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Efficient simulations of detailed combustion fields via the lattice Boltzmann
method

1. INTRODUCTION AND MOTIVATION

Accurate modeling of reactive flows requires the solution ofa large number of conservation equations

as dictated by detailed reaction mechanism. In addition to the sometimes prohibitively large number of

variables introduced, the numerical solution of the governing equations has to face the stiffness due to

the fast time scales of the kinetic terms (processes occurring on a wide range of scales ranging from

seconds down to nanoseconds). In fact, chemistry acts on topof transport phenomena, whose time

scales are typically of the order of millisecond down to microsecond. Those issues make computations

of flames, where detailed chemistry is to be accounted, in two- and three-dimensional flows extremely

time consuming, and have particularly negative impact on the lattice Boltzmann method (LBM), whose

number of fields (distribution functions or populations) issignificantly larger than the number of fields

in conventional methods (density, momenta, temperature, species mass fractions) by a factor ranging

from tens to hundreds for 2D and 3D simulations. Moreover, stiffness drastically affects the imple-

mentation of explicit numerical solvers (such as the LBM), where reducing the time step becomes

compulsory in order to both avoid numerical instabilities and keep a satisfactory accuracy. As a matter

of fact, the smallest time scale need to be resolved (with a dramatic increase of the computational time)

even if we are only interested in the slow dynamics of the system. Finally, the larger the number of

elementary reactions in a detailed combustion mechanism, the more intense the computational effort

to evaluate the reaction rates, which typically involves the computation of demanding functions (e.g.

exponential functions).

For these reasons, techniques capable to reduce the computational time and the memory demand are

particularly desirable in the contest of the lattice Boltzmann method when simulating reactive flows. In

this respect, some reduction might be achieved without a bigeffort , e.g., by eliminating unimportant

reaction steps (or species) from the detailed combustion mechanism. Several tools have been devised

to that aim, such as the sensitivity analysis [1], the comparative analysis of entropy production [2, 3],

and the reaction path analysis [4]. Nevertheless, the abovemethodologies are never fully automated,

and they often produce results with unsatisfactory accuracy. In the following, we make use of a model

reduction technique, theMethod of Invariant Grid[10] (MIG), based on the notions of time-scale sep-

aration and low dimensional manifolds, which present the advantage of an automated implementation

(see, e.g., [19]) and it is expected to recover the asymptotic behavior of the detailed system, with re-

markable accuracy [9, 17]. In fact, we are often interested in the system behavior on the scale of fluid

mechanics (slow dynamics), thus some chemical phenomena (fast dynamics) can be considered self-

equilibrated. The general idea behind MIG stems from the geometric picture of relaxation of solution

trajectories in the phase-space, and is briefly described below. Dynamics of complex reactive system

is often characterized by a short initial transient during which the fast processes evolve and equilibrate,

such that the solution trajectory approaches low-dimensional manifolds in the concentration space,

known as theslow invariant manifolds(SIM). The remaining dynamics lasts much longer and evolves

along the SIM towards the steady state (see also the section 4.2 and Fig. 2 below). Decoupling the fast

equilibrated processes from the slower dynamics does indeed bring a reduction of degrees of freedom

into the problem, and can be implemented in a systematic manner by devising effective techniques for

constructing SIM in the solution space of the detailed system.
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The notion of low dimensional manifold of slow motions has proved fruitful in model reduction, and

it has been widely investigated in chemical kinetics for analyzing and simplifying complex reaction

mechanisms. Besides the already mentioned MIG by Gorban andKarlin, the most popular methods

based on the above concept are, among others: the Computational Singular Perturbation Method (CSP)

by Lam and Goussis [5], theIntrinsic Low Dimensional Manifold(ILDM) by Maas and Pope [6], the

Invariant Constrained Equilibrium Edge Preimage Curve Method (ICE-PIC) by Ren, Pope et al. [7],

and theMethod of Minimal Entropy Production Trajectories(MEPT) by Lebiedz [8].

This work is organized in sections as follows. In section 2, the kinetic equations describing reactive

mixtures are reviewed, and the case of a batch reactor under fixed enthalpy and pressure discussed in

more detail. The lattice Boltzmann model for reactive flow simulation, adopted in the following, and

the hypotheses behind it are reviewed in section 3. Some basics about the MIG technique are discussed

in section 4. In particular, the notions of quasi equilibrium manifold, film equation and thermodynamic

projector are reviewed in sections 4.1 and 4.2, while their application to a bath reactor is reported in

section 4.3. The coupling between the MIG and the lattice Boltzmann model is studied in section 5, and

applied to a two-dimensional laminar flame in sections 5.2 and 5.3. In section 6, the limits of validity

of the presented methodology are discussed, and possible extensions oulined. In section 7 conclusions

are drawn.

