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The process of designing a complex system, formed by many elements and sub-elements interacting between 

each other, is usually completed at a system level and in the preliminary phases in two major steps: design-space 
exploration and optimization. In a classical approach, especially in a company environment, the two steps are usually 
performed together, by experts of the field inferring on major phenomena, making assumptions and doing some trial-
and-error runs on the available mathematical models. To support designers and decision makers during the design 
phases of this kind of complex systems, and to enable early discovery of emergent behaviours arising from 
interactions between the various elements being designed, the authors implemented a parametric methodology for the 
design-space exploration and optimization. The parametric technique is based on the utilization of a particular type 
of matrix design of experiments, the orthogonal arrays. Through successive design iterations with orthogonal arrays, 
the optimal solution is reached with a reduced effort if compared to more computationally-intense techniques, 
providing sensitivity and robustness information. The paper describes the design methodology in detail providing an 
application example that is the design of a human mission to support a lunar base. 

 

NOMENCLATURE 

ANOVA Analysis Of Variance 
CCD Central Composite Design 
Isp Specific Impulse 
MDF Multi Disciplinary Feasible 
NHD Non Hierarchical Decomposition 
OA Orthogonal Array 
SOS System of Systems 

I. INTRODUCTION 
In this paper we discuss a method for the design of 
complex systems using orthogonal arrays. In an earlier 
paper, ref. [1], we described a decomposition approach 
for a category of complex systems called “System-of-
Systems”. A system-of-systems is, by definition, a 
system composed of multiple elements and sub-
elements. For instance, a liquid fuel rocket engine can 
be considered an SOS composed of the structure, fuel 
system, and control system, each system further 

decomposed into components such as fuel tanks, 
nozzle(s) etc.  
At a much higher level, a planetary exploration mission 
architecture can also be considered an SOS, which 
entails the system of Earth infrastructure, inter-planetary 
transportation, and the planet surface habitat, each of 
these systems comprising components such as the 
launch vehicles, transfer vehicles, and lander in the 
interplanetary transportation system. 

The elements of the System-of-Systems have 
multiple interactions between each other and the 
aggregate activity is typically more than the simple 
interactions of the various parts. The analysis and 
comprehension of the emergent behaviours arising from 
these interactions is of a crucial importance for the 
proper design of such kind of complex systems; in ref. 
[2] this aspect has already been assessed and discussed 
in detail.  

The system-of-systems used as a case study in this 
paper is composed of the mathematical models for 
elements and subsystems belonging to a hypothetical 
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human mission to support the return of mankind on the 
Moon with a permanent outpost. In particular, the 
models that have been developed allow for the design of 
a manned re-entry capsule, a service module for the 
capsule, a lander system, an ascent vehicle, and an 
Earth-Moon transfer vehicle. The transfer vehicle brings 
all the other elements from a low Earth orbit to a low 
lunar orbit. The astronauts are transferred on the lunar 
surface by the lander and the ascent module, which will 
bring them on orbit again at the end of the mission. The 
service module provides the necessary ΔV to inject the 
capsule with the astronauts in the transfer orbit from the 
Moon towards the Earth. For more detailed information 
on the mission architecture see ref. [1] 

The main goal of this paper is to describe the design 
methodology that has been formulated and applied to 
the System of Systems just described, providing a 
detailed description of the obtained results. The design 
methodology has been developed to cope with the 
evolving environment of engineering companies and 
agencies. The adopted design processes are radically 
changing, and the tools that support the engineers and 
the decision makers are evolving consequently. In a 
traditional approach, even with the experience achieved 
in the last decade by applying the paradigm of 
Concurrent Engineering, companies are organized in 
engineering groups that are usually aligned with 
disciplines, parts, and/or processes concurring for the 
development of a product/system. In most of the cases 
the various groups have full authority on design issues 
belonging to their inherent domain only. Each 
engineering group uses its own design methods and 
software tools. Most important, the interfaces are 
usually determined by the experts and provided 
manually, therefore not fulfilling the requirement of 
concurrency in the design process. The experts are also 
responsible for achieving compromises between 
engineering groups and all the most important design 
choices are taken together, using all the available 
information.  

The problem of designing using highly integrated 
mathematical models is on an open debate among the 
research groups dealing with complex systems[17]-[26]. As 
will be explained in more detail in section II, three 
different classes of methodology can in principle be 
used to solve a system-of-systems, but the stochastic 
algorithms, e.g., genetic algorithms, are those who are 
more widely applied. The main disadvantages of those 
methodologies is that they are “simulation intensive”, 
causing long run times, providing almost no insight in 
the problem of interest and leading to poor convergence 
of the solution in some cases.  

 The authors are investigating a different and 
possibly more efficient way to deal with this kind of 
systems, based on parametric design. We think, 
according to what has been addressed in previous 

works[2],[3], that supporting the design team with 
graphical information, instead of providing a ready 
solution, with no clear insight in the behavior of the 
single elements and in the interactions, is crucial for 
System Engineering processes and tools. The scope of 
systems engineering is to make sure that the 
development process leads to the most cost-effective 
final product. Before every decision is made, especially 
for those that are hard to undo in an advanced phase, the 
alternatives should be carefully assessed, understood 
and discussed. This can be achieved only if there is an 
efficient communication between the various 
disciplines/systems/elements that determine the 
performance(s) of the system. A system engineering 
tool should help in this direction.  

Thus, the main objective of the methodology 
presented in this paper is to support designers and 
decision makers during all the design phases of a 
complex system by keeping the concurrency of the 
design process and providing information on the 
behaviour of the system and its components, in terms of 
interactions, robustness and sensitivity.  

The remaining part of the paper is organized as 
follows. In section II, the main aspects and potentials of 
the design methodology are described. In section III, a 
brief overview of the applied test case to verify the 
methodology is provided. The results of the design 
iterations are described and commented in section IV. 
Finally, in section V, conclusions and recommendations 
are provided.  

