
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

State metric compression techniques for turbo decoder architectures / Martina, Maurizio; Masera, Guido. - In: IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS. - ISSN 1549-8328. - 58:5(2011), pp. 1119-
1128. [10.1109/TCSI.2010.2090566]

Original

State metric compression techniques for turbo decoder architectures

Publisher:

Published
DOI:10.1109/TCSI.2010.2090566

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2377022 since:

IEEE

1

State Metric Compression Techniques for Turbo
Decoder Architectures

Maurizio Martina,Member IEEE, Guido Masera,Senior Member IEEE

Abstract—This work proposes to compress state metrics in
turbo decoder architectures to reduce the decoder area. Two
techniques are proposed: the first is based on non-uniform
quantization and the second on the Walsh-Hadamard transform
followed by non-uniform quantization. The non-uniform quanti-
zation technique reduces state metric memory area of about 50%
compared with architectures where state metric compression is
not performed, at the expense of slightly increasing the error
correcting performance floor. On the other hand, the Walsh-
Hadamard transform based solution offers a good trade-off
between performance loss and memory complexity reduction,
which reaches in the best case 20% of gain with respect to other
approaches. Both solutions show lower power consumption than
architectures previously proposed to compress state metrics.

Index Terms—Turbo Decoder, data compression, VLSI

I. I NTRODUCTION

Turbo codes [1] are known as a class of channel codes
with excellent error correction capabilities. Due to this rele-
vant characteristic they are employed in several standardsfor
wireless communications as UMTS, CDMA2000, WiMax and
LTE (see Table I in [2]). However, these standards impose
to support throughputs that range from tens to hundreds of
Mb/s. Moreover, being the decoding algorithm iterative, the
design of high performance turbo decoders is a challenging
task that involves the search for efficient solutions to handle
data dependencies and potential parallelism. Since turbo codes
are based on the concatenation of two convolutional codes
(CC), an iteration at the decoder side is made of two half
iterations, each of which is devoted to perform the BCJR
algorithm [3] on one of the constituent CCs.

Thus, a widely adopted solution to achieve high throughput
relies on parallel architectures [4], [5], where the computation
is split on P processing elements, usually referred to as
SISO or MAP processors [6]. Similarly, also the memories
used to store input and output data are divided intoP
separated components: Fig. 1 gives a general view of such a
parallel turbo decoder architecture (details of the architecture
and adopted notation will be introduced in Section II). As
highlighted in [7] to achieve the throughput required by
modern standards for wireless communications, as WiMax
or LTE, at leastP = 8 is required with a 140 MHz clock
frequency. Even largerP values are necessary to support the
higher throughputs of future standards [8], [9], [10]. However,
parallel architectures lead to a significant area increase and in
particular the percentage of area occupied by SISO memories

The authors are with Dipartimento di Elettronica - Politecnico di Torino
- Italy. Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

connection
structureλ

int

λ
int

λ
ext

λ
ext

λ
ext

λ
ext

λ
ext

λ
apr

λ
apr

λ
apr

λ
apr

λ
apr

λ
apr

αin

αin

αin

αout

αout

αout

λ
ext

βout

βout

βout

βin

βin

βin

λ
int

SISO0

SISO1

SISOP − 1

λint

MEM0

λint

MEM1

λint

MEMP − 1

λext

λext

λext

MEM0

MEM1

MEMP − 1

Figure 1. General parallel architecture for turbo decoding

becomes more relevant as long asP increases, as will be show
in section II (Table I). To that purpose, some recent works
[11], [12], [13], [14], [15], [16] propose different techniques
to reduce the amount of memory required in turbo decoders.

As detailed in section II, the memory required by a turbo
decoder can be coarsely classified in parallelism dependentand
parallelism independent memory. While the works detailed in
[11], [14], [15] and [16] deal with parallelism independent
memories, this work, as [12] and [13], concerns parallelism
dependent memories. In particular, in section III we analyze
the statistical characteristics of state metrics and in section IV
we present two techniques to reduce the amount of memory
to store state metrics: i) the first one is derived from the non-
uniform quantization of border state metrics described in [13];
ii) the second technique employs a compression method based
on the Walsh-Hadamard transform [17] followed by non-
uniform quantization. Section V shows that the non-uniform
quantization technique reduces the state metric memory area
of about 50%, compared with architectures where state metric
compression is not performed, at the expense of slightly
increasing the error correcting performance floor. On the other
hand, the Walsh-Hadamard transform based solution, features
negligible error correcting performance degradation and in the
best case offers a complexity reduction of more than 20%.
Finally, both solutions show lower power consumption than
architectures previously proposed to compress state metrics.

II. REFERENCE ARCHITECTURE

In order to detail the proposed technique we introduce the
notation shown in Fig. 2 (a), where in a generic trellis section

2

(a) (b)

k

sE(e)

u(e),c(e)
e

βk−1 βk

αk−1 αk

sS(e)
processor

processor

processor

α-BMU β-BMU

λ
apr
k

λint
k

α β

γkγk

α-MEM
λ-O

αin

αout βout

uk

λext
k

βprv

βin

α-EXT-MEM β-EXT-MEM

β-LOC-MEM

BMU-MEM

βk−1αk

Figure 2. Notation for the trellis section in the SISO (a), SISO reference architecture (b)

k for each transitione on the trellis we defineu(e) (c(e))
as the uncoded (coded) symbol associated toe and sS(e)
(sE(e)) as the starting (ending) state ofe. Besides,αk[sS(e)]
and βk[sE(e)] are the forward and backward state metrics
(SMs) associated tosS(e) and sE(e) respectively. Moreover,
stemming from the sliding-window decoding algorithm [18]
and initializing each window with the metric-inheritance tech-
nique proposed in [19] and [20], each SISO processor can be
implemented as in Fig. 2 (b) where the meaning of each block
will be detailed in the following paragraphs.

