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Crosstalk-Preventing Scheduling in Single-
and Two-Stage AWG-Based Cell Switches

Andrea Bianco, Senior Member, IEEE, David Hay, Member, IEEE, and Fabio Neri, Senior Member, IEEE

Abstract—Array waveguide grating (AWG)-based optical
switching fabrics are receiving increasing attention due to their
simplicity and good performance. However, AWGs are affected by
coherent crosstalk that can significantly impair system operation
when the same wavelength is used simultaneously on several
input ports. To permit large port counts in a AWG, a
possible solution is to schedule data transmissions across the AWG
preventing switch configurations that generate large crosstalk.
We study the properties and the existence conditions of switch
configurations able to control coherent crosstalk. The presented
results show that, by running a properly constrained scheduling
algorithm to avoid or minimize crosstalk, it is possible to operate
an AWG-based switch with large port counts without significant
performance degradation.

Index Terms—Arrayed waveguide grating (AWG), coherent
crosstalk, input-queued switches, optical switchings, scheduling
algorithms.

I. INTRODUCTION

I NTERNET traffic has been increasing at a pace faster than
Moore’s law, and electronic technologies may not be able

to support the realization of large packet switches and IP routers
in the near future. Power density and dissipation, in particular,
are becoming major bottlenecks [1]. Optical technologies may
help in overcoming intrinsic limitations of current switching
architectures [2], [3]. Indeed, photonic technologies exhibit a
number of interesting properties: a switching complexity almost
independent of the data rate, very high data rates supported via
large information densities on physical interconnections, no sig-
nificant constraints on the physical size of the switch and on
the length of internal switch interconnections (while electrical
backplanes and interconnects have severe distance limitations),
and very good scalability of power requirements.

All-optical packet switches are still far from being feasible
due to several limitations such as the lack of optical memories,
the very limited data processing capabilities, and the inherent
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difficulties in realizing functions in the time domain. Therefore,
switching architectures in the near future will exploit both elec-
tronics and photonic technologies [4]: Packet processing and
storing will likely be realized in electronics, while packet for-
warding will likely rely on an optical switching fabric.

A promising approach to realize an optic switching fabric is
to use a passive wavelength routing device with tunable trans-
mitters and receivers at the device’s inputs/outputs.

Given current line rates, packet switching requires very short
switching times, in the nanoseconds range. Few mature optical
technologies are available to build optical packet-switching fab-
rics and interconnects. One promising approach is to use a pas-
sive wavelength routing device with tunable transmitters at the
inputs. Switching is obtained by tuning transmitters to different
wavelengths. Thus, switching times are related to laser tuning
times. Solid-state tunable lasers with adequate tuning times are
available today. As for passive devices, arrayed waveguide grat-
ings (AWGs) [5] are a good candidate. AWGs are wavelength
routing devices that have been widely used in the commercial
deployment of wavelength division multiplexing (WDM) trans-
mission systems. They exploit well the advantages of the optical
domain, using wavelength agility to harness the large available
bandwidth.

AWGs are passive devices behaving as multiport interferom-
eters. In the configuration, AWGs act as wave-
length multiplexers (demultiplexers). In the configu-
ration, AWGs behave as wavelength routers: The information
at an input port is forwarded to an output port depending on
the selected wavelength. More specifically, at each input port,
different wavelengths are used to reach different output ports.
Since AWG devices are symmetrical, i.e., the role of input and
output ports and the direction of forwarded information can be
reversed, information is received at each output port from dif-
ferent inputs with different wavelengths. Overall, an
AWG can be simultaneously traversed by information flows,
one for each input/output pair, leading to a full mesh bipartite
connectivity exploiting space and wavelength separation.

The specific wavelengths used to route information through
an AWG depend on the device design, but commercial devices
typically exploit the ITU grid standard bands, with 100- or
50-GHz spacing. Although other wavelength assignments are
possible, we assume in this paper, with no loss of generality,
that: 1) the AWG operates with a set of wavelengths

; and 2) at input , ,
information is delivered to output , , using
wavelength , with being the wave-
length channel number. This cyclic behavior is typical of the
interferometric nature of the AWG, whose routing behavior is
replicated over the wavelength axis with a period called free
spectral range (FSR). Our assumptions on the AWG behavior
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Fig. 1. Considered routing for the AWG device.

Fig. 2. Simple single-stage AWG-based switch.

imply that only wavelengths are needed to support con-
nections over input and output ports. Fig. 1 depicts, for a
4 4 AWG, the wavelength behavior considered in this paper,
where superscripts refer to input port indices, and subscripts to
wavelength channel numbers.

We consider the nonblocking optical interconnection
among input and output ports depicted in Fig. 2. Slotted, syn-
chronous operation is assumed: fixed-size data units, named
cells, are temporarily buffered at input ports according to an
input-queueing (IQ) architecture, waiting for the availability of
the output line. To balance electronic and optical complexity,
each input port is equipped with a single tunable transmitter
(TT). Thus, at most one cell can be transmitted from each
input in each time slot, using the proper wavelength to reach
the chosen output. The adopted switch control (scheduling)
algorithm must ensure that at most one cell is forwarded
to each output at the same time to avoid output contention
where buffering is not available. Current schedulers typically
use virtual output queueing (VOQ) at inputs to achieve high
throughput: Incoming cells at each input port are stored in

separate first-in–first-out (FIFO) queues according to their
destination. Since, at each output port, cells are received at
a wavelength depending on the transmitting input port and,
at each time slot, at most a single cell is received at each
output, there is no need for tunable receivers at the outputs, and
single wideband receivers suffice. Yet, since each output port
receives (over time) cells from different inputs, burst-mode op-
eration—hence, wideband burst-mode receivers (WBMR)—is
necessary.

Note that in this setup, the AWG is largely underutilized, as
only at most out of the possible input/output connec-
tions are used at a given time. This underutilization is a direct
consequence of the single transceiver architecture assumed in
the paper, a constraint introduced to reduce the electronic com-
plexity of input/output line-cards. Indeed, given the increasingly
high transmission speeds, it is becoming overly difficult and ex-
pensive to support more than a single data flow at each input/
output port, especially when considering memory access speed.
Different AWG-based optical switching architectures have been
studied in the technical literature (e.g., [6]–[8]); although some
of these architectures achieve better performance, they require
a significantly higher electronic complexity and are not further
considered in this paper.

Fig. 3. Power penalties as a function of port count � in an � �� AWG.

