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Blind Source Separation:  

Application to biomedical signals 

 
Luca Mesin*, Aleš Holobar*, Roberto Merletti*  

 
 

1. INTRODUCTION 

 
Blind Source Separation (BSS) is a prominent problem in signal processing. In the past few 

decades, it was applied to many fields, in which separation of compound signals, simultaneously 

observed by different sensors, is of interest. The problem can be considered as built-up of three 

physical elements: sources (also called transmitters), sensors (also called receivers) and 

communication channels which reflect the properties of the physical medium propagating the 

signals form the sources to the sensors. The signals detected by the sensors are commonly referred 

to as observations and are assumed to be algebraic combinations of the unknown sources signals. 

BSS approach assumes limited a priori information on the communication channels (linearity, 

memory properties…) and tries to reconstruct the source signals out of the detected signals only. 

Analysis of the communication channels is important mainly for selection of a proper processing 

technique. Namely, communication channels weight and/or filter the signals coming from the 

sources and, together with them, determine the temporal and spectral characteristics of the detected 

mixtures. 

 

An example of physical medium propagating the sound is air. Physical properties of the air 

determine the weights of communication channels in Speech separation (or cocktail-party) 

problem. This problem deals with separation of different human voices or sounds from instruments, 

recorded by two or more microphones during simultaneous emission of two or more sources 

(Koutras et al., 2000, Anemüller and Gramß, 1999). Source separation problem for sonar is 

discrimination of the echoes from different simultaneously present targets. Radar requires the 

solution of problems equivalent to those of sonar. Communication systems working under water or 

in an orbit also face equivalent problems of source separation, but use signals with different spectral 
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features. The problem of separating a mixture of echoes from different targets is also important in 

Earth Sciences, e.g. in the study of different geological layers or in the search for water or oil 

reservoirs.  

 

Source separation finds important applications also in life sciences; Electroencephalographic 

(EEG), Electrocardiographic (ECG), Electromyographic (EMG), Mechanomyographic (MMG) 

signals are all compound biomedical signals, generated by several tens (EMG, MMG) or even 

millions (EEG) of biophysical sources. Separation of biomedical signals augments the power of 

human body scanning techniques and plays an important role in understanding of complex 

processes in biomedical phenomena (Vigàrio, 1997, Vigàrio et al., 1998, Vigàrio et al., 1999, 

Makeig et al., 1996). This chapter is devoted to basic descriptions of frequently used source 

separation methods, with focus on the biomedical applications. 

 

2. MATHEMATICAL MODELS OF THE MIXTURES 

 
A mathematical model of the source-sensor communication, also called a mixing process, 

determines an analytical relation between the source signals and the observations. Mixing models 

can be classified as follows (Lacoume, 1999). 

1. Non-linear model: it is the most general model and very difficult to study as the source signals 

do not satisfy the superimposition principle (i.e., their contributions combine non-linearly to 

form the observed mixtures). 

2. Post non-linear model: the process consist of linear mixing and an instantaneous non linear 

mapping of the source signals. 

3. Linear model: it is the most widely studied model and the only one considered in this chapter. In 

each observation, contributions from different sources are linearly combined, i.e., superimposed 

to each other.  

 

Linear mixing model can further be divided in two subgroups: 

• Convolutive mixing model: the mixing process is a causal multidimensional convolution  

   x(t) = ʃA(t-τ) s(τ) dτ                                                                      [1] 

where s(t) are source signals from N sources, x(t) are observations detected by M sensors and 

A(t) is a mixing matrix comprising impulse responses of all the communication channels that 
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relate the source signals s(t) to the observed signals x(t). Convolutive mixing model is typically 

assumed to be causal, with memory of the source signals received in the past; 

• Instantaneous mixing model: the signals detected in a time instant are obtained as a linear 

combinations of the source signals at the same instant:  

x(t) = A s(t)                                                                              [2] 

An instantaneous mixing model has no knowledge of the source samples received in the past. 

 

In numerical implementation, s(t) is a matrix of sampled source signals (with the T samples of the 

signal from the rth source in the rth row), and x(t) is a matrix of sampled observations, with 

observations from different sensors in different rows. Without loss of generality, the observations 

x(t) are also assumed to be zero-mean. 

 

The linear BSS problem has two types of ambiguities. Firstly, it is clear from [1] and [2] that 

amplitude scaling of the sources can be compensated by an inverse scaling of the corresponding 

elements of matrix A. Thus, with no a priori knowledge on the mixing matrix A, the power of 

individual source signals cannot be determined and is, by convention, set equal to 1. A second 

ambiguity lies in the order in which the source signals are determined.    

 

Now, let us assume that the signals s(t) are emitted from N different sources, while the  observations 

x(t) are detected by the M different sensors, where M N≥ . Then, in order to reconstruct the source 

signals, we must first estimate the mixing matrix A, invert it, and apply its inverse to the observed 

signals x(t). Thus, the unknowns of the BSS problem comprise both the elements of A and the 

source signals s(t). In the case of the discretised instantaneous model [2] with T samples long source 

signals, we must estimate M N×  entries of A and N T×  samples of the source signals, given just 

M T×  samples of observations x(t). The number of unknowns to be determined is usually greater 

than the number of equations imposed by model [1] or [2] (even when M N≥ ) and further a priori 

conditions on the source signals or/and the mixing matrix A are required to face the problem of 

source separation. Most of BSS methods do not use any information about the mixing matrix A. 

Instead, they only rely on additional information about the sources. The latter are usually considered 

to be uncorrelated or statistically independent. Although somehow contra-intuitive, these 

assumptions are often sufficient to estimate the source signals, except for the ambiguities on their 

amplitudes and order (as stated above).  
 
In order to comply with practice, a random noise is usually added to the models [1] and [2]. Such a 

noise can be either additive or multiplicative. Typically, the noise is further assumed to be zero-
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mean, temporarily and spatially white random process. Temporal whiteness implies the 

independence of noise samples belonging to the time series of each individual observation, whereas 

spatial whiteness refers to independence of samples of noise between different observations at the 

same time instant. Frequently, the noise is also assumed to be independent of the source signals.  

 

3. PROCESSING TECHNIQUES 

 
Practically all source separation techniques are based on maximisation of the distance between the 

estimated source signals. The definition of the distance depends on the selected a priori assumptions 

on the sources and generates classification of different BSS approaches. In the sequel, we will 

briefly describe only some of those BSS classes that found their way into the field of biomedical 

signal processing. Interested reader is referred to Hyvarinen et al., 2001, for more thorough and 

complete overview of BSS approaches.  

