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Diabetic patients might present peripheral microcirculation impairment and might bene¯t from

physical training. Thirty-nine diabetic patients underwent the monitoring of the tibialis ante-

rior muscle oxygenation during a series of voluntary ankle °exo-extensions by near-infrared

spectroscopy (NIRS). NIRS signals were acquired before and after training protocols. Sixteen
control subjects were tested with the same protocol. Time-frequency distributions of the

Cohen's class were used to process the NIRS signals relative to the concentration changes of

oxygenated and reduced hemoglobin. A total of 24 variables were measured for each subject and

the most discriminative were selected by using four feature selection algorithms: QuickReduct,
Genetic Rough-Set Attribute Reduction, Ant Rough-Set Attribute Reduction, and traditional

ANOVA. Arti¯cial neural networks were used to validate the discriminative power of the

selected features. Results showed that di®erent algorithms extracted di®erent sets of variables,

but all the combinations were discriminative. The best classi¯cation accuracy was about 70%.
The oxygenation variables were selected when comparing controls to diabetic patients or dia-

betic patients before and after training. This preliminary study showed the importance of

feature selection techniques in NIRS assessment of diabetic peripheral vascular impairment.

Keywords: Near-infrared spectroscopy; time-frequency distributions; feature selection; diabetes.

1. Introduction

Computer methods have been extensively used to aid the clinical assessment of

diabetes-related pathologies, such as neuropathy1 and sympathetic system im-

pairment,2 retinopathy and eye fundus damage,3 central and peripheral reduced

perfusion,4 and gait abnormalities.5 As diabetes is a complex pathology involving

Journal of Mechanics in Medicine and Biology

Vol. 12, No. 4 (2012) 1240013 (14 pages)

°c World Scienti¯c Publishing Company

DOI: 10.1142/S0219519412400131

1240013-1

J.
 M

ec
h.

 M
ed

. B
io

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

SP
C

 o
n 

08
/0

6/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0219519412400131


multiple systems, several researchers proposed the use of classi¯cation techniques

and decision systems to aid the clinical interpretation of the biomedical data. As an

example, Acharya et al. proposed a nonlinear dynamics method for the classi¯cation

of neuropahtic and myopathic myoelectric signals.6 They showed that nonlinear

dynamics analysis allowed discriminating subjects with muscular and neural

impairments from controls with 99.3% accuracy. Several researchers focused their

analysis on the lower limb muscular performance, because it could be a very

early and speci¯c indicator of the progression of peripheral arterial disease and

neuropathy.

Besides electromyography, near-infrared spectroscopy (NIRS) was also used to

monitor muscle oxygenation in subjects su®ering from lower-extremity arterial dis-

ease7 and diabetes.8 NIRS is a low-cost, non-invasive and portable system that is

very adept at monitoring during rest and exercise conditions. The NIRS system

consists of near-infrared sources (usually LED or laser diodes) that inject electro-

magnetic radiation into human tissues. Light absorption allows for the estimation of

the concentration of chromophores in the tissues once the e®ects of scattering have

been compensated. The relevant chromophores in human tissues are oxygenated and

reduced hemoglobin. Hemoglobin presents di®erent absorption spectra when in re-

duced or oxygenated form, hence by using infrared light at di®erent wavelengths, it is

possible to continuously monitor the concentration changes of the two hemoglobin

types in the tissues in a non-invasive manner.9

In this study, we used NIRS to monitor the oxygen and carbon dioxide concen-

tration changes in the muscle tibialis anterior of diabetic patients and controls during

a simple exercise of ankle °exo-extension, in order to evidence if NIRS parameters

could be indicative of the peripheral vascular and metabolic pattern of the subjects.

NIRS signals, however, require advanced signal processing procedures, because rel-

evant information is carried by the signals' spectrum. As such signals are non-sta-

tionary when recorded during activation (i.e., muscle contraction), we adopted a

time-frequency-based analytical procedure. This technique allowed for the extraction

of several spectral features (which can exceed 50) that made di±cult the interpre-

tation of results. Multivariate analysis and dimensionality reduction approaches

could be useful to improve the readability of the results.10

Feature selection (FS) allows dimensionality reduction of multivariate data, de-

leting the unnecessary attributes in order to extract the most signi¯cant features for

the system description. In fact, a too large number of features does not inevitably

increase the classi¯cation accuracy: several attributes may be redundant, irrelevant,

or even worse, may introduce some kind of noise which decreases the classi¯er

performance.11

For most real applications, in which the number of initial variables is relatively

medium-high, an exhaustive search of the best feature subset results inapplicable.