A. SISO equations

During each half iteration the decoder readsN intrinsic
information valuesλint

i received from the channel andN · R
a-priori information valuesλapr

i in the form of logarithmic-
likelihood-ratios (LLRs), whereR is the rate of the constituent
CC. The a-priori information is a proper permutation of the
extrinsic information produced by the decoder during the
previous half iteration

λext
k = λapo

k − λapr
k (1)

where
λapo

k =
∗

max
e:u(e)=u

{b(e)} − ∗
max

e:u(e)=ũ
{b(e)} (2)

andũ is an input symbol taken as a reference (usuallyũ = 0).
The b(e) terms in (2) are defined as

b(e) = αk−1[s
S(e)] + γk[e] + βk[sE(e)] (3)

with
αk[s] =

∗
max

e:sE(e)=s

{

αk−1[s
S(e)] + γk[e]

}

(4)

βk[s] =
∗

max
e:sS(e)=s

{

βk+1[s
E(e)] + γk[e]

}

(5)

γk[e] = πk[u(e)] + πk[c(e)] (6)

The
∗

max{xi} function [21] can be implemented with sev-
eral techniques [22]. The most common solution is based on

a maximum selection followed by a correction term stored
in a small Look-Up-Table (LUT) [23]. The correction term,
usually adopted when decoding binary codes, can be omitted
for double-binary turbo codes with minor performance loss
[24].

Theπk[c(e)] term in (6) is computed as a weighted sum of
the λint

k produced by the soft demodulator.

πk[c(e)] =

nc
∑

i

ci(e)λ
int
k [ci(e)] (7)

whereci(e) is thei-th bit of the coded symbol associated toe
andnc is the number of bits forming the coded symbol. Thus,
in (7) we assume that, even if symbols are not binary, bit-level
LLRs are available to the decoder. Under this hypothesis, (7)
can be used for double binary codes as well as for binary ones;
otherwise, if symbol level LLRs are available at the decoder
(7) should be slightly modified [4].

On the other hand, we can writeπk[u(e)] = u(e)λapr
k [u(e)]

for a binary turbo code, whereas for a double-binary turbo
code theπk[u(e)] terms are piece wise functions:

πk[u(e)] =















0 if u(e) = (‘0’ , ‘0’)
λapr

k [01] if u(e) = (‘0’ , ‘1’)
λapr

k [10] if u(e) = (‘1’ , ‘0’)
λapr

k [11] if u(e) = (‘1’ , ‘1’)

(8)

For further details on the decoding algorithm, the reader can
refer to [6].

B. SISO architecture

According to Fig. 2 (b) each branch-metric-unit (BMU)
computes the branch metrics (γ) at the k-th trellis step as
in (6). The outputs ofα-BMU andβ-BMU are used by theα
andβ processors to compute the forward and backward state
metrics respectively, see (4) and (5). Finally, theλ-O processor
computes the extrinsic informationλext

k by implementing (1)
and (2); furthermore, it generates the decoded symbolsuk.

The architecture shown in Fig 2 (b) assumes that the forward
recursion is computed first with the sliding window approach.

3

The set of windows is processed sequentially in natural order.
As a consequence,λint andλapr values belonging to a window
are processed by theα-BMU and concurrently stored in a
buffer (BMU-MEM) that acts as a Last-In-First-Out (LIFO)
buffer. When the buffer contains a window of data theβ-
BMU starts the computation ofγ. Thus, when theβ processor
works on thei-th window, theα processor works on thei+1-th
one. In order to align the forward and backward metrics a one-
window-size LIFO buffer (α-MEM) is employed. When border
metric inheritance is used a buffer to store border metrics
(βprv) is required (β-LOC-MEM). Moreover, in a parallel
decoder the SISOs process concurrently different slices of
the trellis, so that proper trellis initialization is required. As
highlighted in Fig. 1 and 2 we consider that thei-th SISO
exchanges the boundary metrics of its trellis slice with the
i− 1-th and thei + 1-th SISO respectively. These metrics are
stored in theα-EXT-MEM and β-EXT-MEM buffers.

As highlighted in Fig. 1 buffers are required also to store in-
trinsic and a-priori/extrinsic information. Intrinsic information
memory is duplicated to accommodate in-order and interleaved
LLRs. It is worth pointing out that in Fig. 1 and 2 (b)
we depicted as white those buffers whose size is assumed
to be minimized with well known methods [23]. On the
other hand, dark-grey-shaded buffers are the ones requiredfor
boundary metric exchange among neighboring SISOs (αin,
αout, βin and βout). These buffers can be implemented as
two position shift registers where each position stores the
boundary metrics computed during one half iteration. As a
consequence, the minimization of these memories leads to
a minor improvement in the decoder area reduction. Light-
grey-shaded buffers in Fig. 1 and 2 (b) are the ones studied
in [11], [12], [13], [14], [15], [16]. In particular in [12] the
α-MEM footprint is reduced by applying saturation to the
metrics, in [13] theβ-LOC-MEM is minimized by applying to
border backward metrics an encoding technique based on non-
uniform quantization. The works proposed in [11], [14], [15],
[16] are all aimed at reducing the footprint of theλext-MEM
buffers at expense of reducing the error correcting capability
of about 0.1 or 0.2 dB. In [11] a heuristically-determined
nonlinear quantizer is proposed to reduce the bit-width of the
extrinsic information. On the other hand, in [14] the same goal
is achieved by using a pseudo-floating point representation,
whereas in [15] a technique based on most significant bit
(MSB) clipping combined with least significant bit (LSB)
drop (at transmitter) and append (at receiver) is proposed.
Finally, the work in [16] is aimed at reducing the bit width
of the extrinsic information in double binary turbo decoders
by converting symbol-level extrinsic information to bit-level
information and vice-versa. As highlighted in the third rowof
Table I the area of parallelism dependent memories, increases
linearly with P . On the other hand, according to [25], the
throughput of a double binary turbo decoder architecture can
be estimated as