 

One of the best known signal decomposition techniques is the Principal Component Analysis 

(PCA), also known as Karhunen-Loeve or Hotelling transform. Strictly speaking, PCA does not 

belong to the BSS family, as it does not truly reconstruct the original source signals. Nonetheless, it 

is very popular decomposition techniques and is used as a pre-processing step of numerous BSS 

approaches. PCA builds of on correlation of observed signals and decomposes the observations into 

uncorrelated signal components. If the source signals are Gaussian, uncorrelatedness also implies 

independence, and the signal components obtained by PCA are also statistically independent. A 

useful property of PCA is that it preserves the power of observations, removes any linear 

dependencies between the reconstructed signal components and reconstructs the signal components 

with maximum possible energies (under the constraint of power preservation and uncorrelatedness 

of the signal components). Thus, PCA is frequently used for a lossless data compression (see 

Section 3.1 for details). 

 

The second large class of signal decomposition techniques is the so called Independent Component 

Analysis (ICA). ICA belongs to the family of BSS and imposes statistical independence of sources, 

meaning that all the samples of the source signals are assumed to be independent identically 

distributed (i.i.d.) random variables. ICA preserves the information contained in the observations 

and, at the same time, minimizes the mutual information of estimated source samples (mutual 

information is the information that the samples of the source signals have on each others). Thus, 

also ICA is useful in data compression, usually allowing higher compression rates than PCA.  
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Specific optimisation techniques used to maximise the distance between the independent sources 

determines further classification of the ICA methods: 

1. Algebraic methods: matrix calculus is used to estimate the mixing matrix A; 

2. Neural networks based methods: neural networks perform recursive estimation of weights, 

which define linear combinations of the mixtures; these combinations are the estimates of the 

sources. 

 

In the next subsection, PCA and ICA are discussed in more details.  In particular, examples of 

algebraic and neural network-based source separation methods are described, along with some 

indications about the most typical assumptions about the statistical independence of sources. 

References for further reading are also provided.   

 

3.1 PCA and ICA: possible choices of distance between source signals 

 

Assume a simple mixing model with N source signals s(t) and M observations x(t):  

x(t) = A s(t) + n(t)                                                                    [3] 

where n(t) is a zero-mean additive Gaussian noise.  
 
PCA is mathematical method, which determines the amount of redundancy in the observations x(t) 

and estimates a linear transformation P, which reduces this redundancy to a minimum. P is further 

assumed to have a unit norm, so that the total power of the observations x(t) is preserved. Strictly 

speaking, PCA does not assume any mixing model. Redundancy of information in x(t) is simply 

measured by the cross-correlation between the different observations. Therefore, although PCA can 

be interpreted as signal decomposition technique, the estimated principal components y(t)= Px(t)  

differ significantly from the original sources s(t) (see Subsection 3.1.1). ICA, on the other hand, 

employs much stronger assumption on statistical independence of sources, requires a-priori 

knowledge about the mixing model, and allows reconstruction of original sources s(t). 

.  

ICA problem was first proposed by Jutten, 1987, and Hérault and Jutten, 199. The neural, iterative 

approach used by Hérault and Jutten underlines the similarities of ICA with PCA and is, for 

historical reasons, discussed in the next subsection. Independently from Hérault and Jutten, Bar-

Ness proposed an equivalent method (Bar-Ness, 1982). Giannakis et al., 1989, addressed the issue 

of identificability of ICA, using cumulants of third order. Higher-order statistics were used by 

Laucoume and Ruiz, 1989, and by Gaeta and Laucoume, 1990, which introduced maximum 
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likelihood method for the estimation of the mixing matrix. The algebraic method introduced by 

Cardoso, 1989, and Souloumiac and Cardoso, 1991, is based on the properties of the fourth order 

cumulants. Inouye and Matsui, 1989, proposed an innovative solution to the problem of separation 

of two variables. At the same time, Comon, 1994, proposed a method for separation of N sources, 

while Fety, 1988, was the first to study source separation for a dynamic problem.  

 

3.1.1 Principal components analysis (PCA) 
 
The decomposition in principal components provides the representation of a set of signals x(t) as 

linear combinations of orthonormal components y(t) (called principal components) to be 

determined. For consistency reasons, signals x(t) are called observations here, even though PCA 

does not require x(t) to be a mixture of any sources. Principal components y(t) are directly related to 

the observations x(t)  and are chosen to minimise the Mean Square Errors (MSE) 

∑∫
=

m

k

T

T 1 0

1 |xk(t)-ckiyi(t)|2dt                                                              [4] 

where T is the observation interval, ckiyi(t) is the ith approximation of the kth observation by the i-th 

principal component yi(t). An iterative method to obtain the principal components results directly 

from their definition [4] and is based on the following iterative steps. 

1. Compute the first principal component minimising the sum of the m mean square errors in 

equation [4].  

2. Compute the second principal component under the constraint of being orthogonal to the 

previous one(s). 

3. Repeat step 2 until M principal components are reconstructed.  

 

Exploiting the orthonormal property of the principal components, it is possible to prove that the 

contribution of the kth principal component to the power of the observations x(t) is  

∑
=

=
n

i
ikk cP

1

2                                                                        [5] 

Application of abovementioned PCA procedure to a pair of surface EMG (sEMG) signals is 

illustrated in Figure 1. sEMG signals were recorded at the surface of the skin, above the biceps 

brachii muscle. Pick-up electrodes (i.e. sensors) were positioned close to each other in a linear array 

structure (interelectrode distance of 5 mm) and acquired electrical signals form approximately the 

same group of muscle fibres. As a result, both sEMG signals, x1 and x2 are highly correlated, as 

demonstrated by joint vector space representation in panel c). PCA finds the directions of maximal 

variance (so called, principal directions) and projects the observations, x1 and x2 on these directions 
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to reconstruct the principal components y1 and y2. In Figure 1.c), the first principal direction is 

represented by a black dashed line, the second principal direction by a black dotted line. 

Reconstructed principal components (i.e. projections to the principal directions) are depicted in 

panels 1.d) and 1.e). Note that, due to high level of redundancy in observations x1 and x2, more than 

90 % of total power is stored in the first principal component y1.  

 

     Figure 1 about here 

 

According to equation [4] and Figure 1, the first principal direction is a direction of maximum 

variance. This suggests a second PCA computation technique. Let w1 be the unit norm weight 

vector representing the first principal direction of observations x(t). By definition, the linear 

combination w1
Tx is the first principal component with the maximum variance. The weight vector 

w1 can then be obtained as 

( )2
1

|| || 1
arg max T

w
E

=

 =   
w w x .                                                              [6] 

Afterwards, the projection of x on the subspace spanned by already reconstructed principle 

directions is calculated as 1
1 ( )Tk

i i i
−

=− ∑x w x w , and the k-th (k≥2) principal direction is calculated as 

21

1|| || 1
arg max ( )

kT T
k i i

iw
E

−

==

    = − ∑  
    

w w x w x w .                                                  [7] 

This procedure is then repeated for all the remaining principal directions. Strictly speaking, 

principal directions reveal the directions of the maximum variance of M-dimensional random 

process. In the case of deterministic signals, we say that the principal directions reveal the 

directions of the maximum power in observations x(t). 