For this reason, during the past years, several methods for FS based on a heuristic

search have been developed.12�14 Heuristics indentify a wide class of algorithms used

in order to solve optimization problems, reducing time and computational costs by
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addressing the solution search toward a high-quality space of admissible solutions.

Most of them are based on a local search guided by an objective function that

provides an estimate of the current solution goodness. The possibility of easily

representing complex and non linear objective functions makes the heuristic algo-

rithms a suitable tool for FS.

Several approaches are available for FS and recently, the rough-set theory (RST)

has been applied in this ¯eld with very satisfactory results. RST was introduced by

Pawlak15 in order to provide an instrument that is able to model imperfect and

incomplete knowledge encapsulated in the real data. Its concepts ¯nd wide and

di®erent areas of application, such as machine learning,16 knowledge acquisition,17,18

decision analysis,19,20 pattern recognition,21 knowledge discovery from databases and

expert systems,22 and dimensionality reduction.23 The main advantage of RST-based

FS methods is that they do not require any a-priori information or model assump-

tions about data.

In this study, we applied four FS algorithms to a set of features extracted from

NIRS signals recorded in diabetic subjects during ankle °exo-extension, with the aim

of extracting the relevant NIRS features, which are characteristic of the subjects'

peripheral vascular status.

2. Materials and Methods

2.1. Demographics, data acquisition, and experimental protocol

This study involved 39 type II diabetic subjects. Each of them performed daily physical

activity for one year: 19 subjects carried out adapted physical activity (APA) (age:

66.7� 5.7) and 20 patients performed ¯t walking (FW) (age: 66.0� 6.2). Moreover, a

group of 16 healthy subjects (Contr) (age: 65.3� 3.9) was included in the study as

controls.

NIRS signals were recorded on each subject before and after the period of physical

exercise by using a commercially available NIRS system (NIRO300, Hammamatsu

Photonics, Japan). The recordings of NIRS signals were performed with the emitting

probe placed on the left tibialis anterior muscle, approximately in correspondence

with the muscle belly. The receiving photodiode was placed 4 cm apart, aligned with

the emitters in the direction of the muscle ¯bers. In this work, three NIRS signals were

considered: the changes in the concentration of oxygenated hemoglobin (O2Hb), the

changes in the concentration of deoxygenated hemoglobin (HHb), and the tissue

oxygenation index (TOI) de¯ned as the ratio of oxygenated to total hemoglobin.

The experimental protocol was structured as follows:

(1) one minute of resting,

(2) ankle °exo-extension for 3min, and

(3) a ¯nal resting period of 3min in order to observe the recovery phase.

The total duration for the examination was about 7min.

Feature Selection Applied to the Time-Frequency
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2.2. Feature extraction

In Fig. 1, the left panels show an example of NIRS signals recorded on a healthy

subject performing ankle °exo-extension. Panel A1 reports the O2Hb concentration

variation during time, Panel B1 the HHb, and Panel C1 the TOI signals. The vertical

dashed lines mark the onset and o®set of the °exo-extension. The hemoglobin con-

centration signi¯cantly varies during time: °exo-extension corresponds to a decrease

in the O2Hb and an increase in the HHb concentrations.

