
05 February 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Complexity Metrics Significance for Defects: An Empirical View / Shah, SYED MUHAMMAD ALI; Morisio, Maurizio. -
ELETTRONICO. - 212:(2012), pp. 29-37. (Intervento presentato al convegno International Conference on Information
Technology and Software Engineering 2012 tenutosi a Beijing (CHN) nel 8-10 December, 2012) [10.1007/978-3-642-
34531-9_4].

Original

Complexity Metrics Significance for Defects: An Empirical View

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/978-3-642-34531-9_4

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-642-34531-9_4

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2503568 since:

Springer

Chapter 1

Complexity metrics significance for defects: An

empirical view

Syed Muhammad Ali Shah1 and Maurizio Morisio

Abstract. Software Complexity often seems to be correlated with the defects and

this makes difficult to select appropriate complexity metrics that would be effec-

tive indicators of defects. The aim of this work is to analyze the relationship of

different complexity metrics with the defects for three categories of software pro-

jects i.e. large, medium and small. We analyzed 18 complexity metrics and defects

from 27,734 software modules of 38 software projects categorized in large, me-

dium and small. In all categories of projects we do not find any strong positive

correlation between complexity metrics and defects. However we cluster the com-

plexity metric values and defects in three categories as high, medium and low.

Consequently we observe that for some complexity metrics high complexity re-

sults in higher defects. We called these metrics as effective indicators of defects.

In the small category of projects we found LCOM as effective indicator, in the

medium category of project we found WMC, CBO, RFC, CA, CE, NPM, DAM,

MOA, IC, Avg CC as effective indicators of defects and for a large category of

projects we found WMC, CBO, RFC, CA, NPM, AMC, Avg CC as effective indi-

cators of defects. The difference shows that complexity metrics relation to defects

also varies with the size of projects.

Keywords: Complexity • defects • metrics

1 S. M. A. Shah()

Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129 Torino, Italy

e-mail: syed.shah@polito.it

M. Morisio

Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129 Torino, Italy

e-mail: maurizio.morisio@polito.it

mailto:syed.shah@polito.it
mailto:maurizio.morisio@polito.it

2 Author’s Initial(s) Author’s Last Name (“Running head – left” style)

1. INTRODUCTION

For every software product, the quality is critically important. Quality can be

characterized by different measures related to defects. However, it is hard to

measure defects ahead of time (1). Therefore, many internal properties are used to

predict quality e.g. size and complexity.

Size mostly presented in LOC (line of code) as a measure is used in many stud-

ies to predict the quality (2)(3), Complexity an internal property of software can

be measured using different techniques applied to source code and design (4)(5).

The common understanding about the complexity is its positive correlation with

the defects. Although the relation is not always linear, it has significant impact.

For the complexity measurement, different complexity metrics have been devised

in past years (4)(5)(6)(7)(8). Studies showed that the majority of defects is caused

by a small portion of the modules (3). These modules can be identified before time

by examining the complexity to reduce the post release and maintainability work.

However it is not straightforward, for the complexity we have different com-

plexity metrics. The selection of appropriate complexity metrics that best relate

and indicate with the defects is of concern and requires minimal empirical evalua-

tion for the selection.

In this paper, we aim to characterize and compare different complexity metrics

for the defects based on different project categories in term of size. This character-

ization will help us to identify the complexity metrics with the best ability to indi-

cate the defects in each project category. This observation will not only help us in

indicating the complexity metrics having a positive correlation with defects, but

also provide a breakthrough for the quality assurance techniques in accessing the

projects.

The paper is organized as follows; Section 0 discussed the related work. Sec-

tion Error! Reference source not found. presents the research design of the

study. Section 3 presents the results. Finally, the conclusions are presented in Sec-

tion.

2. RELATED WORK

Many studies show an acceptable correlation between complexity metrics and

software defect proneness (9)(10)(11)(12).