II. DESIGN SPACE EXPLORATION USING 
ORTHOGONAL ARRAYS 

It is commonly accepted that one of the main 
objectives of the design process of systems of any 
complexity is to predict the behavior of the system in its 
operative environment, and to set all the physical and 
functional characteristics of the system such that it 
performs as required. The cheapest and maybe fastest 
way to predict the behavior of a system is to create a (n 
analytical) model and to extract information about its 
behavior and its performance by executing multiple 
experiments with different levels of the design 
variables, i.e., the input to the system. It is typically 
said, especially since the last few years, that the 
objective is to find the levels of the design variables that 
“optimize” the system, under certain boundary 
conditions and constraints. The “optimization” of a 
mathematical model is usually obtained using so-called 
gradient-based methods. These methods use first-
derivatives and, sometimes, second derivatives of the 
mathematical equations that describe the physical 
phenomenon of interest. These derivatives are used to 
determine the search direction in the design space that 
should lead to the optimum. The gradient-based 
methods perform very well for problems in which the 
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mathematical functions do not present discontinuities or 
plateaus, i.e., flat regions in the design space. For this 
kind of problems, in recent years many so-called 
stochastic methods, such as those based on genetic 
algorithms and particle swarms[12],[13], have been 
developed and applied, even to problems of a certain 
complexity[4]-[8]. One of the drawbacks of such 
methodologies, if observed from a company 
perspective, is that the analyses are not fully traceable, 
due to some level of randomness that all those methods 
exploit. Further, the computation of sensitivities is still 
much dependent on the type of equations describing the 
system. Mistree et al. successfully applied a parametric 
design technique based on orthogonal arrays to study 
the trajectory of a re-entry vehicle through the Earth 
atmosphere[9]-[11]. The objective of the work was to 
substitute the Monte Carlo technique with a more 
efficient methodology to reduce the number of 
simulations for the design of space vehicle trajectories. 
Their work is based on the experimental design 
approach developed by Dr. Taguchi[16] in the 1960s. 
Using Taguchi’s orthogonal arrays, Mistree achieved a 
very high level of efficiency in the engineering effort 
consumed in conducting experiments to obtain the 
information needed to guide decisions related to a 
particular product.  

II.1 Factorial Design and Orthogonal Arrays 
Orthogonal arrays are special matrices used for 

factorial design and result in so-called fractional 
factorial designs, as only a subset of all possible 
combinations is addressed. Factorial design is a very 
efficient and systematic approach used to study the 
effect of several factors on certain responses of interest. 
The term “factors” is used to address the design 
variables, while the term “responses” indicates the 
output variables (the objectives) that describe the 
performance of the system. Performing a factorial 
design means that the mathematical model of the system 
of interest, considered as a black box, is experimented 
with all (or a subset in case of a fractional factorial 
design) combinations of factors levels. The levels of a 
factor are the values that the factor can assume, e.g., a 
minimum, nominal and maximum value. Studying the 
effect of a factor on the response means studying the 
variation in the response caused by a change in the level 
of the factor itself. This variation is computed, for 
instance, by averaging out the responses obtained from 
the simulations with the factor of interest at a certain 
level, irrespectively of the levels of the other factors.  

. This is also called the main effect of the factor. The 
factorial design allows also the study of interactions 
between factors. The interaction effect between two or 
more factors can be computed by applying two or more 
times the same procedure used for computing the main 
effect. For instance, to compute the interaction between 

two factors one can select the levels of the factors of 
interest and averaging out the responses obtained from 
the simulations irrespectively of the levels of the other 
factors. To obtain a full picture of the interaction of the 
parameters, this procedure shall be repeated for all the 
available combinations of factor levels.  

There are many alternative types of factorial 
designs. They differ from each other based on the 
number of design evaluations needed to provide 
information relative to factor effects and the effects of 
their interactions. The number and types of factors 
effects and interactions that is possible to distinguish, 
given a certain factorial design, is closely related to the 
number of design evaluations. As a general rule 
(necessary, but not sufficient), the number of design 
points must be at least equal to the number of factors 
and interactions effects that one is willing to estimate. If 
the number of design points is too low, not all main and 
interaction effects can be distinguished, causing the so-
called confounding effect, which arises when we want 
to study an interaction effect with the same combination 
of variable levels of another interaction or a main effect. 
The confounding effect, typical when using orthogonal 
arrays, will be explained in more detail later in this 
section.  

Full factorial designs require the largest number of 
design points since all combinations of variables levels 
are tested. Consider for instance having three design 
variables each one at two levels. According to a full 
factorial design the number of design points needed is 
23 (= 8), as shown in Fig. 1.  

 

 
Fig. 1: Full factorial design: three factors at two levels. 

The other class of factorial designs is called 
fractional factorial. In this case the required data points 
are only a fraction of those required by a full factorial 
design. There are three main subclasses of fractional 
factorial designs. The class called Resolution III is the 
least demanding in terms of required design points. For 
a Resolution III class no main effects are confounded 
with any other main effect, but main effects are 
confounded with two-factors interactions (and higher 
order) that may also be confounded with each other. In 
Fig. 2, a Resolution III design with 3 factors at 2 levels 
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is shown. As can be seen, already with only 3 factors 
the number of design points required is half if compared 
to the relative full factorial design presented in Fig. 1.  

 
Fig. 2: Fractional factorial design (Orthogonal Design): 

three factors at two levels. 

Orthogonal Arrays are Resolution III designs 
expressed in a tabular form. In Table 1, we present an 
L8 orthogonal array, i.e., 8 experiments with a 
maximum of 7 factors at 2 levels. Actually, it is not 
necessary to assign a factor to all the columns of the 
orthogonal array. Columns can be left empty to be able 
to study interaction effects of interest, avoiding 
confounding. 