Fig. 1. NIRS signals recorded on a healthy subject performing ankle °exo-extension. Panel A1 reports the

O2Hb concentration signal, panel B1 the HHb, and panel C1 the TOI. The right panels show the 15-level

contour plot of the Choi-Williams time-frequency distribution of the signals depicted in the left side

(� ¼ 0:05). The vertical rectangles highlight the LF band (40�140mHz) and the VLF band (20�40mHz).
The black vertical dashed lines mark the onset and o®set of the °exo-extension.
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One of the problems of the NIRS recordings is that only relative concentration

measures are available. Therefore, the concentration in time of the O2Hb and HHb

were not speci¯c of the di®erent groups. We performed a spectral analysis of the

NIRS signals because it contains the signature of the sympathetic and para-sym-

pathetic nervous drive.24

However, as it emerges from Fig. 1, NIRS signals are clearly non-stationary during

the periods of interest and this makes the traditional Fourier-based spectral analysis

not applicable. The time-frequency distributions allow for the managing of the non-

stationarity, analyzing the signals both in the time and the frequency domain.

Speci¯cally, the Choi-Williams (CW) transform,25 that is a time-frequency distri-

bution belonging to the Cohen's class, was used in this study. The value of � was set

equal to 0.5 for all signals because this value already proved e®ective in the analysis

of several biological signals.

In the right side of Fig. 1, a CW representation of the NIRS signals during the

experiment for a healthy subject is reported. Moreover, the time-frequency squared

coherence function (SCF), between the concentration signals of O2Hb and HHb, was

evaluated according to the following equation:

SCF ¼ jDxyðt; fÞj2
Dxxðt; fÞ �Dyyðt; fÞ

; ð1Þ

where DxyðtfÞ is the cross time-frequency CW distribution of O2Hb and HHb, Dxx

ðt; fÞ and DyyðtfÞ are the time-frequency CW representation of O2Hb and HHb,

respectively. As the SCF is a quadratic function, it assumes only values between 0, if

the two signals are totally uncorrelated, and 1, if they are totally correlated.

All the signals were preprocessed, converting them to the analytical representa-

tion with zero mean. Additionally, a high-pass Chebychev ¯lter was used, with ripple

in the stopband and cuto® frequency equal to 25mHz, in order to remove very slow

components.

All time-frequency distributions were analyzed in two speci¯c bands, very low

frequencies (VLF) (20�40mHz) and low frequencies (LF) (40�140mHz), before,

during, and after the °exo-extension. The percentage of signal power in the two

bands (referred to the total power of the signal) was calculated for each period. This

procedure led to obtain the following 24 variables:

(1) the HHb, O2Hb and TOI power in the VLF band, before, during, and after the

°exo-extension (nine variables),

(2) the HHb, O2Hb and TOI power in the LF band, before, during, and after the

°exo-extension (nine variables),

(3) the SCF between O2Hb and HHb in the VLF band, before, during, and after the

experiment (three variables), and

(4) the SCF between O2Hb and HHb in the LF band, before, during, and after the

experiment (three variables).
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2.3. Feature selection algorithms

In this study four FS procedures were performed and compared. Three of them were

based on the RST concepts: QuickReduct Algorithm (QRA), Genetic Rough-Set

Attribute Reduction (GenRSAR), and Ant Rough-Set Attribute Reduction

(AntRSAR). The last method was the ANalysis Of Variance (ANOVA), based on

the computation of the variances within and between groups.

The FS was applied to four datasets in which the rows stand for the subjects and

the columns report the 24 features. The datasets were built as follows:

(1) diabetic patients performing APA were taken as subjects and the variables

related to the signals acquired before and after the period of physical exercise

represented two di®erent classes (APA-PREvs POST),

(2) diabetic patients performing FW were taken as subjects and the variables related

to the signals acquired before and after the period of physical exercise repre-

sented two di®erent classes (FW-PREvsPOST),

(3) the features acquired before the period of exercise for control and diabetic sub-

jects were considered as two di®erent classes (PRE-CONTRvsDIAB), and

(4) the features acquired after the period of exercise for control and diabetic subjects

were considered as two di®erent classes (POST-CONTRvsDIAB).

MATLAB environment was used to implement all FS procedures. All datasets were

tested in order to detect outliers using the Wilks' method.26 No outlier was found in

any dataset. Moreover, as the dependency degree can only be measured on discrete

data, a discretization strategy was applied to the four datasets in order to transform

continuous values into discrete ones. In this study, three ranges of values were

identi¯ed for each variable, based on the knowledge about features and the data plots.

2.3.1. QuickReduct algorithm

QRA, introduced in Ref. 27, is the basic algorithm employing RST that allows

resolving reduct search problems without generating all the possible subsets.