T =
Nb · fclk

2I
(

NT

P + W + ∆
) (9)

where Nb is the number of decoded bits,fclk is the clock
frequency,I is the number of iterations,NT is the number

of trellis steps (NT = Nc in this case),W is the window
size and∆ is the pipeline depth of theλ-O processor. A
similar expression can be written for binary codes as well,
nevertheless, the throughput of the decoder grows sub-linearly
with P due to the latency of the SISO processor (W + ∆).
As a consequence, by increasingP we increase more the area
of parallelism dependent memories than the throughput of the
decoder. In order to better highlight the contribution of each
buffer to the total amount of memory in the turbo decoder
we summarize in the fourth row of Table I the worst case
values used in [26] and [25] for the implementation of the
eight state WiMax double-binary turbo decoder:N = 4 · Nc,
Nc = 2400, R = 0.5 (that corresponds to an uncoded frame
size K = 2 · Nc = 4800 bits), window sizeW = 40 and
P = 4. The other rows refer toP = 8 andP = 16 respectively
with W = 30 so that Nc/(P · W) ∈ N [26]. Since the
complexity of the output buffer, which stores the decoded
bits uk, is negligible, it is not considered in this analysis.
Furthermore, we do not consider memories that might be
required to store the permutations for interleaving the extrinsic
information. The following quantization scheme has been used
in [25] for the representation of the LLRs and the SMs where
nx is the number of bits used to representx, namelynλint = 6,
nλext = 8 andnSM = nα = nβ = 12. In Fig. 1 and 2 (b), we
identify two contributions to the total amount of memory bits
in the decoder architecture: i) buffers whose contributionto the
total memory bits does not depend on the decoder parallelism
(parallelism independent buffers), asλint-MEM and λext-
MEM in Fig. 1; ii) buffers whose contribution to the total
memory bits increases withP (parallelsim depended buffers),
as BMU-MEM,α-MEM, β-LOC-MEM, α-EXT-MEM andβ-
EXT-MEM in Fig. 2 (b).

As shown in Table I theα-MEM is the most relevant mem-
ory among the parallelsim dependent buffers. Furthermore,
as long asP increases, its relative cost becomes comparable
with theλext-MEM. As a consequence, reducing theα-MEM
footprint in highly parallel turbo decoders has a significant
impact on the whole decoder area and power consumption.
Similarly to [11], [12], [13], [14], [15], [16], the memory
reduction achieved in this work comes at the expense of a
limited degradation of the error correcting performance as
detailed in the next sections.

III. STATE METRIC COMPRESSION

According to the standard data compression terminology,
state metrics can be compressed resorting to either lossless
or lossy techniques. It is known that lossless compression
techniques do not alter performace, but the compression ratio
that can be achieved is usually limited. On the other hand,
lossy compression techniques achieve higher compression
ratios at the expense of performance degradation. As an
example, the non-uniform quantizations used in [11] and
[13] to compress extrinsic information and border backward
metrics respectively are lossy techniques, but they introduce
a limited performance degradation. A generic data compres-
sion system is usually composed of two stages: a transform
stage, which exploites data correlation, and an encoding stage,

4

Table I
WIMAX DOUBLE-BINARY TURBO DECODER MEMORY BREAKDOWN, Nc = 2400, nλint = 6, nλext = 8, nSM = 12

parallelism parallelism
independent dependent

λint-MEM [bit] λext-MEM [bit] BMU-MEM [bit] α-MEM [bit] β-LOC-MEM [bit] α/β-EXT-MEM [bit]

P /W 6 · Nc · n
λint 3 · Nc · nλext W · (3 · nλext + 4 · n

λint) · P 8 · W · nSM · P 8 ·
“

Nc
W ·P

− 1
”

· nSM · P 2 · (16 · nSM · P)

4/40 86400 (49.67%) 57600 (33.11%) 7680 (4.42%) 15360 (8.83 %) 5376 (3.09%) 1536 (0.88%)
8/30 86400 (45.82%) 57600 (30.55%) 11520 (6.11%) 23040 (12.22%) 6912 (3.67%) 3072 (1.63%)
16/30 86400 (38.33%) 57600 (25.55%) 23040 (10.22%) 46080 (20.44%) 6144 (2.73%) 6144 (2.73%)

−300 −250 −200 −150 −100 −50
0

0.005

0.01

0.015

0.02

0.025

0.03

α̂j

P (α̂j)

i=1, SNR=0dB
i=7, SNR=1.6dB

Figure 3. Distribution of one element of̂α (all the ns elements have the
same distribution)

which actually compresses the information. In the case of
state metric compression, given a step on the trellis, we
should exploit correlation among metrics. Thus, saidns the
number of states of the code andk a step in the trellis, we
have αk = {α0,k, α1,k, . . . , αns−1,k}. The wrapping metric
technique [27], [28] is usually employed to reduce the critical
path in SM processors. However, it requires a normalization
stage before computing the extrinsic information to minimize
the memory requirement and to reduce the bitwidth of the
λ-O processor data-path. On the other hand, as detailed in
section V, this stage increases the length of the critical path. To
minimize the number of bits required to represent normalized
metrics, the normalization is usually performed by calculating
α̂k = αk − Mk whereMk = maxj{αj,k}1. During the first
iteration, and particularly at low signal to noise ratios (SNR),
all the metrics are likely to show small differences with respect
to each other. Thus, they can be interpreted as a signal with
low frequency components. On the other hand, during the last
iterations, and particularly at medium or high SNR values,
most of the SMs are far from the maximumMk and just one
or two of them are clearly higher than the other ones. In other
words, the spread of values in̂αk tends to increase with both
SNR and iterations.

1With a slight abuse of notation we mean that each element of the α̂k

array is obtained by subtracting the scalarMk from each element of theαk

array

A. SM distribution analysis

To verify these conjectures we consider the WiMax double-
binary turbo decoder settings detailed in section II. Then,
we simulated2 × 105 frames of 4800 (2 × Nc) bits sent
over an AWGN channel with a BPSK modulation at the first
iteration (i = 1) with SNR = 0 dB and at the seventh iteration
(i = 7) with SNR = 1.6 dB respectively. Finally, we collected
the values of thens normalized forward state metrics and
the corresponding Discrete-Fourier-Transform (DFT) values
at each trellis step to estimate the occurrence probabilityof
each valueα̂j along the trellis. To that purpose, in Fig. 3
we show the statistical frequencyP (α̂j) of one normalized
forward state metriĉαj with 0 ≤ j ≤ ns − 1 (all the ns

elements have the same distribution along the trellis). Since
P (α̂j = 0) ≥ 1/8 then P (α̂j = 0) is significantly higher
thanP (α̂j 6= 0); thus, in Fig. 3P (α̂j = 0) is not shown for
the sake of clarity. The corresponding values forP (α̂j = 0)
are P (α̂j = 0) = 1.32 × 10−1 with i = 1, SNR = 0 dB
and P (α̂j = 0) = 1.25 × 10−1 with i = 7, SNR = 1.6 dB
respectively. Saidφ the DFT of α̂, in Fig. 4 and 5 we show
P (φj), the distribution of thej-th sample ofφ at the first
iteration (i = 1) with SNR = 0 dB and at the seventh iteration
(i = 7) with SNR = 1.6 dB. As it can be observed, in both
cases the mean value of the DC component (j = 0) is the
highest value.

