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This work presents the buckling analysis of laminated composite thin walled structures by the 1D finite
element based unified higher-order models obtained within the framework of the Carrera Unified Formu-
lation (CUF). In the present study, the refined beam theories are obtained on the basis of Taylor-type
expansions. The finite element analysis has been chosen to easily handle arbitrary geometries as well
as boundary conditions. Buckling behavior of laminated composite beam and flat panels are analyzed
to illustrate the efficacy of the present formulation and various types of buckling modes are observed
depending on the geometrical and material parameters. It is observed that the lower order models are
unable to deal with torsion.
 

 
 
 

 

 
 

1. Introduction

Composite laminated structures are increasingly being used in
the design of load-carrying members for the aerospace, civil and 
modern engineering applications. These composites are often very 
susceptible to buckle in various modes. Moreover, the classical the-
ories have been shown to underpredict the deflections and to over-
predict the buckling loads [1,2] of these structures. Since much 
emphasis is given in achieving an optimized ratio of the structure’s 
weight to strength ratio in modern structures, the accurate predic-
tion of their stability limit state is of fundamental importance in the 
design of thin-walled laminated composite structures. Further, for 
the case of flat panels, the torsional modes usually occur very close 
to the critical buckling loads so, use to refined higher order theory 
which accounts for out of plane displacements is also important.

The first available work in open literature on flexural torsional
buckling seems to due to Michell [3] and Prandtl [4] on solid rect-
angular beams. Significant work on homogeneous beams, based on
thin tube theory assumptions, has been carried out by Timoshenko
and Gere [5], Hodges and Peters [6], Reissner [7], Hodges [8]. I t i s
apt to make a mention here that [7] was the first one who incorpo-
rated the transverse shear in the analysis. Studies pertaining to the
flexural torsional buckling of composite laminated structures, tak-
ing in to account of the shear deformation effect have been carried
out in the last two decades. Some of the recent studies are [9–12]. A
recent study was also carried out by Sapountzakis and Dourako-
poulos [13] using the boundary element method (BEM) in which
. Ibrahim), erasmo.carrera@ 
olo).
the assumption of thin walled theory has been avoided. However, it 
can be noted that these studies are limited to Timoshenko beams 
with uniform and constant cross sections. To the best of the 
author’s knowledge, publications on the solution to the flexural–
torsional buckling analysis of generalized beams of arbitrarily 
shaped composite cross-section do not exist in open literature. In 
this investigation, the flexural torsional buckling has been carried 
out using an efficient hierarchical approach with variable kine-
matic 2D models successfully developed by Carrera [14,16] and 
Demasi and Carrera [15]. Carrera Unified Formulation (CUF) per-
mits a systematic assessment of a large number of plate models, 
whose accuracy has been demonstrated to range from classic 2D 
models to quasi-3D descriptions for both the dynamic, stability and 
static stress analyses [17–21]. It may be noted that CUF is a 
hierarchical formulation which considers the order of the model as 
a free-parameter of the analysis, in other words, refined models are 
obtained with no need for ad hoc formulations. However, the 2D 
models used for composite structures are complex and compu-
tational expensive and thereby, a need for a much simpler model 
was brought out.

