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Efficient simulations of detailed combhusotlion fields via thedttice Boltzmann
metho

1. INTRODUCTION AND MOTIVATION

Accurate modeling of reactive flows requires the solutiom tdrge number of conservation equations
as dictated by detailed reaction mechanism. In additiohésbmetimes prohibitively large number of
variables introduced, the numerical solution of the goveyrequations has to face the stiffness due to
the fast time scales of the kinetic terms (processes oogcuom a wide range of scales ranging from
seconds down to nanoseconds). In fact, chemistry acts ooftoansport phenomena, whose time
scales are typically of the order of millisecond down to mé&cond. Those issues make computations
of flames, where detailed chemistry is to be accounted, in &nd three-dimensional flows extremely
time consuming, and have particularly negative impact erattice Boltzmann method (LBM), whose
number of fields (distribution functions or populationsyignificantly larger than the number of fields
in conventional methods (density, momenta, temperatyesias mass fractions) by a factor ranging
from tens to hundreds for 2D and 3D simulations. Moreovéifnsess drastically affects the imple-
mentation of explicit numerical solvers (such as the LBMhere reducing the time step becomes
compulsory in order to both avoid numerical instabilitiesl &eep a satisfactory accuracy. As a matter
of fact, the smallest time scale need to be resolved (witlamdtic increase of the computational time)
even if we are only interested in the slow dynamics of theesystFinally, the larger the number of
elementary reactions in a detailed combustion mechanisenmbore intense the computational effort
to evaluate the reaction rates, which typically involves domputation of demanding functions (e.qg.
exponential functions).

For these reasons, technigues capable to reduce the cadimpaitdime and the memory demand are
particularly desirable in the contest of the lattice Boleam method when simulating reactive flows. In
this respect, some reduction might be achieved without &fiayt , e.g., by eliminating unimportant
reaction steps (or species) from the detailed combustiacharésm. Several tools have been devised
to that aim, such as the sensitivity analysis [1], the compar analysis of entropy production [2, 3],
and the reaction path analysis [4]. Nevertheless, the abmtbodologies are never fully automated,
and they often produce results with unsatisfactory acguiacthe following, we make use of a model
reduction technique, thethod of Invariant Grid10] (MIG), based on the notions of time-scale sep-
aration and low dimensional manifolds, which present theaathge of an automated implementation
(see, e.g., [19]) and it is expected to recover the asympbathavior of the detailed system, with re-
markable accuracy [9, 17]. In fact, we are often interestetthé system behavior on the scale of fluid
mechanics (slow dynamics), thus some chemical phenomasad§namics) can be considered self-
equilibrated. The general idea behind MIG stems from thergeoc picture of relaxation of solution
trajectories in the phase-space, and is briefly describvbéynamics of complex reactive system
is often characterized by a short initial transient durirfgol the fast processes evolve and equilibrate,
such that the solution trajectory approaches low-dimemgionanifolds in the concentration space,
known as theslow invariant manifold¢SIM). The remaining dynamics lasts much longer and evolves
along the SIM towards the steady state (see also the secfiand Fig. 2 below). Decoupling the fast
equilibrated processes from the slower dynamics does éhdeeg a reduction of degrees of freedom
into the problem, and can be implemented in a systematic emdnndevising effective techniques for
constructing SIM in the solution space of the detailed syste
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The notion of low dimensional manifold of slow motions hasyad fruitful in model reduction, and

it has been widely investigated in chemical kinetics forlgziag and simplifying complex reaction

mechanisms. Besides the already mentioned MIG by GorbarKaroh, the most popular methods
based on the above concept are, among others: the Compateéiogular Perturbation Method (CSP)
by Lam and Goussis [5], thiatrinsic Low Dimensional ManifoldILDM) by Maas and Pope [6], the

Invariant Constrained Equilibrium Edge Preimage Curve Mt (ICE-PIC) by Ren, Pope et al. [7],

and theMethod of Minimal Entropy Production Trajectori¢SIEPT) by Lebiedz [8].

This work is organized in sections as follows. In sectionh2, kinetic equations describing reactive
mixtures are reviewed, and the case of a batch reactor unger énthalpy and pressure discussed in
more detail. The lattice Boltzmann model for reactive flomiation, adopted in the following, and
the hypotheses behind it are reviewed in section 3. Somedalsbut the MIG technique are discussed
in section 4. In particular, the notions of quasi equilibmimanifold, film equation and thermodynamic
projector are reviewed in sections 4.1 and 4.2, while thgplieation to a bath reactor is reported in
section 4.3. The coupling between the MIG and the latticéZBwhnn model is studied in section 5, and
applied to a two-dimensional laminar flame in sections 5@%8. In section 6, the limits of validity
of the presented methodology are discussed, and posstelesins oulined. In section 7 conclusions
are drawn.