Commercial AWGs provide uniform transfer functions
and extinction ratios among adjacent channels in the order
of 30–40 dB. These physical-layer characteristics are largely
sufficient for multiplexers and demultiplexers, successfully
used in commercial WDM systems. However, AWGs
are known to be affected by significant coherent crosstalk [9]:
When the same wavelength is used at different inputs, the cor-
responding output ports receive an in-band interference from
signals aimed at other output ports due to the finite extinction
ratio. If the same wavelength is used at all AWG inputs, the
maximum number of AWG ports is severely limited: Fig. 3
(from [10]) shows the power penalty in dB for a typical
AWG as a function of the number of ports . While insertion
losses (IL), nonuniformities of the transfer function (U), and
polarization-dependent losses (PDL) are almost independent of
the port count, in-band (or coherent) and out-of-band crosstalk
(IX+OX) increase sharply and limit the port count to around 15.
This would limit the possibility of using AWGs in large-size
switching fabric unless the coherent crosstalk is controlled.

We remark that several proposals in the literature assume
very large AWG port counts, even if this turns out to be unfea-
sible without countermeasuring the above-described crosstalk
impairments. These large crosstalks can only marginally be
reduced by improving the physical-layer behavior of the device
[11]. One possibility to overcome this impairment is to exploit
homologous wavelengths in several FSRs (as proposed in some
studies, e.g., [12]). However, this increases the operational
bandwidth of the system (possibly preventing the utilization
of optical amplifiers); furthermore, the behavior of the device
outside the principal FSR often degrades rapidly. The alterna-
tive approach pursued in this paper, and initially explored in
[13] and [14], is to prevent coherent crosstalk by controlling
AWG-based slotted switches with scheduling decisions that
avoid simultaneously using the same wavelengths at too many
different inputs. We show in this paper that this approach
can be very effective, limiting the number of inputs using
the same wavelength at the same time to few units without
reducing switching fabric performance. Our new results enable
the full exploitation of AWGs for packet-switching
applications. This novel approach is an important example of
the benefits of devising control algorithms that are aware of the
physical characteristics of the controlled optical devices.
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In this paper, the crosstalk-constrained scheduling problem
is formally formulated in Section II. We introduce the notion of

-legal permutations: A scheduling decision is -legal if each
wavelength is reused at most times in a given time-slot. By
choosing a proper value for , crosstalk figures can be controlled
and large port counts become feasible. In Section III, we dis-
cuss basic properties of the permitted switch configurations. For
1-legal permutations, we show that a difference exists between
odd and even values of the number of input and output ports

. In Section IV, we elaborate on the performance obtainable
with single-stage AWG switching architectures, showing that
uniform traffic patterns can be scheduled using 1-legal permuta-
tions with no speedup for odd and with a small speedup with
even . In Section V, we show that general traffic patterns can
instead be scheduled with 1-legal permutations using two-stage
switches using the same small speedup, VOQs between the two
switching stages, and cell resequencing at outputs. We also show
that 2-legal permutations permit to avoid intermediate VOQs
and resequencing problems for small values of . Finally, as
completely original contributions, in Sections VI and VII we
formally prove that a 2-stage AWG-based switch can be config-
ured with pairs of 4-legal permutations (or 3-legal permutations
in case is a prime number) with no buffering between the two
stages, proposing a switch control scheme with quadratic com-
plexity in the number of ports.

II. PROBLEM STATEMENT

The considered IQ switch handles fixed-size cells
that arrive at input ports and leave output ports in a time-slotted
manner: All the switch external lines are assumed to be syn-
chronized. In each time slot, the scheduler defines scheduling
decisions, where is the switch speedup. Due to the single-
transceiver-per-port assumption, at each scheduling decision,
at most one cell can be sent from each input port and at most
one cell can be sent to each output port. Thus, each sched-
uling decision is a permutation (or a partial permutation) of
port indices. We denote these permutations by vectors

, where is the output port index
to which input forwards a cell. Clearly, each output port index
can appear at most once in . If the scheduling decision creates
a partial permutation, some entries in are “don’t care.” We de-
note by the unit permutation: .

The traffic to be forwarded by the switch can be described by
a traffic matrix , where is the number of cells (or,
alternatively, the number of cells per time unit, or the number
of cells per time frame) that must be forwarded from input to
output . Using a matrix notation, an input/output permutation
could also be described by an permutation matrix, i.e.,
a 0–1 matrix , where rows (columns) represent inputs
(outputs), and if and only if input is connected to
output . In a permutation matrix, at most a single “1” is present
in each column and in each row.

Since we deal with an AWG passive router, cell forwarding
through the switching fabric is done by assigning to each cell a
wavelength out of a predetermined set of wavelengths

, according to the following rule.

A cell sent from input port with wavelength is
forwarded to output port .1

1In the remainder of the paper, the ���� operator, denoting the remainder
of the division by � , may be omitted to improve readability.

Given a permutation , we call the wavelength assign-
ment of ; that is, the vector of indices of the wavelengths that
are needed at the input ports to realize permutation . Note that,
with our wavelength assignment rule, the wavelength used to
reach output from input is . Hence,

when is the identity permutation. As men-
tioned in Section I, other wavelength assignments are possible,
depending on the design of the AWG device. These different
wavelength behaviors can in some cases (for example, if output

is reached from input using ) be modeled
by relabeling wavelengths and ports in our formalization, so the
properties outlined in the sequel hold for several AWG wave-
length assignments.

Recall that performance degradation due to the coherent
crosstalk arises when several different input ports in an
AWG-based switch simultaneously use the same wavelength
to send cells to different output ports. The impairments due to
coherent crosstalk increase as the number of input ports using
the same wavelength increases, up to the point in which the
switch operation becomes impossible; this limit was estimated
to be around 15 in [10]. We focus on avoiding such effects by
restricting the switch scheduler to use only a certain type of
permutation.

Definition 1: A permutation is -legal if, in the vector
, no index appears more than times.

represents the maximum number of times the same wave-
length is used at different input ports in a given scheduling deci-
sion. Our goal is to build a switch that can handle the incoming
traffic using only -legal permutations, with the smallest pos-
sible value of , to minimize crosstalk.

III. PROPERTIES OF -LEGAL PERMUTATIONS

We start by investigating the properties of -legal permuta-
tions. Definition 1 immediately implies that a permutation is
1-legal if and only if its wavelength assignment is also a
permutation. Note that any -legal permutation is also -legal,
for any . Furthermore, we have the following
lemma.

Lemma 3.1: Let , such that all its ele-
ments are . If a permutation is -legal, then the permutation

is also -legal.
Proof: Assume toward a contradiction that is not

-legal, so in there exist indices
such that . This implies that

. Since
, it follows that ,

implying that has identical elements. This contradicts
the assumption that is -legal, and the claim follows.