 

Principal components, as introduced so far, reveal their usefulness in data compression, but their 

connection to the problem of source separation is weak. In Section 3.2, we prove that principal 

components of the observations x(t) are associated to the sources s(t) by an unknown rotation 

matrix. Method for the estimation of this unknown rotation matrix is described in Section 4.2, 

where a biomedical application of a PCA-based BSS method is discussed.   

 

3.1.2 Independent Component Analysis (ICA) 

Now, assume the source signals s(t) in [3] are random processes. In ICA, source separation is 

achieved by additionally supposing the source signals statistically independent, instead of being just 
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uncorrelated (PCA). Different measures of independence can be introduced, giving rise to different 

ICA methods.  

 

When the number of observations M is greater than the number of sources N, the source signals can 

be estimated by applying the separation matrix Q to observations x(t): 

y(t) = Q x(t)                                                                               [8] 

where Q is generally unknown. Neglecting the influence of noise, for y(t) to be equal to the original 

sources s(t), we should have Q = A#, where # indicates matrix pseudoinverse (see the Appendix). As 

A is unknown, additional assumption of independence of the source signals is required. One of the 

most intuitive ways of realizing how the assumptions on statistical independence can be used to 

estimate the separation matrix Q is based on the central limit theorem. Central limit theorem 

guarantees the linear combination of independent non-Gaussian random variables has a distribution 

that is “closer” to a Gaussian than the distribution of any individual variable. This implies that the 

samples of the vector of observations x(t) are “more Gaussian” than the samples of the vector of 

sources s(t). Thus, the source separation can be based on minimisation of Gaussianity of 

reconstructed sources y(t). All that we need is a measure of (non)Gaussianity, which is used as an 

objective function by a given numerical optimization technique. Many different measures of 

Gaussianity have been proposed. Some of them are briefly summarized in the sequel. 

 

1. Kurtosis: kurtosis of a zero-mean random variable v is defined as 
4 2 2K( ) [ ]- 3 [ ]v E v E v=                                                                      [9]  

      where E[] stands for mathematical expectation. For a Gaussian variable v, 4 2 2[ ]= 3 [ ]E v E v  and 

Kurtosis of a Gaussian variable is 0. For most non-Gaussian distributions, kurtosis is non-zero 

(either positive or negative). Variables with positive kurtosis are called supergaussian (a 

typical example is Laplace distribution). They have a more spiky distribution, with heavy tails 

and more pronounced peak with respect to a Gaussian distribution. Variables with negative 

kurtosis are called subgaussian, and have distribution that is flatter than Gaussian. A typical 

example of subgaussian distribution is uniform distribution. Being based on the forth-order 

statistic, Kurtosis is very simple to compute, but is highly sensitive to outliers. Its value might 

be significantly influenced by a single sample with large value. Hence, it is not appropriate for 

separation of noisy measurements and measurements with severe signal artefacts.  
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2. Negentropy: given the covariance matrix of a multidimensional random variable, negentropy is 

defined as the difference between the entropy of the considered random variable and that of a 

Gaussian variable with the same covariance matrix. It vanishes for Gaussian distributed 

variables and is positive for all other distributions. From a theoretical point of view, Negentropy 

is the best estimator of Gaussianity (in the sense of minimal mean square error of the 

estimators), but has a high computational cost as it is based on estimation of probability density 

function of unknown random variables. For this reason, it is often approximated by k-th order 

statistics, where k is the order of approximation (Hyvarinen, 1998, Jones e Sibson, 1987). 

 

3. Mutual Information: another method for source separation by ICA is associated to Information 

Theory. Mutual information between M random variables is defined as  

 1
1

( ,..., ) ( ) ( )
m

m i
i

I y y H y H
=

= −∑ y  [10] 

where [ ]1,..., my y=y  is a M-dimensional random vector. Information entropy H of a discrete 

random vector y is defined as ( ) P( ) log P( )i i
i

H = − = =∑y y a y a , where ai are the possible values of 

y. For continuous random variable with probability density f(y), entropy H is defined as 

( ) ( ) log( ( ))H f f d
∞

−∞
= − ∫y y y y . Mutual information is always nonnegative, and equals zero only 

when variables 1,..., my y are independent. It is possible to prove (Hyvarinen, 2000) that mutual 

information of non correlated variables with unitary variance is equivalent to negentropy, except 

for the sign, i.e. maximization of negentropy is equivalent to minimisation of mutual 

information.  

 

Mutual information is also related to Kullback-Leibler divergence defined as (Hyvarinen, 1999) 

( , ) ( ) log( ( ) / ( ))f g f f g dδ
∞

−∞
= − ∫ y y y y .                                                       [11] 

which can be seen as a measure of a distance between probability density functions f and g. 

Kullback-Leibler divergence is always nonnegative and vanishes if and only if the probability 

densities f and g are equal. In ICA, Kullback-Leibler divergence measures the distance between 

the density f(y) and the factorised density g(y)=f1(y1) f2(y2)…fn(yn), where fi(yi) is the marginal 

density of variable yi . Mutual information and Kullback-Leibler divergence share the same 

practical drawbacks as Negentropy. To use them in practice, we need to somehow approximate 

mutual entropy of unknown random variables. As a result, although theoretically different, all 
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three measures of nongaussianity (i.e., Mutual information and Kullback-Leibler and 

Negentropy) lead to essentially same ICA algorithms.  

 

4. Maximum likelihood estimation: Another well known method to estimate the independent 

components is maximum likelihood (ML) estimation. ML approach is based on Log-likelihood 

function (i.e. logarithm of likelihood) defined as (Pham et al., 1992) 

∑∑
= =

=
T

t

n

i
L

1 1
log(fi(qi

T x(t))) + T log|det(Q)|                                                 [12] 

where time t is discretised into T samples and fi is the probability density of the i-th source signal 

(fi is assumed to be known). Likelihood can be represented as Kullback-Leibler divergence 

between the actual density of observations and factorised density of source signals. Thus, the ML 

approach is essentially equivalent to minimisation of mutual information. 

 

There is an important limitation of ICA method. As already indicated by the listed measures of 

nongaussianity, Gaussian variables are not separable by ICA (Comon, 1994). Indeed, M-

dimensional Gaussian distribution is invariant to any M-dimensional orthonormal transformation. 

Thus, two or more linearly combined Gaussian variables are not separable by ICA. The same 

applies to deterministic source signals with Gaussian distribution. ICA can separate them only if at 

most one source signal has a Gaussian distribution. 

 

At the end of Section 3.1.1, we stated that PCA allows describing a set of statistical data (or a set of 

deterministic signals) using uncorrelated components (i.e., random variables or deterministic 

signals). Since PCA transformation is orthonormal, the variance (in the case of statistical data) or 

power (in the case of deterministic signals) of the observations is preserved by principal 

components (see Section 3.2). ICA is also useful to explore statistical data (deterministic signals). It 

provides independent random variables (independent deterministic signals) which preserve the 

information contained in the observations. In the sequel, two applications of PCA and ICA methods 

to the mixing model [3] are discussed. 

