
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Language Interaction and Quality Issues: An Exploratory Study / Vetro', Antonio; Tomassetti, FEDERICO CESARE
ARGENTINO; Torchiano, Marco; Morisio, Maurizio. - STAMPA. - (2012), pp. 319-322. (Intervento presentato al
convegno 6th Intl. Symposium on Empirical Software Engineering and Measurement tenutosi a Lund, Sweden nel 19-20
September) [10.1145/2372251.2372309].

Original

Language Interaction and Quality Issues: An Exploratory Study

Publisher:

Published
DOI:10.1145/2372251.2372309

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2501539 since:

ACM

Language Interaction and Quality Issues:

An Exploratory Study

Antonio Vetro’, Federico Tomassetti, Marco Torchiano, Maurizio Morisio

Politecnico di Torino,

Dept. of Computer and Control Engineering
C.so Duca degli Abruzzi 24

Torino, Italy

{firstname.lastname}@polito.it

ABSTRACT

Most software systems are complex and composed of a large

number of artifacts. To realize each different artifact specific

techniques are used resorting to different abstractions, languages
and tools. Successful composition of different elements requires

coherence among them. Unfortunately constraints between

artifacts written in different languages are usually not formally
expressed nor checked by supporting tools; as a consequence they

can be a source of problems. In this paper we explore the role of

the relations between artifacts written in different languages by

means of a case study on the Hadoop open source project. We

present the problem introducing its terminology, we quantify the

phenomenon and investigate its relation with defect proneness.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – product metrics.

General Terms

Measurement, Experimentation, Languages.

Keywords

Languages interaction, cross language modules, polyglot
programming.

1. INTRODUCTION AND BACKGROUND
Most software projects nowadays are polyglot, i.e. files written

using different languages interact with each other. Wampler et al.

[1] introduced a special issue on this topic writing “Most teams

are by necessity MPP [Multi-Paradigm programming] teams now.

No one writes in a single language anymore. Even trivial

applications have a general-purpose language, SQL, JavaScript,

CSS, and dozens of frameworks, each of which includes an

external DSL [Domain Specific Language] (usually in XML) that
is its own mini language (the syntax is XML, but the

XMLSchema defines the semantics)”.
Given this scenario our team seek to study the effects of language

interaction and eventually evolve development techniques and

supporting tools to consider these aspects. Nowadays tools used

by developers help them only to verify the consistency internal to

a language, i.e. consistency within a set of artifacts written in the
same language. For example, editors check that an expression in

Java code invokes a Java method which exists in the codebase,

either in the same file or in another Java file. On the other hand
there are major limitations in verifying the consistency across the

language boundaries. For example can tools help the developer to

understand immediately if a piece of XML code used for

configuration refers to a really existing Java class? Normally
currently available tools cannot do this because they are not aware

of the cross-language semantics.
While the issue of language interaction is already very relevant
today, the appearance of language workbenches [2] let us suppose

that this issue is going to become even more important in the

future. For example, with Xtext [3] and GMF [4] we can create,

textual and graphical DSLs with custom editors integrated in the
Eclipse platform with a minimal effort. Other tools like

Intentional Software [5] and the Meta-Programming System [6]

fully support the Language Oriented Programming paradigm [7]

and are based on projectional editing. The existence of these tools

and their usage in industrial projects [8] seem to indicate that the

interaction between languages in projects will increase in the
future.

Pfeiffer et al. [9] conducted a study related to language

interaction. They realized a tool named GenDeMoG to mine inter-

languages interaction based on text analysis. Their work was

motivated by observing the amount of errors introduced by

undocumented relations that cross the language border (i.e., they

involve modules written in different languages) and the resulting
complexity.

Our hypothesis is that in the long run we need to support cross

language development, including design, modeling, and

validation. To reach this goal we first need to start understanding

the effects of languages interaction: this work is intended as a first

step in that direction.

2. DEFINITIONS
Before stating our goals and translating them into actionable

research questions, we define how we do identify and measure the

languages interaction. We provide here a list of definitions used
throughout the rest of the paper.

Module: we considered a module each single file.

© ACM, 2002-2012. This is the author's version of
the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in

Antonio Vetro', Federico Tomassetti, Marco Torchiano, and Maurizio Morisio. 2012.
Language interaction and quality issues: an exploratory study. In Proceedings of the

ACM-IEEE international symposium on Empirical software engineering and

measurement (ESEM '12). ACM, New York, NY, USA, 319-322.

DOI=10.1145/2372251.2372309 http://doi.acm.org/10.1145/2372251.2372309

We consider a commit1 as a unit of work, consequently we

suppose that files committed together are related.

Intra-language commit (ILC): a commit containing a set of
modules with the same extension.
Cross-language commit (CLC): a commit containing modules

with different extensions.