0
1

2
3

4
5

6
7

0
50

100
150

200
250

300

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

j
|φj |

P (|φj |)

Figure 4. Distribution ofφj at the first iteration (i = 1) with SNR = 0 dB

B. SM distance analysis

However, we need to study also the contribution of com-
ponents at higher frequencies to properly representα̂ values.
As a consequence, it makes sense to study the distance among
metrics to achieve compression. Thus, depending on the SNR

5

0
1

2
3

4
5

6
7

0
200

400
600

800
1000

1200
1400

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

j
|φj |

P (|φj |)

Figure 5. Distribution ofφj at the seventh iteration (i = 7) with SNR =
1.6 dB

and the current iteration, for each trellis step we can builda
setAk whereαj,k ∈ Ak, 0 ≤ j ≤ ns − 1 if αj,k < Mk. Now
we can definehk as the number of elements belonging toAk

(0 ≤ hk < ns) and lk = ns − hk. Similarly, we can define
Âk, whereα̂j,k ∈ Âk, 0 ≤ j ≤ ns − 1 if α̂j,k < 0. From the
definition of Âk, we can infer thathk is also the number of
elements inÂk. The introducedlk amount evolves along the
trellis according to the values assumed byαj,k. This evolution
shows no regularity and appears as a random process. We then
define a random variable, referred to asl, to indicate values
assumed bylk across trellis steps. ProbabilityP (l) for the
defined random variablel indicates the probability of havingl
metrics equal toMk in the same trellis step.P (l) is lower for
higher values ofl and tends to decrease with both iterations
and SNR. This can be seen in Fig. 6, where we show the

1 2 3 4 5 6 7 8
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.95

1

0.99
10

10
−0.01

0

10
−0.02

l

P (l)

i = 1, SNR=0dB
i = 7, SNR=1.6dB

Figure 6. Probability of havingl metrics equal toMk: distribution of l at
the first iteration (i = 1) with SNR = 0 dB (solid line) and at the seventh
iteration (i = 7) with SNR = 1.6 dB (dotted line)

distribution ofl at the first iteration (i = 1) with SNR = 0 dB
and at the seventh iteration (i = 7) with SNR = 1.6 dB. As it
can be observed, in both cases the probability of having only
one metric equal toMk (l = 1) at stepk is maximum and very

close to 1 (0.95 and 0.99 respectively). On the other hand, the
value ofP (l > 1) is significantly higher wheni = 1, SNR =
0 than wheni = 7, SNR = 1.6 dB.

Then, we expect that for every couplêαp,k, α̂q,k ∈ Âk

with p 6= q and 0 ≤ p, q ≤ ns − 1, the difference
dp,q,k = |α̂p,k − α̂q,k| is very small. Also amountsdp,q,k

show a random-like behavior in the trellis evolution, thus,we
define a second random variabled. However, the distribution
of d values at trellis steps wherel is large is highly different
from distribution at trellis steps wherel is small. Therefore we
introducens setsDl defined as follows:dp,q,k ∈ Dl if lk = l.
P (d ∈ Dl) gives the distribution ofd values in each setDl.
It is worth pointing out that, sinceDns

= ∅ by construction,
P (d ∈ Dns

) = 0. Distributions ofd values inDl sets are
given in Fig. 7 and 8, whereP (d ∈ Dl) are plotted at the first
iteration (i = 1) with SNR = 0 dB and at the seventh iteration
(i = 7) with SNR = 1.6 dB respectively.

0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d

P (d ∈Dl)

l=1
l=2
l=3
l=4
l=5
l=6
l=7

Figure 7. Distribution ofd at the first iteration (i = 1) with SNR = 0 dB

0 10 20 30 40 50 60 70
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d

P (d ∈Dl)

l=1
l=2
l=3

Figure 8. Distribution ofd at the seventh iteration (i = 7) with SNR = 1.6
dB

As it can be observed in Fig. 7 and 8 the maximumd (dM)

6

is 25 and 67 respectively. Compared with the mean value ofα̂j

(µα̂j
) in Fig. 3, that are -16 and -155 respectively, we observe

that in the first case (i = 1 and SNR = 0 dB)dM > |µα̂j
|,

whereas, in the second case,dM < |µα̂j
|. However, these two

events have a probability that is less than10−8. Moreover, in
the casei = 1 and SNR = 0 dB,l = 1 collects about the 95%
of the distribution ofd and more that the 99% is obtained for
l = 1, 2. Furthermore, for the casei = 7 and SNR = 1.6 dB
l = 1 represents more that the 99% of the distribution ofd.

From the analysis presented in the previous paragraphs we
can infer that:

• At each trellis step there is a high probability of having
few metrics higher than the other ones (almost only one
metric is equal toMk, l = 1).

• The remaining ones differ one from each other of few
tens and the larger is the difference value, the smaller is
its probability.

These results show that correlation exists and can be exploited
to compress forward state metrics. As a consequence, a proper
transform stage should be employed. This stage should be able
to extract the DC component of̂αk and to effectively represent
d. However, the complexity overhead induced by the compres-
sion/decompression technique must be as limited as possible.
Unfortunately, several transform stages able to separate the
frequency components of a signal require multiplications [29].
Thus, multiplierless transform stages are interesting solutions
to extract the existing correlation among state metrics with a
limited complexity overhead.

IV. PROPOSED STATE METRIC COMPRESSION SCHEME

The optimal transform stage to extract the correlation of
a random process is the Karhunen-Loéve Transform (KLT)
[29]. Unfortunately, its prohibitive complexity makes theKLT
use for state metric compression not practical. Depending on
the amount of correlation among data Discrete-Sine-Transform
(DST) and Discrete-Cosine-Transform (DCT) are usually used
instead of the KLT [29]. However, both the DST and the
DCT require multiplications. In this scenario the Walsh-
Hadamard-Transform is a particularly simple solution. Even
if it is known that the Walsh-Hadamard-Transform has lower
energy compaction capability than other transforms, it canbe
implemented by resorting to only additions and subtractions.
This reduced complexity figure makes it an attractive candidate
to compress state metrics.