The level -1 represents the minimum level of the 
design variable of interest, 1 represents the maximum. 
With a full factorial design the number of required 
experiments would have been 27, 128.  

To represent the orthogonal array of Table 1 in a 
graphical form, as shown in Fig. 2, a hypercube of 7 
dimensions (because 7 factors are taken into account) 
would be required. 

Besides significantly reducing the computational 
effort in exploring the design space, orthogonal arrays 
enable an efficient determination of the effects of the 
design variables (or control parameters) on the outputs, 
(or performance parameters). The term “orthogonality” 
has to be interpreted in the combinatorial sense. To 

explain this concept Phadke introduces the so-called 
balancing property[15], which means that for any pair of 
columns, all combinations of factor levels are present an 
equal number of times. For instance, in Table 1, in the 
first two columns all the factor combinations (i.e., -1 -1, 
-1 1, 1 -1, and 1 1) are present two times. The same 
happens for any other pair of columns. This property 
assures that once all the simulations are completed, for 
any couple of factors all the factor-level combinations 
are tested. 

The utilization of orthogonal arrays for experiment 
planning is straightforward. Referring to the OA 
presented in Table 1, in each column we read the level 
that has to be assigned to the design variables for each 
experiment. In each row, we read the variable sets for 
every single experiment to be performed. Therefore, the 
number of rows represents the total number of 
experiments. The orthogonal property of the arrays 
developed by Dr. Taguchi, causes the already 
mentioned confounding effect. Suppose we want to 
study the effect of the interaction of two of the 
parameters assigned to the columns of the OA on a 
performance parameter that we call y. For each 
experiment we obtain a certain value of the 
performance, so that at the end of all the experiments 
we will obtain a performance vector [ ]1 2, ,..., ny y y y= , 
with n equal to the number of experiments. The 
interaction of factors A and B, for instance, can be 
studied with the factor analysis technique, ref. [15]: 

 
( ) ( )
( ) ( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
          

A B A B A B A B

A B A B A B A B

AxB y y y y

y y y y
− − − −

− − − −

= − − − =

− − −
 [1] 

 
Looking at Table 1, we see that when factor C is at 

level -1 the combinations of A and B are A-1B1 and A1B-

1, while when the factor C is at level 1 the combinations 
of A and B are A-1B-1 and A1B1. Thus, it is not possible 
to distinguish the effect of factor C from the interactions 
of factor A and factor B; the effect of factor C is 
confounded with the effect of the interaction AxB. The 
2-factor confounding effect can be avoided by not 
assigning any parameter to the column for which we 
want to study the interaction, with the drawback of a 
reduced number of main factor effects that is possible to 
study.  

The subclass of fractional factorial designs called 
Resolution IV requires more design points than a 
Resolution III with the benefit of having no main effects 
confounded with any other main effect or with any two-
factor interaction, but two-factor interactions can be 
confounded with each other and with higher-order 
interactions. Last, the Resolution V subclass allows for 
experimentation with no main effect or two-factor 
interaction confounded with any other main effect or 

Table 1: L8 (27) orthogonal array, adapted from ref. 
[15] 

Experiment 
Number 

Column 
1 2 3 4 5 6 7

1 -1 -1 -1 -1 -1 -1 -1

2 -1 -1 -1 1 1 1 1

3 -1 1 1 -1 -1 1 1

4 -1 1 1 1 1 -1 -1

5 1 -1 1 -1 1 -1 1

6 1 -1 1 1 -1 1 -1

7 1 1 -1 -1 1 1 -1

8 1 1 -1 1 -1 -1 1
 A B C D E F G
 Factor Assignment 



61st International Astronautical Congress, Prague, CZ. Copyright ©2010 by the International Astronautical Federation. All rights reserved. 

IAC-10.B5.2.4                  Page 5 of 14 

two-factor interaction, although two-factor interactions 
can be confounded with higher-order interactions, e.g., 
three-factor interactions (AxBxC). 

Using a full factorial design or one of the fractional 
factorial design subclasses (e.g., orthogonal arrays), 
depends on many aspects. Low-resolution fractional 
factorial designs allow for a faster experimentation 
(lower computational effort), but less information on 
main effects and interactions can be collected. High 
resolution designs, or full factorial in the extreme case, 
are advised when no a priori information is available on 
the model of interest, so that fewer assumptions can be 
made regarding which interactions are negligible to 
obtain a unique interpretation of output data.  

Orthogonal arrays have been used in the design 
session presented in this paper according to an 
incremental approach. Starting from the analysis of 
factors main effects and few two-factor interactions, 
more and more design points have been added, if 
confounding was suspected to be present, increasing the 
basic design to a Resolution IV, Resolution V or even 
full factorial design, if necessary. The possibility of 
pursuing an incremental approach is one of the 
characteristics of orthogonal arrays that motivated us to 
use them for the design of complex, coupled systems. 
Initially, few variables at two levels can be used for 
screening. When more information about the design 
region of interest and the behaviour of the system 
became available after the initial screening, a more 
specific analysis could be performed focusing the 
attention on the relevant parameters and interactions 
only. This approach provides the design team with the 
possibility to gain more insight in the system of interest 
and is much less computationally intense, if compared 
to Monte Carlo analyses[9] or evolutionary 
algorithms[12],[13].  

II.2 Higher order factorial designs 
Two-level factorial designs allows for the 

determination of linear factor main effects and linear 
interaction effects. In other words, the models that can 
be identified experimenting with factors at only two 
levels are of the following form: 

1

0
1 1 1

k k k

i i ij i j
i i j i

Y x x xβ β β
−

= = = +

= + +∑ ∑ ∑  [2] 

where Y  is the response of interest, β0, βi and βij are the 
coefficients for the factors ix .  

