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Chapter 1  

Complexity metrics significance for defects: An 

empirical view 
 

Syed Muhammad Ali Shah1 and Maurizio Morisio 

 

Abstract.  Software Complexity often seems to be correlated with the defects and 

this makes difficult to select appropriate complexity metrics that would be effec-

tive indicators of defects. The aim of this work is to analyze the relationship of 

different complexity metrics with the defects for three categories of software pro-

jects i.e. large, medium and small. We analyzed 18 complexity metrics and defects 

from 27,734 software modules of 38 software projects categorized in large, me-

dium and small.  In all categories of projects we do not find any strong positive 

correlation between complexity metrics and defects. However we cluster the com-

plexity metric values and defects in three categories as high, medium and low. 

Consequently we observe that for some complexity metrics high complexity re-

sults in higher defects. We called these metrics as effective indicators of defects. 

In the small category of projects we found LCOM as effective indicator, in the 

medium category of project we found WMC, CBO, RFC, CA, CE, NPM, DAM, 

MOA, IC, Avg CC as effective indicators of defects and for a large category of 

projects we found WMC, CBO, RFC, CA, NPM, AMC, Avg CC as effective indi-

cators of defects. The difference shows that complexity metrics relation to defects 

also varies with the size of projects.  
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1. INTRODUCTION 

For every software product, the quality is critically important. Quality can be 

characterized by different measures related to defects. However, it is hard to 

measure defects ahead of time (1). Therefore, many internal properties are used to 

predict quality e.g. size and complexity. 

Size mostly presented in LOC (line of code) as a measure is used in many stud-

ies to predict the quality (2)(3), Complexity an internal property of software can 

be measured using different techniques applied to source code and design (4)(5). 

The common understanding about the complexity is its positive correlation with 

the defects. Although the relation is not always linear, it has significant impact. 

For the complexity measurement, different complexity metrics have been devised 

in past years (4)(5)(6)(7)(8). Studies showed that the majority of defects is caused 

by a small portion of the modules (3). These modules can be identified before time 

by examining the complexity to reduce the post release and maintainability work. 

However it is not straightforward, for the complexity we have different com-

plexity metrics. The selection of appropriate complexity metrics that best relate 

and indicate with the defects is of concern and requires minimal empirical evalua-

tion for the selection.   

In this paper, we aim to characterize and compare different complexity metrics 

for the defects based on different project categories in term of size. This character-

ization will help us to identify the complexity metrics with the best ability to indi-

cate the defects in each project category. This observation will not only help us in 

indicating the complexity metrics having a positive correlation with defects, but 

also provide a breakthrough for the quality assurance techniques in accessing the 

projects. 

The paper is organized as follows; Section 0 discussed the related work. Sec-

tion Error! Reference source not found. presents the research design of the 

study. Section 3 presents the results. Finally, the conclusions are presented in Sec-

tion. 

 
2.  RELATED WORK 

Many studies show an acceptable correlation between complexity metrics and 

software defect proneness (9)(10)(11)(12).  

English et al, highlighted the usefulness of the CK metrics for identifying the 

fault-prone classes (13). Gyimothy et al. studied the object oriented metrics given 

by CK for the detection of fault prone source code of open source Web and e-mail 

suite called Mozilla. They found that CBO metric seems to be the best in predict-

ing the fault-proneness of classes and DIT metric is untrustworthy, and NOC can-

not be used at all for fault-proneness prediction (12). Yu et al. examined the rela-

tionship between the different complexity metrics and the fault proneness. They 

used univariate analysis and found that WMC, LOC, CBOout, RFCout LCOM 

and NOC have a significant relationship with defects but CBOin, RFCin and DIT 
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have no significant relationship (14). Subramanyam and Krishnan  examined the 

effect of the size along with the WMC, CBO and DIT values on the faults by us-

ing multivariate regression analysis for Java and C ++ classes. They conclude that 

size was a good predictor of defects in both languages, but WMC and CBO could 

be validated only for C++ (11).  