 

3.2 Algebraic PCA method: application to an instantaneous mixing model  

 

Algebraic method for the computation of principal components is based on correlation matrix of 

observations  x(t): 
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11 1

1

ˆ
m

m mm

r r

r r

 
 =  
  

xxR
L

M O M

L

                                                                  [13] 

where ∫=
T

jiij dttxtx
T

r
0

)()(1  (continuous signals) or ∑
=

=
T

t
jiij txtx

T
r

1
)()(1  (sampled signals) is the 

correlation between the ith and the  jth observation. Note that ˆ
xxR  is real, positive, and symmetric. 

Now, assume the observations x(t) are deterministic and follow the mixing model [3]. Consider the 

singular value decomposition (see the Appendix) of the M×N  matrix A:  

A = VΛ1/2UT ,                                                                     [14] 

where UN×N and VM×M (matrix) are unitary matrixes of sizes N×N  and M×M (i.e. UUT = I, VTV = I) 

and Λ is a diagonal M×N matrix with the N non-zero eigenvalues λi of AAT on the diagonal. 

Without loss of generality, we can assume λi are arranged in decreasing order. The diagonal form of 

the correlation matrix ˆ
xxR  (for sampled signal) is given by:  

2 2

1 1
ˆ ( ) ( ) ( ( ) )( ( ) )

T TT T T T T T
n n

t t
t t t t σ σ

= =
= = + + = + = +∑ ∑xxR x x As n s A n AA I VΛV I                    [15] 

where 2
nσI  is the covariance matrix of the noise (which, given the adopted assumptions on the 

white noise, is equal to the identity matrix multiplied by the noise variance). In equation [15], the 

normalisation of the source signals to the unit norm and the notion of uncorrelatedness of the 

sources signals and noise was used. It is worth noticing that the eigenvalues of ˆ
xxR  sum up to the 

total power of observations x(t).  

 

Now, neglect the influence of noise and consider the relation between the eigenvectors of ˆ
xxR  and 

the principal components y(t).  Assume a signal yk(t) is a linear combination of the observations 

x(t). Than, yk(t) can be expressed as a linear combination of eigenvectors of ˆ
xxR  (completeness 

property of the eigenvectors of the correlation matrix), multiplied by a unit norm vector c: 

i i i
1

( ) (t) =  
m T T

k
i

y t c x
=

= ∑ V c V x .                                                        [16] 

where 1V  is the i-th eigenvector of ˆ
xxR  and c = [c1,…, cm]. The power of the signal yk(t) can be 

expressed as 

2

1 1 1
( ) ( ) ( ) ( )

T T mT T T T T T T
k k i i

t t i
y t y t t t c λ

= = =
= = =∑ ∑ ∑c V x x Vc c V VΛV Vc                                [17] 

The right-most sum in [17] is a convex combination (linear combination with unitary sum of 

weights) of the eigenvalues, which takes a maximum at ci = δi,1  (δi,j denoting the Kronecker delta). 
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Thus, the first eigenvector of ˆ
xxR  indicates the direction of the maximum power (or variance) of the 

observations, which is, by definition, the first principal direction. The corresponding eigenvalue iλ  

gives the power (variance) of the first principal component 1 ( )T tV x . By repeating this procedure and 

limiting it to the subspace of eigenvectors 2V to MV , the second principal direction is found to be 

aligned with eigenvector 2V , the third principal direction is aligned with 3V  etc. Therefore, the 

eigenvectors V of correlation matrix ˆ
xxR  reveal the principal directions of observations x(t). 

 

It is worth noticing that a complete computation of the mixing matrix A requires not only the 

matrices Λ and V, but also the unitary matrix U (known as rotation matrix; see Section 4.2). As U is 

estimated by PCA, principal components are not sufficient to reconstruct the original source signals.  

 

Note also that the M M×  matrix ˆ
xxR  has dimension larger or equal to that of A ( M N× ), because 

NM > . According to equation [15], the first N eigenvalues and eigenvectors of ˆ
xxR  provide 

information on the N source signals, whereas the additional M N−  eigenvalues provide information 

about the power (variance) of noise. This property will be used by the ICA approach in Section 4.2.  

 

3.3 Neural ICA method: application to instantaneous mixing model 

Indicating with ( ) ( )t t=y Qx an estimate of the source signals in model [3], the aim of ICA methods 

is to compute an estimate As of the mixing matrix A, such that ( ) ( )t t= sx A y . Algebraic PCA 

method, discussed in the previous Section, relies on a well known technique of eigenvalue 

decomposition (Appendix) and requires a priori knowledge of all the samples of observations x(t). 

This knowledge is not assumed by neural methods, which are based on an intrinsically different 

approach that allows real-time implementations. Neural techniques utilize iterative updates of 

weights As in order to achieve convergence to the minimum of a predefined functional F[As]. F[As] 

measures the aforementioned distance among the different estimates of the source signals y(t) and 

attains the minimum when y(t) = s(t). Possible choices for F[As] are those listed in Section 3.1. 

 

The weights As are updated iteratively (Karhunen et al., 1997). In each iteration step, the value of 

the functional F[As] is decreased (i.e., the distance between the y(t) estimates of the source signals 

is increased). A widely used numerical minimization technique is gradient descent algorithm (or 

stochastic gradient descent algorithm in the case of random processes), for which the weights are 

updated in the direction opposite to the gradient of F[As]: 
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As
n+1 = As

n - µn ∇ F[As].                                                                   [18] 

where the notation ∇  is just shorthand for gradient. Performances and convergence of the 

minimization method depend (usually with opposite direction) on the parameter µn,, called learning 

rate, which determines the decrease of the weights in opposite direction of the gradient. Learning 

rate is usually chosen to be adaptive, with smaller values close to the minimum of the functional 

F[As].  
 

As an example of application, we discuss the recursive neural network architecture introduced by 

Hérault and Jutten, 1991, (Figure 2) with the aim to separate two sources from two observations 

   1 11 1 12 2

2 21 1 22 2

(t) s (t) s (t)
(t) s (t) s (t)

x a a
x a a

= +
 = +

                                                             [19] 

where both xi(t) and si(t)  are signals with T samples. Every neuron receives the sequence of 

samples of observation xi(t) as an input. The outputs of all neurons are connected to all the inputs of 

the neurons with ij ≠  weighted by a scalar weight cji (Figure 2). The estimate of the output y(t) = 

Q x(t)  is obtained by separation matrix Q = (I+C)-1, where C is the matrix of weights cji. In the 

case of two sources considered in equation [19] we have  

1 1 12 2

2 2 21 1

( ) ( ) ( )
( ) ( ) ( )

y t x t c y t
y t x t c y t

= −
 = −

                                                                     [20] 

from which the following relation between source signals s(t)  and their estimates y(t) arises 

( ) ( )

( ) ( )

1 11 12 21 1 12 12 22 2
12 21

2 21 21 11 1 22 21 12 2
12 21

1( ) ( ) ( )
1

1( ) ( ) ( )
1

y t a c a s t a c a s t
c c

y t a c a s t a c a s t
c c

 =  − + −   −

 =  − + −   −

                                      [21] 

For the estimates to be proportional to the source signals, the following relations must hold  

12 12 22 21 21 110 , 0a c a a c a− = − = .                                                         [22] 

In such a case y1, y2 are proportional to s1, s2, respectively. Assuming instead 

11 12 21 22 21 120 , 0a c a a c a− = − =                                                       [23] 

y1, y2 are proportional to s2, s1, respectively. The convergence of the method to either [22] or [23] is 

associated to the ICA ambiguity on the order of the reconstructed sources. Convergence actually 

occurs only for one of the solutions [22] and [23], as only one of the solutions is stable. Indeed, the 

condition that the loop gain 2121cc  is less than 1 can be satisfied only by one of the solutions (Jutten 

and Hérault, 1991). For the gain 2121cc >1 the method diverges. 