2. GAS MIXTURES IN A BATCH REACTOR

Below, we focus on mixtures of ideal gases, wheren chemical speciesx1, ..., xn are involved in a

complex reaction consisting ofr reversible elementary steps as follows:

(1) ν ′

s1x1 + . . . + ν ′

snxn→← ν ′′

s1x1 + . . . + ν ′′

snxn, s = 1, . . . , r,

with ν ′

si andν ′′

si the stoichiometric coefficient of speciesi in the reaction steps in the forward and

reverse direction, respectively. The reaction rate due to steps takes the expression:

(2) Ωs = kf
s

n
∏

j=1

[Xj ]
ν′

js −kr
s

n
∏

j=1

[Xj ]
ν′′

js , s = 1, . . . , r,

where[Xj] denotes the molar concentration of speciesj. The rate of production (or consumption) of

speciesi in reactions reads:

(3) ω̇is =
(

ν ′′

is − ν ′

is

)

Ωs.

Both the forward and reverse reaction rate constantskf
s andkr

s are typically expressed using the popular

semi-empirical modified Arrhenius formula:

(4) ks (T ) = AsT
βs exp (−Eas/RT ) ,

whereAs is a pre-exponential factor,βs the temperature exponent,Es the activation energy of steps

andR the universal gas constant. The total production (or consumption) rate of speciesi reads:

(5) ω̇i =

r
∑

s=1

ω̇is,

2
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with the forward and reverse reaction rate constants related by the equilibrium constantKc,s = kf
s

/

kr
s ,

which is obtained imposing theprinciple of detail balanceat the steady state:

(6) kf
s

n
∏

j=1

[Xj ]
ν′

js =kr
s

n
∏

j=1

[Xj ]
ν′′

js , s = 1, . . . , r.

In batch reactors, the gas mixture is a closed system with no mass flux through the boundary, and the

stateψ = (Y1, . . . , Yn) evolves in time according to:

(7) ~f =

(

dY1

dt
, . . . ,

dYn

dt

)

=

(

ω̇1W1

ρ̄
, . . . ,

ω̇nWn

ρ̄

)

,

whereYi and Wi are the mass fraction and the molecular weight of speciesi respectively, whileρ̄

represents the mixture mean density. In order to close the kinetic equation system (7), an additional

condition for the temperature dynamics is required. In the following, we refer to closed isoenthalpic

isobaric systems where the equation for temperature stipulates the constance of the mixture averaged

enthalpyh̄:

(8) h̄ =

n
∑

i=1

hi (T ) Yi = const,

wherehi denotes the enthalpy of speciesi, whose temperature dependence is accounted using a poly-

nomial fit

(9) hi (T ) = R
(

a1iT +
a2i

2
T 2 +

a3i

3
T 3 +

a4i

4
T 4 +

a5i

5
T 5 + a6i

)

,

expressed in terms of the NASA coefficientsaij , tabulated for each speciesi, with j = 1, ..., 7. More

specifically, the temperature dynamics obeys the followingequation:

(10) c̄p
dT

dt
= −

1

ρ̄

n
∑

i=1

hiω̇iWi.

Finally, in a closed reactor, the atom mole numbersNk of each elementk is conserved:

(11) DψT = (N1, . . . , Nd)
T ,

dNk

dt
= 0, D (k, i) =

µik

Wi
.

Here,µik is the number of atoms of thekth element in speciesi, andD is a(d× n) matrix, whered is

the number of elements involved the reaction. In other words, the vector field~f in (7) remains always

orthogonal (in the Euclidean sense) to the raws ofD.

3. MODEL FOR REACTIVE FLOW SIMULATIONS

In the present work, for the sake of simplicity, we apply the following assumptions to the governing

equations for reactive flows in the low Mach number regime:

• The flow field is assumed incompressible and it is not affectedby the chemical reaction.

• The transport properties are constant.

• The Fick’s law applies to diffusion.

• Viscous energy dissipation and radiative heat transfer canbe neglected.

It’s worth noticing that we make use of the above simplifications, since they are not essential to the

issues of model reduction for reactive flows simulations, which is our major concern here. In fact,

the suggested methodology can be applied also when all the above hypothesis are relaxed. In such a

framework, the velocity fieldui and pressurep can be described by solving the mass and momentum

3
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FIGURE 1. 2-dimensional 9-velocity stencil: D2Q9

conservation equations as dictated by the incompressible Navier-Stokes formulation (in the absence of

body forces):

(12)
∂juj = 0,

∂tui + uj∂jui = −1

ρ̄
∂ip + ∂j (ν∂jui) ,

where∂t, ∂j , ν andρ̄ denote partial derivatives with respect to time, partial derivatives with respect to

the jth spacial direction, the kinematic viscosity and the mixture density respectively, while Einstein

summation convention is assumed for the repeated indexes. Moreover, the governing equations of the

mixture-averaged enthalpȳh and the mass fractionYi of the ith chemical species has to be taken into

account as follows:

(13) ∂th̄ + uj∂jh̄ = ∂j

(

κ∂j h̄
)

+

n
∑

i=1

ω̇iWi

ρ̄
hi,

(14) ρ̄ (∂tYi + uj∂jYi) = ∂j (ρ̄Di∂jYi) + ω̇iWi,

whereκ andDi are the thermal diffusivity and the diffusion coefficient ofspeciesi, respectively.