There are many cases in which the curvature of the 
design space is very important, especially when optima 
are inside the design space of interest, not on the border. 
When curvature is present the two-level factorial design 
does not provide reliable results since only limited 
curvature is detectable by the two-factor product terms. 
This is the main motivation that leads us to take 

techniques into account that are suitable for analyzing 
and identifying models with curvature. Amongst the 
higher-order models, the second-order models of the 
following form are the most widely used, typically for 
most engineering problems: 

1
2

0
1 1 1 1

k k k k

i i ii i ij i j
i i i j i

Y x x x xβ β β β
−

= = = = +

= + + +∑ ∑ ∑ ∑  [3] 

The parameter β0 is the mean response of the 
system, the parameters βi are the coefficients for the 
linear main effects, the parameters βii are the 
coefficients for the quadratic effects, and the parameters 
βij represent the coefficients for the linear interactions. 

A second-order model like the one described by [3] 
will not represent a reasonable approximation on the 
whole design space in general, but for relatively small 
regions the results are usually very satisfactory. There 
are many designs, which allow fitting a second-order 
regression model: Central Composite Design (CCD), 
three-level factorial design, Box-Behnken design, D-
optimal design, and so on. The CCD is the most widely 
used class of factorial designs used for identifying 
second order models, and we choose the CCD also 
because of its heritage from the two-level factorial 
design[27]. This particularly efficient design is formed by 
a two-level factorial design (full or fractional) for linear 
effects, plus axial points and a central point for 
curvature effects. The design reduction using Resolution 
III, IV, or V designs and the incremental approach for 
determining priorities and factor importance fully apply 
to the CCD due to the heritage from the two-level 
design mentioned before. Indeed, in Fig. 3, we show a 
full factorial CCD (left) and a CCD obtained using an 
Orthogonal Array (right). 

 

 
Fig. 3: Central Composite Design (CCD). Full factorial 

(left), Orthogonal Array (right). 

II.3 Analysis of variance 
As already mentioned in the introduction of this 

paper, the main objective of the methodology is to 
support the design team providing information on the 
behaviour of the system and its components, i.e., main 
factor influence, interaction effects, robustness and 
design sensitivities. To obtain all the required 
information from the results of the simulations, 
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executed according to the variable settings planned with 
the orthogonal arrays and the CCD, the ANalysis Of 
VAriance, ANOVA, and regression analysis are tools 
we use synergistically for studying the system response.  

As the name suggests, ANOVA is a technique used 
to identify the relative effect of different factors on the 
overall variability of the performance detected during 
the simulations. To do so, the overall variance is 
partitioned in its components determined by the effect 
of the factors and the included interactions taken into 
account. The larger the contribution to the overall 
variance the larger is the effect on the analysed 
performance. Suppose we obtain a performance vector 

[ ]1 2, ,...,=y ny y y , with n equal to the number of 
experiments, as a result from the simulations with the 
variable settings planned with the CCD. The total 
variation of the performance y, also called the total sum 
of squares, can be computed as follows: 

( )2

1

n

T i
i

SS y y
=

= −∑  [4] 

with 
n

i
i 1

y y
=

= ∑  being the mean response. 

The total sum of squares is computed as a function 
of the observations of the real model, i.e., the original 
mathematical model. The best we can do is to identify 
another model, a regression model, out of the 
observations of the real model, like the model presented 
in equation [3]. We would like to obtain the total sum of 
squares of the regression model as closely as possible to 
the total sum of squares of the real model, to be as 
confident as possible that the global variability of the 
performance detected on the real model is also 
explained in the regression model. The total sum of 
squares of the regression model can be expressed as 
follows:  

( )2

1

ˆ
n

R i
i

SS y y
=

= −∑  [5] 

 
where the vector ŷ  contains the responses computed 
with the regression model. The difference between the 
two sums of squares is called error sum of squares: 

( )2 2

1 1

ˆ
n n

E i i
i i

SS y y e
= =

= − =∑ ∑  [6] 

Eq. [6] indicates how much of the global variability is 
not explained by the regression model. It already 
provides information on factors or interactions that are 
missing from the regression model and that have a 
certain contribution in determining the global variability 
of the real model. For quadratic models and limited 
regions of the design space (limited intervals of the 

design variables) the error sum of squares is usually 
zero or very small.  

The total variability of the data is not sufficient for a 
deep understanding of the importance of each single 
factor of the regression model. The total sum of squares 
shall be partitioned in its components to gain an insight 
into the influence of each term of the regression model 
on the total variability. 

In literature three main methodologies for 
partitioning the total of sum of squares can be 
identified: the sequential sum of squares decomposition, 
the classical sum of squares decomposition and the 
partial sum of squares decomposition[28]. The following 
terminology is used in the sum of squares 
decomposition: ( )SS A  is the sum of squares associated 

with factor A; ( )SS A B  is the sum of squares of the 
factor A given that factor B is already in the model, i.e., 
the variability added by factor A to the total variability 
computed with only factor B in the model.  

The classical sum of squares decomposition gives an 
indication of the change in variability of the data due to 
adding an extra term to the model, given that all the 
other terms have been added except for the terms that 
contain the effect under test. For instance, the sum of 
squares of factor C, with A and B already in the model, 
with all the interactions (two and three variables) can be 
computed as follows: 

( ) ( )
( ) ( )

, ,

             , , , , ,

SS C SS C A B AB

SS A B C AB SS A B AB

= =

−
 [7] 

It has to be noted that the interactions involving 
factor C (i.e., AC, BC, ABC) have been left out the 
analysis, to avoid confounding the partial sum of 
squares due to factor C with the partial sum of squares 
due to the interactions involving C. The Classical sum 
of squares is the favourite method of computing the sum 
of squares, since it gives a clear indication of the “snow-
ball” effect of excluding or including a term into the 
model. This is why we prefer this decomposition over 
the others mentioned before.  