2. GAS MIXTURES IN A BATCH REACTOR

Below, we focus on mixtures of ideal gases, wherehemical species;, ..., z, are involved in a
complex reaction consisting ofreversible elementary steps as follows:

/ / 7 7
(1) V1 4 oo+ VT 2V 21+ ...+ Vg, S=1,...,1,

with v/, and v, the stoichiometric coefficient of speciésn the reaction step in the forward and
reverse direction, respectively. The reaction rate dutstosstakes the expression:

n n
e Q =k [T 001 -k TT X1 s=1.m,
j=1 j=1
where[X;] denotes the molar concentration of spegieJ he rate of production (or consumption) of
species in reactions reads:

3) Wis = (VZ”S — 1/2(8) Q.

Both the forward and reverse reaction rate constbf\tmdkg are typically expressed using the popular
semi-empirical modified Arrhenius formula:

(4) ke (T) = A,TP exp (—E,s/RT) ,

where A, is a pre-exponential factofi; the temperature exponerft, the activation energy of step
andR the universal gas constant. The total production (or copgiom) rate of speciesreads:

(5) w; = Zr:wi&
s=1
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with the forward and reverse reaction rate constants celatehe equilibrium constari, ; = k:£ / k%,
which is obtained imposing tharinciple of detail balancet the steady state:

(6) KT 19 =kn [ X519, s=1,....m
j=1 j=1
In batch reactors, the gas mixture is a closed system with assrfiux through the boundary, and the
statey) = (Y1,...,Y,) evolves in time according to:
- dY; dy, ; o Wh,
(7) f:<d—tl>“'aﬁ>:<wlz/vvlw”>w?v>7
p p

whereY; and IW; are the mass fraction and the molecular weight of speciespectively, whiles
represents the mixture mean density. In order to close thetikiequation system (7), an additional
condition for the temperature dynamics is required. In thoing, we refer to closed isoenthalpic
isobaric systems where the equation for temperature atgmithe constance of the mixture averaged
enthalpyh:

(8) h = Z hi (T)Y; = const,
i=1

whereh; denotes the enthalpy of speciesvhose temperature dependence is accounted using a poly-
nomial fit

9) hi (T) =R (auT + %TQ + %T?’ + %T“ + %T5 + aﬁi) ,

expressed in terms of the NASA coefficients, tabulated for each speciéswith j = 1,...,7. More

specifically, the temperature dynamics obeys the folloveiggation:

_dT 1, .
(10) Cpa == —5 ZE - hszWZ
Finally, in a closed reactor, the atom mole numh¥jsof each element is conserved:
d N, N Wik
11 DyT = (Ny,...,N))', —==0, D Sy
(11) P' = (Ny,...,Na)", 7 =0 (k,4) W,

Here, ;1. is the number of atoms of theh element in species andD is a(d x n) matrix, whered is
the number of elements involved the reaction. In other wdtdsvector fieldfin (7) remains always
orthogonal (in the Euclidean sense) to the raw#of

3. MODEL FOR REACTIVE FLOW SIMULATIONS

In the present work, for the sake of simplicity, we apply tbédiving assumptions to the governing
equations for reactive flows in the low Mach number regime:

e The flow field is assumed incompressible and it is not affebiethe chemical reaction.
e The transport properties are constant.

e The Fick’s law applies to diffusion.

¢ Viscous energy dissipation and radiative heat transfeibeameglected.

It's worth noticing that we make use of the above simplificasi, since they are not essential to the
issues of model reduction for reactive flows simulationsjctvhs our major concern here. In fact,
the suggested methodology can be applied also when all theedtypothesis are relaxed. In such a
framework, the velocity field:;; and pressurg can be described by solving the mass and momentum

3
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FIGURE 1. 2-dimensional 9-velocity stencil: D2Q9

conservation equations as dictated by the incompressiaméeNStokes formulation (in the absence of
body forces):

aju]‘ = O,

12
( ) Owu; + ujajui = —% ip + aj (Vajui) )

whered,, 0;, v andp denote partial derivatives with respect to time, partialvdgives with respect to
the jth spacial direction, the kinematic viscosity and the nmatdensity respectively, while Einstein
summation convention is assumed for the repeated indexesedver, the governing equations of the

mixture-averaged enthalpy and the mass fractioli; of the ith chemical species has to be taken into
account as follows:

wiWi hi,

(13) 8JL + Ujajib = 8j (liajfl) + Z
i=1

(14) p (OY; + uj0;Y;) = 05 (pD;0;Y;) + wi Wi,

wherex and D; are the thermal diffusivity and the diffusion coefficientsplecies, respectively.