 

      Figure 2 about here 
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The theoretical study of M sources in [3] is simply an extension of the previous example with two 

sources. In the case of M sources, the learning rule is based on the gradient method as discussed in 

the sequel. Assume that the first M-1 sources are already determined (up to the multiplicative 

constant) 

1 11 1

1 1, 1 1

( ) ( )

( ) ( )M M M M

y t a s t

y t a s t− − − −

 =


 =

M                                                          [24] 

Substituting equation [24] into the expression for the estimation of the M-th source 
1

1
( ) ( ) ( )

M
M M Mi i

i
y t x t c y t

−

=
= − ∑  and considering that 

1
( ) ( )

M
M Mi i

i
x t a s t

=
= ∑  we get:  

 ( )( ) ( ) ( )M Mi Mi ii i MM M
i

y t a c a s t a s t= − +∑                                                [25] 

In order to estimate the Mth source as a function ( )My t  proportional to it, the weights Mic  must be 

chosen so that the first term on the right hand side of [25] vanishes. By using the assumption of the 

uncorrelated source signals we have 

( )22 2 2 2[ ( ) ] [ ( ) ] [ ( ) ]M Mi Mi ii i MM M
i

E y t a c a E s t a E s t= − +∑                                  [26] 

Thus, 2[ ( ) ]ME y t  can be considered as the functional F[As], as its minimum is attained when the 

estimated source signal ( )My t  is proportional to the source ( )Ms t . Applying the gradient method to 

the functional 2[ ( ) ]ME y t  we have 

1 [ ( ) ( )]k k
ij ij k i jc c E y t y t i jµ−= + ≠ ,                                                  [27]  

where k is the iteration step and µk is the positive constant determining the learning rate (i.e., the 

increment of the weights). In the case of the stochastic gradient method, the same equation [27] is 

obtained, but without the expectation operator.  

 

There are infinite solutions corresponding to non correlated sources (Jutten and Hérault, 1991, and 

Jutten, 1987), but only one for which the sources are statistically independent. Thus, the rule must 

be modified so that the method converges to the unique solution corresponding to statistically 

independent sources. A further problem in the learning rule [27] is related to its symmetry: 

coefficients c12 and c21 vary in the same way; the solution to which the method converges is correct 

only if the mixing matrix A is symmetric. To avoid these problems, the learning rule [27] is 

substituted with 
1 [ ( ( )) ( ( ))]k k

ij ij k i jc c E f y t g y t i jµ−= + ≠                                             [28] 
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where f and g are two different non linear, even functions (in order to break symmetry), with the 

same sign (in order for their product to have the same sign as E[yi(t)yj(t)]) and the direction opposite 

to that of the gradient is taken. It is possible to prove that, in the case of source signals with 

symmetrical probability densities, if iterative rule [28] converges, the obtained estimates yi(t), yj(t) 

are statistically independent.  

 

4. APPLICATIONS 

 
In this Section, examples of BSS application to the surface electromyographic (EMG) signals are 

discussed. Firstly, a short overview of the electrical activity of human muscle is outlined. The main 

focus is on generation of electrical potentials in muscle fibres and on their asynchronous merging 

into the detectable EMG interference patterns. The descriptions provided should serve only as a 

coarse introduction to the filed of electromyography. More advanced descriptions can be found in 

Merletti and Parker, 2004. 

 

4.1 Physiology of human muscles 
 
Human muscles consist of 10 to 150 mm long and 5 to 90 µm thin muscle fibres, which are attached 

to the bones in the tendon regions. Each muscle fibre is innervated by a single motoneuron which 

transmits the control commands from the central nervous system (CNS) in a form of the firing pulse 

trains. Several muscle fibres are innervated by the same motoneuron, forming a basic functional 

unit of the muscles, so called motor unit (MU). The number of fibres in each MU varies 

considerably within the same muscle and even more between different muscles. Typically, muscles 

comprise from several tens to several hundreds MUs.  

 

Electrical signals, sent by CNS, propagate along a nervous fibre, terminate in neuromuscular 

junctions (NMJ) where they excite membranes of all innervated muscle fibres. Every pulse in a 

motoneuron induces a local depolarisation of the transmembrane potential of each muscle fibre, so 

called single fibre action potential (SFAP). The depolarised zone (i.e., SFAP) propagates without 

attenuation along the muscle fibre from the NMJ to the tendon endings, causing the muscle fibre to 

contract. The sum of single fibre action potentials corresponding to all the fibres of a single motor 

unit is called motor unit action potential (MUAP).  
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Several tens of MUs are simultaneously active in the muscle tissue. Their MUAPs superimpose in 

time and space and form highly complex interference pattern of EMG, which can be detected either 

within the muscle (with needle electrodes) or over the skin above the investigated muscle (with 

surface electrodes). The technical difficulties associated to interpretation of recorded EMG 

interference patterns, limit the accuracy and diagnostic value of EMG in practice and generate many 

source separation problems. In the sequel, only two representative examples of source separation 

are discussed. The first example deals with the problem of separation of EMG signals from different 

muscles (so called muscle crosstalk). The second example addresses identification of single MU 

discharge patterns, i.e. decomposition of surface EMG into constituent MUAP trains.  

 

4.2 Separation of surface EMG signals generated by muscles close to each other (muscle 

crosstalk) 
 
An important artefact of surface EMG signal is crosstalk from nearby muscles. Crosstalk is the 

signal detected over a muscle, but generated by a nearby muscle (Figure 3). This complex 

phenomenon depends on the properties of the propagating medium (i.e. subcutaneous tissue 

interposed between the muscle fibres and the detection electrodes) and on sources (i.e., the firing 

patterns of active MUs). The exact physical properties of interposed subcutaneous tissue are not 

known, hence, as little as possible a priori information on the communication channel is assumed. 

 

     Figure 3 about here 

 

Crosstalk signals can be superimposed to the signal of interest both in time and in frequency domain 

and represents a serious problem for surface EMG. The distinction of signals generated by muscles 

close to each other is, hence, an example of a very important source separation problem. By 

assuming that the EMG signals generated by different muscles are statistically independent, the 

problem can be addressed by ICA techniques.  

