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[1] A general theory to study the electromagnetic diffraction by imperfect half planes
immersed in linear homogeneous bianisotropic media is presented. The problem is
formulated in terms of Wiener-Hopf equations by deriving explicit spectral domain
expressions for the characteristic impedances of bianisotropic media, which allow one to
exploit their analytical properties. In the simpler case of perfect electric conducting and
perfect magnetic conducting half planes, the Wiener-Hopf equations involve matrices of
order 2, which can be factorized in closed form if the constitutive tensors of the
bianisotropic material are of special form. Four of these special cases are discussed in
detail. In order to deal with the more general problem, a technique to numerically factorize
the Wiener-Hopf matrix kernels is presented. Our numerical approach is discussed on
one example, by considering the previously unsolved problem of a perfect electric
conducting half plane in a gyrotropic medium. The reported numerical results show that
the diffracted field contribution is obtained by use of the saddle point integration method.

Citation: Daniele, V., and R. D. Graglia (2007), Diffraction by an imperfect half plane in a bianisotropic medium, Radio Sci.,

42, RS6S05, doi:10.1029/2007RS003674.

1. Introduction

[2] The first rigorous studies of the diffraction by a
perfect electric conducting (PEC) half plane immersed in
a homogeneous isotropic medium are by Poincaré
[1892] and Sommerfeld [1896]. Noticeable progress in
the solution of these problems is attributed to the
introduction and use of the Sommerfeld-Malyuzhinets
(SM) technique and the Wiener-Hopf (WH) technique
[Senior, 1978; Hurd and Luneburg, 1985; Budaev, 1995;
Senior and Volakis, 1995; Lüneburg and Serbest, 2000;
Daniele, 2003; Antipov and Silvestrov, 2006; Lyalinov
and Zhu, 2006; Daniele and Lombardi, 2006]. In partic-
ular, we observe that the WH technique can deal with the
most general problem of a half plane immersed in an
anisotropic or bianisotropic medium, whereas the SM
method cannot deal with it, as yet.
[3] The purpose of this paper is to establish a general

WH theory to solve the electromagnetic problem of an
imperfect half plane immersed in an arbitrary linear
medium. Our theory yields to the factorization of matri-

ces of order 2 and 4 in case of perfect and imperfect half
plane, respectively. The solution of this kind of problems
is known in closed form only for PEC or perfectly
magnetic conducting (PMC) half planes surrounded by
rather simple media; the perfectly conducting case is
simpler because it requires the factorization of scalar
kernels [Seshadri and Rajagopal, 1963; Jull, 1964;
Przezdziecki, 2000] or of kernel matrices of order 2
[Hurd and Przezdziecki, 1981, 1985].
[4] To deal with the most general case, it is therefore

convenient to introduce and use approximate techniques.
For example, a general approximate factorization method
has been introduced by Daniele [2004a, 2004b] and
Daniele and Lombardi [2007], and the impenetrable half
plane and wedge problems have been solved very
efficiently by approximate factorization by Daniele and
Lombardi [2006]. In this paper, this factorization method
is applied to effectively solve a previously unsolved
problem, thereby showing new results for a PEC half
plane in a gyrotropic medium.
[5] In this connection we observe that problems in-

volving very complex algebraic manipulations, such as
those required by the problems of this paper as well as by
those of Graglia et al. [1991], can nowadays be solved
because powerful algebraic manipulator codes are read-
ily available. The results of this paper were obtained by
intensive use of the computing software Mathematica1.
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In fact, although the matrix formulas of this paper may
look rather simple, the general explicit expression of
each matrix coefficient in terms of the electromagnetic
parameters usually occupies several pages.
[6] To facilitate the reading and the comprehension of

the material presented in this paper, section 2 considers
in detail the simpler cases of a PEC and of a PMC half
plane; the most general case of an imperfect half plane is
reported in Appendix A. The characteristic impedances
and admittances of the bianisotropic medium that sur-
rounds the half plane are defined in section 3, where we
also provide two different methods for their evaluation.
Special cases of PEC and PMC half planes amenable to
closed-form solution are then discussed in section 4,
whereas the general method to numerically factorize the
WH kernels is given in section 5. One example of
application of our numerical factorization method is also
discussed in section 5, thereby showing with numerical
results that the diffracted field contribution can be
obtained by the saddle point integration method.