Because of their simplicity and computational efficiency over 
the two dimensional theories, the 1D higher order beam theories 
are also being used to analyze the structural behavior of slender 
bodies. Studies using the 1D finite element based hierarchical beam 
theory which incorporates the different expansion orders within 
the framework of Carrera Unified Formulation (CUF) have been 
carried out recently. This unified theory was first proposed by 
Carrera and Giunta [22]. Displacement-based theories that ac-
count for non-classical effects, such as transverse shear, in- and 
out-of-plane warping of the cross-section, can be formulated with-
out the need of any assumption for warping functions. Classical 
models, such as Euler-Bernoulli and Timoshenko beam theories
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can be retrieved as particular cases. The authors found that the re-
sults of one-dimensional CUF models match very well with that 
obtained using the three-dimensional models. Carrera et al. [23] 
studied the systematic implementation of the finite elements in the 
CUF and found out that the finite element based CUF models were 
able to estimate accurate displacement/strain/stress distribu-tions 
over the cross-section as well as over particular geometrical 
features such as corners and voids. Carrera and Petrolo [24] inves-
tigated the influence of higher order terms in the refined beam the-
ories for static analyses and recommended the use of full CUF for 
practical purposes and for nonclassical geometries and loading 
conditions. Carrera et al. [25] investigated the free vibration anal-
ysis of beams with arbitrary geometries using the CUF. A brief re-
view about developments in finite element formulations for 
vibration analysis of thin and thick laminated beams was also pro-
vided. The authors found out that the hierarchical beam models 
based on CUF were capable of detecting 3-D effects on the vibra-
tion modes as well as predicting shell-type vibration modes in case 
of thin walled beam sections.

This work presents the buckling analysis of thin walled struc-
tures by the 1D finite element higher-order models obtained with-
in the framework of the CUF. In the present study, the refined beam 
theories are obtained on the basis of Taylor-type expansions. The 
finite element analysis has been chosen to easily handle arbitrary 
geometries as well as boundary conditions. Several beams are ana-
lyzed to illustrate the efficacy of the present formulation. In partic-
ular, buckling behavior of laminated composite beam and 
laminated flat panels are investigated and various types of buck-
ling modes are observed.

2. Refined beam models and related FE formulations

2.1. Definitions

The adopted coordinate frame is presented in Fig. 1. The beam 
boundaries over y are 0 6 y 6 L. The displacement vector is:

uðx; y; zÞ ¼  ux uy uzf g T ð1Þ

The superscript ‘‘T’’ represents the transposition operator. Stress, r, 
and strain, � , components are grouped as follows:

rp ¼ rzz rxx rzxf g T 
; �p ¼ �zz �xx 

�zxf g T rn ¼ rzy rxy 
ð2Þ
ryyf g T 
; �n ¼ �zy �xy 

�yyf g T

x

y

z

Ω

Fig. 1. Coordinate frame of the beam model.
The subscript ‘‘n’’ stands for terms laying on the cross-section, while 
‘‘p’’ stands for terms laying on planes which are orthogonal to X. 
Linear strain–displacement relations are used:

�p ¼ Dpu
�n ¼ Dnu ¼ ð DnX þ DnyÞu

ð3Þ

with:
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The Hooke law is exploited:

r ¼ Ce�
According to Eq. (2), the previous equation becomes:

rp ¼ Cepp�p þ Cepn�n

rn ¼ Cenp�p þ Cenn�n
ð6Þ

The material matrices Cepp; Cenn; Cepn and Cenp are:

Cepp ¼
Ce11 Ce12 Ce16

Ce12 Ce22 Ce26

Ce16 Ce26 Ce66

2
664

3
775; Cenn ¼

Ce55 Ce45 0

Ce45 Ce44 0

0 0 Ce33

2
664

3
775;

Cepn ¼ CeT
np ¼

0 0 Ce13

0 0 Ce23

0 0 Ce36

2
664

3
775 ð7Þ

For the sake of brevity, the dependence of coefficients ½Ce�ij versus 
Young’s modulus (E) and Poisson’s ratio (m) is not reported here. It 
can be found in standard texts [26].

In the framework of the CUF, the displacement field is assumed 
as an expansion in terms of generic functions, Fs:

u ¼ Fsus; s ¼ 1; 2; . . . ; M ð8Þ
where Fs are functions of coordinates x and z on the cross-section. us 
is the displacement vector and M stands for the number of terms of 
the expansion. According to the Einstein notation, the repeated 
subscript s indicates summation. In the next subsections, advanced 
theories based on Taylor series expansion for cross sectional dis-
placement coupled with finite elements representing the transla-
tional displacement field and the theory based on Lagrange 
polynomials are presented.