3.1. Lattice Boltzmann method for combustion. Here, we consider the simple lattice Boltzmann

formulation suitable for combustion field computations suggested in [21], whereas more elaborate LB

models for mixtures [22] and compressible flows [23] shall beinvestigated in the near future, too. It

has been proven that model in [21] is able to describe reactive flows consistently with the continuum

approach where the equations (12), (13) and (14) are used.

The lattice Boltzmann method is a relatively novel approachto numerical flow simulations, and it can

be regarded as a special discretization of the Boltzmann equation which is known to be the governing

equation of gas dynamics [25]. This method consists of discrete and explicit kinetic equations expressed

in terms of a small set of particles distribution functions (populations for short). Those kinetic equations

are designed in such a way that the the continuum description(Navier-Stokes equations) is recovered

in the hydrodynamic limit, where the Knudsen number is small. Each population moves on a regular

lattice at a different velocity: in Fig. 1 we show a popular scheme for two-dimensional simulations,

where nine populations are represented by their own peculiar velocity eα.

4
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In the following, the flow field is treated as a single-component medium that can be described, in terms

of pressure distribution functionspα, by the following equation at an arbitrary lattice nodex [25]:

(15) pα (x+ eα, t + δt) = pα (x, t)−
1

τF
[pα (x, t)− peq

α (p,u)] ,

where the equilibrium populationspeq
α read:

(16) peq
α = wαp

[

1 + 3
(

eαu
T
)

+
9

2

(

eαu
T
)2
−

3

2
u2

]

.

The pressurep and the fluid velocityu are given by:

(17) p =
∑

α

pα, u =
1

p0

∑

α

eαpα,

where the reference pressurep0 = ρ0/3, with ρ0 denoting the reference density of the LB model. Let

δt be the time step, the relaxation parameterτF can be linked to the kinematic viscosityν, e.g., by

performing an asymptotic analysis of the lattice Boltzmannequation (see, e.g., [27, 28])

(18) ν =
2τF − 1

6
δt.

In general, the discrete velocities can be regarded as the nodes of a Gauss-Hermite quadrature applied to

the Maxwell-Boltzmann distribution function, and each of them is characterized by a proper weightwα

(see also [25, 26]). According to [21], the flow field is not affected by the chemical reaction, transport

coefficients are constant and Fick’s law applies to the diffusion. Leth̄0 be a reference enthalpy, the

evolution equations for enthalpy and concentration of species i are written as

(19) h̃α (x+ eα, t + δt)− h̃α (x, t) = −
1

τh

[

h̃α (x, t)− h̃eq
α

(

h̃,u
)]

+ wαQh,

(20) Yiα (x+ eα, t + δt)− Yiα (x, t) = −
1

τYi

[Yiα (x, t)− Y eq
iα (Yi,u)] + wαQYi

,

where

(21) h̃ = h̄
/

h̄0 =
∑

α

h̃α, Yi =
∑

α

Yiα,

and the equilibrium populations̃heq
α , Y eq

iα are expressed as in (16) after replacingp with h̃ and Yi,

respectively. Assumet0 is a factor for converting physical time into LB time units:(t)LB = (t)phys

/

t0,

the source terms take the explicit form

(22) Qh =
1

h0

(

9
∑

i=1

ω̇iWi

ρ̄
hi

)

t0δt, QYi
=

ω̇iWi

ρ̄
t0δt,

whereρ̄ is the mixture-averaged density, whileω̇i, Wi, hi denote the rate of change, molecular weight

and enthalpy of speciesi, respectively. Similarly to the kinematic viscosity, the thermal diffusivityκ

and diffusion coefficientDi of speciesi are related to the relaxation parameters as follows:

(23) κ =
2τh − 1

6
δt, Di =

2τYi
− 1

6
δt.

4. MODEL REDUCTION TECHNIQUE

In our study, the reduced model is obtained using theMethod of Invariant Grid(MIG). The detailed

mechanism of Li et al [11] (9 species, 21 elementary reactions) for hydrogen combustion is considered,

and our goal is to search for a reduced description with only afew degrees of freedom. In particular,

5
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FIGURE 2. Batch reactor under constant enthalpy and pressure at stoichiometric pro-
portions. Example of a 2D invariant grid (black continuous lines). Samples of solutions
trajectories (circles) relaxing towards the grid are reported.

here we are interested in a reduced description, where the combustion mechanism is governed by two

chemical coordinates. Below, a general overview of MIG method is given, while more details can be

found in the literature [9, 10, 15, 16, 17].