A. Walsh-Hadamard-Transform

The Walsh-Hadamard-Transform (WHT) [17] is an orthog-
onal transform where only additions are required. It can be
represented as matrixH containing only +1 and -1. The
smallest orthonormal Hadamard matrix is the2 × 2 matrix
defined as

H1 =
1√
2

(

1 1
1 −1

)

(10)

In general, the2n × 2n Hadamard matrix is obtained as

Hn =

(

Hn−1 Hn−1

Hn−1 −Hn−1

)

(11)

Moreover, since theHn is symmetric and orthogonal
(Hn)−1 = Hn. Thus, for a constituent CC withns states
we can perform the WHT on̂αk resorting to thens × ns

Hadamard matrix (11). As an example for the WiMax turbo
code (ns = 8) we haveH3 = K3 · Ĥ3 with K3 = 1/(

√
2)3

and

Ĥ3 =

























1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

























(12)

To ease hardware implementation, we can neglectK3 at the
direct transform side by computingξk = Ĥ3 ·α̂k. Then, at the
inverse transform side we implementα̂k = (K3)

2 · Ĥ3 · ξk.
Since(Kn)2 is a power of two its implementation is trivial.
It is worth pointing out that the WHT can be effectively
implemented in a butterfly fashion withns · log2 ns adders,
as shown in Fig. 9 (a) and (b) forns = 8.

B. Quantization

A reduced complexity quantization scheme should be em-
ployed. To that purpose the non-uniform quantization scheme
used in [13] to encode border backward metrics is a suitable
solution. In the following we will discuss the quantizer applied
to the WHT outputs, even if in section V we will show the
results obtained by quantizing eitherξj,k or α̂j,k. This quan-
tization scheme floors the original metric value to the closest
power-of-two. Sinceξj,k can be either positive or negative, we
first check|ξj,k| 6= 0 and compute|ξj,k|, then with a leading-
one-detector (LOD) and an encoder we obtain⌊log2(|ξj,k|)⌋
[30]. However, in order to reduce the quantization error we
pose

ζj,k = sign(ξj,k) · ⌊log2(|ξj,k|) + 0.5⌋ (13)

Sincey = log2 x = yi + yf whereyi andyf are the integer
and the fractional part ofy respectively, andyi = ⌊log2 x⌋ we
have

|ζj,k| =

{

⌊log2(|ξj,k|)⌋ if fj,k < 0.5
⌊log2(|ξj,k|)⌋ + 1 if fj,k ≥ 0.5

(14)

wherefj,k is the fractional part oflog2(|ξj,k|). Then, exploit-
ing the monotonicity of the functiony = 2x we obtain

|ζj,k| =

{

⌊log2(|ξj,k|)⌋ if 2fj,k <
√

2

⌊log2(|ξj,k|)⌋ + 1 if 2fj,k ≥
√

2
(15)

Since 2fj,k = |ξj,k|/2⌊log2
(|ξj,k|)⌋ we can infer that2fj,k

binary representation is equal to the binary representation of
|ξj,k| except for the binary point position. As a consequence,
we can compute2fj,k ≥

√
2 in (15) by considering|ξj,k|

and
√

2 binary representations, aligning the leading ‘1’ of
|ξj,k| to the leading ‘1’ of

√
2 and comparing these values.

The alignment is performed by a small left-shifter with the
shift-amount command driven by⌊log2(|ξj,k|)⌋. The complete
block scheme of the quantizer is show in Fig. 9 (c) and (d)

7

LOD encoder

left−shifter

0

(d)

MSB

(a)

(b)

(c)

1

0 1
SEL

0

|ζj,k|

≥

=

|ξj,k|

α̂0,k

α̂1,k

α̂2,k

α̂3,k

α̂4,k

α̂5,k

α̂6,k

α̂7,k

ξ0,k

ξ1,k

ξ2,k

ξ3,k

ξ4,k

ξ5,k

ξ6,k

ξ7,k

x

|x|

x0

x1

y0

y1

y0 = x0 + x1

y1 = x0 − x1

√
2

ξj,k
ζj,k

⌊log2(|ξj,k|)⌋

2fj,k

Figure 9. Butterfly based 8-point WHT data flow graph (a), (b) and quantizer
block scheme (c), (d)

where MSB stands for most-significant-bit. On the other hand,
the dequantizer computes̄ξj,k = sign(ζj,k) · 2|ζj,k| by the
means of a shifter and few logic.

Due to the presence of the quantizer/dequantizer at the
inverse transform side we obtain̂̄αk = (K3)

2 ·Ĥ3 · ξ̄k instead
of α̂k. It is worth pointing out that the implementation of
(K3)

2 at the inverse transform side increases the dynamic
range ofξj,k. However, as it will be detailed in section V, this
has no effect on the dynamic range ofζj,k in the considered
cases.

V. EXPERIMENTAL RESULTS

The proposed techniques have been compared in terms of
bit-error-rate (BER) performance and complexity with other
techniques in two significant cases: i) the WiMax turbo de-
coder architecture with the settings summarized in sections
II and III ii) the serial concatenation turbo decoder (SCCC)
proposed in the MHOMS system [31] and implemented as a
parallel architecture in [32].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

SNR [dB]

B
E

R

unquantized
quantized
WH quantized

α̂
α̂

α̂
[12] 6 bits
[12] 7 bits

Figure 10. WiMax turbo decoder BER performance comparison

A. WiMax turbo decoder

As highlighted in Fig. 3 givennλint = 6 andnλext = 8 as
in [25], we obtain that̂αj,k magnitude is represented on 9 bits
and as a two complement value on 10 bits. Simulations show
that ξj,k requires no more than 11 bits and, as a consequence,
ζj,k is represented on 5 bits as a sign and module value.

