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Numerical Modeling of Biomolecular Electrostatic Properties
by the Element-Free Galerkin Method

Alessandra Manzin, Domenico Patrizio Ansalone, and Oriano Bottauscio
Istituto Nazionale di Ricerca Metrologica, Torino, Italy

The element-free Galerkin method is applied to the study of the electrostatic behavior of a biomolecule inside a ionic solvent. To this
aim, the attention is focused on the solution of the linearized Poisson–Boltzmann equation. The numerical results put in evidence the
capability of the proposed approach in approximating the steep gradients of the electrostatic potential arising in the molecular region.

Index Terms—Bioelectric phenomena, biological system modeling, element-free Galerkin method (EFGM), meshless methods

.

I. INTRODUCTION

R ECENTLY, there has been a growing interest towards the
modeling of the electrostatic behavior of biomolecules

(e.g., proteins, nucleic acids) in ionic solutions. The electro-
static interactions between biomolecules and solvent play a fun-
damental role in the definition of the structure, binding proper-
ties and kinetics of such complex systems.

In the biomolecular computing community, a widely used
model to describe the electrostatic potential in proximity of a
biomolecule is the nonlinear Poisson–Boltzmann (PB) equation
[1]. This model represents the biomolecule as a polarized cluster
of atoms and the solvent as a continuum dielectric medium,
where ions satisfy the Boltzmann distribution. The accurate so-
lution of the PB equation is a very difficult task, due to strong
irregularities in the considered geometries, exponential nonlin-
earity and delta distribution sources. The point-charge singulari-
ties give rise to localized steep gradients in the molecular region
that require a very fine mesh when the Finite Element Method
(FEM) is used. To overcome these limits, we have developed
a numerical model based on the element-free Galerkin method
(EFGM) [2]. This technique has been proved to efficiently pre-
dict local high gradient solutions arising in magneto-hydrody-
namics [3], eddy current problems with strong skin effects [4]
and electromagnetic-wave scattering [5].

This paper describes the EFGM application to the linearized
PB equation, considering a molecular structure whose geom-
etry is derived from the RCSB protein data bank [6]. Particular
care is devoted to the treatment of essential boundary condi-
tions and discontinuous derivatives on molecule-solvent inter-
face. The analysis is focused on the influence of EFGM features
(node distribution, domain influence size, weight functions) on
the numerical accuracy.

II. NUMERICAL MODEL

For a 1:1 electrolyte, the weak formulation of the linearized
PB equation, with test function , results to be

(1)
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where is the electrostatic potential, is the Dirac
distribution at point , is the dielectric constant, and is the
Debye-Hückel parameter. When neglecting the ion-exclusion
layer [1], the 3-D domain is decomposed into two regions: the
molecule , including atomic charges , with
and , and the solvent region , for which and
is a function of temperature and ionic strength.

By applying the EFGM, is approximated in terms of local
shape functions , associated with a set of nodes dis-
tributed over . It results that

(2)

where is the number of EFGM nodes whose influence
domain contains and is the unknown parameter at node ,
generally non coincident with the nodal value [2]. Shape
functions are defined as

(3)

with

In (3), is a linear basis function
and is a weight function, which is different from zero only
over a limited region around the associated node (influence do-
main). The continuity properties of influence the regularity
of shape functions, enabling highly continuous approximations.
Here, exponential weight functions

for
for

(4)

are adopted and compared with the following cubic spline
functions:

for
for
for

(5)
The exponential weight is actually noncontinuous, since it is
different from zero at , but numerically it resembles a
weight with continuity or higher. By assuming parameter

it results that .
Considering spherical influence domains, the argument of

the weight function is defined as

(6)
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where is a scaling parameter and is here assumed as the
minimum distance between node and its neighboring nodes.

