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Higher secant varieties of Pn × P
m embedded in bi-degree (1, d)

Alessandra Bernardi∗, Enrico Carlini†, Maria Virginia Catalisano‡

Abstract

Let X
(n,m)

(1,d)
denote the Segre-Veronese embedding of Pn

× P
m via the sections of the sheaf O(1, d). We

study the dimensions of higher secant varieties of X
(n,m)
(1,d) and we prove that there is no defective sth secant

variety, except possibly for n values of s. Moreover when
(

m+d

d

)

is multiple of (m + n + 1), the sth secant

variety of X
(n,m)
(1,d) has the expected dimension for every s.

Introduction

The sth higher secant variety of a projective variety X ⊂ PN is defined to be the Zariski closure of the union of
the span of s points of X (see Definition 1.1), we will denote it with σs(X).

Secant varieties have been intensively studied (see for example [AH], [BCS], [Gr], [Li], [St], [Za]). One of
the first problems of interest is the computation of their dimensions. In fact, there is an expected dimension for
σs(X) ⊂ PN , that is, the minimum between N and s(dimX)+ s− 1. There are well known examples where that
dimension is not attained, for instance, the variety of secant lines to the Veronese surface in P5. A variety X

is said to be (s− 1)-defective if there exists an integer s ∈ N such that the dimension of σs(X) is less than the
expected value. We would like to notice that only for Veronese varieties a complete list of all defective cases is
given. This description is obtained using a result by J. Alexander and A. Hirschowitz [AH] recently reproposed
with a simpler proof in [BO].

The interest around these varieties has been recently revived from many different areas of mathematics and
applications when X is a variety parameterizing certain kind of tensors (for example Electrical Engineering -
Antenna Array Processing [ACCF], [DM] and Telecommunications [Ch], [dLC] - Statistics -cumulant tensors,
see [McC] -, Data Analysis - Independent Component Analysis [Co1], [JS] -; for other applications see also
[Co2], [CR], [dLMV], [SBG] [GVL]).

One of the main examples is the one of Segre varieties. Segre varieties parameterize completely decomposable
tensors (i.e. projective classes of tensors in P(V1 ⊗ · · · ⊗ Vt) that can be written as v1 ⊗ · · · ⊗ vt , with vi ∈ Vi

and Vi vector spaces for i = 1, . . . , t). The sth higher secant varieties of Segre varieties is therefore the closure of
the sets of tensors that can be written as a linear combination of s completely decomposable tensors.

Segre-Veronese varieties can be described both as the embedding of Pn1 × · · · × P
nt with the sections of

the sheaf O(d1, . . . , dt) into PN , for certain d1, . . . , dt ∈ N, with N = Πt
i=1

(
ni+di

d

)
− 1, both as a section of

Segre varieties. Consider the Segre variety that naturally lives in P(V ⊗d1

1 ⊗ · · · ⊗ V ⊗dt

t ) with Vi vector spaces
of dimensions ni + 1 for i = 1, . . . , t, then the Segre-Veronese variety is obtained intersecting that Segre variety
with the projective subspaces P(Sd1V1 ⊗ · · · ⊗ SdtVt) of projective classes of partially symmetric tensors (where
SdiVi ⊂ V ⊗di

i is the subspace of completely symmetric tensors of V ⊗di

i ).
These two different ways of describing Segre-Veronese varieties allow us to translate problems about par-

tially symmetric tensors into problems on forms of multi-degree (d1, . . . , dt) and viceversa. We will follow the
description of Segre-Veronese variety as the variety parameterizing forms of certain multi-degree.
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In this paper we will describe the sth higher secant varieties of the embedding of Pn × Pm into PN (N =
(n+ 1)

(
m+d

d

)
− 1 ), by the sections of the sheaf O(1, d), for almost all s ∈ N (see Theorem 2.3).

The higher secant varieties of the Segre embedding of Pn ×Pm are well known as they parameterize matrices
of bounded rank (e.g., see [Hr]).