3.1. Lattice Boltzmann method for combustion. Here, we consider the simple lattice Boltzmann
formulation suitable for combustion field computationsgegied in [21], whereas more elaborate LB
models for mixtures [22] and compressible flows [23] shalirvestigated in the near future, too. It

has been proven that model in [21] is able to describe reafitiws consistently with the continuum

approach where the equations (12), (13) and (14) are used.

The lattice Boltzmann method is a relatively novel apprachumerical flow simulations, and it can
be regarded as a special discretization of the Boltzmanatexuwhich is known to be the governing
equation of gas dynamics [25]. This method consists of dis@nd explicit kinetic equations expressed
in terms of a small set of particles distribution functiopsggulations for short). Those kinetic equations
are designed in such a way that the the continuum descrififlamier-Stokes equations) is recovered
in the hydrodynamic limit, where the Knudsen number is smalch population moves on a regular
lattice at a different velocity: in Fig. 1 we show a populahame for two-dimensional simulations,
where nine populations are represented by their own peadlacity e, .

4
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In the following, the flow field is treated as a single-companaedium that can be described, in terms
of pressure distribution functions,, by the following equation at an arbitrary lattice nod¢25]:

L e (2. 8) — 09 (p, )]

(15) Pa (T + eq,t + 0t) = po (T, t) — —
TF

where the equilibrium populationss,’ read:
9 2 3
e T T
(16) Dol = Wap {1 + 3 (equ’ ) + 3 (equ’)” — iuﬂ :
The pressure and the fluid velocityu are given by:

(17) b= Zpon u = i Zeapon
«a Po @

where the reference pressurie= po/3, with py denoting the reference density of the LB model. Let
ot be the time step, the relaxation parametgrcan be linked to the kinematic viscosity e.g., by
performing an asymptotic analysis of the lattice Boltzmannation (see, e.g., [27, 28])

27 — 1
(18) v = TFG 5t.
In general, the discrete velocities can be regarded as thesrad a Gauss-Hermite quadrature applied to
the Maxwell-Boltzmann distribution function, and eachludn is characterized by a proper weight
(see also [25, 26]). According to [21], the flow field is noteaffed by the chemical reaction, transport
coefficients are constant and Fick’s law applies to the siffo. Lethq be a reference enthalpy, the

evolution equations for enthalpy and concentration of seéare written as

. - 1 r- - .
(19) fro (% + €t + 0t) — ho (2,8) = —— | o (2, 1) — B (h, u)} + wa O,
Th
1
(20) Yia (:B + eq,t + 5t) —Yia (.’B,t) = — [Y;‘a (a:,t) - Y;Zq (Yuu)] + waQYiv
TY;
where

(21) h=h/ho=> ha, Yi=> Y,

and the equilibrium populations!, Y;°/ are expressed as in (16) after replacingvith 4 andY;,
respectively. Assum is a factor for converting physical time into LB time unit#) ; 5 = (t) ,1,,,s / to,
the source terms take the explicit form

9 . )
1 Wi Wi
(22) Qn Sy ) toot, Qu, = Lk,
p p

o
0 \i=1

wherep is the mixture-averaged density, whilg, W;, h; denote the rate of change, molecular weight
and enthalpy of species respectively. Similarly to the kinematic viscosity, theetmal diffusivity
and diffusion coefficienD; of species are related to the relaxation parameters as follows:

21, — 1
TG

_2TYi_1

ot, D;= ot.
’ 6

(23)

4. MODEL REDUCTION TECHNIQUE

In our study, the reduced model is obtained usingMtethod of Invariant Grid(MIG). The detailed
mechanism of Li et al [11] (9 species, 21 elementary reas}ifor hydrogen combustion is considered,
and our goal is to search for a reduced description with orfgnadegrees of freedom. In particular,
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FIGURE 2. Batch reactor under constant enthalpy and pressureichisimetric pro-
portions. Example of a 2D invariant grid (black continuoung$). Samples of solutions
trajectories (circles) relaxing towards the grid are régubr

here we are interested in a reduced description, where théustion mechanism is governed by two
chemical coordinates. Below, a general overview of MIG rodtls given, while more details can be
found in the literature [9, 10, 15, 16, 17].