Since EFGM shape functions are not interpolating, special
techniques have to be employed to handle essential boundary
conditions. The external region is truncated at a sufficiently
large distance from the molecular surface, where the potential
is negligible. On the boundary , homogeneous Dirichlet
conditions are imposed following the “substitution method”,
which introduces this constraint equation

(7)

in correspondence of each meshless node belonging to .
The high-order regularity of weight and EFGM shape func-

tions is a disadvantage when treating the discontinuity of the
normal derivative of potential at the molecular surface . To
introduce this discontinuity, an approach based on the “visi-
bility criterion” is here adopted [7]. When constructing weight
functions, the influence domains cut by are divided into two
parts, belonging to or . Thus, nodes contained in region

are only influenced by nodes inside the same region
plus the ones belonging to the interface. The nodes on are du-
plicated, giving rise to two sets of nodes and . To enforce
the continuity of the electrostatic potential and of the normal
component of the electric displacement field, the following in-
terface conditions are imposed:

(8)

where represents the direction normal to .
It is important to point out that the treatment of boundary

and interface conditions through the introduction of (7) and (8)
reduces the sparsity of stiffness matrix.

III. NUMERICAL ANALYSIS

The accuracy of EFGM is initially tested computing the elec-
trostatic potential generated by a simple biomolecule, the tyro-
sine, whose representation is shown in Fig. 1. The tyrosine con-
tains 24 atomic charges and is one of the 20 amino acids used
by cells to synthesize proteins. The relative dielectric constant
of the molecule is assumed equal to 1 and in the
solvent region.

Domain is truncated at a distance from the molecule
barycentre corresponding to 3 times the molecule average
size, where the electrostatic potential is almost negligible. To
compute integrals over and define the molecule surface, a
mesh of tetrahedra is introduced. The integral points are located
following a 4-point standard Gaussian quadrature rule.

The EFGM results are validated by comparison to a reference
solution obtained by the Boundary Element Method (BEM),
which has been proved to be very accurate in the numerical treat-
ment of the linearized PB equation [8]. The reference solution
(see Fig. 1) is computed considering a fine discretization of the
molecular surface ( 3500 triangular elements). The analysis is

Fig. 1. Surface electrostatic potential maps of tyrosine, computed with BEM
and EFGM. The solutions are obtained by considering the same surface tessella-
tion, corresponding to�3500 elements. The EFGM nodes are�25000 in total.

focused on the role of EFGM node number and location, param-
eter and weight function type.

A. Role of EFGM Node Number and Location

The EFGM nodes, which can be disjointed from the back-
ground mesh, are here placed on the tetrahedron vertices (in-
side and ) and in correspondence of the charge location
(inside ). It is important to point out that the singularities
due to Dirac delta distribution are avoided, since the EFGM
shape functions do not satisfy the Kronecker delta criterion. On
the molecule surface , the EFGM nodes are positioned on the
barycentre of the interface tehaedron faces to allow the compu-
tation of the potential normal derivative.

The EFGM solution is computed from a distribution of
10400 nodes, assuming exponential weight functions with

and . The quadrature mesh and the node
location are derived from a surface mesh with 1400 triangular
elements. As shown in Figs. 2, which report the electrostatic
potential along the Cartesian axes, a good agreement with the
BEM reference solution is reached when the EFGM nodes are
placed also in correspondence of the charge location. When
meshless nodes are not arranged on charge position, the spatial
behavior of the electrostatic potential inside the molecule
region is not correctly reproduced.

The comparison with a FEM solution, obtained by using
the quadrature mesh of EFGM and by imposing homogeneous
Dirichlet boundary conditions on , puts in evidence the
better accuracy of EFGM. To obtain comparable accuracy, the
FEM mesh has to be considerably increased, considering a grid
with 25000 nodes.

B. Role of Influence Domain Size

The scaling parameter defines the extension of node in-
fluence domains and has a strong impact on accuracy [4]. With
the node distribution previously considered, if , ma-
trix , which contributes to shape function construction, can
be singular, i.e. non invertible, since a node can have only one
neighbor in its influence domain. When and
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Fig. 2. Electrostatic potential along Cartesian axes, computed by BEM (refer-
ence solution), EFGM, and FEM. The EFGM solutions are obtained both in-
cluding and removing meshless nodes on charge location �� �. The FEM so-
lution is calculated by employing the EFGM quadrature mesh.

with exponential weight functions, there is a good agreement
with the BEM reference solution, mainly inside the molecule,
where the potential reaches its highest values.