English et al, highlighted the usefulness of the CK metrics for identifying the

fault-prone classes (13). Gyimothy et al. studied the object oriented metrics given

by CK for the detection of fault prone source code of open source Web and e-mail

suite called Mozilla. They found that CBO metric seems to be the best in predict-

ing the fault-proneness of classes and DIT metric is untrustworthy, and NOC can-

not be used at all for fault-proneness prediction (12). Yu et al. examined the rela-

tionship between the different complexity metrics and the fault proneness. They

used univariate analysis and found that WMC, LOC, CBOout, RFCout LCOM

and NOC have a significant relationship with defects but CBOin, RFCin and DIT

Chapter Number Chapter Title (“Running head – right” style) 3

have no significant relationship (14). Subramanyam and Krishnan examined the

effect of the size along with the WMC, CBO and DIT values on the faults by us-

ing multivariate regression analysis for Java and C ++ classes. They conclude that

size was a good predictor of defects in both languages, but WMC and CBO could

be validated only for C++ (11).

Olague et al. studied three OO metrics suites for their ability to predict soft-

ware quality in terms of fault-proneness: the Chidamber and Kemerer (CK) met-

rics, Abreu’s Metrics for Object-Oriented Design (MOOD), and Bansiya and Da-

vis’ Quality Metrics for Object-Oriented Design (QMOOD). They concluded that

CK and QMOOD suites contain similar components and produce statistical mod-

els that are effective in detecting error-prone classes. They also conclude that class

components in the MOOD metrics suite are not good class fault-proneness predic-

tors (15). However, Nagappan et al. stated that there is no single set of complexity

metrics that could act as a universally best defect predictor (16).

From the related work we can extract different implications based on different

studies, studying different projects about the relationship of complexity metrics

and defect proneness. Hence the results are partial. To study and compare the be-

havior of complexity metrics indicating defect proneness, it requires an in depth

study considering all the complexity metric measures and defects belonging to one

project. In addition to generalize the results it requires to take into account many

projects having all the metrics available and then analysis should be made collec-

tively. In this way the actual relationship of all the complexity metrics with defect

can be understood. Many complexity metrics have been studied in the previous re-

searches (17)(15). Table 1 shows the metrics used in the study.

Table 1. The metrics used in the study

The metrics suggested by Chidamber and Kemerer (5) are.

Weighted Methods per class (WMC): WMC is the number of methods defined in each class.

Depth of Inheritance Tree (DIT): It is the measure of the number of ancestors of a class.

Number of Children (NOC): It is the measure of a number of direct descendants of the class.

Coupling between Objects (CBO): It is the number of classes coupled to a given class.

Response for a Class (RFC): It is the measure of different methods that can be executed when

an object of that class receives a message.

Lack of Cohesion in Methods (LCOM): It is the number of pairs of member functions without

shared instance variables, minus the number of pairs of member functions with shared instance

variables.

Henderson Sellers defined one complexity metric (7).

Lack of cohesion in methods (LCOM3): According to study (7) LCOM3 is defined as.

m - number of methods in a class; a - number of attributes in a class; μ(A) - number of methods

that access the attribute A.

4 Author’s Initial(s) Author’s Last Name (“Running head – left” style)

Bansiya and Davis (6) suggested the following quality metrics suite.

Number of Public Methods (NPM): It counts all methods in a class that are declared as public.

This metric is also known as Class Interface Size (CIS).

Data Access Metric (DAM): It is the measure of the ratio of the number of private (protected)

attributes to the total number of attributes declared in the class.

Measure of Aggregation (MOA): It is the count of the number of class fields whose types are

user defined classes.

Measure of Functional Abstraction (MFA): It is the ratio of the number of methods inherited

by a class to the total number of methods accessible by the member methods of the class.

Cohesion among Methods of Class (CAM): It computes the relatedness among methods of a

class based upon the parameter list of the methods.

Data Access Metric (DAM): It is the measure of the ratio of the number of private (protected)

attributes to the total number of attributes declared in the class.

Measure of Aggregation (MOA): It is the count of the number of class fields whose types are

user defined classes.

Measure of Functional Abstraction (MFA): It is the ratio of the number of methods inherited

by a class to the total number of methods accessible by the member methods of the class.

Cohesion among Methods of Class (CAM): It computes the relatedness among methods of a

class based upon the parameter list of the methods.

Tang et al (18) extended the Chidamber & Kemrer metrics suite focusing on the quality.

Inheritance Coupling (IC): It provides the number of parent classes to which a given class is

coupled.