Next, we show how to build 1-legal permutations for odd
values of .

Lemma 3.2: If is odd, then there exists a 1-legal permuta-
tion of .

Proof: Let be the following permutation:

If , then is even and does not equal 0. Since
is odd, this implies that , implying that

. Hence, is a permutation.
The wavelength assignment of is

which is clearly a permutation. Thus, is 1-legal.
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Note that similar arguments prove that the anti-diagonal per-
mutation , whose wavelength assignment is , is also a
1-legal permutation.

The following lemma deals with even values of . The proof
is omitted because the result was independently proven in [13].

Lemma 3.3: If is even, there is no 1-legal permutation of
.

We next deal with 2-legal permutations.
Lemma 3.4: For every , there is a 2-legal permutation of

.
Proof: Since every 1-legal permutation is also a 2-legal

permutation, the claim follows immediately by Lemma 3.2 for
odd values of .

Assume that is even, and consider the following assign-
ment permutation:

.

Clearly, is a permutation: Its first half covers all the even
output ports, and its second half covers all the odd output ports.
We now compute the wavelength assignment of

.

Clearly, each input port except input port 0 and has
a different wavelength assignment, while for input ports 0 and

we get , implying
that is a 2-legal permutation. Hence, we have a 2-legal
permutation with only one wavelength repetition.

IV. SINGLE-STAGE AWG-BASED SWITCHES

We first consider a single-stage AWG switch. We denote by
and the normalized load (i.e., the average traffic divided

by the port speed) at input and output , respectively,
. A traffic pattern is admissible if, for each and

each , and . We start by investigating the
speedup required to realize any adversarial traffic pattern.

A. Worst-Case Traffic

Due to the AWG switch crosstalk impairments, the most
difficult traffic to handle is “generalized diagonal” traffic, in
which all cells from input port are directed to output port

, with the same value
of for each input port: All inputs are forced to use the same
wavelength to reach the proper output. As a consequence, under
generalized diagonal traffic, if we are restricted to -legal per-
mutations, at most cells can be forwarded in any scheduling
decision, implying that the required speedup is . Since

should be a small constant (less than 16, as shown in [10],
but possibly even smaller, in case of all-optical cascades of
switching stages) to avoid coherent crosstalk impairments, this
implies that single-stage AWG switches with large port counts
require prohibitive speedups to cope with such an adversarial
traffic. In contrast, a crossbar switch, in which there is no
restriction on the permutation used, can schedule generalized
diagonal traffic with speedup .

B. Uniform Traffic

Let us now focus on the classical uniform traffic pattern,
where the uniform traffic matrix is an matrix whose

elements are all , where is the normalized load at
each input and output . It is well known
that an uniform traffic matrix can be scheduled using
a fixed time-division multiplexing (TDM) approach, in which,
during a frame of time slots, each input is in turn connected
to the different outputs. This can be interpreted as the de-
composition of matrix in a set of “covering” permutation
matrices. If we ignore the constraint of using only -legal
permutations, a possible decomposition of matrix is achieved
through a set of generalized diagonal (switching) matrices

, where
and is a vector in which all elements are . For example, in
the case , we have the following decomposition:

We look for a decomposition of a uniform traffic matrix to
-legal permutations, and we wish to determine the minimum

number of -legal subpermutations needed to decompose a uni-
form traffic matrix.

1) Scheduling Uniform Traffic Using 1-Legal Permutations
When Is Odd: If is odd, we use the following covering
sequence of 1-legal permutations, in which each input/output
pair is connected exactly once:

, where is the permutation defined in Lemma 3.2
and is the -vector whose elements are all equal to . Being
that is odd, by Lemmas 3.2 and 3.1, all permutations in are
1-legal. Furthermore, each input port is connected to output
port if and only if the permutation with

is used.
2) Scheduling Uniform Traffic Using 1-Legal Permutations

When Is Even: Recall that by Lemma 3.3, no 1-legal permu-
tation exists when is even. Thus, we cannot apply the same
strategy as with odd values of .

A straightforward way to get around this problem is to add
another port to the switch making its port count odd. The cost
of adding ports relative to the entire switch is called the spatial
speedup of the switch, and in this case, it is (a single
additional port should be added for existing ports). Note that
the extra port will not be active in sending/receiving cells, hence
it does not add complexity in term of transceiver hardware.

3) Scheduling Uniform Traffic Using 2-Legal Permutations:
When is odd, we already found in the previous section a
scheduling for uniform traffic providing 100% throughput with
no speedup, i.e., relying on 1-legal permutations. When is
even, and we permit 2-legal permutations, we can use the set

, where is the permu-
tation defined in Lemma 3.4 and is an -vector whose all
elements are . The correctness of the construction is identical
to the one described for 1-legal permutations.

Rettangolo



146 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011

Fig. 4. Two-stage AWG-based switch. Electronic paths and components are highlighted with thick lines.

In summary, in a single-stage AWG-based switch, uniform
traffic can be scheduled using 1-legal permutations with no
speedup when is odd. When is even, a spatial speedup
of is required for 1-legal permutations. Alternatively,
2-legal permutations with no time or space speedup can be
used. However, the worst-case traffic scenario implies that a
prohibitive time speedup of is required to schedule all
admissible traffic patterns under the -legal constraint. To cope
with this issue, in the rest of the paper, we present and study
two-stage architectures that are able to efficiently deal with any
admissible traffic.

V. TWO-STAGE ARCHITECTURES

In this section, we consider an AWG-based two-stage switch
architecture. We adapt the two-stage Load-Balanced Switch, in-
troduced in [15] and briefly recalled below, and schedule the
AWGs switching stages to operate with -legal permutations.

A. Two-Stage Load-Balanced Switch

The Load-Balanced Switch (Fig. 4) consists of two switching
stages: The first stage performs load balancing of the incoming
traffic, while the second stage performs the actual switching
of cells to their destination. The basic idea is to transform any
generic traffic pattern at the switch input into a uniform traffic
at the output of the first stage, hence at the input of the second
stage. To achieve this, cells arriving at one input in the first
stage are forwarded in turn to all outputs of the first switching
stage, regardless of the final output port. This permits to evenly
distribute the considered input load to all first-stage outputs.
Since this traffic “spreading” operation is performed at all
inputs, all first-stage outputs receive, on average, the same
amount of traffic, under mild input traffic stationarity condi-
tions. The traffic at the input of the second stage is therefore
uniform: same load at all ports, and equal probability for any
input/output pair. This uniform traffic can be easily forwarded
in a load-balanced switch by a fixed TDM switch schedule in
the second stage, providing 100% throughput if the traffic is
stationary and weakly mixing,2 excellent delay performance,
and efficient buffer usage.