The sum of squares of each term of the model will 
allow the design team to understand what the main 
factors that produce a significant variation of the 
performance are, in the design region of interest. As we 
will see in the example in section 0, the partial sums of 
squares are also easier to show irrespectively of the 
dimensionality of the design space. Notably, if there are 
more than 2 design variables multi-dimensional 
representations of the design space will prove difficult 
to show, whereas bar plots clearly indicating factor 
importance are much easier to manage with high 
dimensionality design spaces.  
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II.4 Regression analysis 
In the previous subsection we mentioned several 

times the process of identifying a model by using the 
observations at the design points planned with the CCD, 
see equation [3]. The coefficients βi and βij are 
somehow linked to the partial sums of squares of the 
design factors (β0 represents the mean response). Also 
these coefficients give an idea on the sensitivity of the 
performance to a change in the design parameters. 
Indeed, they represent the partial derivatives of the 
design factors with respect to the performance of 
interest. The difference is that the partial sum of squares 
also takes into account the ranges of the design 
parameters, but neglects the sign of the effect (since it is 
computed using squared values).  

The computation of the coefficients β0, βi and βij 
allows for the computation of response surfaces and 
contour plots. For the visualization of the results and 
presentation to the design team this is a fundamental 
step in the methodology.  

The regression coefficients are computed using a 
linear least square interpolation. Expressing the model 
of equation [3] in a matrix notation as shown in 
equation [8], we obtain a least square estimation β̂  of 
the regression coefficients β  as shown in equation [9].  
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( ) 1ˆ −=β X'X X'y  [9] 

 
The matrix X’X is often singular and is easiest inverted 
by, for instance, Singular Value Decomposition or QR 
decomposition. 

Response surfaces are very powerful in presenting 
the shape of the design space to the design team, for fast 
modification of the design-variable settings and 
neighbourhood analysis of the design-point conditions. 
Further, contour plots allow for a fast and effective 
boundaries and constraints analysis, even with more 
objectives, i.e., more contour plots superimposed.  

II.5 Summary: the mixed hypercube 
Given the mathematical model of the complex 

system to design, the objective is to select the best 
combination of the levels of the design variables to 
optimize the performance(s) while satisfying boundaries 
and constraints. Typically, continuous and discrete, or 
architectural, variables are of interest for the analysis. 
Using Orthogonal Arrays coupled with a fractional 
factorial CCD to plan the simulations, we collect the 

performance(s) from the model. ANOVA is used to 
obtain information on factor and interaction importance, 
thus the sensitivity of the performance(s) to the 
variation of the design variables’ levels and the 
robustness of the design space of interest. Regression 
analysis is used to efficiently show the performance(s) 
behaviour as a function of the variation of the design 
parameters, thus to show the design region to the design 
team with contour plots, boundaries and constraints 
analysis.  

In the title of this subsection we introduce the 
“mixed hypercube” as the name we give to the design 
methodology presented in this paper. Hypercube, 
because when the design factors are more than three, the 
geometrical representation of all the design dimensions 
(with each one being a design variable) is a hyperspace. 
When we put boundaries to these dimensions we obtain 
a hypercube. Mixed is mentioned because we can use 
both continuous and discrete (nominal or architectural) 
design variables. The need of separating the design 
variables in these two classes arises from the fact that 
the computation of response surfaces is meaningless 
when discrete variables are involved (there are no 
intermediate levels that the variables can assume). Thus, 
for each design combination of architectural variables, a 
CCD analysis is performed on the continuous variables 
providing information on multiple objectives, trends and 
shape of the design region, best settings of the design 
variables, robustness and sensitivities, as shown in Fig. 
4.  

 
Fig. 4: Hypercube design with multiple objectives and mixed 

continuous-discrete variables 

The lower left hypercube of Fig. 4 represents the 
design of experiments with architectural variables. For 
each point of that hypercube another hypercube is build 
with the CCD experiment design with the continuous 
variables only.  
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III. DESIGN CASE 
In this section we provide the information needed to 

capture the rationale behind the results provided in the 
next section. A hypothetical human mission to the 
Moon to support a human outpost for a minimum of 
fifteen years has been taken into account. Mathematical 
models for a re-entry capsule, a service module, a lander 
system, an ascent vehicle and an Earth-Moon transfer 
vehicle have been developed and implemented. In  

Table 2 the most relevant design variables that affect 
the design of the mission are listed and the rationale 
behind the various possible architectures is described. 
More details on the mathematical models are provided 
in ref. [1]. The objective of the design session is to 
minimize the number of launches to support the lunar 
outpost for the required time while minimizing the 
dimensions and the mass of the capsule and the service 
module. Due to the fact that cost models for such 
systems are not available in literature, minimizing the 
number of launches and the mass of the capsule and the 
service module is reasonably similar to minimizing the 
cost of the mission as a whole, at least as a first 
approximation. In the future, a more detailed analysis 

will be performed to include relationships between 
mass, technology level and cost in the design process. In 
Table 3, the requirements and the design variables’ 
levels taken into account as a baseline design are 
summarized. These settings are similar to those 
considered in the ESAS document[30] and discussed in 
ref. [1]. The baseline design represents the first tentative 
design-variable set used to solve the problem of 
minimizing the objectives while not violating the 
constraint. The baseline design is the central point of the 
hypercube analysis. The baseline design leads to the 
following performances. The mass of the capsule and 
the service module is equal to 24 tons and the number of 
(human) launches to support the lunar base for 15 years 
is 113.  

The values of the design variables and requirements 
have been assigned as a first guess in order to begin 
with the design process. In Table 4, the ranges of the 
design variables are described and the nomenclature 
used in the graphs shown in the next section is 
indicated. 

 

 

Table 2: System of systems model summary 

 Rationale 
Mission Requirements  

Lunar outpost 
operative life 

The foreseen operative life of the lunar base to be supported by the astronauts. As a baseline we consider 15 years. 