Olague et al. studied three OO metrics suites for their ability to predict soft-

ware quality in terms of fault-proneness: the Chidamber and Kemerer (CK) met-

rics, Abreu’s Metrics for Object-Oriented Design (MOOD), and Bansiya and Da-

vis’ Quality Metrics for Object-Oriented Design (QMOOD). They concluded that 

CK and QMOOD suites contain similar components and produce statistical mod-

els that are effective in detecting error-prone classes. They also conclude that class 

components in the MOOD metrics suite are not good class fault-proneness predic-

tors (15). However, Nagappan et al. stated that there is no single set of complexity 

metrics that could act as a universally best defect predictor (16).  

From the related work we can extract different implications based on different 

studies, studying different projects about the relationship of complexity metrics 

and defect proneness. Hence the results are partial. To study and compare the be-

havior of complexity metrics indicating defect proneness, it requires an in depth 

study considering all the complexity metric measures and defects belonging to one 

project. In addition to generalize the results it requires to take into account many 

projects having all the metrics available and then analysis should be made collec-

tively. In this way the actual relationship of all the complexity metrics with defect 

can be understood. Many complexity metrics have been studied in the previous re-

searches (17)(15). Table 1 shows the metrics used in the study. 

 
Table 1. The metrics used in the study 

The metrics suggested by Chidamber and Kemerer (5) are. 

Weighted Methods per class (WMC): WMC is the number of methods defined in each class. 

Depth of Inheritance Tree (DIT): It is the measure of the number of ancestors of a class. 

Number of Children (NOC): It is the measure of a number of direct descendants of the class. 

Coupling between Objects (CBO): It is the number of classes coupled to a given class. 

Response for a Class (RFC): It is the measure of different methods that can be executed when 

an object of that class receives a message. 

Lack of Cohesion in Methods (LCOM):  It is the number of pairs of member functions without 

shared instance variables, minus the number of pairs of member functions with shared instance 

variables.  

Henderson Sellers defined one complexity metric (7).  

Lack of cohesion in methods (LCOM3): According to study (7) LCOM3 is defined as. 

 

m - number of methods in a class; a - number of attributes in a class; μ(A) - number of methods 

that access the attribute A. 
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Bansiya and Davis (6) suggested the following quality metrics suite. 

Number of Public Methods (NPM): It counts all methods in a class that are declared as public. 

This metric is also known as Class Interface Size (CIS). 

Data Access Metric (DAM): It is the measure of the ratio of the number of private (protected) 

attributes to the total number of attributes declared in the class. 

Measure of Aggregation (MOA): It is the count of the number of class fields whose types are 

user defined classes. 

Measure of Functional Abstraction (MFA): It is the ratio of the number of methods inherited 

by a class to the total number of methods accessible by the member methods of the class. 

Cohesion among Methods of Class (CAM): It computes the relatedness among methods of a 

class based upon the parameter list of the methods. 

Data Access Metric (DAM): It is the measure of the ratio of the number of private (protected) 

attributes to the total number of attributes declared in the class. 

Measure of Aggregation (MOA): It is the count of the number of class fields whose types are 

user defined classes. 

Measure of Functional Abstraction (MFA): It is the ratio of the number of methods inherited 

by a class to the total number of methods accessible by the member methods of the class. 

Cohesion among Methods of Class (CAM): It computes the relatedness among methods of a 

class based upon the parameter list of the methods. 

Tang et al (18) extended the Chidamber & Kemrer metrics suite focusing on the quality. 

Inheritance Coupling (IC): It provides the number of parent classes to which a given class is 

coupled. 

Coupling Between Methods (CBM): It measures the number of new/redefined methods to 

which all the inherited methods are coupled. 

Average Methods Complexity (AMC): It measures the average method size for each class. 

Following two metrics were suggested by Martin (8). 

Afferent Coupling (Ca): It is the number of classes that depend upon the measured class. 

Efferent coupling (Ce): It presents the number of classes that the measured class is depended 

upon. 

The one metric was suggested by McCabe (4). 