4.1. MIG initialization. For our purposes, the MIG technique can be initially appt@é spatially
homogeneous reactor under constant mixture-averagealpytand pressure at a fixed equivalence
ratio ¢. To this end, we first construct a two-dimensiomalasi-equilibrium manifoldQEM) for a
stoichiometric H»-air mixture under fixed pressugeand enthalpy:. In general, ay— dimensional
QEM is obtained solving the following minimization problem

G — min

@4) SmiYi=¢, j=1,...0
%

where(G is a thermodynamic Lyapunov function with respect to theetiimequations (7). It is well
known from thermodynamics that, in a closed reactive systader fixed enthalpy and pressure, the
latter function is given by the mixture-averaged entropyprébver, the vector s¢in; = (m]l, vy m?)}
is adopted in order to re-parameterize the primitive vdesb; (mass fraction) in terms of new lumped
quantities¢?, whose dynamics is expected to be slower thanQuasi equilibrium manifolds attempt
a fast-slow motion decomposition of the kinetic system dyica, where the slow movements are as-
sumed to occur (throughout the entire composition spactieirsubspace spanned by the veciarg
while fast motions occur in its orthogonal complement. Thiéam of QEM can provide with an ap-
proximated reduced description in chemical kinetics atasoaable computational cost, hence it has
been widely exploited for that purpose (see, e.g., [13, 5D, ISeveral suggestions for defining slow
lumped variables in chemical kinetics are known from therditure. It is worth to mention here, the
parameterization utilized in thRate Controlled Constrained EquilibriuRCCE) method [14] where

a physical meaning is directly attached to the slow paraméte-or instance in the case of hydrogen

6
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combustion, the following quantities

Y; Yo Yow |, Ymo Yy Yo  Yomu
(25) g=) —, &= —22 = 2= +

) ) =—+ )
Wi Wo Woum  Wmo Wy Wo = Won

related to the total number of moles, the number of molesad frxygen and the active valence re-
spectively, may be adopted for constructing up to threeedsional quasi equilibrium manifolds (see
also [12]). Moreover, a more systematic parameterizatioa guasi equilibrium manifold has been
introduced recently [16], where the vectors; are defined on the basis of the left eigenvectors of the
Jacobian matrix

oY1 0Yn
(26) e
Ofn Ofn

computed a the steady statgpectral quasi equilibrium manifoldHere, f; is theith component of
the vector field (7). Notice that, in the following we alwaysadl with a discrete representation of a
manifod @rid), namely sets of states (points in the concentration sgaukfonnections between them
that allow us to define the grid tangent space at each node.

An approximated solution to (24), callegiasi equilibrium grid(QEG), can be computed making use
of the algorithm introduced in [15] and briefly reviewed beloAccording to the latter algorithm, an
initial grid is constructed starting from a known stadedd of the quasi equilibrium manifold (typically
the steady state) upon linearization of the problem (24grd@tore, extension of a grid along the-th
parametet” is accomplished by solving the linear system:

> (t;Hp!)pi=—t; VG, j=1,...,2—¢q

~
—_

z
j T
; (mlpi ) PYi = 0’

PR

(27) 2
> (mkPZT) Pi = €k,

1=

—_

z

=1
with respect to the unknowng;, where VG and H signify the gradient and the second derivative
matrix of G, respectively, computed at the seed, under constant reignuthalpys and pressure. Let
E be a matrix obtained fronD by adding the parameterization vectors; as additional rows, the
two vector basegp,,...,p.} and{t,...,t._,} span the null space dD and E, respectively. Let
& = (c},...,c) be the seed, the new QE-grid stafe in a neighborhood of°, has the following
coordinates:

cl = (c(l)+dc?,...,cg—|—dc%),

z
(dc(1)7 s 7d691) = zl PiPs-
1=

When dealing with isobaric isenthalpic syster@sis related to the mixture averaged entrgpyhich,
for ideal gas mixtures, takes the following explicit form:
1 « P
28 G i=—-5=—— (T —RIn(X;) —RI1 X,
(29) i === 2[5 (1) - RIn(x) = Rn ()

7
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whereW, R, X;, p andp,.r denote the mean molecular weight, the universal gas cdnstenmole
fraction of species, the total pressure and a reference pressure, respeciiayspecific entropy; is
assumed to have the following dependence on the tempef&ture

(29) si(I)=TR <ai1 InT + a;pT + %Tﬁ Qs G5y ai?)

3 4
where, for each chemical specigs:;; are given by the NASA coefficients.

In the following, in order to save notation, it proves conesn to define both the followingntropic
scalar productbetween two arbitrary vectors andy:

(30) (x,y) = Hy",
and the functional

(31) DG (z) = VGxT
where the superscrigt signifies transposition.