4.1. MIG initialization. For our purposes, the MIG technique can be initially appliedto a spatially

homogeneous reactor under constant mixture-averaged enthalpy and pressure at a fixed equivalence

ratio φ. To this end, we first construct a two-dimensionalquasi-equilibrium manifold(QEM) for a

stoichiometricH2-air mixture under fixed pressurep and enthalpȳh. In general, aq− dimensional

QEM is obtained solving the following minimization problem:

(24)







G→ min
∑

i

mi
jYi = ξj, j = 1, . . . , q,

whereG is a thermodynamic Lyapunov function with respect to the kinetic equations (7). It is well

known from thermodynamics that, in a closed reactive systemunder fixed enthalpy and pressure, the

latter function is given by the mixture-averaged entropy. Moreover, the vector set{mj = (m1

j , ...,m
9

j )}

is adopted in order to re-parameterize the primitive variablesYi (mass fraction) in terms of new lumped

quantitiesξj , whose dynamics is expected to be slower thanYi. Quasi equilibrium manifolds attempt

a fast-slow motion decomposition of the kinetic system dynamics, where the slow movements are as-

sumed to occur (throughout the entire composition space) inthe subspace spanned by the vectorsmj ,

while fast motions occur in its orthogonal complement. The notion of QEM can provide with an ap-

proximated reduced description in chemical kinetics at a reasonable computational cost, hence it has

been widely exploited for that purpose (see, e.g., [13, 12, 15]). Several suggestions for defining slow

lumped variables in chemical kinetics are known from the literature. It is worth to mention here, the

parameterization utilized in theRate Controlled Constrained Equilibrium(RCCE) method [14] where

a physical meaning is directly attached to the slow parameters ξ. For instance in the case of hydrogen

6
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combustion, the following quantities

(25) ξ1 =
∑

i

Yi

Wi
, ξ2 =

YO

WO
+

YOH

WOH
+

YH2O

WH2O
, ξ3 =

YH

WH
+ 2

YO

WO
+

YOH

WOH
,

related to the total number of moles, the number of moles of free oxygen and the active valence re-

spectively, may be adopted for constructing up to three-dimensional quasi equilibrium manifolds (see

also [12]). Moreover, a more systematic parameterization of a quasi equilibrium manifold has been

introduced recently [16], where the vectorsmj are defined on the basis of the left eigenvectors of the

Jacobian matrix

(26) J =









∂f1

∂Y1
· · · ∂f1

∂Yn

...
. . .

...
∂fn

∂Y1
· · · ∂fn

∂Yn









,

computed a the steady state:spectral quasi equilibrium manifold. Here,fi is the ith component of

the vector field (7). Notice that, in the following we always deal with a discrete representation of a

manifod (grid), namely sets of states (points in the concentration space)and connections between them

that allow us to define the grid tangent space at each node.

An approximated solution to (24), calledquasi equilibrium grid(QEG), can be computed making use

of the algorithm introduced in [15] and briefly reviewed below. According to the latter algorithm, an

initial grid is constructed starting from a known state (seed) of the quasi equilibrium manifold (typically

the steady state) upon linearization of the problem (24). Therefore, extension of a grid along thek−th

parameterξk is accomplished by solving the linear system:

(27)

z
∑

i=1

(

tjHρ
T
i

)

ϕi = −tj∇GT , j = 1, . . . , z − q

z
∑

i=1

(

m1ρ
T
i

)

ϕi = 0,

...
z
∑

i=1

(

mkρ
T
i

)

ϕi = εk,

...
z
∑

i=1

(

mqρ
T
i

)

ϕi = 0,

with respect to the unknownsϕi, where∇G andH signify the gradient and the second derivative

matrix ofG, respectively, computed at the seed, under constant mixture enthalpȳh and pressurep. Let

E be a matrix obtained fromD by adding the parameterization vectorsmj as additional rows, the

two vector bases{ρ1, . . . ,ρz} and{t1, . . . , tz−q} span the null space ofD andE, respectively. Let

c0 =
(

c0
1
, . . . , c0

n

)

be the seed, the new QE-grid statec1, in a neighborhood ofc0, has the following

coordinates:
c1 =

(

c0
1
+ dc0

1
, . . . , c0

n + dc0
n

)

,
(

dc0
1
, . . . , dc0

n

)

=
z
∑

i=1

ϕiρi.

When dealing with isobaric isenthalpic systems,G is related to the mixture averaged entropys̄ which,

for ideal gas mixtures, takes the following explicit form:

(28) Gp,h̄ = −s̄ = −
1

W̄

n
∑

i=1

[

si (T )−R ln (Xi)−R ln

(

p

pref

)]

Xi,

7
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whereW̄ , R, Xi, p andpref denote the mean molecular weight, the universal gas constant, the mole

fraction of speciesi, the total pressure and a reference pressure, respectively. The specific entropysi is

assumed to have the following dependence on the temperatureT :

(29) si (T ) = R
(

ai1 ln T + ai2T +
ai3

2
T 2 +

ai4

3
T 3 +

ai5

4
T 4 + ai7

)

where, for each chemical speciesi, aij are given by the NASA coefficients.