2.2. Taylor 1D CUF

Using the Maclaurin expansion that uses as basis the 2D poly-
nomials xi zj, where i and j are positive integers. Considering the 
expansion up to the quadratic terms, Eq. (8) can be written as:
L
a

Table 1 � � 2 
First three dimensionless bending buckling loads (P ¼ Po 

12
2 , where Po is 

the actual
p

buckling load) for different refined beam theories using 10 B4 elements for an 
isotropic beam (L/a = 20).

Critical load (P) P1 P2 P3

Ref. [32] 0.9919 3.873 8.387
EBBT 0.995 3.956 8.813
TBT 0.9900 3.875 8.422
N = 1 0.9925 3.884 8.437
N = 2 0.9927 3.885 8.444
N = 3 0.9918 3.873 8.387



Table 2
First buckling load for different refined beam theories using 10 B4 elements for the
eight layered symmetric cross ply (0�/90�/0�/90�/90�/0 �/90�/0�) laminated composite
beam.

Critical load (P,
�105N)

EBBT TBT N = 1 N = 2 N = 3 N = 4 Ref.
[2]

P1 2.57 1.84 1.59 1.58 1.45 1.45 1.52

Table 3
First five buckling loads for different refined beam theories using 10 B4 elements for
clamped clamped laminated composite three (0�/90�/0�) layered cross ply beam.

Critical load (P, �104N) EBBT TBT N = 1 N = 2 N = 3

P1 1.53 1.45 1.51 1.51 1.51
P2 3.12 2.97 3.08 3.09 3.07
P3 6.10 5.76 5.99 6.0 5.93
P4 9.21 8.67 9.0 9.01 8.85
P5 13.70 12.79 13.28 13.30 12.97

Table 4
First three bending and torsional buckling loads for clamped clamped laminated
composite three (0�/90�/0�) layered cross ply beams using 10 B4 elements and N = 3.

Critical load (P, �104N) Bending Torsional

P1 1.51 13.40
P2 3.07 14.87
P3 5.93 17.63

Fig. 2. First torsional buckling mode for three layered cross ply beam
(P = 13.4 � 104N; N = 3).

3

ux ¼ ux1 þ xux2 þ zux3 þ x2ux4 þ xzux5 þ z2ux6

uy ¼ uy1
þ xuy2

þ zuy3
þ x2uy4

þ xzuy5
þ z2uy6

uz ¼ uz1 þ xuz2 þ zuz3 þ x2uz4 þ xzuz5 þ z2uz6

ð9Þ

It may be noted that the quadratic model is reported as an example
and that any-order models can be obtained. The Timoshenko beam
model (TBT) can be obtained by acting on the Fs expansion as 
shown in [23].

2.3. Finite element implementation and stiffness matrix

Introducing the shape functions, Ni, and the nodal displacement
vector, qsi:

qsi ¼ quxsi
quysi

quzsi

n oT
ð10Þ

The displacement vector becomes:

u ¼ NiFsqsi ð11Þ

For the sake of brevity, the shape functions are not reported here.
They can be found in many books, for instance in [31]. Elements
with four nodes (B4) are herein formulated, that is, cubic approxi-
mations along the y axis are adopted. It has to be highlighted that,
while the order of the beam model is related to the expansion on
the cross-section, the number of nodes per each element is related
to the approximation along the longitudinal axis. These two param-
eters are totally free and not related to each others. An N-order
Fig. 3. Second torsional buckling mode for three layered cross ply beam
(P = 14.87 � 104N; N = 3).



 

 

Fig. 5. First mode of five layered (h�/�h�/0�/�h�/h�) composite panel (a)
(P = 12.93 � 105N; N = 6).

Fig. 4. Third torsional buckling mode for three layered cross ply beam
(P = 17.63 � 104N; N = 3).
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beam model is therefore a theory which exploits an N-order polyno-
mial to describe the kinematics of the cross-section.