One of the first instance of the study of the two factors Segre-Veronese varieties is the one of P1×P
2 embedded

in bi-degree (1, 3) and appears in a paper by London [Lo], for a more recent approach see [DF] and [CaCh].
A first generalization for P1 × P2 embedded in bi-degree (1, d) is treated in [DF]. The general case for P1 × P2

embedded in any bi-degree (d1, d2) is done in [BD]. In [ChCi] the case P1 × Pn embedded i bi-degree (d, 1) is
treated.

In [CaCh] one can find the defective cases P2×P3 embedded in bi-degree (1, 2), P3×P4 embedded in bi-degree
(1, 2) and P2 × P5 embedded in bi-degree (1, 2).

The paper [CGG] studies also the cases Pn × Pm with bi-degree (n + 1, 1); P1 × P1 with bi-degree (d1, d2)
and P

2×P
2 with bi-degree (2, 2). In [Ab] the cases P1×P

m in bi-degree (2d+1, 2), P1×P
m in bi-degree (2d, 2),

and P1 × Pm in bi-degree (d, 3) can be found. A recent result on Pn × Pm in bi-degree (1, 2) is in [AB], where

the authors prove the existence of two functions s(n,m) and s(n,m) such that σs(X
(n,m)
(1,2) ) has the expected

dimension for s ≤ s(n,m) and for s ≥ s(n,m). In the same paper it is also shown that X
(1,m)
(1,2) is never defective

and all the defective cases for X
(2,m)
(1,2) are described.

The varieties Pn×Pm embedded in bi-degree (1, d) are related to the study of Grassmann defectivity ([DF]).
More precisely, one can consider the Veronese variety X obtained by embedding P

m in P
N using the d-uple

Veronese embedding (N =
(
m+d

d

)
). Then consider, in G(n,N), the (n, s − 1)-Grassmann secant variety of X ,

that is, the closure of the set of n-dimensional linear spaces contained in the linear span of s linearly independent
points of X . The variety X is said to be (n, s − 1)-Grassmann defective if the (n, s − 1)-Grassmann secant
variety of X has not the expected dimension. It is shown in [DF], following Terracini’s ideas in [Te1], that X
is (n, s− 1)-Grassmann defective if and only if the sth higher secant varieties of the embedding of Pn × Pm into
PN (N = (n+ 1)

(
m+d

d

)
− 1 ), by the sections of the sheaf O(1, d), is (s− 1)-defective. Hence, the result proved

in this paper gives information about the Grasmann defectivity of Veronese varieties (see Remark 2.5).
The main result of this paper is Theorem 2.1 where we prove the regularity of the Hilbert function of a

subscheme of Pn+m made of a d-uple Pn−1, t projective subspaces of dimension n containing it, a simple Pm−1

and a number of double points that is an integer multiple of n − 1. This theorem, together with Theorem 1.1
in [CGG] (see Theorem 1.4 in this paper), gives immediately the regularity of the higher secant varieties of the
Segre-Veronese variety that we are looking for.

More precisely, we consider (see Section 2) the case of Pn × Pm embedded in bi-degree (1, d) for d ≥ 3. We
prove (see Theorem 2.3) that the sth higher secant variety of such Segre-Veronese varieties have the expected
dimensions for s ≤ s1 and for s ≥ s2, where

s1 = max

{
s ∈ N | s is a multiple of (n+ 1) and s ≤

⌊
(n+ 1)

(
m+d

d

)

m+ n+ 1

⌋}
,

s2 = min

{
s ∈ N | s is a multiple of (n+ 1) and s ≥

⌈
(n+ 1)

(
m+d

d

)

m+ n+ 1

⌉}
.

1 Preliminaries and Notation

We will always work with projective spaces defined over an algebraically closed field K of characteristic 0. Let
us recall the notion of higher secant varieties and some classical results which we will often use. For definitions
and proofs we refer the reader to [CGG] .

Definition 1.1. Let X ⊂ PN be a projective variety. We define the sth higher secant variety of X , denoted by
σs(X), as the Zariski closure of the union of all linear spaces spanned by s points of X , i.e.:

σs(X) :=
⋃

P1,...,Ps∈X

〈P1, . . . , Ps〉 ⊂ P
N .