In the following, in order to save notation, it proves convenient to define both the followingentropic

scalar productbetween two arbitrary vectorsx andy:

(30) 〈x,y〉 = xHyT ,

and the functional

(31) DG (x) = ∇GxT

where the superscriptT signifies transposition.

Finally, notice that computing first and second derivative of G is not straightforward, since (28) ex-

plicitly depends on the mixture temperatureT , which is in turn implicit function of the enthalpȳh as

dictated by the non-linear relation (9). However, to this end, both approximate, e.g.finite differencing

(FD), and exact approaches, e.g.automatic differentiation(AD), can be adopted. According to FD, the

exact fist derivative is approximated by the following ratio:

(32)
∂G

∂Yi

∣

∣

∣

∣

p,h̄

≃
G (T ′, . . . , Yi + ε, . . .)−G (T ′, . . . , Yi, . . .)

ε
,

whereε is a small parameter, while the temperatureT ′ satisfies the following equation:

(33) h̄
(

T ′, . . . , Yi + ε, . . .
)

= h̄
(

T ′, . . . , Yi, . . .
)

.

Typically, in order to achieve the best accuracy and minimize the round-off error,ε is chosen of the order

of the square root of the machine precision. Moreover, forward (or backward) finite difference schemes

are preferred for first derivatives, and central schemes areadopted for second derivatives. On the other

hand, AD enables to differentiate (in principle up to any order) the subroutine itself that computes the

function (28), by systematically applying chain rule to theentire sequence of elementary assignments

of the code. Although AD can be significantly slower than FD (up to an order of magnitude), it provides

with exact values of the derivatives. Alternatively, the explicit and exact formulas reported in [19] can

be adopted.

4.2. MIG refinements. It is worth stressing that the choice of the vector setmj has a significant

influence on the accuracy of the corresponding QEM in describing the slow invariant manifold (see

[16]). Nevertheless, the above construction only represents the first step of the MIG technique, given

that a QE-gridG has to be anyway refined as described below in this section. The refined grid (invariant

grid) is an accurate discrete approximation of the slow invariant manifold, hence it does not depend on

the chosen parameterization.

Let G be given by a unique mappingc = F
(

ξ1, . . . , ξq
)

defined in a discrete subset of the parameter

space into the concentration space. We also assume that there is a reconstruction procedure (e.g. poly-

nomial interpolation), such that derivatives∂F
/

ξi can be computed and the local tangent space toG

defined.
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According to MIG, the invariant grid of the kinetic system can be computed by relaxation ofG under

the following film equation of dynamics [9]

(34)
dG

dt
= ~f − P ~f,

where ~f andP denote the vector of motion in the phase space and a projectoroperator onto the grid

tangent space, respectively. In general, the operatorP can be any matrix which satisfies the condi-

tion P 2 = P , such that the vectorP ~f belongs to the tangent space. Here, however, we adopt the

thermodynamic projector[20], which enables to identify the fast motions toward the slow manifolds.

The thermodynamic projector is based on the following idea:If a given manifold indeed represents the

manifold of slow motions, then the Lyapunov function G has been increasing during the fast process of

relaxation towards this manifold. Therefore, the points ofthe manifold appear as the minimum points

of the Lypunov function on the manifolds of fast motion. The latter can be approximated accurately in

a small vicinity of the slow manifold using the Lyapunov function gradient at the points of SIM. The

thermodynamic projectorP in fact formalizes this intuitive picture as reported below. Importantly,P

is updated on each iterations when seeking the SIM from the film equation.

Let the derivatives∂F
/

∂ξi define the tangent spaceTc, at each grid pointc:

(35) Tc = Lin
{

∂F
/

∂ξi
}

, i = 1, ..., q.

The subspaceTc,0 = (Tc ∩ ker DG) defines, ifTc 6= Tc,0, the tangent vectore ∈ Tc, through the

following conditions:

(36) DG (e) = 1, 〈e,x〉 = 0, ∀x ∈ Tc,0,

so that, the thermodynamic projection of an arbitrary vector x has the form:

(37) Px = DG (x)e+
∑q−1

i=1
〈ki,x〉ki.

The basis{k1, . . . ,kq−1} (orthonormal with respect to the entropic scalar product (30)) spans the

subspaceTc,0. In the caseTc ≡ Tc,0, the projector (37) becomes:

(38) Px =
∑q

i=1
〈ki,x〉ki.

Remark. Here, it is worth stressing the relevant feature of the latter projector. Let us consider aq-

dimensional SIM in an-dimensional phase space. The above construction is based on the idea that

the thermodynamic considerations (minimization of the thermodynamic Lyapunov function) are solely

required to construct fast manifolds in the vicinity of SIM.On the other hand, if it is possible to describe

the fast subspace in different terms (for example, as a result of a different algorithm for construction of

SIM), both representations of fast motions should be consistent. Let a vectorari
(c) be a generic vector

of the fast subspace. Then

(39) ari
(c) ∈ kerP , ∀i = 1, ..., n − q,

wherekerP is the null space of (37) evaluated atc. In other words, the thermodynamic projection of

fast directions, in a neighborhood of the SIM vanishes.