Coupling Between Methods (CBM): It measures the number of new/redefined methods to

which all the inherited methods are coupled.

Average Methods Complexity (AMC): It measures the average method size for each class.

Following two metrics were suggested by Martin (8).

Afferent Coupling (Ca): It is the number of classes that depend upon the measured class.

Efferent coupling (Ce): It presents the number of classes that the measured class is depended

upon.

The one metric was suggested by McCabe (4).

McCabe’s Cyclomatic Complexity (CC). It is equal to the number of different paths in a meth-

od (function) plus one. It is defined as CC = E-N+P; where E is the number of edges in the

graph, N is the number of nodes of the graph; P is the number of connected components. It is on-

ly suitable for the methods; therefore it is converted to the class size metrics, by calculating the

arithmetic mean of the CC value in the investigated class.

3. RESEARCH DESIGN

In this section, we present the research question and the data set. One research

question is formulated for this research.

RQ1: Do complexity metrics have an effect on defects?

Chapter Number Chapter Title (“Running head – right” style) 5

We selected the last releases of 38 software projects constituting 27,734 mod-

ules from the “Promise data repository2” having the required metrics freely avail-

able for research evaluation purposes (19). The data set contains 6 proprietary

software projects, 15 open source software projects and 17 are academic software

projects that were developed by the students. We downloaded the CVS files and

found 18 complexity metrics defined in (Section 0). The values of complexity

metrics were available against the defects for every module.

4. RESULTS

We carried out the preliminary analysis to identify the three categories of software

projects small, medium and large using the K mean clustering algorithm. We

found 24 software projects in the small category, 7 software projects in medium

and 7 software projects in the large category. The average defects found in the

small category of software projects are 52.5, for the medium category of software

projects it is 519.14 and 508.2 defects for a large category of software projects.

Table 2 shows the three categories of software projects i.e. small, medium and

large.

Table 2. Categories of software’s in term of size

Category No Avg defects Avg size

Small [1-60KLoC] 24 52.5 17241 LoC

Medium [60–300 KLoC] 7 519.14 140743 LoC

Large [above 300KLoC] 7 508.2 427354 LoC

RQ 1: Do complexity metrics have an effect on defects?

We attempted to find the linear correlation between the complexity metrics and

defects. We selected Pearson correlation coefficient which best suited to find the

linear relation between the two variables. In no case we found the strong correla-

tion among complexity metrics and defects.

To study any possible relationship of defects with complexity metrics, we clus-

ter the modules into three categories based on the values, using the K mean clus-

tering algorithm. In order to understand the clusters behavior, we performed the

preliminary analysis of the identified clusters for each complexity metric based on

the project category. We found three types of behaviors of complexity metrics and

grade them as effective, untrustworthy and not useful indicators of defects.

Effective Indicators

We extract those complexity metrics where higher values result in higher defects.

We called these complexity metrics effective indicators of defects and these met-

rics exhibit the phenomenon. Table 3 reports the complexity metrics, effective in-

dicators of defects in small, medium and large projects.

2 http://promisedata.org/

http://promisedata.org/

6 Author’s Initial(s) Author’s Last Name (“Running head – left” style)

High Complexity High Defect

Table 3 Complexity metrics effective indicators of defects

Project type Complexity metrics

Small LCOM

Medium WMC, CBO, RFC, CA, CE, NPM, DAM, MOA, IC, Avg CC

Large WMC, CBO, RFC, CA, NPM, AMC

Untrustworthy Indicators

We classify those complexity metrics that have no fixed criterion of increase in

defect with the increase in complexity metric value. We called these complexity

metrics untrustworthy indicators of defects. Table 4 reports the complexity metric

untrustworthy indicator of defects in small, medium and large category of pro-

jects. For the untrustworthy indicators we observe two different behaviors of com-

plexity metrics. (a) Medium complexity resulted in high defects: Medium Com-

plexity High Defects. (b) Large cluster values resulted in high defects but

corresponding medium cluster value resulted in lower defects: High Complexity

 High Defects, AND Medium Complexity Low Defects.