The stiffness matrix of the elements and the external loadings,
which are consistent with the model, are obtained via the Principle
of Virtual Displacements:

dLint ¼
Z

V
d�T

prp þ d�T
nrn

� �
dV ¼ dLext ð12Þ

where Lint stands for the strain energy, and Lext is the work of the
external loadings. d stands for the virtual variation. The virtual var-
iation of the strain energy is rewritten using Eqs. (3), (6) and (11), i n
a compact format it becomes:

dLint ¼ dqT
siK

ijssqsj ð13Þ

where Kijss is the stiffness matrix in the form of the fundamental
nucleus. The first component of the fundamental nucleus can be
written as:
Table 5
First five buckling loads for different refined beam theories using 10 B4 elements for pane

Critical load (P, �105N) EBBT TBT N = 1

P1 19.14a 13.39a 13.36a

P2 38.82a 26.23a 26.07a

P3 74.73a 48.31a 47.68a

P4 111.17a 68.23a 66.99a

P5 161.78a 93.93a 91.68a

a Bending mode.
b Torsional mode.
Kijss
xx ¼ eC22

Z
X

Fs;xFs;x dX
Z

l
NiNj dyþ eC 66

Z
X

Fs;zFs;z dX
Z

l
NiNj dy

þ eC44

Z
X

FsFs dX
Z

l
Ni;yNj;y dy

The detailed expansion of fundamental nucleus can be seen in 
[29,30,33]. It should be noted that no assumptions on the 
approxima-tion order have been done. It is therefore possible to 
obtain refined beam models without changing the formal 
expression of the nucleus components. This is the key-point of CUF 
which permits, with only nine FORTRAN statements, to implement 
any-order beam theories. The shear locking is corrected through a 
selective integration [31].

3. Governing equations for the linearized stability analysis

The buckling equations are obtained according to Euler’s meth-
od of adjacent equilibrium states. It consists of a linearized stability
analysis of an undeformed equilibrium configuration, whose criti-
l (a) five layered (h�/�h�/0�/�h�/h�) plate.

N = 2 N = 3 N = 4 N = 5 N = 6

13.38a 13.14a 13.14a 12.94a 12.93a

26.05a 25.04a 25.02a 24.23a 24.18a

33.89b 33.01b 31.35b 30.68b 29.79b

44.81b 42.30b 40.09b 38.78b 37.47b

47.90b 46.20b 45.51b 43.69b 43.46b



Fig. 7. Third mode of five layered (h�/�h�/0�/�h�/h�) composite panel (a)
(P = 29.79 � 105N; N = 6).

Fig. 6. Second mode of five layered (h�/�h�/0�/�h�/h�) composite panel (a)
(P = 24.18 � 105N; N = 6).
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cal condition is defined by a proportionally scaled load in combina-
tion with a geometric or initial stress stiffness built up from the
geometric nonlinearities. The following assumptions are thus nec-
essarily introduced.

1. The prebuckling deformation can be neglected.
2. The initial stress r0 remains constant and varies neither in mag-

nitude nor in direction during buckling.
3. At bifurcation, the equilibrium states are infinitesimally adja-

cent so that a linearization is possible.

The buckling load can then be defined via a scalar load factor k
as the load r = kr0 for which an equilibrium configuration u – 0
exists such that

duT ½Kþ kKrðr0Þ�u ¼ 0

The symbol d denotes the virtual variation and K is the usual linear
stiffness matrix reported elsewhere. Kr is the geometric stiffness
matrix that is obtained from the expression of the work done by
the virtual nonlinear strains with the actual initial stresses:

Z
X

Z
hk

d�nl
ykr

o
yk dyk ð14Þ

where the nonlinear direct in-plane strains can be expressed as:

�nl
y ¼

1
2

u2
y;y þ u2

y;y þ u2
y;y

� �
ð15Þ

Subsequently, the non-zero terms of the geometric stiffness ma-
trix Kr can be written as:

Kijss
rxx ¼ Kijss

ryy ¼ Kijss
rzz ¼

Z
X

FsFs dX
Z

l
Ni;yNj;y dy
4. Numerical analysis and discussion

Validation of the present approach is carried out first by consid-
ering simply supported beams with square cross sections. Geomet-
rical and Material properties are: Length (L) to thickness (a) ratio L/
a = 20; Young’s modulus E = 71.7 (GPa); Poisson ratio m = 0.3. The 
results are compared with that of Matsunaga [32]. Table 1 presents 
the first three buckling loadings using the third order expansion 
models and discretized by 10 B4 elements in longitudinal direc-
tions. It can be noted that the N = 2 model gives a higher buckling 
load than N = 1. It is important to underline that this is due to the 
Poisson Locking Correction that artificially improve the linear solu-
tion [27,28].The present results are in good agreement with those 
given in literature [32] obtained using the analytical approach.

In the subsequent sections, buckling analysis of laminated com-
posite rectangular beam and flat panels has been carried out. In all
the cases, fixed boundary conditions on the shorter edges and long
edges free are considered for the beam and panels unless specified
otherwise.

4.1. Composite beam

The buckling of composite beam is studied in this section. An
eight layered symmetric cross ply (0/90/0/90/90/0/90/0) laminated
composite beam is considered first. The material properties are
given by: [(E1,E2,E3,G12,G23,G31), m12,m23,m31] = [(1.344,0.1034,
0.1034,0.05,0.02,0.05) GPa;0.33,0.33,0.33]. The beam has a length
L = 0.127 m; width b = 0.0127 m; total thickness a = 0.01016
m (L/a = 12.5).



The fundamental buckling load for the laminated beam 

 
 
 

 
 
 
 
 
 
 
 

 

Table 6
First five buckling loads for different refined beam theories using 10 B4 elements for panel (b) five layered (15�/75�/0�/75�/15�) plate.

Critical load (P, �105N) EBBT TBT N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

P1 8.18a 5.50a 5.43a 5.30a 5.01a 4.86a 4.62a 4.54a

P2 16.59a 10.64a 10.35a 7.41b 6.04b 5.85b 5.67b 5.46b

P3 31.19a 19.30a 18.47a 12.53b 10.75b 9.67b 9.23b 8.77b

P4 47.48a 26.78a 25.17a 14.02b 11.13b 10.28b 9.26b 9.07b

P5 69.09a 36.24a 33.37a 20.02b 16.67b 14.67b 13.98b 12.79b

a Bending mode.
b Torsional mode.

Fig. 9. Second mode of five layered (15�/75�/0�/75�/15�) composite panel (b)
(P = 5.46 � 105N; N = 6).

Fig. 8. First mode of five layered (15�/75�/0�/75�/15�) composite panel (b)
(P = 4.54 � 105N; N = 6).
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evaluated using refined theories is presented in Table 2 and 
compared with available literature which was obtained using 
higher order theory [2]. It can be seen from Table 2 that the present 
result obtained using N = 3 matches very well with that of available 
results [2].

For further studies, the results for the three (0/90/0)-layered
cross ply laminated composite beam are presented in this section.
The material properties are: [(E1, E2, E3, G12, G23, G31 ),m12,m23, m31] =
[(224.25,6.9,6.9, 56.58, 56.58) GPa, 1.38,0.25, 0.25, 0.25]. Geometri-
cal properties of the beam are: length of beam (L) = 0.25 m, total
thickness of beam (a) = 0.003 m, width of beam (b) = 0.05 m. The
values of the first five buckling loads for the three layered beam
obtained using different refined theories are presented in Table 3. It
can be seen from Table 3 that the corresponding lower buckling
loads are almost the same even for theories with higher orders
whereas slight difference is observed for the higher buckling loads.
This is because the length to thickness ratio is quite high (L/a � 80)
and also due to the fact that the first five buckling loads are basi-
cally the bending buckling loads. Moreover, the first three torsional
buckling loads are given in Table 4 and the corresponding buckling
modes are plotted in Figs. 2–4. It may be noted that the torsional 
effects are observed in the beam considered in the present study at 
significantly higher buckling loads. However, the ratio of the 
bending mode to the corresponding torsional mode becomes larger 
with the subsequent higher modes; in fact it is �9, 5 and 3 for first 
second and third modes respectively. It is worth mentioning that 
these torsional modes cannot be depicted using the classical and 
lower order models.