Finally, as an example, a two-dimensional quasi equilibrium grid of a reactiveH2-air mixture with

h̄ = 600kJ/kg, p = 2bar andφ = 1 is constructed as illustrated in the above section 4.1, making use

of the spectral quasi equilibrium parameterization. The refined grid is shown in Fig. 2, where typical

solution trajectories attracted to the grid and relaxing towards the steady state are also reported.

9
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portions. Specie mass fraction dynamics, as dictated by thedetailed model (continuous
lines), is compared to the corresponding reduced model solution, where the initial con-
dition belongs to a 2D invariant grid.
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FIGURE 4. Batch reactor under constant enthalpy and pressure at stoichiometric pro-
portions. Temperature dynamics, as dictated by the detailed model (continuous lines),
is compared to the corresponding reduced model solution, where the initial condition
belongs to a 2D invariant grid.

4.3. Integration of the reduced system.Once aq−dimensional invariant grid is constructed (typi-

cally with q ≪ n), the set of kinetic equations (7) (problem with(n− d) degrees of freedom) admits a

reduced description withq degrees of freedom. In fact, the system dynamics along invariant grids

(40)

(

dY1

dt
, . . . ,

dYn

dt

)T

= P ~f,
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can be recast in a smaller set of differential equations, by recalling the definition of the parametersξi:

(41)

(

dξ1

dt
, ...,

dξq

dt

)

=
(

m1P ~f, . . . ,mqP ~f
)

.

Notice that, the projectorP of the reduced systems (40) and (41) must be constructed as prescribed

in section 4.2. Indeed, in this case, the fast directions belong to the null space of the thermodynamic

projector, and the right-hand side of (40) and (41) is characterized by a reduced stiffness with respect

to the original system (7). The right-hand side of (41) can betabulated along with the node coordinates

and the parametersξj, before solving the reduced system. However, a reconstruction procedure, such

as a multi-variate interpolation, is typically adopted in order to evaluate the rates (41) at an arbitrary

point of the phase-space.

Using the two-dimensional invariant grid depicted in Fig. 2, we report a comparison between the

solution of the detailed kinetic model (7) an the reduced one(41), starting from an arbitrary initial

condition of the grid (see Fig. 3 and 4). Excellent agreementbetween the two descriptions can be

observed, whereas the time step used in the numerical solver(explicit fourth order Runge-Kutta) of the

reduced model can be chosen an order of magnitude larger thanthe one for the detailed one, due to the

reduced stiffness of (41).

5. 2D PREMIX LAMINAR FLAME

In this section, we illustrate the coupling methodology between a reduced model obtained from the MIG

procedure, and the lattice Boltzmann model for reactive flows reviewed in section (3). For simplicity,

in the following, we use the assumption of equal diffusivityD for all species and Lewis numberLe =

κ/D = 1. In this case, the mixture enthalpȳh and the element fractions remain constant throughout

the domain, and the reduced dynamics takes place along a single invariant grid. Notice however that,

the latter assumption is not restricting and a generalization is obtained by extending the invariant grid

with enthalpy and element fractions as additional degrees of freedom (see also the section 6 below).

Moreover, in low-Mach combustion, the pressurep can be considered constant for most cases. Under

the latter assumptions, the equations (20) can be written interms of the slow manifold parametersξ1,

ξ2 as follows:

(42) ξj
α (x+ eα, t + δt)− ξj

α (x, t) = −
1

τξ

[

ξj
α(x, t)− ξjeq

α

(

ξj ,u
)]

+ wαQξj ,

where, the equilibrium populations for the reduced variablesξj read

(43) ξjeq
α = wαξj

[

1 + 3
(

eαu
T
)

+
9

2

(

eαu
T
)2
−

3

2
u2

]

,

and the source terms take the form:

(44) Qξj =

9
∑

i=1

mi
jQYi

, ξj =

9
∑

i=1

mi
jYi.

5.1. Example. Here, we consider the two-dimensional laminar burner schematically represented in

Fig. 5, where several vertical nozzles, ejecting a premixedmixture of hydrogen and air, are put side by

side at a fixed distance. A fully premixed hydrogen/air mixture, initially at room temperature (300 K),

is ignited by a spark which is simulated by placing a hot spot in a corner of the computational domain.

A propagating flame front is thus generated in the flow, while the burned gas exits from the top side

of the domain. Because of the geometric symmetry, and under the assumption of laminar flow, the
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FIGURE 5. Sketch of a 2-dimensional burner. Due to the symmetric geometry, com-
putations can be restricted to a rectangular domain.

computations can be restricted to a rectangular domain, whose left and right edges are both symmetry

axis (see Fig. 5). In the present configuration, the burner slot is0.4[mm] wide, the nozzle thickness and

the domain height are assumed0.1[mm] and7.31[mm] respectively, while the distance between the

centerlines of two contiguous nozzles is2.84[mm]. Note that, each single nozzle can be considered a

two-dimensional representation of aBunsen burner. The flame dynamics might be predicted by solving

both the detailed model (19), (20) and the reduced one (42). In the following, we focus on the latter

option, where the source termsQξj are tabulated at each node of the invariant grid, and accessed through

multi-variate linear interpolation.