It is important to notice that no cell buffering is required
at inputs, as arriving cells are immediately forwarded. VOQ
buffering is instead required between the two stages (cells
destined for different output ports are stored in separate
FIFO buffers), in which cell queues may build up in case of
congestion.

The load-balancing operation with VOQ buffering between
the two switching stages has the drawback of out-of-sequence

2A stochastic sequence ������ � � �� is weakly mixing [15] if for all��� �
, ��� �� ��� ����� � � �� � � ������� � ������ �

��� 	 
, where � � is the sequence � shifted by � time slots: � � 	 ���� �
��� � � ��. Note that each weakly mixing stochastic sequence is also ergodic.

cell delivery. To avoid this, either resequencing modules must be
introduced at the outputs of the second stage, or more complex
queuing structures and policies must be used between the two
stages [16]–[18]. Both solutions increase complexity and must
be implemented in the electronic domain.

The scheduling in the two stages can be fully dis-
tributed—i.e., based on local decisions at each input
port—without any coordination among different ports, apart
from a switch-wide slot synchronization, provided that traffic is
weakly mixing, to avoid adversarial patterns that would impair
the load-balancing effect when the first stage is operated in
fixed TDM. It can be easily understood that, for both switch
stages, the scheduling translates into a periodic sequence of

permutations, such that each input/output pair is connected
exactly once in each period. This is equivalent to scheduling
uniform traffic matrices in both stages; hence, the scheduling for
the two-stage load-balanced switch must cyclically run
over a set of covering permutations for a uniform (i.e., com-
prising all equal values) traffic matrix. While these covering
permutations can be found in several ways, we are interested,
for the AWG-based switch, in a set of -legal permutations,
which can be obtained as described in Section IV-B1.

Note that the two switching stages can be interpreted
as a twofold speedup realized in the space domain: Up to
cells are simultaneously switched in every time slot.

Implications to AWG-Based Switches: The results from the
previous sections imply that any traffic pattern in the two-stage
AWG-based load-balanced switch can be scheduled with no
speedup in each stage when the number of ports is odd. A spa-
tial speedup equal to is needed in the case of even
number of ports. If considering the two-stage architecture as a
switch spatial speedup, a generic traffic matrix can be sched-
uled with a speedup of 2 (respectively, ) for AWGs
with odd (respectively, even) number of ports. Since the spatial
speedup avoids any speed increase in components and transmis-
sion lines, this architecture is well suited for the optical domain,
keeping the electronic speed in the feasible domain of today’s
technology.

B. Avoiding Buffers in the Middle Stage

A promising approach to circumvent the need for buffering in
the middle stage and resequencing at the egress is to control the
AWG in both stages simultaneously so that their combination
will produce the desired permutation. In this setting, suppose we
have an oracle crossbar scheduler that produces a sequence of
permutations; our goal is to realize each of these permutations
using two -legal permutations and such that

, where denotes function composition. We call the pair of
permutations a -legal decomposition of . Since the
oracle may produce any permutation of , our
algorithm must be able to decompose all permutations. Fig. 5
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Fig. 5. Illustration of a 1-legal decomposition of the identity permutation in a 5� 5 switch using permutations � � ��� �� �� �� �� and � � ��� �� �� �� ��.
Both � and � are 1-legal permutations.

Fig. 6. Two-stage AWG-based switch with no internal buffering. Electronic paths and components are highlighted with thick lines.

depicts a 1-legal decomposition of the identity permutation in a
5 5 switch.

The resulting architecture is depicted in Fig. 6, where tun-
able wavelength converters (TWCs) (or equivalently, a WBMR
followed, with no cell buffering stage, by a TT) are needed be-
tween the two stages to create the proper permutation. With this
solution, VOQ buffering and O/E/O conversions are no longer
required between the two stages, and cell out-of-sequence de-
livery is eliminated. VOQs are however needed in front of the
first-stage, similarly to the classical IQ switch architecture de-
picted in Fig. 2.

Besides eliminating the need for buffering in the middle
stage, our decomposition approach has other significant advan-
tages over the two-stage Load-Balanced Switch approach. First,
while the load-balanced switch provides 100% throughput on
a wide range of traffic patterns, there are still pathological
traffic patterns that make its throughput arbitrarily small
[19, Ch. 1.3.3]. Moreover, load-balanced switches require a
full switch reconfigurations at each scheduling decision; these
reconfigurations may become infeasible as the line rates grow.
Lastly, the two-stage load-balanced switch is only aiming
at providing 100% throughput; however, there is no bound
on other important performance measures such as latency,
smoothness (delay jitter), or fairness. These measures are
crucial to provide the stringent QoS required by contemporary
applications, and therefore a thorough research was done in the
last decade to devise scheduling algorithms that perform better
under these metrics (see, for example, [20] for a comprehensive
survey).

Our decomposition algorithms offer a modular black-box
approach in which any existing (or future) scheduling algorithm
can be converted to be a crosstalk-preventing algorithm. We in-
deed model the scheduling algorithm as an oracle whose output
is its switching decisions (that is, a sequence of permutations).
Our algorithms get these permutations (one by one) as an input
and produce the necessary -legal permutations needed for
crosstalk-preventing scheduling (see illustration in Fig. 7). It
is thus suited to operate with any input-queuing scheduling
algorithm.

For example, to reduce the number of reconfigurations of the
AWG devices one can use a scheduling algorithm that takes
into account the reconfiguration delays and aims at minimizing

Fig. 7. Exploiting an oracle to implement a decomposition.

the total delay (e.g., [21]–[23]). Since the changes in permu-
tations under such schedulers are not frequent, the number of
needed decompositions decreases accordingly, thus facilitating
the computation demands of our decomposition algorithms.

We now discuss for which values of a -legal decomposi-
tion exists for all permutations.

Impossibility of Using 1-Legal Permutations: Recall that by
Theorem 3.3, no 1-legal permutation exists for even ; this im-
plies that no 1-legal decomposition exists. However, we are able
to prove, by a counterexample, that no 1-legal decomposition al-
gorithm exists for any , regardless of its parity.

Theorem 5.1: For any , the following permutation
has no 1-legal decomposition.