 

One of the first applications of BSS to the problem of crosstalk was proposed by Farina et al., 2004. 

Their work is based on separation algorithm called SOBI (second-order blind identification), 

introduced by Belouchrani et al., 1997. SOBI extends the PCA method presented in Section 3.2 and 

consists of two steps: 1) whitening and 2) assessment of the unknown rotation matrix U. The linear 

instantaneous mixing model [3] is assumed. Although not completely accurate, this model enables 

reasonable good approximation of surface EMG signals, especially when the investigated muscles 

are close to each other. 
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Step 1 - Whitening 
 
Spatial whitening of the observations x(t) (decorrelation in space) follows the procedure for 

estimation of the principal components in Section 3.2. The N × M matrix W is determined such that: 

W A AT WT = I .      [29] 

By definition in [29], matrix WA=U is unitary. Application of W to the observations x(t) yields so 

called whitened observations z(t): 

z(t) = Wx(t) = Us(t)+Wn(t)           [30] 

By analogy with procedure in Section 3.2, matrix W can be determined from the covariance matrix 

of observations x(t): 

1

1ˆ T

tT =
= ∑xxR x(t)xT(t)      [31] 

which can be factorised as 

                       ˆ ≈xxR A ˆ
ssR AT+σ2In                      [32] 

As the sources s(t) are uncorrelated, the covariance matrix ˆ
ssR  is diagonal. Furthermore supposing 

all the sources of unitary power (ICA ambiguity on power of sources), ˆ
ssR  can be made equal to 

identity. Under these assumptions, relations [29] and [32] indicate that matrix W diagonalises the 

matrix ˆ
xxR . Thus, W and 2σ  can be computed from the eigenvalues and eigenvectors of ˆ

xxR . 

Firstly, an estimate 2σ̂  of the variance of the noise is obtained from the average of the M-N 

smallest eigenvalues of matrix ˆ
xxR (Section 3.2). Secondly, given the N greatest eigenvalues 

λ1,...,λn and the correspondent eigenvectors V1,…,VM of ˆ
xxR , W is given by:  

W=[(λ1- 2σ̂ )-1/2 V1,…, (λn- 2σ̂ )-1/2 VM]T                [33] 

Note that, although closely related, whitening by matrix W extends the PCA method described in 

Section 3.2, as it scales the whitened components zi(t) by factor (λi- 2σ̂ )-1/2  to make them of unit 

norm (a property not required by PCA). In order to estimate the matrix A, the unitary matrix U must 

be estimated by a rotation operation in the second step. 

 

Step 2 - Rotation 

 

From the matrix factorization U=WA, we have: 

A = W#U                   [34] 
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Thus, given the whitening matrix W, the mixing matrix A can be determined by estimating the 

matrix U. As U is unitary, it can be considered as an N dimensional rotation matrix and estimated 

by joint-diagonalisation procedure (Belouchrani et al., 2001) of the correlation matrices of 

whitened observations z(t). From the definition of the covariance matrix: 

1

1ˆ ( )
T

tT
τ

=
= ∑zzR z(t)z(t+τ)T                                                        [35] 

we have: 
ˆ ( )τ ≈zzR U ˆ ( )τssR UT              0≠τ                                             [36]             

For non-zero lags τ  the contribution of the temporarily white Gaussian noise n(t) vanishes. As a 

result, U can be determined from any matrix ˆ ( )τzzR  at nonzero lag τ . A more stable procedure 

consists in choosing a number of matrices ˆ ( )τzzR  for different values of 0≠τ  and determining the 

matrix U as a “best joint diagonaliser” of the set of selected matrices. By “best joint diagonaliser” 

we refer to a matrix which makes the matrices ˆ ( )τzzR  as close to diagonal as possible. Ideally, U 

diagonalizes all the matrices ˆ ( )τzzR , but this is seldom the case, mainly due the noise. Therefore, a 

criterion to measure a goodness of joint-diagonalization is required. Criterion of the choice is the 

sum of squares of off-diagonal elements of matrices UT ˆ ( )τzzR U (Belouchrani et al., 1997, 

Belouchrani e Amin, 1998, Belouchrani et al., 2001): 

 

2

1
ˆ( ) ( )ij

i j i
off r

τ
τ

ϒ

= ≠
= ∑ ∑ ∑zzR

                                                                

[37]             

where ( )ijr τ  denotes the (i,j)-th element of selected matrix ˆ ( )τzzR  for 1,...,τ = ϒ . Criterion [37] 

leads to implementation of so called Jacobi joint-diagonalization method (Cardoso, 1996), 

estimating the matrix U as 

( )
1

ˆmin arg ( )Toff
=

= zz
U

U U R U

                                                                

[37]             

 

 

Once the mixing matrix A is known, the sources can be estimated as #( ) ( )t t=y A x . Exact technical 

description of joint-diagonalization surpasses the scope of this chapter. Interested reader is referred 

to Cardoso, 1996, Belouchrani et al., 1997, and Holobar et al., 2006. 

 

An example of application of SOBI algorithm to experimental sEMG signals (Farina et al., 2004) is 

shown in Figure 4 (experimental setup) and Figure 5 (reduction of crosstalk). The algorithm was 
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applied to two forearm muscles, which allow rotation and flexion of the wrist. The two muscles are 

very close to each other and it is impossible to separate their EMG activity with classical methods. 

BSS algorithm was applied to three mixtures of signals detected over the two muscles and in an 

intermediate region, respectively. As demonstrated in Figure 4, it allows improving the selectivity 

of the detection when either a rotation or flexion of the wrist is executed.  

 

     Figures 4 and 5 about here 

 

4.3 Separation of single motor unit action potentials from multi-channel surface EMG 
 
The second BSS application, discussed in this section, includes the decomposition of surface EMG 

signals into constituent MUAP trains. As explained in Subsection 4.1, surface EMG is a compound 

signal comprising the contributions of different MUs. Even at moderate muscle contraction levels, 

many MUs contract asynchronously. Their MUAPs superimpose both in space and time and create 

complex interference patterns, which are very difficult to interpret. Nonetheless, surface EMG 

received remarkable attention over the past few decades and has become a mature measuring 

technique. The information extracted from the sEMG signals is currently being exploited in several 

different clinical studies mainly concerned with timing of muscle activation, EMG amplitude 

modulation and electrical manifestations of fatigue.  