In RST, data are organized as a decision system (or Decision Table�DT) made up

of a non-empty set of objects U (the Universe of discourse), each of them charac-

terized by a non-empty set of attributes A. The attributes are divided in a certain

number of conditional attributes C, which represent the input features, and a deci-

sion attribute D, which is the class the objects belong to.

Given a DT with discretized attribute values, it is possible to ¯nd the minimal

subset R (reduct) of the original features, using RST, which is the most informative.

Di®erent criteria can be used in order to evaluate the relevance of the chosen feature

subset;12 in this study, the dependency degree �CðDÞ was employed. It evaluates the

dependency of the decision attributeD from the set of the conditional features C and

is comprised between 0, if there is no any dependency, and 1, if all values from D are

uniquely determined by values of attributes C.
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The QRA algorithm starts from an empty subset of features and adds to it the

best attributes, until a stopping criterion is satis¯ed. As the goal of QRA is to ¯nd a

reduct with the same dependency degree of the whole set of attributes, this

parameter is chosen as the stopping criterion. The maximum dependency value

results in 1 if the dataset is consistent. Consequently, attributes added to the reduct

subset are those producing a larger increase in the dependency degree.

This algorithm, however, is not guaranteed to ¯nd a minimal reduct as the feature

subset discovered may contain irrelevant or redundant attributes.

2.3.2. Genetic rough-set attribute reduction

Genetic Algorithms (GAs), introduced by Holland28 and belonging to the evolu-

tionary algorithms, are a class of metaheuristics which aims to mimic the natural

evolutionary process of species. The main idea is that only the best individuals are

able to survive and transmit their genes to the subsequent generations.

In GAs, each individual (chromosome) represents a possible solution to the

problem and it is evaluated by means of a ¯tness function that expresses the solution

goodness. Therefore, an adequate choice of the ¯tness function has to be performed,

so that it is directly correlated with the individual suitability. The best individuals

are chosen and evolved in order to become parents of a future generation of solutions,

until an optimal solution to the problem is found.

Because of the chromosomal structure (usually represented as a binary string),

GAs can easily adapt to FS problems. In fact, for these applications, each bit can be

associated to a speci¯c feature: a one or zero in a certain position of the string

indicates, respectively, if the associated feature is employed or not in the current

solution.

There are many applications of GAs using the RST. In Ref. 29, the GenRSAR is

introduced ��� that is an algorithm employing a genetic search strategy in order to

determine a feature reduct. It is based on a standard GA structure in which the

¯tness function takes into account both the size of subset R and its suitability:

fitnessðRÞ ¼ �RðDÞ � jCj � jRj
jCj ; ð2Þ

where �RðDÞ is the dependency degree of subset R with respect to the classi¯cation

D; j � j represents the subset cardinality, and C is the full set of features.

In this study, the initial population was made of 100 randomly generated indi-

viduals, the probability of mutation and crossover were set to 0.4 and 0.6 respec-

tively, and the number of generations was equal to 100, as proposed in Ref. 29.

2.3.3. Ant rough-set attribute reduction

Ant colony optimization (ACO) is a methodology belonging to the Swarm Intelligent

algorithms, inspired to the social behavior of those species which compete for food

(ants, bees, etc.). ACO reproduces the same strategy used by ants in order to ¯nd the

Feature Selection Applied to the Time-Frequency
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best path in the direction of the food source. The main idea is that each ant, during

its route from the colony nest to the food source, deposits on the ground a chemical

hormone called pheromone. This substance will help other ants in selecting in the

best trail to arrive at the food. The higher the pheromone quantity on a path, the

higher the probability that the ants select that path to go to the food.

From the ACO point of view, real problems can be represented as a graph made up

of nodes, representing the solution parts, and edges, the ants' paths. At the beginning

of the search process, each ant is placed on a node; a complete solution is reached by

adding a new node to the current ant pathway and assessing the next edge to travel.