Cross-language commit for an extension (������): a CLC

containing that includes modules with the extension ext.

Defect fix: a commit executed to fix a defect.

We consider a module to be cross language when it is related to

modules written in a different language (e.g., a Java file loading
the configuration from an XML file). To measure how much a

module is cross language we analyze its history: if the module

was frequently committed with files written in other languages we

consider that as an indicator of interaction between the module
and those files. This interaction is measured through different

variants of the cross language ratio (CLR).
Cross language ratio of a module (����): the CLR of a

module m is the fraction of cross-language commits in which m

was involved with regard to the total number of commits

regarding the module (both intra-language and cross-language):

���� = 	
#	���

#	��� + #	���
	

Cross language ratio of a module with regard to an extension

(����,���): the CLR of a module m considering as CLC only the

commits involving m and a module with extension ext:

����,��� = 	
#	������

#	������ + #	���
	

Cross language ratio of an extension (������): for each

extension ext we compute its cross language ratio as the mean of

the ���� considering all modules having extension ext:

������ = 	
∑ ���� ,
 ∈ ��

∗. ��
	

Cross language ratio of an extension extA with respect to an

extension extB (������	,���
): the mean of ����,���� among all

modules m with extension extA:

�������,���� = 	
∑ ����,���� ,
 ∈ ���

∗. ���

Cross Language Module (CLM): a module is cross language if

its CLR is ≥ tCLM%, where tCLM is a threshold to be defined.

Intra Language Modules (ILM): a module is intra language if

its CLR is < tILM%, where tILM is a threshold to be defined.

3. GOALS, RESEARCH QUESTIONS AND

METRICS
The goal of this preliminary study is two-fold. Firstly we

investigate the level of languages interaction in a common project.

Secondly, we verify whether the level of interaction is related to

quality problems. We look at defects as a proxy of software

external quality. We identify two research questions related to the
first goal.
RQ1 How much interaction is there among the languages

present in a project?

1 We refer to the term commit as used in the context of version control

systems.

The interaction is computed as the percentage of CLC among a set

of commits. First we consider all type of commits (RQ1.1), then

(RQ1.2) we consider separately the commits related to a particular

activity (e.g., improvement, bug fixing, new feature).

Once we have defined the size of the phenomenon by answering

to RQ1, we will go deeper considering the behavior of each single

extension.
RQ2 Which extensions interact more?

The second research question is answered at two levels, i.e. firstly

investigating the relationship between one extension versus all the

other extensions (RQ2.1), then analyzing the most interacting

pairs of extensions (RQ2.2).

We answer RQ2.1 computing the ������ for each extension,

while we answer RQ 2.2 computing the �������,���� for all pairs

of extensions.

The last research question is related to the second goal, i.e.

investigating whether a high interaction between languages might
result in higher defect proneness.

RQ3 Are Cross Language Modules more defect-prone?

We answer RQ 3 computing the number of Cross Language

Modules (CLM) with and without defects, and the number of Intra
Language Modules (ILM) also with and without defects. Then we

compare the two proportions with/without defects by means of the

F-test to see whether the proportion of Cross Language Modules

with defects is different from the one of Intra Language modules.

This metric is computed at three granularity levels:

• considering all files regardless of their extension (RQ3.1),

• considering for each single extension its level of interaction

with all the other extensions as aggregate (RQ3.2),

• considering interaction between specific ordered pairs of

extensions (RQ3.3).

4. CASE STUDY
This exploratory study aims at understanding the phenomenon of

language interaction and derived quality issues. We also use it to
investigate whether the methodology defined above is applicable.

We selected as a case study Apache Hadoop2, which is a set of

libraries to support distributed data processing. We selected
Hadoop because it is a mature project (it is supported since April

2006) and it is used in many industrial applications (e.g., Yahoo,

and Facebook).

Our methodology for computing the metrics defined above is
based upon the fact that Hadoop uses SVN3 to manage artifacts

versions and JIRA4 to track not only defects but any other activity

that can be associated with software artifacts. Those elements are

called “JIRA issues”, and each project has its own set of issues.
Example of JIRA issues are the implementation of a new feature,

a single implementation task, a bug report, and so on. Hadoop

developers established links between commits in the SVN code
repository to JIRA issues by systematically including issue ids in

their SVN commit comments.

We downloaded the SVN log from the Hadoop repository (last

revision retrieved is the 1233090, from 01/18/2012, the first

2 http://hadoop.apache.org

3 http://subversion.tigris.org/
4 http://www.atlassian.com/software/jira/overview

available revision is the 776174 from 5/19/2009). We also

extracted all JIRA issues from the Apache JIRA database.

We computed all modules CLRm and observed their distribution:

about 30% of modules have CLRm between 0 and 0.1, and about

55% files have CLRm between 0.9 and 1. Given these percentage

and given that the remaining files have a positive (right) skewed

distribution, we decided to use as thresholds tCLM=tILM=50% to

define CLM and ILM modules.