1) Performance: In Fig. 10 we show the performance
obtained for the WiMax turbo decoder configured as detailed
in sections II and III after seven iterations. The square-
marked curve represents performance obtained with unquan-
tized metrics (UM). With the circle-marked curve we depict
the performance obtained by directly applying the quantizer
described in section IV-B tôαj,k (QM). Sinceα̂j,k ≤ 0 the
corresponding encoded value (χj,k = ⌊log2(|α̂j,k|) + 0.5⌋) is
represented on 4 bits. As it can be observed, the curve of
this solution is extremely closed to the unquantized curve at
the beginning of the waterfall region. However, as long as the
SNR becomes higher than 0.8 dB the distance between the two
curves increases and the circle-marked curve floors to2×10−7.
The diamond-marked curve shows the performance obtained
with the proposed state metric compression system (WHT and
quantizer, WM). As show in Fig. 10 the performance of the
proposed solution falls in between the unquantized and the
circle-marked curve with a floor of about10−7 as for the UM
square-marked curve. On the other hand, the cross-marked and
asterisc-marked curves show the performance of SM saturation
applied outside the metric update loop (OM) as proposed in
[12]. Since applying saturation on 4 bits leads to excessive
performance degradation we impose to saturateα̂j,k on 6 and 7
bits respectively. In the following we will refer to the saturated
α̂k values aŝαs

k. As it can be observed the OM technique with
SM saturation on 7 bits shows nearly the same performance
of the proposed WM technique.

2) Complexity: In Fig. 11 UM, QM, WM and OM archi-
tectures are shown to highlight the blocks employed in each
architecture. In order to save memory we perform the forward
metric normalization at the input of theα-MEM buffer, instead

8

Table II
COMPARISON OFUM, QM, WM AND 7 BITS OM SOLUTIONSW = 40 (WIMAX TURBO DECODERns = 8): AREA (A), CRITICAL PATH (CP)AND

POWER CONSUMPTION(PC)

Arch. Data word Mem. SP Mem. DP LO CP Mem. SP + LO Mem. DP + LO
width [bit]/[µm2] [bit]/[µm2] [EG]/[µm2] [ns] A [µm2] PC [mW] A [µm2] PC [mW]

UM α̂k 9ns 5760/118530 2880/84909 -/- 1.8 118530 (100%) 41.26 84909 (100%) 24.01
QM χk 4ns 2560/56760 1280/43409 820/4922 2.2 61682 (52.0%) 23.19 48331 (56.9%) 13.99
WM ζk 5ns 3200/69115 1600/51709 3931/23585 3.2 92700 (78.2%) 29.84 75294 (88.7%) 18.34
OM α̂s

k 7ns 4480/93825 2240/68309 89/533 2.0 94358 (79.6 %) 34.26 68842 (81.1%) 19.31

(c)

(b)(a)

(d)

α̂s
k

λ-O
processor

α-MEM

WHT

quantizer

normalization

dequantizer WHT
λ-O

processor

αj,k

α̂j,k

ξj,k

ζj,k

ζk ξ̄k
¯̂αk

α-MEM

quantizer

dequantizer
λ-O

processor

normalization

αj,k

α̂j,k

⌊log2(|α̂j,k|) + 0.5⌋

χj,k

χk

−2⌊log2(|α̂k|)+0.5⌋

−2χk

α-MEM

saturation

λ-O
processor

α

processor

γk+1

αin

αk+1

normalization

αj,k

α̂j,k

α-MEM
α̂k

normalization

αj,k

α̂j,k

⌊log2(|α̂j,k|) + 0.5⌋

−2⌊log2(|α̂k|)+0.5⌋α̂s
j,k

Figure 11. UM (a), QM (b), WM (c) and OM (d) block schemes

of into the λ-O processor as in [25] (see Fig. 11 (a)). To
compare the complexity of hardware implementation of the
UM, QM, WM and OM solutions, see Fig. 11 (a), (b), (c)
and (d), we implemented them in VHDL and synthesize them
on a 130 nm standard cell technology with Synopsys Design
Compiler imposing a clock frequency of 200 MHz. Moreover,
we generate the corresponding memories with a 130 nm RAM
generator both as single port (SP) and double port (DP) RAMs.
In fact the α-MEM memory (as the other memories in the
decoder architecture) can be implemented either as one DP
RAM or as a double buffer with two SP RAMs. In Table II we
compare the complexity in terms of area (A), giving both the
equivalent gates (EG) and theµm2, the critical path (CP) and
the power consumption (PC) of the UM, QM, WM and OM
architectures. As it can be inferred from Table II and Fig. 10
the QM solution leads to a complexity reduction of about 50%,
with a moderate BER performance degradation. This memory
reduction leads also to a significant reduction of the power
consumption, with a small increase of the critical path. On the
other hand, both OM on 7 bits and the proposed WM solutions
achieve nearly the BER performance of the UM architecture
with a complexity reduction between about 10% and 20%.
However, the WM solution has higher logic overhead (LO)
than the OM one, besides WM has a longer critical path than
OM. For a 200 MHz target clock frequency, the critical path
of WM leads to no more than a one cycle pipeline delay.

The throughput of an UM turbo decoder architecture can be
estimated with (9); since the WM technique adds at most one
clock cycle we have

TWM =
Nb · fclk

2I
(

NT

P + W + ∆ + 1
) (16)

As a consequence, we obtain a throughput reduction with re-
spect toTUM of (NT /P+W+∆)/(NT /P+W +∆+1). With
NT = 2400, P = 4, W = 40 and ∆ = 5 (as in [25]) leads
to TWM about 0.16% ofTUM . It is worth pointing out that
the reduced memory footprint achieved with the WM solution
leads to a lower power consumption than the OM architecture.
Finally, we observe that the OM architecture reduces also the
hardware complexity and the power consumption of theλ-O
processor, as it produces forward state metrics on a reduced
number of bits with respect to UM, QM and WM solutions.
Post synthesis results show that theλ-O processor for the 7
bits OM architecture occupies 70277µm2 and consumes 12.3
mW, whereas it occupies 71128µm2 and consumes 12.6 mW
in the case of UM, QM and WM solutions. These results,
with the ones shown in table II, confirm the interesting power
consumption figure of the WM architecture and that WM and
OM solutions have comparable complexity.

B. MHOMS turbo decoder

The MHOMS SCCC turbo decoder is based on a four state
(ns = 4), rate 1/2, recursive systematic CC which is used both
as inner and outer constituent code. In this work we set the
uncoded frame size toK = 1022 and the coded frame size to
3076. Since the concatenation is serial this leads in the worst
case (inner CC) toN = 3076. The quantization scheme for
the LLRs isnλint = 6, nλext = 8 andnSM = nα = nβ = 10

[32]. The
∗

max{xi} function has been implemented as amax
followed by a 3 bit correction term stored in a 22 position LUT.
The decoder parallelism degree isP = 16 and the window
size, that is different for inner (I) and outer (O) SISOs, is
WI = 48 and WO = 32. Experimental results show that the
required bitwidth forα̂j,k, χj,k andζj,k is the same obtained
for the WiMax turbo decoder.