Maximum time of the 
crew in the outpost 

The maximum time that each astronaut can spend in the outpost in nominal conditions. As a baseline we consider 
two months.  

# Crewmembers in 
the outpost 

The minimum number of astronauts present in the lunar base at the same time. The baseline is six astronauts.  

# Capsule 
crewmembers 

The number of astronauts that the capsule is able to host. This number affects the dimensions and the mass of the 
capsule, thus the dimensions and mass of the service module and all the other elements of the system of systems 
architecture. 

Capsule  
Crewmembers 
comfort level 

The comfort level is related to the available volume per astronaut within the pressurized compartment of the 
capsule. It ranges between a minimum of 1(tolerable limit) and a maximum of 4 (optimal), ref. [31]  

Mission duration 
The time foreseen from the astronauts’ departure from Earth to the capsule re-entry on Earth. It affects the amount 
of provisions to support the astronauts, thus mass and unpressurized volume. In cascade, mass and dimensions of 
the service module and the other elements are affected. The baseline is 13.5 days. 

Sidewall angle  
The angle of the capsule’s conic structure. It affects the volume (pressurized and unpressurized) of the capsule and 
it represents an interface variable with the re-entry trajectory module (not implemented for the results presented in 
this paper) for heat fluxes, decelerations and foot print computation. The baseline is 32.5 deg.  

Isp 
The specific impulse of the propellant for attitude control and de-orbiting manoeuvres. This propellant 
characteristic affects the volume, the mass and the complexity of the propulsion system, thus volume and mass of 
the whole capsule.  

Other elements  

Isp 

The design of the other elements of the system of systems architecture presented in this paper is tightly coupled 
with the capsule mass and volume characteristics. Besides other system-specific design parameters, already 
described in ref. [1], the specific impulse of the propellant of each element plays a fundamental role in the 
determination of masses and volumes, especially for those elements whose main function is transportation (energy 
change) like the service module and the transfer module.  

Launcher Class  

Mass in LEO The class of the launcher limits the on-orbit capabilities-per-launch. For this design session, we consider four 
launcher classes from 25 tons (Ariane5 class) to 150 tons (future hypothesized heavy launcher class).  
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Table 3: Baseline design. Adapted from ref. [1]. 

Requirements  
Lunar outpost operative life 15 [years] 

Maximum time of the crew in the 
outpost 0.2 [years] 

# Crewmembers in the outpost 6 
Design Variables  

Capsule Crewmembers comfort level 2 
Capsule Mission duration 13.5 [days] 
# Capsule crewmembers 4 
Capsule Sidewall angle 32.5 [deg] 

Capsule Isp 274 [s] 
Service Module Isp 364 [s] 
Lander System Isp 435 [s] 
Ascent Module Isp 364 [s] 

Transfer Vehicle Isp 451 [s] 
Launcher Class 25[tons] 

Table 4: Design variables taken into account in the 
design process. Type A: Architectural variable. Type C: 
Continuous variable. 

Design 
Variables Factor Type 

Levels 
Level 

-1 
Level 

0 
Level 

1 
Launcher 

Class A A 25 
[tons] 

50 
[tons] 

75 
[tons] 

Outpost 
Operative 

Life 
B A 10 

[years] 
15 

[years] 
20 

[years] 

# Capsule 
crewmembers C A 3 4 5 

Capsule 
Crewmembers 
comfort level 

D A 1 2 3 

Capsule Isp E C 200 [s] 264 [s] 375 [s] 
Capsule 

Sidewall 
angle 

F C 28 
[deg] 

32.5 
[deg] 

37 
[deg] 

Service 
Module Isp G C 200 [s] 350 [s] 500 [s] 

Ascent 
Module 

Crewmembers 
comfort level 

H A 1 2 3 

IV. RESULTS AND DISCUSSIONS 
The experiments designed with the mixed hypercube 

approach, considering the architectural and continuous 
variables indicated in Table 4 have been analysed with 
the ANOVA. The total number of simulations that have 
been performed is 145. This allowed a reduction of the 
computational effort if compared to a full factorial 
design. Indeed, a full factorial design with 8 design 
variables would have required 6561 (=38) simulations.  

The results concerning the factor contribution to the 
performances and constraint violation, i.e., sensitivity of 
performances and constraints to the design factors and 
their interactions, are shown in Fig. 5, Fig. 6, and Fig. 7. 

 
Fig. 5: Factor Contribution to the Number of (human) 

launches 

 
Fig. 6: Factor contribution to the mass of Capsule plus 

Service module.  

 
Fig. 7: Factor contribution to the Constraint Violation 

In the previous figures only the relevant factors and 
interactions are shown, when the same letter is repeated 
two times, it indicates that we refer to a quadratic effect 
of that factor. As we can see in Fig. 5, the number of 
(human) launches is most affected by the lunar base 
operative life, that is a requirement, and by the 
crewmembers that the capsule can host. Also their 
interaction contributes to the determination of the 



61st International Astronautical Congress, Prague, CZ. Copyright ©2010 by the International Astronautical Federation. All rights reserved. 

IAC-10.B5.2.4                  Page 10 of 14 

performance, but with a reduced importance. This 
means that the number of launches needed to support 
the lunar base is very sensitive to the duration of the 
nominal life of the base itself and quite sensitive to the 
dimensions of the capsule. Also the launcher class, thus 
the maximum payload capability of the launcher, does 
play an important role. Indeed, in Fig. 7 we can read 
that the launcher class affects the constraint violation up 
to 70%. The constraint is violated each time that the 
capsule/service module assembly mass exceeds the 
launcher payload capability. In Fig. 6, we consider the 
capsule/service module assembly mass, and we can 
observe that the design variables directly linked to the 
design of the capsule contribute the most, together with 
the specific impulse of the service module propellant. 
The specific impulse of the capsule does not contribute 
much to the mass since the ΔV to be delivered by the 
capsule itself is much lower than the ΔV to be delivered 
by the service module (in the simulation we used 50 
m s  for the capsule and 1700 m s  for the service 
module[1]). To gain more insight in the behaviour of the 
system of systems, the information gathered with the 
ANOVA is used for the regression analysis to plot the 
response surfaces of the performances and constraints as 
a function of the most relevant parameters. In Fig. 8 and 
Fig. 9, the trends of the number of launches needed to 
support the outpost, as a function of the outpost 
operative life and the maximum number of 
crewmembers that can be hosted in the capsule is 
shown, for different levels of other design variables.  