Larger discrepancies can arise in the solvent region, as put in
evidence in Fig. 3, which reports the spatial distribution of the
electrostatic potential computed along the -axis for different
values of . In the range 1.8 2.2, this parameter has a weak
influence, leading to a quite accurate reconstruction of the so-
lution. When , near the molecule-solvent interface
the solution is affected by spatial oscillations, whose amplitude
rises with . The solution quality can be improved by in-
creasing the node number in the solvent region near the mole-
cule surface.

Fig. 3. Electrostatic potential in the solvent region computed along �-axis. The
EFGM solution is obtained for different values of parameter � considering
exponential weight functions with � equal to 0.4.

Parameter has also a strong effect on computational
burden and memory requirements. This is put in evidence in
Table I, which reports the CPU time required to assemble stiff-
ness matrix and known term, compute optimized LU factoriza-
tion following the Tinney ordering scheme [9] and solve the
system of equations. The most influenced contribution is the first
one, which increases of about 80 times by varying from 1.8
to 3.0. The cost of computing integrals in (1) is strongly affected
by the number of EFGM nodes involved in the calculation of
shape functions at a quadrature node, which rises with .
The CPU time required to construct the system matrix is pro-
portional to .

The number of matrix elements augments with , due to
the overlapping of influence domains and the consequent in-
crease of the interconnections between EFGM nodes. This pro-
duces an increment of the CPU time required to compute LU
factorization and solution.

It is interesting to note that the BEM solution computed from
a surface mesh with 1400 elements requires a memory allo-
cation comparable to the one obtained with the EFGM when

is equal to 3.0. Also with BEM the system assembling
can be very time consuming due to the high number of involved
boundary integral operations.

C. Role of Weight Function

Weight functions play an important role in the performance
of EFGM. When adopting exponential weight functions, accu-
rate results in the molecule region can be obtained by varying
between 0.3 and 0.5. For higher values of , the strong discon-
tinuities at the boundary of weight function support (at )
introduce abrupt variations in the potential, giving rise to inac-
ceptable results.

In the solvent region, near the molecule surface, the most ac-
curate prediction is obtained by imposing [10], even if
this value leads to (Fig. 4).

By comparing exponential to cubic spline weight functions,
the quality of the solution in the solvent region is better when
using the former ones, as shown by the graphs of Fig. 5
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TABLE I
ROLE OF INFLUENCE DOMAIN SIZE ON CPU TIME AND MEMORY REQUIREMENTS. PERFORMANCES ARE REFERRED TO THE CASE WITH � � ���

Fig. 4. Electrostatic potential in the solvent region computed along �-axis.
The EFGM solution is obtained considering exponential weight functions and
� � ��� for different values of parameter �.

Fig. 5. Electrostatic potential in the solvent region computed along �-axis. The
EFGM solution is also obtained considering cubic spline weight functions and
parameter � equal to 2.0 and 2.5.

IV. CONCLUSIONS

The EFGM has been applied for the first time to the solu-
tion of the linearized PB equation in 3-D domains. Like BEM
and differently from FEM, the EFGM is able to accurately re-
construct the spatial distribution of electrostatic potential inside
molecule region also with a low number of unknowns. To reach
this goal, the EFGM nodes have to be placed on charge location
too.

Differently from BEM, the open-boundary conditions are not
exactly treated and ad-hoc strategies have to be used to handle
discontinuities in the normal derivative of the potential at the
molecular surface. Concerning memory allocation, the EFGM

is more competitive than BEM and it could be simply adapted
for the treatment of the non linear PB equation.

The EFGM is less advantageous than FEM in terms of CPU
usage and memory requirements. First, the calculation of in-
tegrals in the weak formulation involves a matrix inversion at
each quadrature point, leading to high computational cost in the
system assembling. Second, the introduction of additional equa-
tions to handle interface and boundary conditions reduces the
sparsity of stiffness matrix. The performances can be improved
by using parallel computing techniques.