Finally, notice that computing first and second derivati¥&-0is not straightforward, since (28) ex-
plicitly depends on the mixture temperatuFe which is in turn implicit function of the enthalpy as
dictated by the non-linear relation (9). However, to thid dooth approximate, e.dinite differencing
(FD), and exact approaches, eagitomatic differentiatioffAD), can be adopted. According to FD, the
exact fist derivative is approximated by the following ratio

oG LG Yide ) - G(T Y

(32) o ;
8Y; R e

wheree is a small parameter, while the temperatilifesatisfies the following equation:
(33) h(T',....Yi+e,...)=h(T',....Y;...).

Typically, in order to achieve the best accuracy and minirttie round-off errog is chosen of the order

of the square root of the machine precision. Moreover, foivar backward) finite difference schemes
are preferred for first derivatives, and central schemeadopted for second derivatives. On the other
hand, AD enables to differentiate (in principle up to anyesjdhe subroutine itself that computes the
function (28), by systematically applying chain rule to #ire sequence of elementary assignments
of the code. Although AD can be significantly slower than FPpt@an order of magnitude), it provides
with exact values of the derivatives. Alternatively, thekoit and exact formulas reported in [19] can
be adopted.

4.2. MIG refinements. It is worth stressing that the choice of the vector sef has a significant
influence on the accuracy of the corresponding QEM in desgrithe slow invariant manifold (see
[16]). Nevertheless, the above construction only repitsséne first step of the MIG technique, given
that a QE-grid7 has to be anyway refined as described below in this sectiomréfmed grid ifivariant
grid) is an accurate discrete approximation of the slow invamaanifold, hence it does not depend on
the chosen parameterization.

Let G be given by a unique mapping= F (¢, ..., £9) defined in a discrete subset of the parameter
space into the concentration space. We also assume thatisheereconstruction procedure (e.g. poly-
nomial interpolation), such that derivativé$” /gi can be computed and the local tangent spadg to
defined.

8
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According to MIG, the invariant grid of the kinetic systermdae computed by relaxation ¢f under
the following film equation of dynamics [9]

(34) %:f— Pf,

WherefandP denote the vector of motion in the phase space and a projepésator onto the grid
tangent space, respectively. In general, the opeBtaan be any matrix which satisfies the condi-
tion P2 = P, such that the vecton belongs to the tangent space. Here, however, we adopt the
thermodynamic projectdi20], which enables to identify the fast motions toward tlwsvsmanifolds.

The thermodynamic projector is based on the following idea:given manifold indeed represents the
manifold of slow motions, then the Lyapunov function G hasrbcreasing during the fast process of
relaxation towards this manifold. Therefore, the pointshef manifold appear as the minimum points
of the Lypunov function on the manifolds of fast motion. Th#ér can be approximated accurately in
a small vicinity of the slow manifold using the Lyapunov ftioo gradient at the points of SIM. The
thermodynamic projectaP in fact formalizes this intuitive picture as reported beldmportantly, P

is updated on each iterations when seeking the SIM from timedfjjuation.

Let the derivativeﬁF/@gi define the tangent spa@é, at each grid point:
(35) Te = Lin{0F /0¢'}, i=1,..,q.

The subspacécy = (Tc N ker DG) defines, ifTe # Tc ), the tangent vectoe € T¢, through the
following conditions:

(36) DG (e) =1, (e,x)=0, VaeTcp,
so that, the thermodynamic projection of an arbitrary vegtbas the form:
q—1

(37) Pz = DG (z)e + Zizl (K, x)k;.
The basis{k,,...,k,—1} (orthonormal with respect to the entropic scalar produ®)(3pans the
subspacdc,. Inthe casd ¢ = T¢, the projector (37) becomes:

q
(38) Pe=3  (kiz)k:

Remark. Here, it is worth stressing the relevant feature of the Hgitejector. Let us consider @&
dimensional SIM in an-dimensional phase space. The above construction is bastteddea that
the thermodynamic considerations (minimization of thertieynamic Lyapunov function) are solely
required to construct fast manifolds in the vicinity of SI®n the other hand, if it is possible to describe
the fast subspace in different terms (for example, as atrekaldifferent algorithm for construction of
SIM), both representations of fast motions should be ctersisLet a vecton,. (c) be a generic vector
of the fast subspace. Then

(39) a,,(c) € ker P, Vi=1,...,n —q,

whereker P is the null space of (37) evaluatedatIn other words, the thermodynamic projection of
fast directions, in a neighborhood of the SIM vanishes.