As already mentioned before, the surfaces involving 
architectural variables do not have physical relevance, 
since only few of the points on the surface are valid. 
However, they are very useful to understand the trends 
of the performances and to provide visual information to 
the design team.  

In Fig. 8, we can read that with the operative life of 
the outpost that increases and the number of 
crewmembers hosted in the capsule that decreases, the 
number of launches increases consequently. This is 
probably an expected result, given the problem of 
interest; maybe less expected is the mild interaction 
between the two parameters identified with the ANOVA 
(see Fig. 5) and corroborated by the trends of Fig. 8. 
Indeed, it can be clearly read that the sensitivity to 
variations of factor B increases as the factor C 
decreases; this is a clear indication of the presence of an 
interaction between the two parameters. The influence 
of the number of crewmembers increases as the outpost 
operative life increases, i.e., when the total number of 
astronauts to be landed on the Moon increases.  

 
Fig. 8: Number of launches as a function of the outpost 

operative life and number of capsule crewmembers. 
The other parameter levels are as follows A -1, D 1, E 
-1, F 0, G 0, H 0. Gray area is infeasible.  

The grey area represents the infeasible region of the 
design space. In that region the assembly mass, i.e., 
capsule mass plus service module mass, exceeds the 
mass deliverable by the selected launcher. 

The fact that the other design parameters do not 
affect this performance much is also testified by the 
trends described in Fig. 9. The trends in Fig. 9 have 
been obtained as a function of factor B and factor C, 
with the other factors at a level that shall increase the 
dimension of the feasible region, especially because 
factor G is increased. The trend of the performance is 
not significantly different if compared to Fig. 8, and this 
result was already anticipated from the factor 
importance analysis performed with the ANOVA and 
reported in Fig. 5. The most relevant consequence is 
related to the fact that the launcher class is at 50 tons, 
thus causing the shift of the design region into an area 
that is far from the constraint.  

In Fig. 10 and Fig. 11, the trend of the capsule and 
service module assembly mass, expressed in kg, is 
shown as a function of the number of crewmembers 
hosted in the capsule and the Service module propellant 
Isp, with the capsule crewmembers comfort level at 1 
and 3 respectively. 
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Fig. 9: Number of launches as a function of the outpost 

operative life and number of capsule crewmembers. 
The other parameter levels are as follows A 0, D -1, E 
1, F 0, G 1, H 0. 

  

 
Fig. 10: Capsule and service module assembly mass 

[kg], as a function of the service module propellant Isp 
and number of crewmembers hosted in the capsule. 
The other parameter levels are as follows A -1, B -1, 
D -1, E 0, F 0, H 0.  

The results presented in Fig. 6, helped us in the 
identification of the design parameters to which this 
performance is most sensitive to capture most of the 
variability detected during the simulations. Factor G 
clearly dominates the performance if compared to the 
influence of factor C. In particular we read that with the 
specific impulse that increases and the number of 
crewmembers hosted in the capsule that decreases, the 
assembly mass decreases. 

 
Fig. 11: Capsule and service module assembly mass 

[kg], as a function of the service module propellant Isp 
and number of crewmembers hosted in the capsule. 
The other parameter levels are as follows A -1, B -1, 
D 1, E 0, F 0, H 0. 

The difference between Fig. 10 and Fig. 11 is to be 
attributed to the variation of factor D. Indeed, in Fig. 6 
certain relevance in the determination of the assembly 
mass had already been discovered. In particular, with 
the comfort level that increases, the assembly mass 
increases as well, leading closer and closer to the 
constraint. With factor G at lowest level, there is no 
possible way to not violate the constraint by only 
playing with the number of crewmembers hosted by the 
capsule, with the other design parameters set as 
specified. 

The specific impulse of the service module 
propellant is much relevant concerning the 
determination of the constraint violation, but is not the 
only one, as can be observed in Fig. 7. Indeed, in Fig. 
12, the constraint is plotted as a function of launcher 
class and service module propellant Isp. As we can read, 
the only possible approach to obtain the feasibility of 
the mission, not violating the constraint, while taking 
into account a hypothetical Ariane5 launcher class, with 
25 tons of available mass, is to increase the propellant 
Isp. In Fig. 12 we also read that with the launcher mass 
availability that increases the sensitivity of the 
constraint to the propellant Isp decreases consequently, 
thus providing more flexibility concerning this 
particular design choice. Of course, the launcher class is 
almost never an option, it is rather a given reality, but 
this type of analysis showed that using the design 
methodology proposed in this paper, the design team 
has the power of identifying the impact of the 
requirements on the performances, in such a way to 
adjust the free parameters to meet requirements and 
performances. 
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Fig. 12: Constraint as a function of the launcher class 

and service module propellant Isp. The other 
parameter levels are as follows B 0, C 0, D 0, E 0, F 0, 
H 0. 

Further, as showed in the example in which we 
considered the outpost operative life as a design 
variable, see Fig. 8 and Fig. 9, this methodology can be 
used as a tool to bargain on requirements. With 
considerations on affordability, reliability, flexibility, 
and cost in mind (not taken into account in the 
mathematical model, but clear in the design team 
background) requirements can be adjusted in an 
informed way, considering their effect on the system of 
systems as a whole.  