5. RESULTS AND DISCUSSION
Table I reports the percentage of cross language commits in the
Hadoop repository: 53% of all commits (first column) are CLC,

i.e. containing files of different languages. Looking at the portion

of CLC related to the different activities (i.e., JIRA issues), we

observe that their percentage varies with respect to the type of

issue (from 2nd to last column in Table I). It goes from a minimum

of 5% in commits related to Test up to a maximum of 45% in Sub
Tasks (since not all issues are linked to JIRA issues, the mean

“All” in the first column is not related to the other means in the

following columns).

RQ 1.1 answer: the 53% of commits in Hadoop are cross
language.

RQ 1.2 answer: looking at the single activities, we derive that

writing/modifying tests or fixing bugs are activities that involve

mainly a single language, while adding new features is an activity

that involves multiple types (or at least extensions).

We now proceed to RQ 2.1 and 2.2. Table II contains the top 5

extensions in terms of number of files: c, sh, properties, xml and

java. Among them, four extensions correspond to programming
languages and one is used for configuration files. Subsequently,

we compute the CLRextA,extB for all combinations of the five

extensions . Table III reports the CLRextA,extB.

RQ 2.1 answer: all most common extensions in Hadoop are highly

interacting with other extensions (i.e., CLRext, > 0.50).

RQ2.2 answer: the most frequent interactions (CLRextA,extB ≥ 0.50)

are: C-XML (0.83), Properties-Java (0.54), XML-Java (0.52), C-
Java (0.51), C-sh(0.50). Border values are: Java-XML (0.48), sh-

XML (0.47) Properties-XML (0.46), and XML-Properties (0.43).

We observe that the only pairs with frequent interactions in both

directions are Java-XML and Properties-XML. All the other pairs

have frequent interactions in only one direction. For instance,

CLRXML-C = 0.04 and CLRC-XML=0.83 means that most of the

commits involving C contain also XML files, but not the other
way around.

We now focus on the last RQ, i.e. on the relation between

languages interaction and defect proneness. Table V contains

metrics to answer RQ 3.1 (first line) and RQ 3.2 (from 2nd to last

line). The following columns contain, in the order: the number of

ILM with no defects and then with at least one defect, the number

of CLM with no defects and then with at least one defect, the p-
value of the F-test and finally the odds ratios (which is greater

than 1 when CLM are more defect prone than ILM).

RQ 3.1 answer: considering all extensions, ILM are more defect

prone that CLM (about 5 times less).

RQ 3.2 answer: considering the five most common extensions, we

observe that three extensions (XML, Properties and C) have CLM

with higher defect proneness, while two extensions (Java and Sh)
exhibit the opposite relation.

Among the above differences, only all extensions and Java are

statistically significant (p-value ≤ 0.05).

Finally, Table IV contains the odds for each pair of extensions to

answer to RQ 3.3. We report in bold the values for which we

obtained a p-value ≤ 0.05. We observe 7 pairs for which ILM are

less defect prone than CLM, 12 pairs with CLM more defect

prone than ILM and one pair with odds ratio =1. We consider only
values with p-value ≤ 0.05 to answer RQ 3.3.

RQ 3.3 answer:

four extension pairs have CLM more defect prone then ILM (C-

Java, C-XML, Properties-C, Sh-C),

five extension pairs have ILM more defect prone then CLM (C-

Properties, C-sh, Java-XML, Properties-XML, XML-Java)

one extension pair have exactly same defect proneness

(Properties-Java).

We notice that interactions where CLM results more defect prone

involve always the C files. While interactions where ILM results

more defect prone involve mainly XML, however C is also

present. An interesting fact is that the pair Sh-C is in the first set,
the pair C-sh is in the second.

Table I. Percentage of cross language commits (RQ 1)
All Bug Improvement New

Feature
Sub

task
Task Test

0.53 0.12 0.26 0.30 0.45 0.26 0.05

Table II. CLRext (RQ 2.1)

CLRext Nr files Extension

0.96 49 c

0.87 114 sh

0.72 75 properties

0.71 320 xml

0.59 4328 java

Table III. ������	,���
 (RQ 2.2)

extA/extB C Java Properties Sh XML

C - 0.51 0.10 0.50 0.83

Java 0.01 - 0.28 0.04 0.48

Properties 0 0.54 - 0.36 0.46

Sh 0.09 0.22 0.24 - 0.47

Xml 0.04 0.52 0.43 0.24 -

Table IV. Odds ratio of the defectivity in respect to the

relation between pairs of extensions (RQ 3.3)

 C Java Properties sh XML

C - Inf 0 0 Inf

Java 2.79 - 0.32 0.43 0.96

Properties Inf 1 - 12.08 0.94

Sh 3.55 4.45 17.17 - 7.44

Xml 3.83 0.95 3.22 4.73 -

Besides these considerations, we do not have an unique answer
for RQ3. However, we observe that having languages interacting

with other languages is related to higher defect proneness for

certain languages (mainly C) and specific interactions.