Finally, as an example, a two-dimensional quasi equilirigrid of a reactiveH,-air mixture with
h = 600kJ/kg, p = 2bar and¢ = 1 is constructed as illustrated in the above section 4.1, ngakse
of the spectral quasi equilibrium parameterization. THimee grid is shown in Fig. 2, where typical
solution trajectories attracted to the grid and relaxingaials the steady state are also reported.

9
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4.3. Integration of the reduced system.Once ag—dimensional invariant grid is constructed (typi-
cally with ¢ < n), the set of kinetic equations (7) (problem withh — d) degrees of freedom) admits a

reduced description with degrees of freedom. In fact, the system dynamics alongiamagrids

dy; av,\* -

40 —_— ., — =P

(40) (G Gt) =P
10
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can be recast in a smaller set of differential equationsgbglling the definition of the parametes

1 q
(41) (%,...,%) - <m1Pﬁ...,quf).
Notice that, the projectoP of the reduced systems (40) and (41) must be constructedeasritred
in section 4.2. Indeed, in this case, the fast directionergeto the null space of the thermodynamic
projector, and the right-hand side of (40) and (41) is charaaed by a reduced stiffness with respect
to the original system (7). The right-hand side of (41) catabelated along with the node coordinates
and the parameters, before solving the reduced system. However, a recongiruptocedure, such
as a multi-variate interpolation, is typically adopted ndler to evaluate the rates (41) at an arbitrary
point of the phase-space.

Using the two-dimensional invariant grid depicted in Fig, w& report a comparison between the
solution of the detailed kinetic model (7) an the reduced @9, starting from an arbitrary initial
condition of the grid (see Fig. 3 and 4). Excellent agreent@tiveen the two descriptions can be
observed, whereas the time step used in the numerical gekjglicit fourth order Runge-Kutta) of the
reduced model can be chosen an order of magnitude largetitbame for the detailed one, due to the
reduced stiffness of (41).

5. 2DPREMIX LAMINAR FLAME

In this section, we illustrate the coupling methodologyextn a reduced model obtained from the MIG
procedure, and the lattice Boltzmann model for reactive losviewed in section (3). For simplicity,

in the following, we use the assumption of equal diffusivityfor all species and Lewis humbéie =

x/D = 1. In this case, the mixture enthalpyand the element fractions remain constant throughout
the domain, and the reduced dynamics takes place along la &iwgriant grid. Notice however that,
the latter assumption is not restricting and a generatinat obtained by extending the invariant grid
with enthalpy and element fractions as additional degrédseedom (see also the section 6 below).
Moreover, in low-Mach combustion, the pressprean be considered constant for most cases. Under
the latter assumptions, the equations (20) can be writtéerins of the slow manifold parametef’s,

€2 as follows:

_ _ 1 .. , ,

(42) é.(]x (.’B + eq, t+ 5t) - é.(]x (.’B, t) = _T_ [Egz(a:v t) - Egzeq (5]7,”)] + U)anj,
5

where, the equilibrium populations for the reduced vagabl read

(43) e = woé? {1 +3 (equ’) + g (eauT)2 - guz] :

and the source terms take the form:
(44) Qe =Y miQy, & =) mY,
=1 =1

5.1. Example. Here, we consider the two-dimensional laminar burner setiieally represented in
Fig. 5, where several vertical nozzles, ejecting a premiredure of hydrogen and air, are put side by
side at a fixed distance. A fully premixed hydrogen/air migtunitially at room temperature (300 K),
is ignited by a spark which is simulated by placing a hot spat corner of the computational domain.
A propagating flame front is thus generated in the flow, whike burned gas exits from the top side
of the domain. Because of the geometric symmetry, and umgeassumption of laminar flow, the

11
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Spark

Outlet

Computational
domain

FIGURE 5. Sketch of a 2-dimensional burner. Due to the symmetricrgty, com-
putations can be restricted to a rectangular domain.

computations can be restricted to a rectangular domainsevhedt and right edges are both symmetry
axis (see Fig. 5). In the present configuration, the burmeisl.4[mm] wide, the nozzle thickness and
the domain height are assumed [mm| and7.31[mm] respectively, while the distance between the
centerlines of two contiguous nozzle2ig4[mm/|. Note that, each single nozzle can be considered a
two-dimensional representation oBansen burnerThe flame dynamics might be predicted by solving
both the detailed model (19), (20) and the reduced one (42)hd following, we focus on the latter
option, where the source terr@g; are tabulated at each node of the invariant grid, and aatéssmigh
multi-variate linear interpolation.