The study has also put in evidence the importance of a suitable
choice of weight function and influence domain size in the com-
putation of the electrostatic potential in the solvent region. The
accurate prediction of the potential spatial distribution around
the molecule surface is fundamental in the determination of the
solvation energy and in the analysis of binding processes be-
tween complex molecular structures.
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The element-free Galerkin method is applied to the study of the electrostatic behavior of a biomolecule inside a ionic solvent. To this
aim, the attention is focused on the solution of the linearized Poisson–Boltzmann equation. The numerical results put in evidence the
capability of the proposed approach in approximating the steep gradients of the electrostatic potential arising in the molecular region.

Index Terms—Bioelectric phenomena, biological system modeling, element-free Galerkin method (EFGM), meshless methods

.

I. INTRODUCTION

R ECENTLY, there has been a growing interest towards the
modeling of the electrostatic behavior of biomolecules

(e.g., proteins, nucleic acids) in ionic solutions. The electro-
static interactions between biomolecules and solvent play a fun-
damental role in the definition of the structure, binding proper-
ties and kinetics of such complex systems.

In the biomolecular computing community, a widely used
model to describe the electrostatic potential in proximity of a
biomolecule is the nonlinear Poisson–Boltzmann (PB) equation
[1]. This model represents the biomolecule as a polarized cluster
of atoms and the solvent as a continuum dielectric medium,
where ions satisfy the Boltzmann distribution. The accurate so-
lution of the PB equation is a very difficult task, due to strong
irregularities in the considered geometries, exponential nonlin-
earity and delta distribution sources. The point-charge singulari-
ties give rise to localized steep gradients in the molecular region
that require a very fine mesh when the Finite Element Method
(FEM) is used. To overcome these limits, we have developed
a numerical model based on the element-free Galerkin method
(EFGM) [2]. This technique has been proved to efficiently pre-
dict local high gradient solutions arising in magneto-hydrody-
namics [3], eddy current problems with strong skin effects [4]
and electromagnetic-wave scattering [5].

This paper describes the EFGM application to the linearized
PB equation, considering a molecular structure whose geom-
etry is derived from the RCSB protein data bank [6]. Particular
care is devoted to the treatment of essential boundary condi-
tions and discontinuous derivatives on molecule-solvent inter-
face. The analysis is focused on the influence of EFGM features
(node distribution, domain influence size, weight functions) on
the numerical accuracy.

II. NUMERICAL MODEL

For a 1:1 electrolyte, the weak formulation of the linearized
PB equation, with test function , results to be

(1)
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where is the electrostatic potential, is the Dirac
distribution at point , is the dielectric constant, and is the
Debye-Hückel parameter. When neglecting the ion-exclusion
layer [1], the 3-D domain is decomposed into two regions: the
molecule , including atomic charges , with
and , and the solvent region , for which and
is a function of temperature and ionic strength.

By applying the EFGM, is approximated in terms of local
shape functions , associated with a set of nodes dis-
tributed over . It results that

(2)

where is the number of EFGM nodes whose influence
domain contains and is the unknown parameter at node ,
generally non coincident with the nodal value [2]. Shape
functions are defined as

(3)

with

In (3), is a linear basis function
and is a weight function, which is different from zero only
over a limited region around the associated node (influence do-
main). The continuity properties of influence the regularity
of shape functions, enabling highly continuous approximations.
Here, exponential weight functions

for
for

(4)

are adopted and compared with the following cubic spline
functions:

for
for
for

(5)
The exponential weight is actually noncontinuous, since it is
different from zero at , but numerically it resembles a
weight with continuity or higher. By assuming parameter

it results that .
Considering spherical influence domains, the argument of

the weight function is defined as

(6)
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where is a scaling parameter and is here assumed as the
minimum distance between node and its neighboring nodes.