The combinations of design variables to be plotted 
in pairs to study the objectives and constraints are much 
more than those reported in the contour plots shown in 
this section, and they increase when the number of 
design parameters increases. The ANOVA, allowed us 
to reduce the number of plots actually needed to plot all 
the design variables pairs to a few graphs, and still 
retaining most of the variability experienced during the 
simulations.  

V.1 Design session close-up 
To close the design session, we collect all the 

information gained by analysing the ANOVA and the 
response surfaces graphs to select the best combination 
of design-variable levels to determine the baseline for 
successive design iterations, maybe at a deeper level of 
detail.  

Suppose that the launcher class is selected as 
baseline. It seems to be the most reasonable choice, 
especially because we discovered that there can be 
feasible architectures choosing this launcher class. 
Unless programmatic and cost analyses are performed, 
given the information we derived from the mathematical 
models there is no particular motivation of applying for 
a requirement change request, thus we cope with the 

value of 15 years. Concerning the dimensions of the 
capsule it seems advantageous to strive for a larger 
capsule. The effect on the reduction of launches is larger 
than the effect on the increase in mass, and the mass 
constraint can be met anyway. The crewmembers 
comfort level depends on the choice of the service 
module propellant Isp. Choosing an Isp of 500 s will 
bring the design point to be far enough from the 
constraint, thus allowing the comfort level to be high. 
With an intermediate level of Isp, that will cause the 
mass of the propellant to increase (but probably the cost 
to decrease), a high comfort level can still be chosen but 
with the warning of putting the design point close to the 
constraint. On the other hand, the combination of factor 
G at the intermediate level and factor C at the high 
level, with a high capsule comfort level would lead to 
unfeasibility anyway, see Fig. 8. Thus, it seems wiser to 
set the service module propellant Isp at the highest 
level. Concerning the Capsule Isp and sidewall angle, 
we did not experience any major impact on the 
objectives and the constraints. The selection of the 
levels of these parameters would need to be taken 
considering other issues not included in the current 
version of the mathematical models, like cost and re-
entry conditions and requirements, for instance, thus for 
the time being we could cope with the values of the 
baseline. The ascent module crewmembers comfort 
level can be set equal to the baseline value for the same 
reason.  

With these settings of the design variables, the 
design point of the system of systems shows to be 
placed in an interesting position on the objective space, 
with 90 launches and an assembly mass of almost 22 
tons, see Fig. 13.  

In Fig. 13, all the design points computed with the 
mixed hypercube method are shown. As we can see, the 
ANOVA and response surface analyses, with constraint 
and sensitivity analyses allowed us to improve the 
baseline design. Indeed, the selected design point 
dominates the baseline design point, i.e., it is better 
considering all the objectives at the same time. Further, 
there are not design points on the graph that are better 
than the one selected, besides those obtained with a 
relaxed requirement on the lifetime of the lunar outpost.  

In Fig. 14, the non feasible solutions obtained during 
the design session are shown.  

The design points computed with the mixed 
hypercube approach strongly depend on the initial 
design point chosen as baseline. If the baseline point 
would have been far away from the actual one, the 
solution we found would probably not have been 
discovered, especially with reduced dimensions of the 
hypercube. This is the main drawback of working with a 
local design methodology; it provides information in the 
region within the hypercube only, thus not suitable to 
find global optimum solutions. 
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Fig. 13: Objective space, feasible solutions  

(□ Feasible solutions with 10years outpost operative life, ○ 
Feasible solutions,▼ Selected design point, ┼ Initial baseline 

design point) 

 
Fig. 14: Objective space, infeasible solutions  
 

Concluding the design session, we can say that the 
most relevant results of the analysis are two. The first is 
that the launch of a capsule and a service module to 
support a human mission is still possible with currently 
available launcher classes (even though some changes 
will have to be done to be able to host humans). The 
second is that, for successive design phases, the design 
team must be very careful in handling the service 
module Isp, since it is the main driver concerning 
performances and constraint.  

V. CONCLUSIONS AND RECOMMENDATIONS 
In the present paper a design methodology for 

complex systems has been described and applied to 
design a human mission to support a base on the moon.  

The mixed hypercube approach, based on the 
utilization of orthogonal arrays, enabled a reduction of 
the computational effort in sampling the mathematical 
models for successive data analysis and identification. 
The advantages of using orthogonal arrays to plan the 

experiments are that the results coming from the 
experiments are valid over the entire experimental 
region spanned by the control factors. Further, we 
consider the characteristic of the deterministic planning 
of the experiments very important; it translates in 
traceability and repeatability of the results. Continuous 
or discrete variables may be used in the methodology 
without major complication; particularly useful when 
dealing with architectural configurations of a complex 
system. 

The analysis of variance technique allowed us to 
perform a sensitivity analysis and a factor-importance 
analysis over the entire design region within the 
hypercube. The response-surface analysis based on the 
results coming from ANOVA resulted faster and more 
effective since only the most relevant parameters were 
taken into account.  

The visualization of the results in the form of bar 
plots for factor sensitivities, contour plots with 
constraints for the objectives trends as a function of the 
design variables is crucial for a methodology to support 
the design team to make informed decisions. “What-if” 
scenarios can be easily analysed, so that fast decisions 
on heterogeneous systems and architectures can be 
made in a reasonable amount of time with all the needed 
information available. The customer can be actively 
involved in the design process, since requirements can 
be treated as design variables with all the advantages 
mentioned before.  

 The mixed hypercube approach allowed us to 
determine a design point that is better than the baseline 
but it is maybe not the optimal one, also because not all 
the design variables have been taken into account for 
this particular example. However, the results provide 
indications on the region of the design space in which to 
invest most of the effort for the search of the optimum 
solution. 

The methodology is currently being coupled with 
global optimization techniques in such a way to obtain 
global optima on top of which local refinement, factor 
importance and response surfaces analysis can be 
performed as described in the paper.  
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