1) Performance: In Fig. 12 we show the performance
obtained for the MHOMS SCCC turbo decoder configured
as detailed in section V-B after ten iterations using 4PSK
modulation and AWGN channel.

As it can be observed, the obtained BER performance is
very close to what shown for the WiMax turbo decoder,
namely the BER performance of the proposed WM solution is
in between UM and QM; the OM technique performs nearly
as the WM one.

9

Table III
COMPARISON OFUM, QM, WM AND 7 BITS OM SOLUTIONSW = 48 (MHOMS SCCCTURBO DECODERns = 4): AREA (A), CRITICAL PATH (CP)

AND POWER CONSUMPTION(PC)

Arch. Data word Mem. SP Mem. DP LO CP Mem. SP + LO Mem. DP + LO
width [bit]/[µm2] [bit]/[µm2] [EG]/[µm2] ns A [µm2] PC [mW] A [µm2] PC [mW]

UM α̂k 9ns 3456/64400 1720/49753 -/- 1.4 64400 (100%) 24.12 49753 (100%) 13.77
QM χk 4ns 1536/32839 768/28135 411/2461 1.9 35300 (54.8%) 14.99 31225 (61.5%) 8.09
WM ζk 5ns 1920/39151 960/32459 1507/9043 2.4 48194 (74.8%) 17.85 41502 (83.4%) 9.80
OM α̂s

k 7ns 2688/51775 1344/41106 356/2132 1.5 53907 (83.7 %) 19.44 43238 (86.9 %) 11.39

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

unquantized
quantized
WH quantized

α̂
α̂

α̂
[12] 6 bits
[12] 7 bits

Figure 12. MHOMS SCCC turbo decoder performance comparison

2) Complexity: Similarly to the WiMax case, we perform
the forward metric normalization at the input of theα-MEM
buffer, instead of into theλ-O processor as in [32]. From the
implementation point of view, in the following, we consider
the worst case window size:W = max{WI , WO} = 48. In
table III we compare the complexity in terms of area (A),
giving both the equivalent gates (EG) and theµm2, the critical
path (CP) and the power consumption (PC) of the UM, QM,
WM and OM architectures. These results are obtained as post
synthesis values with Synopsys Design Compiler on a 130
nm standard cell technology for a 200 MHz clock frequency.
As it can be inferred from Table III and Fig. 12 the QM
solution leads to a complexity reduction of about 50%, with a
moderate performance degradation and a significant reduction
of the power consumption. The OM solution with 7 bits and
the proposed WM architecture have nearly the same BER
performance as the UM implementation; besides they achieve
a complexity reduction between about 15% and 25%. As for
the WiMax case, the WM solution presents a longer critical
path than the OM one. On the contrary, the WM technique
has better power consumption figures than the OM one.
Considering the complexity and power consumption of the
λ-O processor we obtain an area of 43119µm2 and a power
consumption of 4.7 mW for UM, QM and WM architectures
and an area of 42849µm2 and a power consumption of 4.6
mW for OM.

VI. CONCLUSIONS

In this work two techniques to compress state metrics to
reduce the memory in turbo decoder architectures have been
presented. The first technique, based on non-uniform quanti-
zation, reduces the SM memory of about 50%, compared with
architectures where state metric compression is not performed,
at the expense of slightly increasing the error correcting
performance floor. Thus, it can be employed with codes that
exhibit verly low error floor, as the MHOMS SCCC, to obtain
a significant complexity reduction. The second technique,
based on the Walsh-Hadamard transform and non-uniform
quantization, shows excellent error correcting performance.
Moreover, its complexity overhead is moderate and compared
with a decoder where SM are not compressed allows for a
SM memory reduction of more that 20% in the best case.
As a consequence, this solution is well suited to reduce the
decoder area when the code error floor should be preserved, as
for the WiMax turbo code. Finally, both solutions show lower
power consumption than architectures previously proposedto
compress state metrics.

ACKNOWLEDGMENT

This work is partially supported by the NEWCOM++ net-
work of excellence, funded by the European Community, and
by the WIMAGIC project, funded by the European Commu-
nity.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error
correcting coding and decoding: Turbo codes,” inIEEE International
Conference on Communications, 1993, pp. 1064–1070.

[2] T. Vogt and N. Wehn, “Reconfigurable ASIP for convolutional and turbo
decoding in an SDR environment,”IEEE Transactions on VLSI, vol. 16,
no. 10, pp. 1309–1320, Oct 2008.

[3] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,”IEEE Transactions on
Information Theory, vol. 20, no. 3, pp. 284–287, Mar 1974.

[4] E. Boutillon, C. Douillard, and G. Montorsi, “Iterativedecoding of
concatenated convolutional codes: Implementation issues,” Proceedings
of the IEEE, vol. 95, no. 6, pp. 1201–1227, Jun 2007.

[5] M. Martina and G. Masera, “Turbo NOC: A framework for the design of
network-on-chip-based turbo decoder architectures,”IEEE Transactions
on Circuits and Systems I, vol. 57, no. 10, pp. 2776–2789, Oct 2010.

[6] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input soft-
output modules for the construction and distributed iterative decoding of
code networks,”European Transactions on Telecommunications, vol. 9,
no. 2, pp. 155–172, Mar/Apr 1998.

[7] J. H. Kim and I. C. Park, “A unified parallel radix-4 turbo decoder for
mobile WiMAX and 3GPP-LTE,” inIEEE Custom Integrated Circuits
Conference, 2009, pp. 487–490.

[8] O. Muller, A. Baghdadi, and M. Jezequel, “From parallelism levels to
a multi-ASIP architecture for turbo decoding,”IEEE Transactions on
VLSI, vol. 17, no. 1, pp. 92–102, Jan 2009.

10

[9] Y. Sun, Y. Zhu, M. Goel, and J. R. Cavallaro, “Configurableand scalable
high throughput turbo decoder architecture for multiple 4Gwireless
standards,” inIEEE International Conference on Application-Specific
Systems, Architectures and Processors, 2008, pp. 209–214.