Since EFGM shape functions are not interpolating, special
techniques have to be employed to handle essential boundary
conditions. The external region is truncated at a sufficiently
large distance from the molecular surface, where the potential
is negligible. On the boundary , homogeneous Dirichlet
conditions are imposed following the “substitution method”,
which introduces this constraint equation

(7)

in correspondence of each meshless node belonging to .
The high-order regularity of weight and EFGM shape func-

tions is a disadvantage when treating the discontinuity of the
normal derivative of potential at the molecular surface . To
introduce this discontinuity, an approach based on the “visi-
bility criterion” is here adopted [7]. When constructing weight
functions, the influence domains cut by are divided into two
parts, belonging to or . Thus, nodes contained in region

are only influenced by nodes inside the same region
plus the ones belonging to the interface. The nodes on are du-
plicated, giving rise to two sets of nodes and . To enforce
the continuity of the electrostatic potential and of the normal
component of the electric displacement field, the following in-
terface conditions are imposed:

(8)

where represents the direction normal to .
It is important to point out that the treatment of boundary

and interface conditions through the introduction of (7) and (8)
reduces the sparsity of stiffness matrix.

III. NUMERICAL ANALYSIS

The accuracy of EFGM is initially tested computing the elec-
trostatic potential generated by a simple biomolecule, the tyro-
sine, whose representation is shown in Fig. 1. The tyrosine con-
tains 24 atomic charges and is one of the 20 amino acids used
by cells to synthesize proteins. The relative dielectric constant
of the molecule is assumed equal to 1 and in the
solvent region.

Domain is truncated at a distance from the molecule
barycentre corresponding to 3 times the molecule average
size, where the electrostatic potential is almost negligible. To
compute integrals over and define the molecule surface, a
mesh of tetrahedra is introduced. The integral points are located
following a 4-point standard Gaussian quadrature rule.

The EFGM results are validated by comparison to a reference
solution obtained by the Boundary Element Method (BEM),
which has been proved to be very accurate in the numerical treat-
ment of the linearized PB equation [8]. The reference solution
(see Fig. 1) is computed considering a fine discretization of the
molecular surface ( 3500 triangular elements). The analysis is

Fig. 1. Surface electrostatic potential maps of tyrosine, computed with BEM
and EFGM. The solutions are obtained by considering the same surface tessella-
tion, corresponding to�3500 elements. The EFGM nodes are�25000 in total.

focused on the role of EFGM node number and location, param-
eter and weight function type.

A. Role of EFGM Node Number and Location

The EFGM nodes, which can be disjointed from the back-
ground mesh, are here placed on the tetrahedron vertices (in-
side and ) and in correspondence of the charge location
(inside ). It is important to point out that the singularities
due to Dirac delta distribution are avoided, since the EFGM
shape functions do not satisfy the Kronecker delta criterion. On
the molecule surface , the EFGM nodes are positioned on the
barycentre of the interface tehaedron faces to allow the compu-
tation of the potential normal derivative.

The EFGM solution is computed from a distribution of
10400 nodes, assuming exponential weight functions with

and . The quadrature mesh and the node
location are derived from a surface mesh with 1400 triangular
elements. As shown in Figs. 2, which report the electrostatic
potential along the Cartesian axes, a good agreement with the
BEM reference solution is reached when the EFGM nodes are
placed also in correspondence of the charge location. When
meshless nodes are not arranged on charge position, the spatial
behavior of the electrostatic potential inside the molecule
region is not correctly reproduced.

The comparison with a FEM solution, obtained by using
the quadrature mesh of EFGM and by imposing homogeneous
Dirichlet boundary conditions on , puts in evidence the
better accuracy of EFGM. To obtain comparable accuracy, the
FEM mesh has to be considerably increased, considering a grid
with 25000 nodes.

B. Role of Influence Domain Size

The scaling parameter defines the extension of node in-
fluence domains and has a strong impact on accuracy [4]. With
the node distribution previously considered, if , ma-
trix , which contributes to shape function construction, can
be singular, i.e. non invertible, since a node can have only one
neighbor in its influence domain. When and
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Fig. 2. Electrostatic potential along Cartesian axes, computed by BEM (refer-
ence solution), EFGM, and FEM. The EFGM solutions are obtained both in-
cluding and removing meshless nodes on charge location �� �. The FEM so-
lution is calculated by employing the EFGM quadrature mesh.

with exponential weight functions, there is a good agreement
with the BEM reference solution, mainly inside the molecule,
where the potential reaches its highest values.