Notice that, all the quantities in LB units are dimensionless, thus transport coefficients and chemical

source terms need to be properly converted with the help of analogy. LetLphys anduphys be the height

of the computational domain and the norm of flow velocity at the inlet along the symmetry axis in

physical units, respectively:[m] and [m/s]. Let LLB anduLB be the corresponding dimensionless

quantities (LB units). It proves convenient to define the following conversion factors:

(45) t0 =

(

Lphys

uphys

)/(

LLB

uLB

)

, L0 =
Lphys

LLB
,

such that physical time expressed in[s] and length in[m] can be converted into LB units dividing by

t0 andL0, respectively. For instance, the diffusion coefficientDi ([m2/s]) and the source termω̇iWi

ρ̄

([s−1]) of speciesi become inLB units:

(46) (Di)LB = Di
t0
L2

0

,

(

ω̇iWi

ρ̄

)

LB

=
ω̇iWi

ρ̄
t0.
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FIGURE 6. Streamlines and Euclidean norm of the velocity field in thecomputational
domain after 120000 LB steps.

5.2. Flow field computation. In this simulation, we make use of a65(Nx) × 330(Ny) regular lat-

tice, and impose constant kinematic viscosity :ν = 1.5 × 10−5[m2/s]. At the inlet, we impose the

equilibrium populations corresponding to pressurep = 1[bar], while the velocity is chosen accord-

ing to a parabolic profile, with maximum value:umax = 3.6[m/s]. Symmetry condition is imposed

using themirror bounce-backscheme to the missing populations, along the vertical boundaries of the

computational domain:

(47)
px = pmx, pxy = pmxy, pxmy = pmxmy

pmx = px, pmxy = pxy, pmxmy = pxmy
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FIGURE 7. Profiles of the species mass fraction and temperature along the nozzle cen-
terline at the time instantt = 2.2667[ms].

for the left and right boundary, respectively. At the outlet, fully developed boundary condition is used

by zeroth order extrapolation of the second uppermost node:

(48) pα(i,Ny) = pα (i,Ny − 1) , i = 1, ..., Nx.

Finally, walls are treated imposing theusual bounce backcondition: for instance, the inner wall of the

nozzle is simulated as follows:

(49) pmx = px, pmxy = pxmy, pmxmy = pxy.

In Fig. 6, we report both the streamlines and the magnitude (Euclidean norm) of the velocity field after

a large (120000) number of LB steps.

5.3. Species computation.Dynamics of species mass fraction and temperature field havebeen com-

puted by means of the equations (42), whereasξ1, ξ2 represent, according to (25), the total number of

moles and the free oxygen, respectively and parameterize a two-dimensional invariant grid constructed

under fixed enthalpȳh = 2.8[kJ/kg] and pressurep = 1[bar] at stoichiometric proportion (correspond-

ing to the temperature300K of the unburned mixture). As illustrated in section 4.3 in the case of a

homogeneous batch reactor, primitive variables can be afterwards reconstructed via multi-variate inter-

polation using the invariant grid. Similarly to the pressure populations, the mirror-bounce back scheme

(47) is adopted in order to impose symmetry condition on the vertical boundaries of the domain. Usual

bounce-back condition (49) is used for simulating the adiabatic wall of the nozzle, while the equilib-

rium populations corresponding to the fresh mixture computed with a fixed parabolic velocity profile

are maintained at the inlet. Finally, at the outlet, we make use of the following extrapolation:

(50) ξi
α (i,Ny) = ξi

α (i,Ny − 1) , i = 1, . . . , Nx.

Here, the species mass fraction and the temperature field, along the nozzle centerline, are reported in

Fig. 7, whereas in Fig. 8 and 9 we report a sequence of snapshots of the time and space evolution of

theO radical. It has been demonstrated [18] that the above methodology for model reduction is indeed
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FIGURE 8. Sequence of snapshots representing the time and space evolution of O radical.

able to reproduce results of the detailed model in section 3 with great accuracy when dealing with one-

dimensional flames of air and hydrogen. Nevertheless, It is worth noticing that results of the present

study have been obtained at a fraction of the cost required tosolve the full set of equations of section 3.

Fist of all, the major drawback of lattice Boltzmann solversfor reactive flows, namely the huge number

of fields to solve for and store in the memory, is addressed: inthe present case only one quarter of the

fields are taken into account. To this respect, the savings interms of memory and computational time

can become even more significant, as soon as we start dealing with detailed hydrocarbon mechanisms

where the number of degrees of freedom are much larger (typically hundreds chemical species are

involved in the reaction).

Second of all, the chemical source terms introduce stiffness in the species equations (14), hence their

solution requires a sufficiently short time stepδt, able to describe the fastest time scale in the problem.