Proof: Assume that there is a 1-legal decomposition of
into two 1-legal permutations and . Let

and be the wavelength assignments of and
, respectively. Since and are 1-legal, and are

permutations. Since for every , , then
. Thus, in the composite permutation

, as required.
Since is a permutation, the remaining elements
and must use the remaining values

and . If , this results
in . Thus,
we should have and

, implying that
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TABLE I
NUMBER OF FIRST-STAGE PERMUTATIONS NEEDED TO PROVIDE

A 2-LEGAL DECOMPOSITION

, which in turn implies that
since . This

yields that
, which contradicts that is a permutation, and the

claim follows.
Decomposition Using 2-Legal Permutations: We continue by

investigating 2-legal decomposition algorithms. First, for
, Theorem 5.1 and the fact that each permutation of is

either 1-legal or 3-legal immediately implies the following.
Corollary 5.2: There is no 2-legal decomposition algorithm

for .
For , we verified by exhaustive search that any

permutation of can be 2-legally decomposed.
Hence, we can state the following theorem.

Theorem 5.3: There exists a 2-legal decomposition for all
permutations with .

Furthermore, it is important to notice that, given a permu-
tation , by choosing a 2-legal first permutation , one only
needs to verify that is 2-legal to decide whether
the decomposition is legal. Our experiments, reported in Table I,
show that, to decompose any permutation , it is sufficient to
choose from a small set of 2-legal permutations. Since

can be precomputed and programmed directly in the sched-
uler of the AWG, it implies that it is feasible to implement this
scheduler for these values of . Table I shows the size of
for different values of .

We were not able to find an algorithm to compute a 2-legal
decomposition, nor we were able to prove that 2-legal decom-
positions exist for every . We thus leave these two issues as
open research problems and formulate the following conjecture,
partially supported by our exhaustive searches for small values
of :

Conjecture 5.1: There exists a 2-legal decomposition for all
permutations with .

The main contributions of this paper regard 4-legal and
3-legal decompositions, for which we provide constructive
rules and complexity assessment in the next sections.

VI. 4-LEGAL DECOMPOSITIONS

In this section we describe a decomposition algorithm that,
for any and any permutation of , finds a
4-legal decomposition of .

We start by describing a method to “correct” a nonlegal de-
composition. This method is general for every -legal decom-
position, and it constitutes a single iteration of our algorithm.
The procedure (see Algorithm 1 for a pseudocode description)

Fig. 8. Illustration of a (0, 1)-transposition of the decomposition of the identity
permutation depicted in Fig. 5. The resulting decomposition uses permutations
� � ��� �� �� �� �� and � � ��� �� �� �� ��.

uses transpositions of middle-stage ports, which are defined as
follows.

Definition 2: Given a decomposition of , the -
transposition of is a decomposition of into permuta-
tions such that

otherwise.

otherwise.

It is easy to verify that and are still permutations and
that . Fig. 8 illustrates a (0, 1)-transposition of the
decomposition described in Fig. 5.

Algorithm 1 A Correction Procedure of a Decomposition
Using a Single Transposition.

1: procedure CORRECT

2: is an (arbitrary) wavelength used in more than
times

3: is an (arbitrary) input port of using wavelength

4: is the set of wavelengths used in at least
times

5: is the set of wavelengths used in exactly
times

6: is the set of wavelengths used in at least
times

7: is the set of wavelengths used in exactly
times

Recall that all calculations are modulo

8:
9:
10:
11:
12:
13:
14: Find a middle-stage port such that

15: if no such exists then
16: return The algorithm fails
17: else
18: transposition of
19: return
20: end if
21: end procedure
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The process of correcting a permutation is captured by a po-
tential function that counts the minimal number of input ports
that should be corrected to make permutation -legal and is
formally defined as follows.

Definition 3: Let be the number of appearances
of wavelength in . The -potential of , denoted

, is .
Clearly, the highest possible potential value is , given

to the identity permutation . On the other hand, each -legal
permutation has a -potential 0.

The correction is done by swapping a middle-stage port ,
whose wavelength is used more than times by
(we call such a port a violating port), with another middle-stage
port . Assuming to be -legal, is chosen under the fol-
lowing constraints.

1) In the first stage, the wavelength assigned to reach from
keeps -legal. Set (Line 8) contains all the

choices of violating this constraint.
2) In the first stage, the wavelength assigned to reach from

keeps -legal. Set (Line 9) contains all the
choices of violating this constraint.

3) In the second stage, the wavelength assigned to reach
from is not a critical wavelength (that is, it is not already
used times or more). Set (Line 10) contains all the
choices of violating this constraint.

4) In the second stage, the wavelength assigned to reach
from is not a critical wavelength. Set (Line 11) con-
tains all the choices of violating this constraint.

5) Sets and (Lines 12-13) deal with the delicate sit-
uation in which the wavelength assigned to is the same
as the wavelength assigned to . In such a case, violating
the -legality of can happen even if the wavelength was
used only times in . Similarly, in such a situation
a wavelength is critical in even if it is used only
times.

These constraints yield the following lemma (see proof in
Appendix A).

Lemma 6.1: A nonfailed execution of Algorithm 1 with a
first-stage -legal permutation and a second-stage permuta-
tion such that yields a -legal first-stage per-
mutation and a second-stage permutation with strictly smaller
potential.

We proceed now by describing the 4-legal decomposition
algorithm that is based on this correction procedure. Algo-
rithm 2 starts with a 4-legal permutation (either , which
is 1-legal, or , which is 2-legal) and computes the required

to realize permutation . Clearly, in general is not
4-legal. Then, the algorithm corrects , keeping the following
invariant.

is a 4-legal permutation throughout the execution of the
algorithm.

The following lemma will prove that in this algorithm, the
invocation of CORRECT procedure in Line 8 never fails. Specif-
ically, we will show that as long as is not a 4-legal permuta-
tion, it is possible to choose a middle-stage port that keeps all
the constraints. Then, in Theorem 6.3 , we will show that the
algorithm always stops after iterations, thus establishing
its correctness and its time complexity.

Lemma 6.2: At each invocation of procedure CORRECT at
every execution of Algorithm 2 (Line 8), there is a valid choice
of a middle-stage port in Line 14.

Algorithm 2 A 4-Legal Decomposition Algorithm That
Decomposes a Permutation of to Two
Permutations and

1: if is even then
2:
3: else
4:
5: end if
6:
7: while is not 4-legal do
8: CORRECT

9: end while
10: is a 4-legal decomposition of

Proof: We first observe that fixing a middle-stage port
implies that and are also fixed. Thus, each wave-
length adds a single port to and a single port to .
Similarly, each wavelength adds a single port to and
a single port to . Hence, the size of the sets and is
bounded by and the size of and is bounded by .
Similarly, the size of is bounded by , and the size of
is bounded by .

