratio (1.544) was 

consistent with the CMF value (1<CMF≤2); the ratio of 1.159 is consistent with the CMF indication 

that increased grade is associated more collisions, although the magnitude is not close to the CMF 

value (2<CMF≤3). Finally when the CMF is more than 3, there is no consistency with the ratio. The 

results for CMF3r are consistent with those for the Canadian study (Table 5).  

For all CMF levels related to driveway density and RHR variables, the ratios for the Italian 

case study are not consistent with the original CMFs, suggesting that the CMFs may be unsuitable for 

local Italian roadway characteristics. On the other hand, for the Canadian roadways, which may be 

closer in nature to the US ones used to derive the HSM CMFs, there is somewhat more consistency, as 

is evident in Table 5.  

 

GOODNESS-OF-FIT EVALUATION 

Several goodness-of-fit (GOF) measures can be used to assess performance of the recalibrated HSM 

algorithm. The combination of methods found in the literature as the most significant and appropriate 

for such an evaluation are Mean Absolute Deviation (MAD) (12), value of the recalibrated dispersion 

parameter (9), and Cumulative Residual (CURE) plots (13). The same indicators were used in the 

Canadian study (9). 

MAD is simply the average of the absolute values of observed ( Ŷ ) minus predicted (Y) 

crashes frequencies as shown in Equation 3, where n is the data sample size: 







n

1i

ii

n

YŶ
MAD                                                                                                                                (3) 

The recalibrated model predicts the observed data well, on average, when MAD is close to 0. 

However, MAD close to zero could still be obtained by a model that systematically under and over-

predicts for wide ranges of a variable. The CURE method (17) addresses this issue by providing the 

means to assess how well a model fits the observed data over the entire range of each independent 

variable. This requires the plotting of the cumulative residuals, defined as the difference between the 

observed and predicted values for each site, for values of a model’s variables. A good fit is indicated 

if, for the range of each covariate, or for the other CMF related variables, the adjusted cumulative 

residuals oscillate around the value of zero and lie between the two standard deviation boundaries that 

indicate a 95% confidence limit. 

The other GOF measure, the dispersion parameter, is such that larger its value, the more the 

crash data vary as compared to a Poisson distribution with the same mean. The dispersion parameter 

was calibrated for local conditions using a specially written maximum likelihood procedure detailed in 

(9). 

The HSM and local baseline model dispersion parameters, which were estimated along with 

the coefficients of the regression equation, are presented in Table 3. Table 6 shows the MAD and 

dispersion parameter values, along with the calibration factors, for rural 2U highway segments for 
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both the Italian and Canadian datasets. It is evident that, for Italian segments, MAD and the 

recalibrated dispersion parameter are higher than for Canada. (Surprisingly for Canada the recalibrated 

dispersion parameter is even lower than for the HSM base model; see Table 3.) These results suggest a 

lower reliability of the recalibrated HSM model when applied to predict crashes for Italian rural 2U 

segments. This conclusion is consistent with the relative sizes of the calibration factors themselves, 

when compared to 1.0.  

CURE plots could be constructed for any variable in the dataset, even if it is not in the crash 

prediction model. Thus, for the Italian dataset, it was feasible to construct them for AADT (Figure 3), 

as well as the variables related to the CMFs for horizontal curve (Figure 4), driveway density (Figure 

5), and grade (Figure 6).  

The plot of cumulative residual for AADT does not stray outside of the two standard error 

boundaries, so this bias is not significant. However, for higher AADTs, the residuals stray close to the 

lower two standard deviation boundary, in confirmation of the pattern indicated in Figure 1.  

For the other variables, all related to the CMFs, the fit is very poor, especially for driveway 

density (DD). However, in confirmation of the results in Table 4 for CMF3r, when DEG is 

approximately equal to zero (i.e., for a straight segment), the fit is better.  

 

CLOSING DISCUSSION 

The objective of the paper was as much on exploring HSM algorithm transferability assessment 

methodology as it was in investigating its transferability to Italian 2U rural roads as a case study.  

The first step of this assessment compares the HSM base model to a local one estimated on 

baseline conditions. For the Italian case study, the local base model had an AADT exponent 

significantly larger than the HSM value of 1.0 (p<0.1), so it is not surprising that the relative 

difference in predictions between the two models increased with increasing exposure.  

The second step assesses the transferability of the CMFs. This was done for individual 

variables for which CMFs were available. This analysis revealed some demonstrable bias, indicating 

that the CMFs could be improved upon for application in Italy. For example, the CMF for considering 

curvature increases with decreasing radius.  

The final step involves the application of several well-known goodness-of-prediction measures 

that are recommended for use in assessing the performance of the recalibrated HSM algorithm as a 

whole. Suggested measures are the Mean Absolute Deviation (MAD), the value of the recalibrated 

dispersion parameter, and the Cumulative Residual (CURE) plots for AADT and for variables related 

to the CMFs. The Italian case study results for this assessment are naturally consistent with the results 

for the base model and CMF assessments.  

The results obtained for Italy suggest that the implementation of the HSM techniques in road 

safety impact assessments across Europe, now promoted with the adoption of the directive 

2008/96/EC, should be oriented towards the developing of local SPFs/CMFs for the European context.  