In particular, an estimate of time scales, due to chemistry,can be found performing an eigenvalue

analysis of the Jacobian matrixJ = [∂fi/∂Yj]. In our case, the matrixJ computed at the steady state
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FIGURE 9. Sequence of snapshots representing the time and space evolution of O radical.

condition (fully burned mixture) exhibits the following time scales|1/λi|:

1

|λ1|
≃ 2× 10−4,

1

|λ2|
≃ 7.7× 10−6,

1

|λ3|
≃ 4.4× 10−7,

1

|λ4|
≃ 2.5× 10−7,

1

|λ5|
≃ 2.2× 10−7,

1

|λ6|
≃ 1.5× 10−7,

(51)

where|λi| is the absolute value of an arbitrary non-zero eigenvalue ofJ . Hence, when solving the

detailed model of section 3, the time step cannot be chosen larger thanδt ≃ 1 × 10−7[s]. Notice,

however, that for the simulation results of Fig. 7, 8 and 9, the technique suggested in section 5 enables

us to choose a time stepδt = 3 × 10−6, with an additional saving of around thirty times in terms of

computational time. Finally, the present setup has been computed on a single2GHz CPU double core

with 4GB RAM memory, and it takes2.3[s] in order to complete a time step: streaming, collision, rates

computation and reaction sub-steps.

6. DISCUSSION AND OUTLOOK

It is worth noticing that, here the coupling of the model reduction procedure MIG and the lattice Boltz-

mann model in [21] has been obtained, without loss of generality, under some assumptions, which can
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be gradually relaxed depending on the level of complexity that one can afford. Let’s focus for now

on low-Mach number combustion, where the total mixture pressure can be safely assumed constant.

Above, we have considered the case of equal diffusivity and Lewis numberLe = 1 for all the species:

this guarantees that both the element mole numbersNk in (11) and the mixture averaged enthalpyh̄

remain constant in the domain. One more degree of freedom canbe added to the problem, if we assume

equal diffusivity for all the species with the Lewis numberLe 6= 1. Now, the element composition is

still conserved, while the enthalpȳh varies in the domain according to the equation (19): the reduced

model is fully described by the chemical coordinatesξi, the mixture enthalpȳh, and the construction,

illustrated in section 4 for batch reactors, is to be performed over a range of enthalpies. In the general

case, also the element composition varies, due to differential diffusion effects, and additional equations

for Nk shall be solved:

(52) ρ̄ (∂tNk + uj∂jNk) = ∂j

(

ρ̄∂j

(

n
∑

i=1

DiµikYi

Wi

))

,

since the reduced model is completely described by the chemical coordinatesξi, h̄ andNk. The equa-

tion (52) can be also written in the diffusion, advection andreaction form (like (13) and (14)):

(53) ρ̄ (∂tNk + uj∂jNk) = ∂j

(

ρ̄D̄k∂jNk

)

+ ∂j

(

ρ̄Nk∂jD̄k

)

,

where both the diffusion coefficient

(54) D̄k =

(

n
∑

i=1

DiµikYi

Wi

)/

Nk

and the source term∂j

(

ρ̄Nk∂jD̄k

)

can be tabulated as functions of the grid parameters.

It has been found that the laminar flame speedsL of the current setup is around2.2[m/s], and it is

in good agreement with experimental data [18]. Hence, we would expect that, in the case discussed

in section 5, the flame assumes the typical triangular shape with the uppermost vertex located on the

nozzle centerline at aroundy = 2.1[mm], after stabilizing (see also Fig. 6 and 9). Nevertheless, we

have noticed from the computations that the flame stabilization does not occur, while it continues till

the inlet.

We believe that, the simple lattice Boltzmann model of Yamamoto et al. [21] is not capable to correctly

predict this phenomenon, mainly due to the assumption of decoupling the flow field from the chemical

reaction. Indeed, the stabilization occurs at the points ofthe domain where the flow becomes orthogonal

to the flame with a velocity equals tosL: however, the current model neglects both flow diffraction and

acceleration through the flame front. Therefore, the present study motivates additional investigations in

the near future, where the incompressible description for the flow field (12) and (15) shall be substituted

with compressible models like the one suggested in [23].

7. CONCLUSIONS

Here, we suggest a promising methodology for using accuratereduced chemical kinetics in combina-

tion with a lattice Boltzmann solver in reactive flows simulations. It has been shown that the method

of invariant grids (MIG) is suitable for providing the reduced description of detailed chemistry, and

this approach enables to cope with stiffness introduced by chemical source terms when solving species

equations. Moreover, with the help of a two dimensional laminar flame computation, we have demon-

strated that, model reduction procedures are twofold beneficial because they allow to both drastically

increase the time step and reduce the number of fields to solvefor: The above features are particularly
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desirable in the lattice Boltzmann method, where the numberof fields is significantly larger than con-

ventional methods, and explicit time scheme is adopted. Finally, possible extensions and improvements

to the current study are worked out.
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