Table 4 Complexity metrics untrustworthy indicators of defects

Project type Complexity metrics

Small WMC, NOC, CBO,RFC, CE, Avg CC

Medium DIT, NOC, LCOM, CBM, AMC

Large DIT, NOC, LCOM, CE, LCOM3, DAM, MOA, MFA, CAM, IC, Avg CC

Not useful indicators

We classify those complexity metrics where smaller values resulted in high de-

fects, as not useful indicators of defects. Table 5 reports the complexity metrics

not useful indicator of defects in small, medium and large projects. These com-

plexity metrics exhibit the phenomenon: Low Complexity High Defects

Table 5 Complexity metrics not useful indicators of defects

Project type Complexity metrics

Small WMC, DIT, CA, NPM, LCOM3, DAM, MOA, CAM, IC, CBM, AMC

Medium LCOM3, MFA, CAM

Large CBM

Hypothesis testing

For hypothesis testing, we only consider the effective indicator of complexity to

verify that the distribution of defects among high, medium and low complexity.

We did not perform the analysis on the untrustworthy and not useful indicators

because it does not seem to be very meaningful. We take support of statistical hy-

pothesis testing to confirm the difference of defect in three categories of complexi-

Chapter Number Chapter Title (“Running head – right” style) 7

ty metrics i.e. high, medium and low. Using statistical techniques, we will test the

null hypothesis H0. We will accept and reject it based on the favor of the alterna-

tive hypothesis.

 H0: There is no significant difference of defects among high, medium and

low complexity of effective indicators.

 H1: There is a significant difference of defects among high, medium and

low complexity of effective indicators.

Selection of statistical test

We first examined the distribution of the samples to choose the appropriate sta-

tistical test for the analysis. We applied the Ryan-Joiner test for the normality

check and found that for every sample (p - value <0.01). The results showed that

none of the sample under study has a normal distribution of data. This made us to

select the non parametric test for the hypothesis testing.

According to the recommendation for not normal samples, we chose non par-

ametric test Kruskal - Wallis test for differences between three or more samples.

We compare the defects of high, medium and low complexity cluster of each ef-

fective metric. In each category of projects the obtained p value was found less

than 0.05 meaning there is a significant difference of defects among high, medium

and low complexity value of effective indicators.

4.1 Threats To Validity

This section discusses the validity threat as classified and proposed by study (20).

As for construct validity, we collected the CVS logs from the Promise research da-

ta repository. Although we have much confidence in the correctness and accuracy

of the provided data but still we have no control to decide that up to which level

the data is authentic e.g. how many module's data may be left to record, correct-

ness of the measurement of complexity metric values etc.

As for external validity, our findings are based on the large data set of modules

i.e. 27,734 of 38 software projects. Although this number is not small but still

there can raise some concerns on the generalization of the findings when the pro-

jects are categorized into small, medium and large. We have 24 projects from

small, 7 projects are from medium and 7 projects are from large category which

are fairly small samples.

5. CONCLUSIONS

The findings have important implications as they are based on the complete set

of complexity metrics belonging to one particular project. Similarly 38 such pro-

jects were selected which have all the complexity metrics available and then com-

bined to perform the analysis collectively. The artifact of this study is very vital

8 Author’s Initial(s) Author’s Last Name (“Running head – left” style)

and beneficial for both researchers and practitioners. The primary contribution of

this research is the identification of having no linear relation of any complexity

metrics with defects. However based on the complexity metrics high, medium and

small value clusters we find that there are some complexity metrics which higher

values resulted in a higher number of defects. These complexity metrics are called

effective indicators of defects. Consequently the complexity has an effect on de-

fects but not as large as one might expect. The researchers can use the effective

complexity metrics for the predicting and estimating of defects and can use in pre-

dictive models. The statistical analysis adds confidence that there is a quite signif-

icant difference among the defects of effective complexity metrics high, medium

and low values. The practitioners can assess their projects' quality based on the ef-

fective complexity metrics. The categorization of projects is quite useful as it

gives practitioners a view to select the appropriate effective complexity metric

when assessing their project based on size. We would like to continue our future

studies with the same attention considering number of projects to validate the arti-

facts of this study and thus generalize the effective complexity metrics for small,

medium and large projects.