The transferability assessment techniques are relatively complex and require substantial data 

and analytical resources. Thus, they are not intended for routine use by practitioners who, in the 

absence of such an assessment in an application context, should still apply the universal baseline HSM 

SPFs (with local calibration) and CMFs.  
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TABLE 1 Details of the database used  

 

Data element HSM Data 

need 

Value in the database Details 

Min. Max.  Mean Standard 

deviation 

Segment Length (m)* Required 160 1,066 426 530 - 

AADT Required 4,743 18,954 11,471 5,165 - 

Lane Width (m)* Required - - - - Used default 

value Italian 

design standards 

(3.50 m ***) 

Shoulder Width (m)* Required - - - - Used average 

default value 

Italian design 

standards  

(1.1 m ***) 

Shoulder Type  Required - - - - Found only 

composite 

shoulders 

(paved/unpaved) 

Radii of horizontal 

curves (m)* 

Required 93 3,857 659 661 - 

Superelevation 

variance for horizontal 

curves 

Desirable - - - - Not available; 

used HSM default 

assumption 

Vertical Grades (%) Desirable 0.1 4.7 1.4 1.0 - 

DD (driveways/km)** Desirable 0.8 20.6 6.8 5.5 - 

Centerline Rumble 

Strips  

Desirable - - - - Not present; used 

HSM default 

assumption 

TWLTLs  Required - - - - Found 1 segment 

for a length of 

1,819 m 

RHR Desirable 3 5 3.7 0.7 - 

Lighting  Desirable - - - - Not available; 

used HSM default 

assumption 

Passing lane/short 

four-lane section 

Desirable - - 

 

- - Found 11 

segments for a 

length of 9,380 m 

Automated Speed 

Enforcement  

Desirable - - - - Not present; used 

HSM default 

assumption 
* 1 m = 3.28 ft    ** 1 km = 0.62 mi    ***rural 2U roads, type C2 and F1, according Italian standards 
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TABLE 2 Calibration result for rural 2U highway segments using the HSM procedure 

 

number of homogeneous segments 242 

number of observed crashes (F+I) 193 

number of predicted crashes (F+I) 438.71 

Calibration factor (2005-2008) 0.440 
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TABLE 3 Estimated models compared to the HSM baseline one (in SI units)  

 

 

Model form for 

F+I crashes/year =  L ci (Total AADT) 

 

with: L=segment length in km 
Dispersion 

parameter 

AADT 

validity 

range 
ln() (standard error)  (standard error) 

ci adjustment 

coefficient 

baseline conditions -11.152 (6.35) 1.1 (0.64) - 
0.56/L 

L in km 

4,743 to 

36,700 

HSM baseline 

model 
-0.312 1 

c1= 365×10
-6

 * 
0.15/L 

L in km 

0 to 

17,800 
c2= 0.62 ** 

c3= 0.321 *** 
*     factor not applied when AADT is in [millions of vehicle per year;  

**   conversion factor from km to mi  

*** HSM default proportion of F+I crashes for rural 2U segments 
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TABLE 4 Recalibration of HSM CMFs (Italian study) 

 

 
Original 

CMF 

Observed 

crashes 

Predicted 

crashes 
Ratio 

Standard 

deviation of 

ratio 

Ratio 

compared 

to baseline 

Horizontal Curve 

- CMF3r 

1.0 31 136.79 0.444 0.566 1 

1< CMF ≤ 2 97 141.61 0.685 0.556 1.544 

2< CMF ≤ 3 37 71.95 0.514 0.634 1.159 

3< CMF 14 37.13 0.377 0.215 0.850 

Driveway Density 

- CMF5r 

1.0 148 403.43 0.459 0.687 1 

1.1 37 674.84 0.460 0.558 1.003 

1.2 8 21.69 0.369 0.472 0.804 

≥1.3 4 10.92 0.366 1.956 0.798 

Roadside Design - 

CMF10r 

1.0 118 191.07 0.618 0.900 1 

1.1 58 190.99 0.304 0.301 0.492 

1.2 17 43.67 0.389 0.580 0.630 
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TABLE 5 Recalibration of HSM CMFs rural 2U segments in Ontario, Canada (9) 

 

 
Original 

CMF 

Observed 

crashes 

Predicted 

crashes 
Ratio 

Ratio 

compared to 

baseline 

Horizontal Curve 

1.0 95 95.02 1.00 1 

1< CMF ≤ 2 44 42.37 1.04 1.04 

2< CMF 2 3.61 0.55 0.55 

Driveway Density 

1.0 103 85.01 1.21 1 

1.1 13 13.23 0.98 0.81 

1.2 6 12.51 0.48 0.40 

1.3 8 5.03 1.59 1.31 

1.4 11 25.23 0.44 0.36 

Roadside Hazard 

Rating 

1.0 54 62.55 0.86 1 

1.1 82 75.97 1.08 1.25 

1.2 5 2.47 2.02 2.34 
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TABLE 6 Recalibrated HSM algorithm goodness-of-fit: comparison between Italy and Canada  

 

Country 
Total observed 

 F+I crashes 

F+I  

calibration factor 

MAD  

 

Recalibrated dispersion  

parameter for F+I 

Italy 193 0.44 1.661 0.97/L[km] 

Canada 141 0.74 0.384 0.11/L[km] 
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FIGURE 1 Observed versus predicted crashes by AADT variability. 
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FIGURE 2 Comparison between the estimated models and the HSM baseline one. 
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FIGURE 3 CURE plot for F+I collisions versus AADT. 
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FIGURE 4 CURE plot for F+I collisions versus degree of curvature (DEG). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sacchi, Persaud & Bassani                                                                                                                                      21 

 

 
FIGURE 5 CURE plot for F+I collisions versus driveway density per kilometer (DD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sacchi, Persaud & Bassani                                                                                                                                      22 

 

 
FIGURE 6 CURE plot for F+I collisions versus grade (%). 

 