2



When σs(X) does not have the expected dimension, that is min{N, s(dimX + 1) − 1}, X is said to be
(s− 1)-defective, and the positive integer

δs−1(X) = min{N, s(dimX + 1)− 1} − dimσs(X)

is called the (s− 1)-defect of X .

The basic tool to compute the dimension of σs(X) is Terracini’s Lemma ([Te]):

Lemma 1.2 (Terracini’s Lemma). Let X be an irreducible variety in PN , and let P1, . . . , Ps be s generic
points on X. Then, the tangent space to σs(X) at a generic point in 〈P1, . . . , Ps〉 is the linear span in PN of the
tangent spaces TX,Pi

to X at Pi, i = 1, . . . , s, hence

dimσs(X) = dim〈TX,P1
, . . . , TX,Ps

〉.

A consequence of Terracini’s Lemma is the following corollary (see [CGG, Section 1] or [AB, Section 2] for
a proof of it).

Corollary 1.3. Let X
(n,m)
(1,d) ⊂ PN be the Segre-Veronese variety image of the embedding of Pn × Pm by the

sections of the sheaf O(1, d) into PN , with N = (n+ 1)
(
m+d

d

)
− 1. Then

dimσs

(
X

(n,m)
(1,d)

)
= N − dim(IZ)(1,d) = H(Z, (1, d))− 1,

where Z ⊂ P
n × P

m is a set of s generic double points, IZ is the multihomogeneous ideal of Z in R =
K[x0, . . . , xn, y0, . . . , ym], the multigraded coordinate ring of Pn×Pm, and H(Z, (1, d)) is the multigraded Hilbert
function of Z.

Now we recall the fundamental tool which allows us to convert certain questions about ideals of varieties in
multiprojective space to questions about ideals in standard polynomial rings (for a more general statement see
[CGG, Theorem 1.1]) .

Theorem 1.4. Let X
(n,m)
(1,d) ⊂ PN and Z ⊂ Pn×Pm as in Corollary 1.3. Let H1, H2 ⊂ Pn+m be generic projective

linear spaces of dimensions n− 1 and m− 1, respectively, and let P1, . . . , Ps ∈ Pn+m be generic points. Denote
by

dH1 +H2 + 2P1 + · · ·+ 2Ps ⊂ P
n+m

the scheme defined by the ideal sheaf Id
H1

∩ IH2
∩ I2

P1
∩ · · · ∩ I2

Ps
⊂ OPn+m . Then

dim(IZ )(1,d) = dim(IdH1+H2+2P1+···+2Ps
)d+1

hence
dimσs

(
X

(n,m)
(1,d)

)
= N − dim(IdH1+H2+2P1+···+2Ps

)d+1.

Since we will make use of Castelnuovo’s inequality several times, we recall it here (for notation and proof we
refer to [AH2], Section 2).

Lemma 1.5 (Castelnuovo’s inequality). Let H ⊂ PN be a hyperplane, and let X ⊂ PN be a scheme. We
denote by ResHX the scheme defined by the ideal (IX : IH) and we call it the residual scheme of X with respect
to H, while the scheme TrHX ⊂ H is the schematic intersection X ∩H, called the trace of X on H. Then

dim(IX,PN )t ≤ dim(IResHX,PN )t−1 + dim(ITrHX,H)t.

3



2 Segre-Veronese embeddings of Pn × Pm

Now that we have introduced all the necessary tools that we need for the main theorem of this paper we can
state and prove it.

Theorem 2.1. Let d ≥ 3, n,m ≥ 1 and let s = (n+ 1)q be an integer multiple of n+ 1. Let P1, . . . , Ps ∈ P
n+m

be generic points and H1 ≃ Pn−1, H2 ≃ Pm−1 be generic linear spaces in Pn+m. Let W1, . . . ,Wt ⊂ Pn+m be t

generic linear spaces of dimension n containing H1. Now consider the scheme

X := dH1 +H2 + 2P1 + · · ·+ 2Ps +W1 + · · ·+Wt (1)

Then for any q, t ∈ N the dimension of the degree d+ 1 piece of the ideal IX is the expected one, that is

dim(IX)d+1 = max

{
(n+ 1)

(
m+ d

d

)
− s(n+m+ 1)− t(n+ 1) ; 0

}
.