 

The development of flexible high-density (HD) arrays of surface electrodes and multi-channel 

amplifiers opened new possibilities of recording up to a few tens of sEMG signals over a single 

muscle. At the same time, source separation techniques, capable of processing and combining the 

information from such a multichannel recordings, emerged. De Luca et al., 2006, proposed the 

decomposition of four-channel sEMG, while Kleine et al., 2007, demonstrated the importance of 

recording many sEMG signals over the skin surface for decomposition purposes. BSS methods 

have also been proposed. Garcia at. al, 2005, and Nakamura et al., 2004, acquired sEMG signals 

with the linear array of surface electrodes, oriented transversally with respect to the muscle fibres, 

and demonstrated that, in this configuration and up to reasonable limitations, sEMG signals can be 

modelled as linear instantaneous mixtures (i.e., by the model [3]). On the other hand, Holobar and 

Zazula, 2004, modelled sEMG signals as linear convolutive mixtures (i.e., by the model [1]) and 

proposed the Convolution Kernel Compensation (CKC) decomposition technique. This technique 

proved to be highly accurate and robust; reconstructing MUAP trains of up to twenty MUs from a 

multichannel sEMG recordings. In the sequel, CKC decomposition technique is discussed in more 

details.  
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4.3.1 Convolution Kernel Compensation 

 

In the case of isometric muscle contractions, sampled sEMG signals ( )tx  can be modelled as 

outputs of convolutive linear mixing model [1]:  
1

1 0
( ) ( ) ( ) ( )

N L

i ij j i
j l

x t a l s t l n l
−

= =
= − +∑ ∑ ,   i=1,...,M        [38] 

where ( )in l  stands for zero-mean additive noise. Each model input sj(t) is modelled as binary pulse 

sequences, carrying the information about the MUAP activation times  

[ ]( ) ( )j j
r

s t t T kδ
∞

=−∞
= −∑ ,  j=1,...,N         [39] 

where ( )δ τ  denotes the Dirac impulse and ( )jT k  stands for the time instant in which the k-th 

MUAP of  the  j-th MU appeared. Activation times ( )jT k  are supposed to be random and 

statistically independent (experimental observations show almost periodic discharge rates and 

correlated fluctuations of rate among different MUs). The channel response aij(l); l=0,1,…,L-1, 

corresponds to the L samples long MUAP of the j-th MU, as detected in the i-th observation. The 

channel responses aij(l) must be limited support, but can be of arbitrary shape. Hence, any physical 

property of the subcutaneous tissue can be taken into account.  

 

Model [38] can be rewritten in a matrix form:  

( ) ( ) ( )t t t= +x As n       [40] 

where 1( ) [ ( ),...., ( )]T
Mt n t n t=n  is a vector of white noise with a covariance matrix 2

nσ I  and the 

mixing matrix A comprises all the MUAPs as detected by the different surface electrodes  

11 11 12 12

21 21 22 22

1 1 2 2

(0) ( 1) (0) ( 1)
(0) ( 1) (0) ( 1)

(0) ( 1) (0) ( 1)M M M M

a a L a a L
a a L a a L

a a L a a L

− − 
 − − =
 
 

− − 

A

K K K

K K K

M K M M K M K

K K K

.       [41] 

 Vector ( )ts  stands for an extended form of a sampled source signals ( )ts : 

( ) ( ) ( ) ( ) ( ) ( )1 1 1, 1 ,..., 2 ,..., ,..., 2
T

N Nt s t s t s t L s t s t L=  − − + − +  s     [42] 

The CKC method (Holobar and Zazula, 2004) fully automates the identification of MU discharge 

sequences in equation [40]. In the first step, the cross-correlation vector ( ) ( )
j

T
s jE s t t=   xr x  between 

the j-th source signal and all the measurements is estimated (Holobar and Zazula, 2007). In the 
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second step, the j-th pulse train sj is estimated by the linear minimum mean square error (LMMSE) 

estimator:  

( ) ( )
12ˆ ˆˆ ( ) ( ) ( ) ( )

j j

T T
j s s ns t t t tσ

−
= = + +-1

x xx s ssr R x r A AR A I As n               [43] 

where ˆ ( ) ( )TE t t=   xxR x x  is the correlation matrix of measurements ( )tx , and ( ) ( )
j

T
s jE s t t=   sr s  is 

the vector of cross-correlation coefficients between the j-th source and all the sources. By analogy 

with Subsection 4.2, ˆ =ssR I , whereas, in the case of statistically independent sources, 

[ ](1 ), (2 ),... ( )
js j j N jδ δ δ= − − −sr  equals to the unit norm vector with the j-th element equal to 1 and 

zeros elsewhere. When the influence of noise is neglected, the unknown mixing matrix A is 

compensated and equation [43] simplifies to 
1ˆ ˆ ˆˆ ( ) ( ) ( ) ( ) ( )

j j j

T T
j s s s js t t t t s t− −= = = =-1

x xx s ss s ssr R x r A A R A As r R s               [44] 

Estimator [43] requires the cross-correlation vector 
js xr  to be known in advance. This is never the 

case and Holobar and Zazula, 2007, proposed probabilistic iterative procedure for its blind 

estimation. In the first iteration step, the unknown cross-correlation vector is approximated by 

vector of measurements 1( )
js t=xr x  where, without loss of generality, we assumed the j-th MU 

discharged at time instant t1. Then, the first estimation of the j-th source sj(t) is computed according 

to [43]. In the next step, the largest peak in ˆ ( )js t  is selected as the most probable candidate for the 

second discharge of the j-th source, 
1 2

2 ˆmaxarg( ( ))j
t t

t s t
≠

= , and the vector 
js xr  is updated as: 

2( )

2
j

j

s
s

t+
=

x
x

r x
r                  [45] 

This procedure is then repeated, until 
js xr  converges to a stable solution (Holobar and Zazula, 

2007). 

CKC method inherently resolves MUAP superimpositions. Moreover, it implicitly combines all the 

available information provided by all the observations x(t). By compensating for the shapes of the 

detected MUAPs (which are included in the mixing matrix A), it directly estimates the impulse 

sources without reconstructing the detected MUAP shapes. This significantly decreases the number 

of unknowns to be estimated in model [40] and reduces the computational time. When required, 

MUAP shapes can be estimated by spike triggered averaging of sEMG signals, taking the MUAP 

activation times sj(t) as triggers. 
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The problem with the CKC method is that the convolutive model [40] increases the number of 

sources s(t) by the factor L. Thus, in order to decompose the sEMG signals, the number of 

observations must also be large (at least a few dozens). This calls for HD sEMG acquisition systems 

with at least several tens of pick-up electrodes arranged into closely-spaced 2D grid. An example of 

CKC-based sEMG decomposition is illustrated in Figure  6.  