This methodology, as GAs, is easily adaptable for FS. As ACO requires a problem

to be represented as a graph, nodes may be associated to features (one node for each

attribute) and edges may denote the choice of the next feature.29

In Ref. 29, the AntRSAR is proposed, that is a RST-based ACO in which the

dependency degree is used to verify when ants terminate their pathway. This means

that the search is stopped when the ant feature subset reaches the same degree of

dependency �RðDÞ of the whole attribute set. As for the desirability measure, the

conditional information entropy HðDjAÞ produced by an attribute A with respect to

the decision feature D30 is used.

In this study, the number of ants is set equal to the number of features, with each

ant starting from a di®erent feature. Furthermore, pheromone levels are set at 0.5

with small random variations added, � and � are set to 1 and 0.1 respectively, and

the algorithm terminates after 100 iterations.

2.3.4. ANOVA analysis

ANOVA allows the analysis of datasets based on the variances within and between

data groups, assuming a linear model for data. In this study, the one-way ANOVA

analysis was performed in order to assess if the subject classi¯cation has a statistical

in°uence on each feature. We considered the subject classi¯cation as the independent

variable and the 24 parameters extracted for each subject as the dependent variable,

one at a time. Then, the features producing a P value smaller than 5% were selected

to constitute a feature subset.

3. Results

All datasets used in this study have a dependency degree equal to 1. The feature

subsets selected by the four FS methods are listed in Table 1, in which a \1" indicates

the selected variable. The total number of features composing each subset is reported

in the last row of Table 1.

All FS methods based on RST return subsets with a dependency degree equal to 1

and with a number of features between 5 and 12. Moreover, AntRSAR returns

subsets with the largest number of features. As for ANOVA, it gives feature subsets

with a number of variables from 0 to 5 and a dependency degree between 0 and 0.34.
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The four FS strategies were compared using arti¯cial neural networks (ANNs),

based on the percentage of correct classi¯cation of the subjects in their classes. The

main concept was that a good procedure of FS allows the removal of redundant

features so that the reduced set provides at least the same quality of classi¯cation of

the original set.31

Speci¯cally, we tested the whole set of features and all the extracted subsets

independently, using a di®erent network for each one. The ANN structure was made

of one hidden layer with a number of neurons approximately equal to half the input

neurons. As for the neuron activation functions, we used a logarithmic sigmoid

function for the hidden layer and a linear function for the output layer. Back-

propagation was chosen as the learning algorithm and the mean squared error was

Table 1. Results of the four FS procedures applied to the four datasets. First column contains the 24

variables used as input for the FS strategies. From the second to the last column are the results of QRA,
GenRSAR, AntRSAR, and ANOVA applied to APA � PREvsPOST, FW � PREvsPOST, PRE �
CONTRvsDIAB, POST � CONTRvsDIAB datasets (1: feature selected). The selected parameters are

highlighted in light grey. The last row contains the number of features selected in each subset.

Feature Selection Applied to the Time-Frequency
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used as performance function. The initial values of interconnection weights were set

randomly.

The ANNs were implemented by means of the Neural Network Matlab toolbox

using 70% of input data randomly collected as the training set, while the complete

dataset was used as the test set. As the number of samples in the datasets was

limited, each ANN was run 20 times, with a di®erent training set each time. The

results in terms of percentage of correct classi¯cation for each subset and for the

whole set of features are reported in Figs. 2 and 3 as mean value and best perfor-

mance, respectively.

The mean percentage of correct classi¯cation is above 50% for all subsets, while

the maximum values are above 70%. The highest mean values are obtained with

PRE - CONTR vs DIAB and POST - CONTR vs DIAB datasets, and this con¯rmed

the hypothesis that the sample number contained in the dataset in°uences the

performances obtainable with ANNs. Moreover, the results achieved using all fea-

tures are comparable with those obtained with the extracted subsets and are not

correlated with the number of selected features.

4. Discussion

In this study, we analyzed the oxygenation pattern of the tibialis anterior muscle of a

cohort of diabetic patients undergoing a training protocol (either FW or APA). Our

¯ndings, although still preliminary, demonstrated the utility of muscular NIRS in the

assessment of the subjects' peripheral vascular pattern. We showed that by selecting

the most relevant features of the NIRS signals, it is possible to characterize the

Fig. 2. ANNs results in terms of mean value (on twenty runs) of percentage of correct subjects' classi-
¯cation for each selected feature subset and for the whole set of features, applied to the four datasets.
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diabetic patients with respect to the activity they performed or against controls, with

a classi¯cation performance of 70% or higher.