Proof. We will prove the theorem by induction on n.
A hypersurface defined by a form of (IdH1

)d+1 cuts on Wi ≃ Pn a hypersurface which has H1 as a fixed
component of multiplicity d. It follows that

dim(IdH1,Wi
)d+1 = dim(I∅,Wi

)1 = n+ 1.

Hence the expected number of conditions that a linear space Wi imposes to the forms of (IX)d+1 is at most n+1.
Moreover a double point imposes at most n+m+ 1 conditions. So, since by Theorem 1.4 with Z = ∅ we get

dim(IdH1+H2
)d+1 = dimR(1,d) = (n+ 1)

(
m+ d

d

)
,

(where R = K[x0, . . . , xn, y0, . . . , ym]), then we have

dim(IX)d+1 ≥ (n+ 1)

(
m+ d

d

)
− s(n+m+ 1)− t(n+ 1). (2)

Now let H ⊂ Pn+m be a generic hyperplane containing H2 and let X̃ be the scheme obtained from X by
specializing the nq points P1, . . . , Pnq on H , (Pnq+1, . . . , Ps remain generic points, not lying on H).

Since by the semicontinuity of the Hilbert Function dim(I
X̃
)d+1 ≥ dim(IX)d+1, by (2) we have

dim(I
X̃
)d+1 ≥ (n+ 1)

(
m+ d

d

)
− s(n+m+ 1)− t(n+ 1). (3)

Let Vi = 〈H1, Pi〉 ≃ Pn. Since the linear spaces Vi are in the base locus of the hypersurfaces defined by the
forms of (I

X̃
)d+1, we have

(I
X̃
)d+1 = (I

X̃+V1+···+Vs
)d+1. (4)

Consider the residual scheme of (X̃+ V1 + · · ·+ Vs) with respect to H :

ResH(X̃+ V1 + · · ·+ Vs) = dH1 +W1 + · · ·+Wt + P1 + · · ·+ Pnq + 2Pnq+1 + · · ·+ 2Ps + V1 + · · ·+ Vs

= dH1 +W1 + · · ·+Wt + 2Pnq+1 + · · ·+ 2Ps + V1 + · · ·+ Vs ⊂ P
n+m.

Any form of degree d in I
ResH (X̃+V1+···+Vs)

represents a cone whose vertex contains H1. Hence if Y ⊂ P
m is the

scheme obtained by projecting ResH(X̃+ V1 + · · ·+ Vs) from H1 in a Pm, we have:

dim(I
ResH (X̃+V1+···+Vs)

)d = dim(IY)d. (5)

4



Since the image by this projection of each Wi is a point, and for 1 ≤ i ≤ nq the image of Pi + Vi is a simple
point, and for nq + 1 ≤ i ≤ s the image of 2Pi + Vi is a double point, we have that Y is a scheme consisting of
t+ nq generic points and q generic double points.

Now by the Alexander-Hirschowitz Theorem (see [AH]), since d > 2 and t + nq > 1 we have that the
dimension of the degree d part of the ideal of q double points plus t + nq simple points is always as expected.
So we get

dim(IY)d = max

{(
m+ d

d

)
− q(m+ 1)− t− nq ; 0

}
. (6)

Now let n = 1. In this case we have: s = 2q,

dim(I
ResH (X̃+V1+···+Vs)

)d = dim(IY)d = max

{(
m+ d

d

)
− q(m+ 1)− t− q ; 0

}
, (7)

moreover H1 is a point, H1 ∩H is the empty set, the Wi and the Vi are lines, and Vi is the line H1Pi.
Set W ′

i = Wi∩H , V ′
i = Vi∩H . Note that for 1 ≤ i ≤ q we have V ′

i = Pi. The trace on H of X̃+ V1 + · · ·+ Vs

is:
TrH(X̃+ V1 + · · ·+ Vs) = H2 + 2P1 + · · ·+ 2Pq +W ′

1 + · · ·+W ′
t + V ′

1 + · · ·+ V ′
2q =

= H2 + 2P1 + · · ·+ 2Pq +W ′
1 + · · ·+W ′

t + V ′
q+1 + · · ·+ V ′

2q ⊂ H ≃ P
m.