Notice that, all the quantities in LB units are dimensios]ebius transport coefficients and chemical
source terms need to be properly converted with the helpalbggy. LetL,,, andu,,s be the height
of the computational domain and the norm of flow velocity & thlet along the symmetry axis in
physical units, respectivelyjm| and[m/s]. Let Lz andurp be the corresponding dimensionless
guantities (LB units). It proves convenient to define théofwing conversion factors:

L L L
(45) to = (—p’ws) / <—LB>, Lo =,
Uphys ULB Lip

such that physical time expressed[#hand length inim| can be converted into LB units dividing by
to and Lo, respectively. For instance, the diffusion coefficiént ([m?/s]) and the source terrﬁiﬁﬂ
([s~1]) of species become inL B units:

to w; Wi w; Wi
(46) D; =D,;,—, < — ) = —1.
( )LB L% D B i

12
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FIGURE 6. Streamlines and Euclidean norm of the velocity field indbmputational
domain after 120000 LB steps.
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5.2. Flow field computation. In this simulation, we make use of6ad(Nz) x 330(Ny) regular lat-
tice, and impose constant kinematic viscosity = 1.5 x 107°[m?/s]. At the inlet, we impose the
equilibrium populations corresponding to presspre- 1[bar], while the velocity is chosen accord-
ing to a parabolic profile, with maximum value;,,,, = 3.6[m/s]. Symmetry condition is imposed
using themirror bounce-backscheme to the missing populations, along the vertical baries! of the
computational domain:

Pxy = Pmzy, Pzmy = Pmamy

Pmxy = Prys; Pmamy = Prmy

http://mc.manuscriptcentral.com/hff
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FIGURE 7. Profiles of the species mass fraction and temperaturg ghemozzle cen-
terline at the time instarit= 2.2667[ms].

for the left and right boundary, respectively. At the oytfetly developed boundary condition is used
by zeroth order extrapolation of the second uppermost node:

(48) Pal(i, Ny) = pa (i, Ny — 1), i=1,...,N,.

Finally, walls are treated imposing tluisual bounce backondition: for instance, the inner wall of the
nozzle is simulated as follows:

(49) Pmaz = Pzy  Pmzy = Pzmy, Pmamy = Pxy-

In Fig. 6, we report both the streamlines and the magnitudeli@&an norm) of the velocity field after
a large (120000) number of LB steps.

5.3. Species computation.Dynamics of species mass fraction and temperature field bese com-
puted by means of the equations (42), whegag? represent, according to (25), the total number of
moles and the free oxygen, respectively and parameterize-dimensional invariant grid constructed
under fixed enthalpy = 2.8[k.J/kg] and pressurg = 1[bar| at stoichiometric proportion (correspond-
ing to the temperaturd00K of the unburned mixture). As illustrated in section 4.3 ia ttase of a
homogeneous batch reactor, primitive variables can benadteds reconstructed via multi-variate inter-
polation using the invariant grid. Similarly to the presspopulations, the mirror-bounce back scheme
(47) is adopted in order to impose symmetry condition on #réical boundaries of the domain. Usual
bounce-back condition (49) is used for simulating the aatigbwall of the nozzle, while the equilib-
rium populations corresponding to the fresh mixture corapuwrith a fixed parabolic velocity profile
are maintained at the inlet. Finally, at the outlet, we mad® af the following extrapolation:

(50) & (i, Ny) =€, (i,N, — 1), i=1,...,N,.

Here, the species mass fraction and the temperature fielay #he nozzle centerline, are reported in
Fig. 7, whereas in Fig. 8 and 9 we report a sequence of snapshtite time and space evolution of
the O radical. It has been demonstrated [18] that the above melibgyl for model reduction is indeed
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FIGURE 8. Sequence of snapshots representing the time and spdagavof O radical.
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able to reproduce results of the detailed model in sectioittBgveat accuracy when dealing with one-

dimensional flames of air and hydrogen. Nevertheless, Itighanoticing that results of the present

study have been obtained at a fraction of the cost requiredlt@ the full set of equations of section 3.

Fist of all, the major drawback of lattice Boltzmann solviensreactive flows, nhamely the huge number
of fields to solve for and store in the memory, is addressethdrpresent case only one quarter of the
fields are taken into account. To this respect, the savinggsrins of memory and computational time

can become even more significant, as soon as we start deatmgetailed hydrocarbon mechanisms
where the number of degrees of freedom are much larger &pibundreds chemical species are
involved in the reaction).

oo abhbdbbdbbDdND
NO OB WNRPRPOOONO O

Second of all, the chemical source terms introduce stiffrieshe species equations (14), hence their
solution requires a sufficiently short time st&p able to describe the fastest time scale in the problem.
In particular, an estimate of time scales, due to chemistay be found performing an eigenvalue
analysis of the Jacobian matiik = [0f;/9Y;]. In our case, the matrid computed at the steady state

o 01Ul
o O
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FIGURE 9. Sequence of snapshots representing the time and spdagavof O radical.