We focus now to , whose size is bounded by
. In addition,

, since by definition , and each wavelength in
must be used by at least four different ports, while each wave-
length in requires three ports. (For example, if , it
is not possible that each of the wavelengths of is used at least
four times.) By solving this simple linear optimization problem,
we get that the largest possible size of is , ob-
tained when and . We continue by evalu-
ating , which has a similar analysis except for the
following fact: Since port has a wavelength that is used more
than four times in (Lines 2-3), , yielding that

and , and, obviously, . Therefore,
.

This implies that
. Therefore, there is always a middle-stage port

such that and Line 14 can be executed. Note that,
since , the chosen middle-stage port is not equal
to .

Theorem 6.3: For any and any permutation of
, Algorithm 2 finds a 4-legal decomposi-

tion of in time.3
Proof: Consider an arbitrary permutation . Let be the

initial first-stage permutation, and be the initial second-stage
permutation resulting in executing Line 2 in Algorithm 2. De-
note by . By Lemma 6.2, the invocations
of CORRECT never fails. Thus, Lemma 6.1 implies that each it-
eration of the algorithm (Lines 7-9) decreases the potential of

by at least 1, implying that after iterations, the po-
tential of the second-stage permutation is 0. Therefore,

3Under the standard RAM model [24], in which it takes a constant time to
read or write a memory word, to compare two values and to perform standard
arithmetic operations.
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is 4-legal. In addition, since the CORRECT procedure never fails
and the initial first-stage permutation is 4-legal, Lemma 6.1
also yields that first-stage permutation is also 4-legal after
iteration . Since: 1) the only changes in the permutations were
made by transpositions (Line 18); and 2) after the execution of
Line 6, , Definition 2 implies that, when the algo-
rithm ends, is still . Therefore, is a 4-legal
decomposition of .

We now turn to derive the time complexity of the algorithm
by first showing that each invocation of Algorithm 1 has a linear
time complexity. Since Algorithm 1 has a constant number of
instructions (that is, there are no loops), it suffices to show that
each instruction takes at most linear time.

We assume that each permutation is stored as an array of
size , and that it takes a constant time to read or to write an ele-
ment of this array. Counting the number of appearances of each
wavelength in a permutation can be done in a single pass (that
is, in a linear time) on the permutation array: Let be the per-
mutation array and be an array of integers (in which
the results are stored); then, when reading , one should in-
crement by one (constant number of
arithmetic operations). This implies that Lines 2, 6, and 7 of
Algorithm 1 take linear time (single pass on ), and sim-
ilarly Lines 4 and 5 (single pass on ); we assume that
the results of Lines 4–7 are stored in an -bit array in which
bits are set if and only if the corresponding wavelength is in
the set. Line 3 requires a single pass on (checking whether

), thus also taking a linear time.
Notice also that for each permutation , the inverse per-

mutation can be computed in a single pass on since
. , which we assume is stored also in an -bit

array, can be computed in linear time by considering
and checking for each if .
Similarly, Lines 9–13 also can be computed in linear time. Line
14 may take at most comparison operations (by comparing,
for each and , whether

for all ). Line 18 is a simple swap operation that
takes a constant time.

Thus, each iteration is linear in the number of ports, and the
number of iterations is bounded by , implying a time com-
plexity of (notice that Line 6 of Algorithm 2, which is
executed only once, also has a linear time complexity).

Note that our algorithm can be used also for , but we
could not prove its convergence in this case, except for the spe-
cial case and prime, which is discussed in the next
section.

VII. 3-LEGAL DECOMPOSITIONS

In this section, we assume that is a prime number and de-
scribe how to modify Algorithm 2 to achieve a 3-legal decom-
position. For nonprime numbers, this implies that the device
needs some spatial speedup, which can be bounded by 1.375.
The maximum speedup is needed for , when three addi-
tional ports are required.4

The key insight behind the algorithm for prime is that by
carefully choosing the first pair of permutations, one can de-

4For � � ��, this claim follows by applying Rosser and Schoenfeld’s
bounds on the prime-counting function [25], showing that its value for � is
strictly less than its value for ����� � . For � � ��, the statement can be
verified manually.

crease the number of iterations needed by the algorithm to com-
plete. In addition, a finer analysis shows that the size of sets
and (that is, the set of wavelengths that are used three or two
times in the first-stage permutation) in some iteration depends
on . Thus, for small , one can always find a middle-stage port

to decrease the potential of the second-stage permutation.
We start by characterizing a set of candidate permu-

tations for the initial first-stage permutations. Specifically, we
show in Lemma 7.1 that all permutations are 1-legal and that
if a pair of middle-stage ports share the same wavelength in a
second-stage permutation induced by one of the candidates, they
cannot share the same wavelength in any of the second-stage
permutations induced by all other candidates. Lemma 7.1 ap-
pears in Appendix B to enhance readability.

Lemma 7.1: If is a prime number, then for every
, the permutation defined as follows:

is a 1-legal permutation. Furthermore, for any permutation of
, for every , and for

every , if and
, then .

We next show that choosing the best candidate among all
these permutations significantly improves the worst-case poten-
tial of the induced second-stage permutation.

Lemma 7.2: The 3-potential of in Line 2 of Algorithm 3
is at most .

Algorithm 3 A 3-Legal Decomposition Algorithm That
Decomposes a Permutation of to Two Permutations and

, Assuming That is a Prime Number.

1:
as defined in Definition 7.1

2:
3: while is not 3-legal do
4: CORRECT

5: end while
6: is a 3-legal decomposition of

Proof: Assume toward a contradiction that .
Note that by Line 2 of Algorithm 3 and by the assumption, for
each ,
where . For each such permutation , we count
the number of input/output pairs that use the same wavelength
under the permutation and show that to realize a potential of at
least , we need to have at least such pairs.

Recall that by Definition 3,
. We focus on the set

of wavelengths in which ; notice that,
for each such wavelength, the number of pairs we count is

, while the potential it contributes is
. Thus, the number of pairs per potential unit is

This term is minimized when .
Since is an integer, it implies that the number of
pairs per potential unit is minimized when is either
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5 or 6, which in both cases yields five pairs per potential unit,
and at least pairs for a potential of .

Lemma 7.1 implies that two input ports that use the same
wavelength in a permutation cannot use the same wave-
length in another permutation. This implies that we cannot add
the same pair twice. Thus, to realize a potential of in all

permutations, we need distinct pairs.
However, for every , ,
which is the maximum number of pairs and, hence, a contra-
diction. For and , all permutations are 3-legal.
Therefore, trivially the 3-potential of is 0. For , we
verified by exhaustive search that the claim holds, and that the
potential of is always 0.