There is a fundamental di®erence between our study and some other recent

researches focused on muscular NIRS.32,33 Our signal analysis and feature extraction

procedure was based on time-frequency distributions, whereas (usually) NIRS signals

are analyzed in the time domain. For example, de Blasi et al.8 documented altera-

tions in skeletal muscle blood °ow and oxygenation in diabetic patients undergoing

haemodialysis with respect to controls. Their analysis was based on the changes in

the O2Hb and HHb concentrations recorded during haemodialysis. However, we

documented a very high variability in the time course of the NIRS signals (Fig. 1)

and did not ¯nd any signi¯cant time parameter that could discriminate diabetic

patients from controls or diabetic patients undergoing di®erent training protocols.

We focused our analysis on the spectral changes of the NIRS signals in order to

understand if the pathology (diabetes) or the training (FW vs:APA) di®erentiated

the signals' spectrum. The VLF band is directly related to long-term metabolic

adaptation and regulation, whereas the LF band is linked to the activity of the vagal

nerve and the microcirculation vassal reactivity.24 Since the number of features that

can be extracted from the time-frequency analysis is very high, we studied the po-

tentialities of feature selection to extract the relevant information for the charac-

terization of the subjects' microvascular pattern.

Analyzing Table 1 as a whole, we can see that the FS algorithms provided solu-

tions that have a small number of variables in common. Only one feature (%

PLF�post�HHb, i.e., the power of the HHb signal in the LF band after the

contraction) was never selected. This is probably due to the high concentration of

Fig. 3. ANNs results in terms of best value (on 20 runs) of percentage of correct subjects' classi¯cation for

each selected feature subset and for the whole set of features, applied to the four datasets.

Feature Selection Applied to the Time-Frequency
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HHb during the test, which is not signi¯cantly di®erent among the subjects. Studies

reported that the most signi¯cant di®erence between diabetic and healthy muscles

is the O2Hb concentration change as detected by NIRS, rather than the HHb

concentration.8

If we relate this ¯nding with the classi¯cation performances, we can conclude that

there are dis®erent combinations of the features that are able to distinguish the

groups. Moreover, as the classi¯cation results obtained using all the features are

comparable with the classi¯cation results based on the reduced sets, we can deduce

that the FS identi¯ed discriminative parameters. Considering the four data sets

separately, we can observe that there is less di®erence among the results and that

each data set is characterized by a di®erent set of parameters. When comparing

diabetic patients pre- and post-APA, all the most discriminative features were direct

measures of tissue oxygenation (Table 1, ¯rst column) derived either from the O2Hb

or TOI signals. Since the percentage power in the bands of the TOI signal was

discriminative before (pre), during (dur), and also after (post) the test contraction,

we hypothesized that APA e®ectively improved tissue oxygenation. If we consider

the second column of Table 1, relative to FW, we observe a predominance of features

computed on the square coherency function between the O2Hb and HHb signals.

This indicates an improvement on tissue oxygen-carbon dioxide balancing, thus

showing a positive e®ect of FW on the muscle oxygenation and metabolism. Finally,

if we consider the last two columns, which compare controls to diabetic patients

before and after training, we again observe a predominance of features computed

either on the O2Hb signal or on the TOI signal. In both cases, the SCF in the LF

band was also often present as discriminative feature, thus con¯rming the di®erence

in the microcirculation autoregulatory pattern of the diabetics with respect to con-

trols.

In conclusion, in this study, we applied feature selection strategies to the time-

frequency distributions of NIRS signals acquired from diabetic patients and healthy

controls before and after a physical training protocol. Di®erent strategies extracted

di®erent features, but the classi¯cation performance based on the reduced set of

features was satisfactory. This preliminary study con¯rmed the validity of NIRS in

the assessment and monitoring of diabetic patients microcirculation impairment and

suggested the need for improved classi¯cation schemes, in order to gain a better

comprehension of the diabetic muscle vascular pattern.
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