6. THREATS TO VALIDITY
Internal: in this exploratory case-study different aspects were not

considered. In particular we did not examine all the possible
confounding factors influencing the defect proneness of the

modules. Among them the age and the size of modules (expressed

in LOC, for example) are the most relevant ones.

We discriminated between modules on their names while the
same module can change name in the course of the project. We

grouped the files by their extension while a different extension

could not always indicate a different language.

Construction: we are unable to measure directly the interaction

between modules written in different languages and consequently

we use as a proxy their concurrent presence in the same commits,

which may be an imprecise approximation.

External: another threat is due to selection bias: we have no

particular reason to believe that Hadoop is representative of other

software projects. Of course having considered only one project
generalization of the results presented is not possible at all.

7. CONCLUSIONS AND FUTURE WORK
Although we do not have unique answers, the results and
observations from this exploratory study let us understand that the

problem is worthy to be investigated. In fact we observed that

more than half of the commits in Hadoop are cross language (at

least according to our definition). However we also observed that
this property depends on the type of the activities and the

extensions of the modules.

Commits related to testing or fixing bugs involve mainly a single

language, while adding new features or doing implementation

sub-task are activities which involve multiple languages (or at

least extensions).

Looking at the single extensions, we verified that the most

common extensions are frequently changed together with files

with different extensions. Frequent interactions are generally not

symmetric, and many of them involve XML.

When we look at defect proneness, we observe that for Java
modules the interactions with other languages (as an aggregate) is

not problematic at all: we observed that Java CLMs files are ten

times less defect prone than ILMs. However, when looking at

single pairs of interactions, we notice that several pairs have CLM

significantly more defect prone then ILM, especially C modules.

Finally, the widespread interaction between Java and XML
apparently is not related to defect proneness.

This study represents a first step in understanding the

phenomenon of languages interaction. We should address in
future work the threats that limit the scope and the validity of the

study. However this study let us hypothesize that the interaction

of languages might be problematic for specific languages

interactions. We would like also to study other effects of
languages interactions, for example on the development speed.

8. REFERENCES
[1] Wampler, D.; Clark, T.; Ford, N.; Goetz, B.; ,

"Multiparadigm Programming in Industry: A Discussion

with Neal Ford and Brian Goetz," Software, IEEE , vol.27,

no.5, pp.61-64, Sept.-Oct. 2010 doi: 10.1109/MS.2010.121

[2] Fowler, M. 2011. Domain Specific Languages. Addison

Wesley Signature Series.

[3] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: implement

your language faster than the quick and dirty way. In Proc. of
the ACM int. conf. Object oriented programming systems

languages and applications companion (SPLASH '10). ACM,

New York, NY, USA, 307-309.
DOI=10.1145/1869542.1869625

[4] Fredrik Seehusen and Ketil Stølen. 2011. An evaluation of

the graphical modeling framework (GMF) based on the

development of the CORAS tool. In Proc.of the 4th int. conf.
on Theory and practice of model transformations (ICMT'11).

[5] Charles Simonyi, Magnus Christerson, and Shane Clifford.

2006. Intentional software. SIGPLAN Not. 41, 10 (October

2006), 451-464. DOI=10.1145/1167515.1167511

[6] Markus Volter. 2011. From Programming to Modeling - and

Back Again. IEEE Softw. 28, 6 (November 2011), 20-25.

DOI=10.1109/MS.2011.139

[7] Sergey Dmitriev, 2004. Language Oriented Programming:
the next programming paradigm

http://www.jetbrains.com/mps/docs/Language_Oriented_Pro

gramming.pdf.

[8] Markus Völter and Eelco Visser. 2010. Language extension
and composition with language workbenches. In Proceedings

of the ACM int. conf. companion on Object oriented

programming systems languages and applications
companion (SPLASH '10). ACM, New York, NY, USA,

301-304. DOI=10.1145/1869542.1869623 .

[9] Rolf-Helge Pfeiffer and Andrzej Wąsowski: "Taming the

Confusion of Languages" In: ECMFA 2011. Published in:
ECMFA'11.

 Table V. Relation between classification in ILM and CLM and presence of defects (RQ 3.1 and 3.2)

 RQ MN MY CN CY P Odds

all 2 1891 225 2875 89 0.000 0.26

c 2.1 2 0 46 1 1.000 Inf

java 2.1 1692 201 2239 25 0.000 0.09

properties 2.1 19 1 45 7 0.429 2.92

sh 2.1 10 5 64 13 0.162 0.41

xml 2.1 96 11 184 24 0.851 1.14