6. REFERENCES

1. Güneş Koru A, Tian J. An empirical comparison and characterization of high defect and

high complexity modules. Journal of Systems and Software. 2003 Sep 15;67(3):153–63.

2. Hongyu Zhang. An investigation of the relationships between lines of code and defects.

Software Maintenance, 2009. ICSM 2009. IEEE International Conference on. 2009. p.

274–83.

3. Fenton NE, Ohlsson N. Quantitative analysis of faults and failures in a complex software

system. Software Engineering, IEEE Transactions on DOI - 10.1109/32.879815.

2000;26(8):797–814.

4. McCabe TJ. A Complexity Measure. Software Engineering, IEEE Transactions on DOI -

10.1109/TSE.1976.233837. 1976;SE-2(4):308–20.

5. Chidamber SR, Kemerer CF. A metrics suite for object oriented design. Software Engi-

neering, IEEE Transactions on DOI - 10.1109/32.295895. 1994;20(6):476–93.

6. Bansiya J, Davis CG. A hierarchical model for object-oriented design quality assessment.

Software Engineering, IEEE Transactions on DOI - 10.1109/32.979986. 2002;28(1):4–

17.

7. Henderson-Sellers B. Object-Oriented Metrics, measures of Complexity. Prentice Hall;

1996.

8. Martin R. OO Design Quality Metrics - An Analysis of Dependencies.

9. Chidamber SR, Darcy DP, Kemerer CF. Managerial use of metrics for object-oriented

software: an exploratory analysis. Software Engineering, IEEE Transactions on DOI -

10.1109/32.707698. 1998;24(8):629–39.

10. Basili VR, Briand LC, Melo WL. A validation of object-oriented design metrics as quali-

ty indicators. Software Engineering, IEEE Transactions on DOI - 10.1109/32.544352.

1996;22(10):751–61.

Chapter Number Chapter Title (“Running head – right” style) 9

11. Subramanyam R, Krishnan MS. Empirical analysis of CK metrics for object-oriented de-

sign complexity: implications for software defects. Software Engineering, IEEE Transac-

tions on DOI - 10.1109/TSE.2003.1191795. 2003;29(4):297–310.

12. Gyimothy T, Ferenc R, Siket I. Empirical validation of object-oriented metrics on open

source software for fault prediction. Software Engineering, IEEE Transactions on DOI -

10.1109/TSE.2005.112. 2005;31(10):897–910.

13. English M, Exton C, Rigon I, Cleary B. Fault detection and prediction in an open-source

software project. Proceedings of the 5th International Conference on Predictor Models in

Software Engineering. Vancouver, British Columbia, Canada: ACM; 2009. p. 1–11.

14. Ping Yu, Systa T, Muller H. Predicting fault-proneness using OO metrics. An industrial

case study. Software Maintenance and Reengineering, 2002. Proceedings. Sixth European

Conference on. 2002. p. 99–107.

15. Olague HM, Etzkorn LH, Gholston S, Quattlebaum S. Empirical Validation of Three

Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes Devel-

oped Using Highly Iterative or Agile Software Development Processes. Software Engi-

neering, IEEE Transactions on DOI - 10.1109/TSE.2007.1015. 2007;33(6):402–19.

16. Nagappan N, Ball T, Zeller A. Mining metrics to predict component failures. Proceedings

of the 28th international conference on Software engineering. Shanghai, China: ACM;

2006. p. 452–61.

17. Catal C, Diri B, Ozumut B. An Artificial Immune System Approach for Fault Prediction

in Object-Oriented Software. Dependability of Computer Systems, 2007. DepCoS-

RELCOMEX ’07. 2nd International Conference on. 2007. p. 238–45.

18. Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen. An empirical study on object-oriented

metrics. Software Metrics Symposium, 1999. Proceedings. Sixth International. 1999. p.

242–9.

19. Boetticher G, Menzies T, Ostrand T. PROMISE Repository of empirical software engi-

neering data [Internet]. Available from: http://promisedata.org/ repository, West Virginia

University, Department of Computer Science, 2007

20. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslen A. Experimentation in

software engineering: an introduction. Norwell, Massachusetts. USA: Kluwer Academic

Publishers; 2000.