4.2. Composite panel

In this section, buckling analysis of two different flat panels,
namely panel (a) and panel (b), each having five layers is carried
out. The material [(E1,E2,E3,G12,G23,G31),m12,m23,m31] and geometri-
cal properties of the panel are:

Material 1 (Mat. 1): [(6.9,6.9,6.9,2.76,2.76,2.76) GPa;0.25,
0.25,0.25]



 
 

 
 
 
 

 

 
 

Fig. 10. Third mode of five layered (15�/75�/0�/75�/15�) composite panel (b)
(P = 8.77 � 105N; N = 6).
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Material 2 (Mat. 2): [(224.25,6.9,6.9,56.58,1.38,56.58) GPa;
0.25,0.25,0.25]
Material 3 (Mat. 3): [(172.5,6.9,6.9,3.45,1.38,3.45) GPa;0.25,
0.25,0.25]

Length of plate = 0.2 m; width =0.1 m; total thickness
a = 0.01 m; thickness of layers (first layer at bottom) = (0.1a/0.3a/
0.2a/0.3a/0.1a);

Lamination angle and material distribution for panel (a) = (30
(Mat. 2)/�30 (Mat. 2)/0 (Mat. 2)/�30 (Mat. 2)/30 (Mat. 2)). Lamina-
tion angle and material distribution for panel (b) = (15 (Mat. 2)/75
(Mat. 3)/0 (Mat. 1)/75 (Mat. 3)/15 (Mat. 2)).

First five buckling loads of panel (a) obtained using the classical
theories and higher order expansions are presented in Table 5.
Buckling loads obtained using the classical theories and lower or-
der expansion up to N = 1 give rather erroneous results which are
significantly overestimated as compared with the actual ones. Also,
only the bending buckling modes are depicted using these models.
However, for expansion orders greater than 1, the modes in which
the out of plane displacement is seen are also predicted. With fur-
ther refinement, the error reduces and it can be seen that the con-
verged buckling load values can be obtained using expansion order
of 5 as with further refinement (expansion order 6), there is negli-
gible improvement of the values. The modes obtained using N = 6
are plotted in Figs. 5–7 and it can be seen that the third mode is a
torsional type mode. It can be noted that unlike the beams con-
sidered in the present study, torsional modes are depicted at signif-
icantly lower buckling load.

Another study has been carried out to a symmetric panel (b) in
which the layers are made up with different materials and the first
five buckling loads are presented in Table 6. Similar to the previous
case of panel (a), classical theories and theory order with N = 1 only 
predicts the bending buckling modes. It is interesting to observe 
that by using the unified formulation up to N = 1, the second buck-
ling mode (P2 = 10.35 � 105 for N = 1) predicted is of bending type. 
However, the modes obtained using the higher orders with buck-
ling loads comparable to that of the second mode for N = 1 are all of 
torsional type modes. So, it can be easily said that the lower or-der 
models are unable to deal with torsion. Further, first three modes 
obtained using N = 6 are plotted in Figs. 8–10 and the tor-sional 
effects in all the modes except the first one (first mode is purely 
flexural mode) are easily observed.
5. Conclusions

In this paper, buckling analysis using the 1D formulation within
the framework of CUF for typical beam sections namely, the lami-
nated composite beam, and laminated composite flat panels have
been carried out in a unified manner and compared with available
literature. The lamination effects on the buckling characteristics
are highlighted. Torsional modes are depicted for beams with
expansion orders greater than two whereas for the case of lami-
nated composite panels, the torsional modes can be adequately
predicted by using the refined models with expansion order
N = 6. The advantage of the higher order theory has also been high-
lighted for describing the torsional modes with adequate accuracy.
It can be seen that the lower order models are unable to predict
torsional modes.
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