McCabe’s Cyclomatic Complexity (CC). It is equal to the number of different paths in a meth-

od (function) plus one. It is defined as CC = E-N+P; where E is the number of edges in the 

graph, N is the number of nodes of the graph; P is the number of connected components. It is on-

ly suitable for the methods; therefore it is converted to the class size metrics, by calculating the 

arithmetic mean of the CC value in the investigated class. 

 

3. RESEARCH DESIGN 

In this section, we present the research question and the data set. One research 

question is formulated for this research. 

RQ1: Do complexity metrics have an effect on defects? 
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We selected the last releases of 38 software projects constituting 27,734 mod-

ules from the “Promise data repository2” having the required metrics freely avail-

able for research evaluation purposes (19). The data set contains 6 proprietary 

software projects, 15 open source software projects and 17 are academic software 

projects that were developed by the students. We downloaded the CVS files and 

found 18 complexity metrics defined in (Section 0). The values of complexity 

metrics were available against the defects for every module.  

 

4. RESULTS 

We carried out the preliminary analysis to identify the three categories of software 

projects small, medium and large using the K mean clustering algorithm. We 

found 24 software projects in the small category, 7 software projects in medium 

and 7 software projects in the large category. The average defects found in the 

small category of software projects are 52.5, for the medium category of software 

projects it is 519.14 and 508.2 defects for a large category of software projects. 

Table 2 shows the three categories of software projects i.e. small, medium and 

large. 
 

Table 2. Categories of software’s in term of size 

Category No Avg defects  Avg size 

Small [1-60KLoC] 24 52.5 17241 LoC 

Medium [60–300 KLoC] 7 519.14 140743 LoC 

Large [ above 300KLoC] 7 508.2 427354 LoC 

 

RQ 1: Do complexity metrics have an effect on defects? 

We attempted to find the linear correlation between the complexity metrics and 

defects. We selected Pearson correlation coefficient which best suited to find the 

linear relation between the two variables. In no case we found the strong correla-

tion among complexity metrics and defects.  

To study any possible relationship of defects with complexity metrics, we clus-

ter the modules into three categories based on the values, using the K mean clus-

tering algorithm. In order to understand the clusters behavior, we performed the 

preliminary analysis of the identified clusters for each complexity metric based on 

the project category. We found three types of behaviors of complexity metrics and 

grade them as effective, untrustworthy and not useful indicators of defects. 

Effective Indicators  

We extract those complexity metrics where higher values result in higher defects. 

We called these complexity metrics effective indicators of defects and these met-

rics exhibit the phenomenon. Table 3 reports the complexity metrics, effective in-

dicators of defects in small, medium and large projects.   

                                                           
2 http://promisedata.org/ 

http://promisedata.org/
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High Complexity   High Defect 

 
Table 3 Complexity metrics effective indicators of defects 

Project type Complexity metrics 

Small LCOM 

Medium WMC, CBO, RFC, CA, CE, NPM, DAM, MOA, IC, Avg CC 

Large WMC, CBO, RFC, CA, NPM, AMC 

 

Untrustworthy Indicators 

We classify those complexity metrics that have no fixed criterion of increase in 

defect with the increase in complexity metric value. We called these complexity 

metrics untrustworthy indicators of defects. Table 4 reports the complexity metric 

untrustworthy indicator of defects in small, medium and large category of pro-

jects. For the untrustworthy indicators we observe two different behaviors of com-

plexity metrics. (a) Medium complexity resulted in high defects: Medium Com-

plexity     High Defects. (b) Large cluster values resulted in high defects but 

corresponding medium cluster value resulted in lower defects: High Complexity 

 High Defects, AND Medium Complexity    Low Defects. 