Larger discrepancies can arise in the solvent region, as put in
evidence in Fig. 3, which reports the spatial distribution of the
electrostatic potential computed along the -axis for different
values of . In the range 1.8 2.2, this parameter has a weak
influence, leading to a quite accurate reconstruction of the so-
lution. When , near the molecule-solvent interface
the solution is affected by spatial oscillations, whose amplitude
rises with . The solution quality can be improved by in-
creasing the node number in the solvent region near the mole-
cule surface.

Fig. 3. Electrostatic potential in the solvent region computed along �-axis. The
EFGM solution is obtained for different values of parameter � considering
exponential weight functions with � equal to 0.4.

Parameter has also a strong effect on computational
burden and memory requirements. This is put in evidence in
Table I, which reports the CPU time required to assemble stiff-
ness matrix and known term, compute optimized LU factoriza-
tion following the Tinney ordering scheme [9] and solve the
system of equations. The most influenced contribution is the first
one, which increases of about 80 times by varying from 1.8
to 3.0. The cost of computing integrals in (1) is strongly affected
by the number of EFGM nodes involved in the calculation of
shape functions at a quadrature node, which rises with .
The CPU time required to construct the system matrix is pro-
portional to .

The number of matrix elements augments with , due to
the overlapping of influence domains and the consequent in-
crease of the interconnections between EFGM nodes. This pro-
duces an increment of the CPU time required to compute LU
factorization and solution.

It is interesting to note that the BEM solution computed from
a surface mesh with 1400 elements requires a memory allo-
cation comparable to the one obtained with the EFGM when

is equal to 3.0. Also with BEM the system assembling
can be very time consuming due to the high number of involved
boundary integral operations.

C. Role of Weight Function

Weight functions play an important role in the performance
of EFGM. When adopting exponential weight functions, accu-
rate results in the molecule region can be obtained by varying
between 0.3 and 0.5. For higher values of , the strong discon-
tinuities at the boundary of weight function support (at )
introduce abrupt variations in the potential, giving rise to inac-
ceptable results.

In the solvent region, near the molecule surface, the most ac-
curate prediction is obtained by imposing [10], even if
this value leads to (Fig. 4).

By comparing exponential to cubic spline weight functions,
the quality of the solution in the solvent region is better when
using the former ones, as shown by the graphs of Fig. 5
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TABLE I
ROLE OF INFLUENCE DOMAIN SIZE ON CPU TIME AND MEMORY REQUIREMENTS. PERFORMANCES ARE REFERRED TO THE CASE WITH � � ���

Fig. 4. Electrostatic potential in the solvent region computed along �-axis.
The EFGM solution is obtained considering exponential weight functions and
� � ��� for different values of parameter �.

Fig. 5. Electrostatic potential in the solvent region computed along �-axis. The
EFGM solution is also obtained considering cubic spline weight functions and
parameter � equal to 2.0 and 2.5.

IV. CONCLUSIONS

The EFGM has been applied for the first time to the solu-
tion of the linearized PB equation in 3-D domains. Like BEM
and differently from FEM, the EFGM is able to accurately re-
construct the spatial distribution of electrostatic potential inside
molecule region also with a low number of unknowns. To reach
this goal, the EFGM nodes have to be placed on charge location
too.

Differently from BEM, the open-boundary conditions are not
exactly treated and ad-hoc strategies have to be used to handle
discontinuities in the normal derivative of the potential at the
molecular surface. Concerning memory allocation, the EFGM

is more competitive than BEM and it could be simply adapted
for the treatment of the non linear PB equation.

The EFGM is less advantageous than FEM in terms of CPU
usage and memory requirements. First, the calculation of in-
tegrals in the weak formulation involves a matrix inversion at
each quadrature point, leading to high computational cost in the
system assembling. Second, the introduction of additional equa-
tions to handle interface and boundary conditions reduces the
sparsity of stiffness matrix. The performances can be improved
by using parallel computing techniques.

The study has also put in evidence the importance of a suitable
choice of weight function and influence domain size in the com-
putation of the electrostatic potential in the solvent region. The
accurate prediction of the potential spatial distribution around
the molecule surface is fundamental in the determination of the
solvation energy and in the analysis of binding processes be-
tween complex molecular structures.
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