It is important to notice that Lemma 6.1 holds for any value of
. In particular, it implies that the number of iterations required

for Algorithm 3 to stop is at most .
It is left to prove that the algorithm can proceed in each iter-

ation (see Appendix C).
Lemma 7.3: At each iteration of every execution of Algo-

rithm 3, the procedure CORRECT does not fail.
Finally, the correctness of our algorithm is given by the fol-

lowing theorem.
Theorem 7.4: For any prime and any permutation of

, Algorithm 3 finds a 3-legal decomposition of
in time.

Proof: Consider an arbitrary permutation . Let be the
initial first-stage permutation chosen in Line 1 and the initial
second-stage permutation resulting in executing Line 2. Denote
by . By Lemma 7.2, . By Lemma 7.3, the
invocations of CORRECT never fails. Thus, Lemma 6.1 implies
that each iteration of the algorithm (Lines 3-5) decreases the
potential of by at least 1, implying that after iterations
the potential of the second-stage permutation is 0. Therefore,

is 3-legal. In addition, since the CORRECT procedure never
fails and the initial first-stage permutation is 3-legal, Lemma
6.1 also implies that the first-stage permutation is also 3-legal
after iteration . Since: 1) the only changes in the permutations
were made by transpositions (Algorithm 1, Line 18); and 2) after
the execution of Line 2 , Definition 2 implies that
when the algorithm ends, is still . Therefore,
is a 3-legal decomposition of .

The running time of the algorithm is derived by the fact that
each iteration is linear in the number of ports (see details in the
proof of Theorem 6.3) and the number of iterations is bounded
by .

VIII. HARDWARE CONSIDERATIONS

In this section, we take a closer look at our 4-legal decompo-
sition algorithms (Algorithms 1 and 2) and present a linear time
parallel implementation, assuming that the following primitives
are available and that they operate in constant time (independent
of ).

1) Bit-wise operations of width , including circular shifts
(bit-wise rotations). We denote circular shifts by
(e.g., ). Note that cir-
cular shifts can be implemented by two arithmetic shifts
and a bit-wise OR.

2) -bit priority encoder, which given a vector of bits re-
turns the index of the left-most bit set to 1.

TABLE II
DATA STRUCTURES MAINTAINED WHEN IMPLEMENTING ALGORITHMS 1 AND 2

3) Applying a permutation on a bit-array of length ;
the resulting bit-array will have the following property:

if and only if . Since is a per-
mutation, this can be computed without conflicts using
parallel operations.

We divide the operations of the algorithm into three phases.
The first phase is executed only once at the algorithm setup and
takes linear time. The second and third phases are executed in
at most iterations, each taking constant time.

Setup Phase: This phase consists of computing the initial
value of the data structures depicted in Table II. We assume that
all sets are represented by bit arrays of width such that a bit

is 1 if and only if element is in the set. Each
permutation is stored by an array of bits, such that
its th element holds (explicitly) the value in bits.
The mappings and are arrays of sets:
holds the set (represented as a bitmap) of middle-stage ports
using wavelength in ; moreover, we assume there is
an additional counter that counts the number of middle-stage
ports using each wavelength in each permutation.

Clearly, all values can be computed in linear time (notice that
there are exactly -bits in matrices and and in map-
pings and ; furthermore, the sum of all the counters in
each mapping is also ).

Body Phase: This phase is computing the value of the
middle-stage ports and , which are used for the -trans-
position (Algorithm 1, Line 18).

First, we note that choosing the input , which we need to
correct (Line 3, Algorithm 1), can be done by applying a priority
encoder on set . Given , one can compute in constant time the
values and .

Second, we notice that sets can be computed in
constant time using the primitives: ,

, is obtained by applying permutation
on , and is obtained by applying permutation

on . Set is computed in two steps: First we
compute the set by applying on

, then we intersect it with set using a
bit-wise AND. Similarly, set is computed by intersecting set

with set .
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Finally, the set is obtained by
a bit-wise OR on the corresponding sets, and the middle-stage
port (Algorithm 1, Line 14) is obtained by applying a priority
encoder on the negation of this result.

Update Phase: In this phase, we update our data struc-
tures to reflect the transposition of (Algorithm
1, Line 18). We note that this transposition involves only a
constant number of changes. Namely, only two middle-stage
ports and at most eight wavelengths: four added wavelengths

and four removed
wavelengths . Note that
the number of middle-stage ports using a specific wavelength
can be checked in constant time by reading the corresponding
counter in mappings and . The algorithm terminates
when after the update phase.

A detailed example of a complete run of the algorithm is
worked out in Appendix D.

Finally, we note that this implementation works also for our
3-decomposition algorithm (Algorithms 1 and 3) with the fol-
lowing change in the setup phase: When computing (Algo-
rithm 3, Line 1), one should compute in parallel each value of

for each , and then choose the
permutation with minimum potential. Each such computation
takes linear time; thus, with parallelism, the setup phase works
in linear time also in this case.

IX. CONCLUSION

In this paper, we studied ways to overcome coherent crosstalk
impairments in AWG-based optical switching fabrics. The no-
tion of -legal permutations was introduced, in which each
wavelength is reused at most times. We first found proper-
ties of 1-legal permutations, showing that a difference exists
between odd and even values of the number of input and output
ports . We then showed that uniform traffic patterns can be
scheduled in input-queued cell switches using 1-legal permuta-
tions with no speedup for odd and with a small speedup with
even . General traffic patterns can instead be scheduled with
1-legal permutations using two-stage load-balanced switches
using the same small speedup, no input queues, VOQs between
the two switching stages, and cell resequencing at outputs.

Finally, the major contribution of our paper is that we were
able to formally prove that a two-stage switch can be configured
with pairs of 4-legal permutations with no buffering between
the two stages, and a quadratic decomposition algorithm is pre-
sented. 3-legal permutation pairs can be algorithmically found
when the number of ports is a prime number, or when a small
spatial speedup is introduced for arbitrary number of ports.

In summary, our results show that by using proper hardware
configurations and scheduling algorithms, the physical-layer
impairments due to coherent crosstalk can be practically ne-
glected in AWG-based optical switches with arbitrary number
of ports.

APPENDIX A
PROOF OF LEMMA 6.1

We first focus on the first-stage permutation. The proof fol-
lows from the construction of the algorithm.

Assume is -legal in the beginning of the execution, and
denote by the first-stage permutation resulting by executing

Line 18. Assume by the way of contradiction that is not
-legal, implying that at a wavelength is used (strictly)

more than times. The only wavelengths that were introduced
to first-stage permutation are and

, implying that is either or .
If and , appears times in , and

therefore it belongs to ; thus, , contradicting Line
14. If and , it implies that appears times
in and therefore belongs to ; thus, , contradicting
Line 14.