So TrH(X̃+ V1 + · · ·+ Vs) ⊂ H is a scheme in Pm union of H2 ≃ Pm−1, plus q generic double points and t+ q

generic simple points. As above, by [AH], since d > 2 and t+ q ≥ 1 we get

dim(I
TrH (X̃+V1+···+Vs)

)d+1 = dim(I2P1+···+2Pq+W ′

1
+···+W ′

t+V ′

q+1
+···+V ′

2q
)d

= max

{(
m+ d

d

)
− q(m+ 1)− t− q ; 0

}
. (8)

By Castelnuovo’s inequality (see Lemma 1.5), by (7) and (8) we get

dim(I
X̃+V1+···+Vs

)d+1 ≤ max

{
2

(
m+ d

d

)
− 2q(m+ 1)− 2t− 2q ; 0

}
, (9)

so by (3), (4) and (9) we have

dim(I
X̃
)d+1 = max

{
2

(
m+ d

d

)
− 2q(m+ 2)− 2t ; 0

}
.

From here, by (2) and by the semicontinuity of the Hilbert Function we get

dim(IX)d+1 = max

{
2

(
m+ d

d

)
− 2q(m+ 2)− 2t ; 0

}

and the result is proved for n = 1.
Let n > 1.
Set: H ′

1 = H1 ∩H ; W ′
i = Wi ∩H ; V ′

i = Vi ∩H . With this notation the trace of X̃+ V1 + · · ·+ Vs on H is:

TrH(X̃+ V1 + · · ·+ Vs) = dH ′
1 +H2 + 2P1 + · · ·+ 2Pnq +W ′

1 + · · ·+W ′
t + V ′

1 + · · ·+ V ′
s ⊂ H ≃ P

n+m−1.

Anaugously as above, observe that the linear spaces V ′
i = 〈H ′

1, Pi〉 ≃ P
n are in the base locus for the

hypersurfaces defined by the forms of (IdH′

1
+2Pi

)d+1, hence the parts of degree d + 1 of the ideals of TrH(X̃ +

V1 + · · ·+ Vs) and of TrH(X̃+ Vnq+1 + · · ·+ Vs) are equal. So we have

(I
TrH (X̃+V1+···+Vs)

)d+1 = (I
TrH (X̃+Vnq+1+···+Vs)

)d+1 = (IT)d+1,

where
T = dH ′

1 +H2 + 2P1 + · · ·+ 2Pnq +W ′
1 + · · ·+W ′

t + V ′
nq+1 + · · ·+ V ′

s ⊂ P
n+m−1,

5



that is, T is union of the d-uple linear space H ′
1 ≃ Pn−2, the linear space H2 ≃ Pm−1, t+ q generic linear spaces

through H ′
1, and nq double points. Hence by the inductive hypothesis we have

dim(IT)d+1 = max

{
n

(
m+ d

d

)
− nq(n+m)− (t+ q)n ; 0

}
. (10)

By (4), by Lemma 1.5, by (5), (6) and (10) we get

dim(I
X̃
)d+1 ≤ max

{(
m+ d

d

)
− q(m+ 1)− t− nq ; 0

}
+max

{
n

(
m+ d

d

)
− nq(n+m)− (t+ q)n ; 0

}

= max

{(
m+ d

d

)
− q(m+ 1)− t− nq ; 0

}
+max

{
n

((
m+ d

d

)
− q(m+ 1)− t− nq

)
; 0

}

= max

{
(n+ 1)

((
m+ d

d

)
− q(m+ 1)− t− nq

)
; 0

}

= max

{
(n+ 1)

(
m+ d

d

)
− s(n+m+ 1)− t(n+ 1) ; 0

}
.