[10] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE
turbo code decoder,” inDesign Automation & Test in Europe Conference
& Exhibition, 2010, pp. 1420–1425.

[11] J. Vogt, J. Ertel, and A. Finger, “Reducing bit width of extrinsic memory
in turbo decoder realisations,”IEE Electronics Letters, vol. 36, no. 20,
pp. 1714–1716, Sep 2000.

[12] H. Liu, J. P. Diguet, C. Jego, M. Jezequel, and E. Boutillon, “Energy
efficient turbo decoder with reduced state metric quantization,” in IEEE
Workshop on Signal Processing and Systems, 2007, pp. 237–242.

[13] J. H. Kim and I. C. Park, “Double-binary circular turbo decoding based
on border metric encoding,”IEEE Transactions on Circuits and Systems
II , vol. 55, no. 1, pp. 79–83, Jan 2008.

[14] S. M. Park, J. Kwak, and K. Lee, “Extrinsic information memory
reduced architecture for non-binary turbo decoder implementation,” in
IEEE Vehicular Technology Conference, 2008, pp. 539–543.

[15] A. Singh, E. Boutillon, and G. Masera, “Bit-width optimization of
extrinsic information in turbo decoder,” inInternational Symposium on
Turbo Codes & Related Topics, 2008, pp. 134–138.

[16] J. H. Kim and I. C. Park, “Bit-level extrinsic information exchange
method for double-binary turbo codes,”IEEE Transactions on Circuits
and Systems II, vol. 56, no. 1, pp. 81–85, Jan 2009.

[17] C. R. Gonzalez, E. R. Woods, and S. L. Eddins,Digital Image Process-
ing (3rd Edition). Prentice-Hall, Inc., 2006.

[18] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara,“Algorithm for
continuous decoding of turbo codes,”IET Electronics Letters, vol. 32,
no. 4, pp. 314–315, Feb 1996.

[19] A. Abbasfar and K. Yao, “An efficient and practical architecture for high
speed turbo decoders,” inIEEE Vehicular Technology Conference, 2003,
pp. 337–341.

[20] C. Zhan, T. Arslan, A. T. Erdogan, and S. MacDougall, “Anefficient
decoder scheme for double binary circular turbo codes,” inIEEE
International Conference on Acoustics, Speech and Signal Processing,
2006, pp. 229–232.

[21] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the Log domain,”
in IEEE ICC, 1995, pp. 1009–1013.

[22] S. Papaharalabos, P. Takis-Mathiopoulos, G. Masera, and M. Martina,
“On optimal and near-optimal turbo decoding using generalized max*
operator,”IEEE Communication Letters, vol. 13, no. 7, pp. 522–524, Jul
2009.

[23] G. Montorsi and S. Benedetto, “Design of fixed-point iterative decoders
for concatenated codes with interleavers,”IEEE Journal on Selected
Areas in Communications, vol. 19, no. 5, pp. 871–882, May 2001.

[24] C. Berrou, M. Jezequel, C. Douillard, and S. Kerouedan,“The advan-
tages of non-binary turbo codes,” inIEEE Information Theory Workshop,
2001, pp. 61–63.

[25] M. Martina, M. Nicola, and G. Masera, “VLSI implementation of
WiMax convolutional turbo code encoder and decoder,”Journal of
Circuits, Systems and Computers, vol. 18, no. 3, pp. 534–564, May
2009.

[26] ——, “Hardware design of a parallel, collision-free interleaver for
WiMax duo-binary turbo decoding,”IEEE Communications Letters,
vol. 12, no. 11, pp. 846–848, Nov 2008.

[27] A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,”
IEEE Transactions on Communications, vol. 37, no. 11, pp. 1220–1222,
Nov 1989.

[28] E. Boutillon, W. J. Gross, and P. G. Gulak, “VLSI architectures for the
MAP algorithm,” IEEE Transactions on Communications, vol. 51, no. 2,
pp. 175–185, Feb 2003.

[29] K. Sayood,Introduction to Data Compression (3rd Edition). Morgan
Kaufmann, 2005.

[30] J. N. Mitchell, “Computer multiplication and divisionusing binary
logarithms,” IRE Transactions on Electronic Computers, vol. 11, no. 4,
pp. 512–517, Aug 1962.

[31] S. Benedetto, R. Garello, G. Montorsi, C. Berrou, C. Douillard, D. Gian-
cristofaro, A. Ginesi, L. Giugno, and M. Luise, “MHOMS: High-speed
ACM modem for satellite applications,”IEEE Wireless Communications,
vol. 12, no. 2, pp. 66–77, Apr 2005.

[32] M. Martina, A. Molino, F. Vacca, G. Masera, and G. Montorsi, “High
throughput implementation of an adaptive serial concatenation turbo
decoder,” Journal of Communications, Software and Systems, vol. 2,
no. 3, pp. 252–261, Sep 2006.

PLACE
PHOTO
HERE

Maurizio Martina was born in Pinerolo, Italy, in
1975. He received the M.Sc. and Ph.D. in electrical
engineering from Politecnico di Torino, Italy, in
2000 and 2004 respectively. He is currently a Post-
doctoral Researcher at the VLSI Lab, Politecnico di
Torino. His research activities include VLSI design
and implementation of architectures for digital signal
processing and comunications.

PLACE
PHOTO
HERE

Guido Masera received the Dr.Eng. degree (summa
cum laude) in 1986, and the Ph.D. degree in elec-
trical engineering from Politecnico di Torino, Italy,
in 1992. Since 1986 to 1988 he was with CSELT
(Centro Studi e Laboratori in Telecomunicazioni,
Torino, Italy) as a researcher involved in the stan-
dardization activities for the GSM system. Since
1992 he has been Assistant Professor and then
Associate Professor at the Electronic Department,
where he is a member of the VLSI-Lab group.
His research interests include several aspects in the

design of digital integrated circuits and systems, with special emphasis on
high-performance architecture development (especially for wireless commu-
nications and multimedia applications) and on-chip interconnect modeling and
optimization. He has coauthored more than 160 journal and conference papers
in the areas of ASIC-SoC development, architectural synthesis, VLSI circuit
modeling and optimization. In the frame of National and European research
projects, he has been co-designer of several ASIC and FPGA implementations
in the fields of Artificial Intelligence, Computer Networks,Digital Signal
Processing, Transmission and Coding.