We consider now the case that , which implies
that . If appears times in it
belongs to and , contradicting Line 14; otherwise, if

appears times in it belongs to and , also
contradicting Line 14.

Thus, we showed that all cases contradict the choice of at
Line 14, hence either the algorithm fails (no valid choice of
exists) or is -legal and the claim follows.

We now turn to show that if the algorithm does not fail, the
potential of the second permutation strictly decreases. Since the
algorithm succeeds, the transposition in Line 18 is executed; let

and be the ports used for this transposition. Furthermore,
denote by the second-stage permutation at the beginning of
the execution, and let be the second-stage permutation after
executing Line 18.

We will consider the following four wavelengths:
, , , .

We notice that the only changes in the number of appearances
was in these four wavelengths, therefore

(1)

(2)

(3)

(4)

(5)

(6)

where (1) holds by Definition 3 and (2) is since the only changes
are related to wavelengths .
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The gist of the proof lies in inequality (3) and is due to the
fact that for each , :
Assume otherwise, and consider first the case where .
Thus, if , it implies that , hence

, and therefore , contradicting Line 14; similarly,
implies , also contradicting Line 14. In

case , implies that ,
hence and , and therefore ,
which contradicts Line 14 as well.

Inequality (4) holds because each term in the first summation
is nonnegative by definition. Inequality (5) stems from the fact
that the number of appearances of decreases between and

unless or ; in the latter case, with the same

reasoning of (3), we get that , and
inequality (5) follows as well. Finally, inequality (6) holds since
by the choice of in Line 3, , and therefore

(7)

and . Therefore, is not equal to or , which
immediately implies that

(8)

Combining (7), (8), and the fact that

immediately yields inequality (6).

APPENDIX B
PROOF OF LEMMA 7.1

We first prove that for every , is a
permutation. Assume is not a permutation, thus there are
such that and , implying that

. Note that since is a prime and ,
implies the existence of a zero-divisor in

the field , which is a contradiction.
Furthermore, for every , is 1-legal

since the wavelength assignment is
also a permutation because .

We conclude by showing the claim on the induced second-
stage permutation. Assume, without loss of generality, that

. We first observe that, for each and ,
. Thus, we can state that

(9)

(10)

By subtracting (9) from (10) we get
. Note that , thus

since is a permutation.

APPENDIX C
PROOF OF LEMMA 7.3

In order to prove Lemma 7.3, we first prove the following
auxiliary lemma.

Lemma C.1: After each iteration of Algorithm 3,
.

Proof: The proof is by induction on the iteration number .
We denote by the set after the itera-
tion , and by the first-stage permutation obtained after
iteration .

When (that is, before the first iteration),
since the initial first-stage iteration is 1-legal, and

therefore the base case holds.
We now assume that the claim holds after iteration and

prove that it holds for iteration . In each iteration, the algorithm
introduces only a single transposition, implying that at most two
input ports, and changed their wavelength assignment in it-
eration . Denote by and the new wavelengths that ports

and use after iteration . Without loss of generality, assume
that . Furthermore, note that
by Algorithm 1, , and if , then

as well.
We proceed by considering the following four cases, estab-

lishing our induction step. In each case, we consider a worst-
case situation where as many possible wavelengths are added to

or , thus increasing the term .
• , . In this case, in the worst case,

both and appeared times in and are
therefore added to . Hence,

,
where the last inequality holds by the induction hypothesis.
Note that situations in which only one of the wavelengths
is added to and/or other wavelengths are omitted either
from or trivially hold as well.

• , . In this case, in the worst case,
implying that

as well. Note that
if is added to , then .

• , . In this case,
in the worst case, and . However,
since , then , and
therefore the size of does not change. Hence,

.
• , . In this case,

in the worst case, , and therefore
. This implies that the size of decreases by 2 while

the size of increases by 2. Thus,
.

We now turn to prove that the procedure CORRECT never fails.
It is sufficient to show that there is a valid choice of a middle-
stage port in Line 14 of Algorithm 1.

Consider the th iteration . By Lemma C.1, at the
beginning of this iteration,

. Similarly to the proof in Lemma 6.2,
the size of , which is bounded
by , since . Thus,

,
where the last inequality is since .

APPENDIX D
DETAILED EXAMPLE OF A 4-LEGAL DECOMPOSITION

This section provides a detailed example of a complete run of
our 4-legal decomposition algorithm and, more specifically, of
its hardware implementation.

We consider an 11 11 switch and aim at decomposing
the permutation . Since
is odd, the permutation
is chosen as the first-stage permutation ; this implies that
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the second-stage permutation , which is not 4-legal, is
. We also compute and store the

inverse permutations and
.

Two wavelengths are used five times in : Wavelength
is used by middle-stage ports , and wavelength
is used by middle-stage ports . Thus, is the

bit-vector representation of the set of ports ; namely,
.

We continue by computing the mappings and ,
which link a wavelength with the middle-stage port using it.
Specifically

Note also that we attach a counter to each row of the mapping:
All the 11 counters of are set to 1, while the first two coun-
ters of (corresponding to and ) are set to 5, the seventh
counter (corresponding to ) is set to 1, and all other coun-
ters are set to 0. Set consists of the set of wavelengths
used in at least four (exactly three) times and are both empty.
This implies that .

because wavelengths and are used
in at least four times. Since only wavelengths and are
in , then

. Sets and are both 00000000000 (empty
sets).

We conclude the setup phase by computing and
. For ease of explanation, consider the following

vectors: and
. Thus, for example, in

, bit (4, 10) is set to 1, corresponding to the last element of
. Specifically

The first iteration starts by applying a priority encoder on ,
resulting in . Note that and . We
proceed by computing the six sets .

•
.

TABLE III
VALUES OF THE DATA STRUCTURES AFTER THE FIRST UPDATE PHASE.
UNDERLINED ELEMENTS MARK CHANGES FROM THE INITIAL VALUES

•
.

•
.

•
.

• and .
• and and

.
This implies that

, and middle port is selected for the trans-
position. Note that if we had selected middle port 1 or middle
port 10, it would have resulted in increasing the number of
middle-stage ports using to 6.

We conclude by the update phase, in which we update a con-
stant number of elements after the (0, 2)-transpositions. Table III
depicts the updated data structures, where changes are under-
lined. Notice that the set now shows only middle-stage ports
that use wavelength ; the update is done in constant time by
applying , where is the first row of mapping

of the first iteration.
In the second iteration, middle port is selected. Notice

that and . Thus, the six sets are as follows.
•

.
•

.
•

.
•

.
• .
• and and

.
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Thus, ,
and middle port is selected for the transposition.
This results in and

, which are 4-legal de-
compositions of .
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