condition (fully burned mixture) exhibits the followingtie scalegl/\;|:

1 1 1
— ~2x1074 — ~77x107% — ~44x 1077,

M| A A
51) 1\ 1] \ 12\ ! 13!
— ~25x1077, — ~22x1077, — ~1.5x 1077,
| A4l | As] | A6

where|);| is the absolute value of an arbitrary non-zero eigenvalud.oHence, when solving the
detailed model of section 3, the time step cannot be chosgerléhandt ~ 1 x 10—7[5]. Notice,
however, that for the simulation results of Fig. 7, 8 and 8,tdthnique suggested in section 5 enables
us to choose a time step = 3 x 107, with an additional saving of around thirty times in terms of
computational time. Finally, the present setup has beerpuated on a singleGH z CPU double core
with 4GB RAM memory, and it take8.3[s] in order to complete a time step: streaming, collision,gate
computation and reaction sub-steps.

6. DISCUSSION AND OUTLOOK

It is worth noticing that, here the coupling of the model retibn procedure MIG and the lattice Boltz-
mann model in [21] has been obtained, without loss of geitgrahder some assumptions, which can
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be gradually relaxed depending on the level of complexigt ine can afford. Let's focus for now
on low-Mach number combustion, where the total mixture gues can be safely assumed constant.
Above, we have considered the case of equal diffusivity amdi& numberLe = 1 for all the species:
this guarantees that both the element mole numbgrin (11) and the mixture averaged enthalpy
remain constant in the domain. One more degree of freedorhecadded to the problem, if we assume
equal diffusivity for all the species with the Lewis numlder £ 1. Now, the element composition is
still conserved, while the enthalpyvaries in the domain according to the equation (19): thesedu
model is fully described by the chemical coordinagésthe mixture enthalpy,, and the construction,
illustrated in section 4 for batch reactors, is to be perfmtrover a range of enthalpies. In the general
case, also the element composition varies, due to diffietediffusion effects, and additional equations
for N}, shall be solved:

~ Dipuig Y
(52) 7 (8 Ny, + u;0;Ny,) = <paj (Z é‘v i ))

i=1

since the reduced model is completely described by the da¢mwordinates?, » and N;,. The equa-
tion (52) can be also written in the diffusion, advection asalction form (like (13) and (14)):

(53) ﬁ(@tNk + ujaij) = 8j (ﬁDkﬁij) + 8j (ﬁNkﬁjDk) ,

where both the diffusion coefficient

(54) Dy = (i %)/Nk

i=1
and the source terd; (N0, D;) can be tabulated as functions of the grid parameters.

It has been found that the laminar flame spegdf the current setup is arourti2[m/s|, and it is

in good agreement with experimental data [18]. Hence, weldvexpect that, in the case discussed
in section 5, the flame assumes the typical triangular shaibetie uppermost vertex located on the
nozzle centerline at aroungd = 2.1[mm], after stabilizing (see also Fig. 6 and 9). Nevertheless, we
have noticed from the computations that the flame stakitimaloes not occur, while it continues till
the inlet.

We believe that, the simple lattice Boltzmann model of Yaremet al. [21] is not capable to correctly
predict this phenomenon, mainly due to the assumption ajging the flow field from the chemical
reaction. Indeed, the stabilization occurs at the points@tilomain where the flow becomes orthogonal
to the flame with a velocity equals tg,: however, the current model neglects both flow diffractiod a
acceleration through the flame front. Therefore, the ptestedy motivates additional investigations in
the near future, where the incompressible descriptiortimflow field (12) and (15) shall be substituted
with compressible models like the one suggested in [23].

7. CONCLUSIONS

Here, we suggest a promising methodology for using accuealeced chemical kinetics in combina-
tion with a lattice Boltzmann solver in reactive flows sintidas. It has been shown that the method
of invariant grids (MIG) is suitable for providing the redet description of detailed chemistry, and
this approach enables to cope with stiffness introducechbynical source terms when solving species
equations. Moreover, with the help of a two dimensional teaniflame computation, we have demon-
strated that, model reduction procedures are twofold baiakbecause they allow to both drastically
increase the time step and reduce the number of fields to &otv&he above features are particularly
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desirable in the lattice Boltzmann method, where the nurobéelds is significantly larger than con-
ventional methods, and explicit time scheme is adoptedallyjrpossible extensions and improvements
to the current study are worked out.
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