 
Table 4 Complexity metrics untrustworthy indicators of defects 

Project type Complexity metrics 

Small WMC, NOC, CBO,RFC, CE, Avg CC 

Medium DIT, NOC, LCOM, CBM, AMC 

Large DIT, NOC, LCOM, CE, LCOM3, DAM, MOA, MFA, CAM, IC, Avg CC 

 

Not useful indicators  

We classify those complexity metrics where smaller values resulted in high de-

fects, as not useful indicators of defects. Table 5 reports the complexity metrics 

not useful indicator of defects in small, medium and large projects. These com-

plexity metrics exhibit the phenomenon: Low Complexity  High Defects 

Table 5 Complexity metrics not useful indicators of defects 

Project type Complexity metrics 

Small WMC, DIT, CA, NPM, LCOM3, DAM, MOA, CAM, IC, CBM, AMC 

Medium LCOM3, MFA, CAM 

Large CBM 

 

Hypothesis testing 

For hypothesis testing, we only consider the effective indicator of complexity to 

verify that the distribution of defects among high, medium and low complexity. 

We did not perform the analysis on the untrustworthy and not useful indicators 

because it does not seem to be very meaningful. We take support of statistical hy-

pothesis testing to confirm the difference of defect in three categories of complexi-
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ty metrics i.e. high, medium and low. Using statistical techniques, we will test the 

null hypothesis H0. We will accept and reject it based on the favor of the alterna-

tive hypothesis.  

 

 H0: There is no significant difference of defects among high, medium and 

low complexity of effective indicators.   

 H1: There is a significant difference of defects among high, medium and 

low complexity of effective indicators.   

 

Selection of statistical test 

We first examined the distribution of the samples to choose the appropriate sta-

tistical test for the analysis. We applied the Ryan-Joiner test for the normality 

check and found that for every sample (p - value <0.01). The results showed that 

none of the sample under study has a normal distribution of data. This made us to 

select the non parametric test for the hypothesis testing.   

According to the recommendation for not normal samples, we chose non par-

ametric test Kruskal - Wallis test for differences between three or more samples. 

We compare the defects of high, medium and low complexity cluster of each ef-

fective metric. In each category of projects the obtained p value was found less 

than 0.05 meaning there is a significant difference of defects among high, medium 

and low complexity value of effective indicators.   

 

4.1 Threats To Validity 

This section discusses the validity threat as classified and proposed by study (20). 

As for construct validity, we collected the CVS logs from the Promise research da-

ta repository. Although we have much confidence in the correctness and accuracy 

of the provided data but still we have no control to decide that up to which level 

the data is authentic e.g. how many module's data may be left to record, correct-

ness of the measurement of complexity metric values etc. 

As for external validity, our findings are based on the large data set of modules 

i.e. 27,734 of 38 software projects. Although this number is not small but still 

there can raise some concerns on the generalization of the findings when the pro-

jects are categorized into small, medium and large. We have 24 projects from 

small, 7 projects are from medium and 7 projects are from large category which 

are fairly small samples. 

 

5. CONCLUSIONS 

The findings have important implications as they are based on the complete set 

of complexity metrics belonging to one particular project. Similarly 38 such pro-

jects were selected which have all the complexity metrics available and then com-

bined to perform the analysis collectively. The artifact of this study is very vital 
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and beneficial for both researchers and practitioners. The primary contribution of 

this research is the identification of having no linear relation of any complexity 

metrics with defects. However based on the complexity metrics high, medium and 

small value clusters we find that there are some complexity metrics which higher 

values resulted in a higher number of defects. These complexity metrics are called 

effective indicators of defects. Consequently the complexity has an effect on de-

fects but not as large as one might expect. The researchers can use the effective 

complexity metrics for the predicting and estimating of defects and can use in pre-

dictive models. The statistical analysis adds confidence that there is a quite signif-

icant difference among the defects of effective complexity metrics high, medium 

and low values. The practitioners can assess their projects' quality based on the ef-

fective complexity metrics. The categorization of projects is quite useful as it 

gives practitioners a view to select the appropriate effective complexity metric 

when assessing their project based on size. We would like to continue our future 

studies with the same attention considering number of projects to validate the arti-

facts of this study and thus generalize the effective complexity metrics for small, 

medium and large projects.  
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