Now the conclusion follows from (2) and the semicontinuity of the Hilbert Function and this ends the proof.

Corollary 2.2. Let d ≥ 3, n,m ≥ 1 and let

s1 := max

{
s ∈ N | s is a multiple of (n+ 1) and s ≤

⌊
(n+ 1)

(
m+d

d

)

m+ n+ 1

⌋}

s2 := min

{
s ∈ N | s is a multiple of (n+ 1) and s ≥

⌈
(n+ 1)

(
m+d

d

)

m+ n+ 1

⌉}
.

Let P1, . . . , Ps ∈ Pn+m be generic points and H1 ≃ Pn−1, H2 ≃ Pm−1 be generic linear spaces in Pn+m. Consider
the scheme

X := dH1 +H2 + 2P1 + · · ·+ 2Ps.

Then for any s ≤ s1 and any s ≥ s2 the dimension of (IX)d+1 is the expected one, that is

dim(IX)d+1 =






(n+ 1)
(
m+d

d

)
− s(n+m+ 1) for s ≤ s1

0 for s ≥ s2

Proof. By applying Theorem 2.1, with t = 0, to the scheme X = dH1 +H2 + 2P1 + · · · + 2Ps, we get that the
dimension of I(X)d+1 is the expected one for s = (n + 1)q and for any q ∈ N. Hence if s1 is the biggest integer
multiple of n+ 1 such that dim(IX)d+1 6= 0 we get that for that value of s the Hilbert function H(IX, d+ 1) has
the expected value. Now if for such s1 we have that (IX)d+1 has the expected dimension than it has the expected
dimension also for every s ≤ s1.

Now, if s2 is the smallest integer multiple of n+1 such that dim(IX)d+1 = 0 then obviously such a dimension
will be zero for all s ≥ s2.

Theorem 2.3. Let d ≥ 3, n,m ≥ 1, N = (n+ 1)
(
m+d

d

)
− 1 and let s1, s2 be as in Corollary 2.2.

Then the variety σs

(
X

(n,m)
(1,d)

)
⊂ PN has the expected dimension for any s ≤ s1 and any s ≥ s2, that is

dimσs

(
X

(n,m)
(1,d)

)
=





s(n+m+ 1)− 1 for s ≤ s1

N for s ≥ s2

.

6



Proof. Let H1, H2 ⊂ Pm+n be projective subspaces of dimensions n−1 andm−1 respectively and let P1, . . . , Ps ∈
Pn+m be s generic points of Pn+m. Define X ⊂ Pm+n to be the scheme X := dH1+H2+2P1+ · · ·+2Ps. Theorem

1.1 in [CGG] shows that dimσs

(
X

(n,m)
(1,d)

)
is the expected one if and only if dim(IX)d+1 is the expected one.

Therefore the conclusion immediately follows from Theorem 1.4 and Corollary 2.2.

Remark 2.4. If
(
m+d

d

)
is multiple of (m+ n+ 1), say

(
m+d

d

)
= h(m+ n+ 1), we get

⌊
(n+ 1)

(
m+d

d

)

m+ n+ 1

⌋
=

⌈
(n+ 1)

(
m+d

d

)

m+ n+ 1

⌉
= h(n+ 1)

so s1 = s2. Hence in this case the variety σs

(
X

(n,m)
(1,d)

)
has the expected dimension for any s.

If
(
m+d

d

)
is not multiple of (m+ n+ 1), it is easy to show that s2 − s1 = n. Thus there are at most n values

of s for which the sth higher secant varieties of X
(n,m)
(1,d) can be defective.

Remark 2.5. Theorem 2.3 has a straightforward interpretation in terms of Grassmann defectivity. More
precisely, we see that the d-uple Veronese embedding of Pm is not (n, s − 1)-Grassmann defective when s ≤ s1
or s ≥ s2.
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