     Figures 6 and 7 about here 

 
Appendix 
 
Eigenvalue Decomposition 

A vector vi which changes length but not direction when operated upon by a matrix A is said to be 

an eigenvector of A. The length scale factor is called eigenvalue of A. Eigenvalues λi and 

eigenvectors (directions) vi of a matrix A with dimensions M × M are defined by  

Avi = λi vi                                                                       [A1] 

where λi are scalars and vi are M dimensional vectors. A matrix A can be represented in Jordan 

form as  

VTAV = diag(J1,…,Jr)                                                            [A2] 

where V = [v1,…, vM], diag is a block diagonal matrix, r is the number of independent eigenvectors 

of A and Ji indicates the Jordan block associated to the ith eigenvalue  

Ji
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                                                       [A3] 

The dimension of the Jordan block is the multiplicity of the correspondent eigenvalue. If matrix A 

has M independent eigenvectors the Jordan representation simplifies to a diagonal form: 

Λ



















=

mλ

λ
λ

00
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0
00

2

1

K

OOM

MO

K

                                                       [A4] 

 

Singular Value Decomposition 
 
A rectangular matrix B with dimensions M × N can be represented as  

VTBU = Λ                                                                 [A5] 
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where U ( N N× matrix) and V ( M M× matrix) are the matrices of the right and left eigenvectors, 

respectively, defined as  

B ui = σi vi ,                                                                [A6] 

where σ1, …, σp are the singular values (i.e., the square root of the eigenvalues of BTB). Λ is M × N 

matrix with the singular values σi on the diagonal and zero elsewhere. The left eigenvectors vi are 

also the eigenvectors of matrix BBT. In tensorial notation, matrix B can be represented as a sum of 

dyadic forms 

B = ∑
=

m

k 1

σi vi ui
T .                                                            [A7] 

Pseudoinverse matrix of B is defined as 

B# ==∑
=

p

k i1

1
σ

ui vi
T                                                          [A8] 

Consider matrix B as the mixing matrix with M > N. The problem of identification of the N sources 

s(t) from the M mixtures x(t)  insists on the overdetermination of the system, so that a solution of 

the problem  

B s(t)  = x(t)      or     B s(t)  - x(t) = 0                                                   [A9] 

does not exist in general, as there are more independent conditions than unknowns (the 

independence of the conditions comes from the noise which is always superimposed to the 

observations x(t)). For a solution to exists, a weaker definition of solution is introduced, i.e. the 

function ( )d ts  minimising the squared error 

        2( ) min arg ( ) ( )d t t t= −
s

s Bs x                                                   [A10] 

The theorem of projections for Hilbert spaces implies that  

B sd(t)– x(t) ∈Im(B)┴ = Ker(BT)                                                [A11] 

where Im(B) and Ker(B) are the image and the kernel of the matrix B and the simbol ┴ indicates the 

orthogonal space. Thus, we get  

BT B sd(t) = BTx(t)                                                                 [A12] 

and 

sd(t) = (BT B)-1BTx(t) = B#x(t)                                                        [A13] 

where definition [A8] is used. Pseudoinverse multiplied by the vector of observations gives the 

sources sd(t) which minimise the squared error [A10]. 
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Captions of the figures 
 
Figure 1. Application of PCA to the pair of surface EMG signals. Signals x1 in panel a) and x2 in 

panel b) were recorded by close-by sets of electrodes, placed over the skin above the biceps brachii 

muscle during a low level contraction. Both electrode systems detected electrical activity of 

approximately the same group of muscle fibres. As a result, the signals x1 and x2 exhibit a high level 

of redundancy. As demonstrated by the joint vector space presentation in panel c), more than 90 % 

of variance is in the first principal direction (i.e., the direction of the first principal component). 

Each circle in c), depicts a pair of values (x1(t), x2(t)) at a fixed time t. The first principal direction is 

denoted by black dashed line, the second principal direction by a black dotted line. The two 

principal components y1(t) in panel d) and y2(t) in panel e) were reconstructed by projecting the 

observations x1(t) and x2(t) on the subspaces spanned by principal directions. The first principal 

component y1(t) resembles the main dynamics in the observations x1(t) and x2(t), whereas y2(t) can 

be interpreted as a low noise uncorrelated with y1(t). Panel f) depicts the joint vector space 

representation of the principal components (y1(t), y2(t)) after rotation of the axes depicted in c). 

 

Figure 2. Iterative neural network architecture, introduced by Hérault and Jutten, 1991, for 

separation of two sources s1(t) and s2(t) out of two observations x1(t) and x2(t). Two processing 

blocks are depicted, with the mixing process (left) and separation algorithm (right). Separation 

block consist of two neurons (one per each source). Each neuron receives the samples of both 

observations, x1(t) and x2(t), as an inputs. Output of each neuron is multiplied by a weight cij, ij ≠ , 

and fed back to the input of the other neuron. The estimate of the output y(t) = Qx(t) is obtained 

with a separation matrix Q=(I+C)-1, where C is the matrix with the weights cij (see the text for 

details). This method is suitable for real time implementation. 

                                    

Figure 3. Sketchy representation of two muscles and two detection systems for surface EMG 

signals. Each detection system acquires both the EMG signal of the muscle over which the 

electrodes are placed and the EMG signal produced by the other, near-by muscle. This phenomenon 

is known as a muscle crosstalk. Its linear instantaneous model is shown in Fig. 2. A third detection 

system in intermediate position could record a third mixture of the two sources, as shown in Figure 

4. 
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Figure 4. Experimental setup for the detection of surface EMG signals from two forearm muscles. 

The hand is fixed in an isometric brace measuring the force produced during rotation and flexion 

efforts. a) The subject alternates wrist rotation and flexion efforts at regular time intervals. b) EMG 

signal is detected with three electrode arrays placed over the pronator teres, the flexor carpi radialis 

and between the two muscles. The signal detected over the pronator teres (which rotates the wrist) 

is not zero during flexion, even if this muscle is not active during this contraction (crosstalk signal 

from flexor carpi radialis muscle), and vice versa (see Figure 5). Reproduced with permission from 

reference Farina et al., 2004. 

  

Figure 5. Application of source separation technique to the three signals detected over the pronator 

teres, the flexor carpi radialis and between the two muscles with the techniques described in Figure 

4. These signals are the mixtures x(t) of the source separation problem. SOBI algorithm provides 

the separation of the activity of the pronator teres, reducing the amplitude of the signal recorded 

over the pronator teres during flexion. The same holds for the flexor carpi radialis, for the 

complementary time intervals (results not shown). Reproduced with permission from reference 

Farina et al., 2004. 

 

Figure 6. Experimental setup for detection of surface EMG signals from abductor pollicis brevis 

muscle. a) matrix of 64 surface electrodes, arranged into 13 lines and 5 columns and with the four 

corner electrodes missing (upper panel) and the isometric braces measuring the force produced 

during the abduction of the thumb (lower panel). b) Example of recorded surface EMG signals 

(positions of the signals reflect the spatial organization of the pick-up electrodes) 

 

Figure 7. Surface EMG signals, recorded during a 6 s ramp-up (from 0 % to 10 % of maximum 

contraction level - MVC) and 6 s ramp-down (from 10 % to 0 % MVC) contraction of abductor 

pollicis brevis muscle and their decomposition into contributions of different motor units. a) surface 

EMG signals detected by the first six electrodes of the central column (Figure 6). b) the same as in 

a), with the portion of the signal zoomed-in. c) discharge patterns of 12 identified motor units and 

their dependence on the exerted muscle force. Each line corresponds to a single motor unit 

discharge. d) MUAP templates of eight different motor units, as reconstructed by a spike triggered 

averaging of the sEMG signals from the central electrode column (Figure 6), taking the identified  

discharge patterns as triggers.  
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