2. Wiener-Hopf Formulation of the Half

Plane Problem

[7] We consider the frequency domain diffraction
problem of a plane wave impinging on an imperfect half
plane immersed in a homogeneous bianisotropic medium.
With reference to Figure 1, the y axis of the Cartesian
reference frame {z, x, y} is normal to the half plane
surface {x < 0, y = 0}, whereas the z axis lies along the
half plane edge. The space-time dependence factor of the
incident electromagnetic wave is

exp jwtð Þ exp �jko aozþ hoxþ koyð Þ½ � ð1Þ

where w is the angular frequency, t the time, and ko the
free-space wave number. Notice that the unnormalized
components of the vector wave number of the incident
wave are

ao ¼ koao; ho ¼ koho; ko ¼ koko ð2Þ

and that the time dependence factor exp(jw t) is assumed
and suppressed throughout the paper, whereas for phase
continuity, the z dependence factor exp(�ja0z) is
common to all incident and diffracted field components.
[8] In the frequency domain, the constitutive relations

of the linear homogenous medium in which the half
plane is immersed are [Graglia et al., 1991]

D ¼ eo eEþ x Zo H
� �

B ¼ mo mHþ z Yo E
� ��

ð3Þ

where E is the electric field, H the magnetic field, D and
B the electric and magnetic flux densities, respectively;
eo is the electric permittivity and mo the magnetic

permeability of free space; Zo and Yo = 1/Zo is the free
space impedance and admittance, respectively; x and z
are cross tensors that relate the magnetic and electric field
to the electric and magnetic flux densities, respectively.
The dimensionless overlined tensors appearing in (3)
define the dimensioned constitutive tensors

e ¼ eo e; m ¼ mo m; x ¼ ko

w
x; z ¼ ko

w
z ð4Þ

[9] In the rectangular Cartesian coordinates {z, x, y}
all vector quantities may be written as three-element
column vectors; then, the constitutive tensors are
written as (3 � 3) matrices. To compact the notation,
in the following, the (n � n) identity matrix is indicated
by 1n.
[10] For lossless media, the following conditions hold

[Kong, 1975]:

e ¼ eþ; m ¼ mþ; z ¼ xþ ð5Þ

where the superscript plus is used to denote the transpose
and complex conjugate operation.
[11] The boundary conditions for the imperfect half

plane (8z, x < 0, y = 0) in terms of the tangential
components Et = ẑEz + x̂Ex and Ht = ẑHz + x̂Hx of the
electric and magnetic field on the upper (y = 0+) and
lower (y = 0�) half plane face are

ŷ� Et x; 0þ; zð Þ ¼ �ZaHt x; 0þ; zð Þ � ZabHt x; 0�; zð Þ
ŷ� Et x; 0�; zð Þ ¼ ZbHt x; 0�; zð Þ þ ZbaHt x; 0þ; zð Þ

ð6Þ

where the (2 � 2) impedance matrices Za, Zb, Zab, and
Zba depend on the material of the half plane; this is
impenetrable if its faces are decoupled, that is for Zab =
Zba = 0. Notice that the boundary condition valid for a
PMC half plane (8z, x < 0, y = 0)

Ht x; 0; zð Þ ¼ 0 ð7Þ

usually poses simpler problems; the solutions of PMC
problems are normally obtained by duality from those of

Figure 1. Geometry of the problem.
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the PEC problems. The boundary condition valid for a
PEC half plane (8z, x < 0, y = 0) is

Et x; 0; zð Þ ¼ 0 ð8Þ

[12] To formulate the WH problem, we introduce the
one-dimensional Fourier transforms

V h; yð Þ ¼ exp ja0zð Þ
Rþ1
�1 ŷ� Et x; y; zð Þ exp jhxð Þdx

I h; yð Þ ¼ exp ja0zð Þ
Rþ1
�1 Ht x; y; zð Þ exp jhxð Þdx

(
ð9Þ

and define

Vab ¼ V h; 0�ð Þ
Iab ¼ �I h; 0�ð Þ

�
ð10Þ

According to the uniqueness theorem, the knowledge of
the tangential field Ht on a closed surface permits one to
obtain the tangential electric field Et, and viceversa. By
considering the whole y = 0 plane as a closed surface that
bounds the homogeneous upper half-space, and the lower
half-space, one can prove that the Fourier transforms are
related by the following algebraic equations:

Va ¼ Z
!
Ia; Ia ¼ Y

!
Va; ð11Þ

Vb ¼ Z
 
Ib; Ib ¼ Y

 
Vb ð12Þ

where Z
!
, Z
 
(and Y

!
, Y
 
) are (2 � 2) matrices that represent

the impedance (admittance) of the upper (y > 0) and of
the lower (y < 0) half-space, respectively. The coeffi-
cients of these matrices are functions of the spectral
variable h, and depend on the electromagnetic properties
of the linear medium that surrounds the imperfect half
plane. Equations (11) and (12) extend the characteristic
impedance concept to an arbitrary indefinite linear
medium. The procedure to evaluate the characteristic
impedance matrices is explained in section 3. To facilitate
the reader, in sections 2.1 and 2.2 we consider in detail
only the simpler case of a perfectly conducting half
plane; the WH equations for the imperfect half plane are
reported in Appendix A.

2.1. WH Equations for Perfectly Conducting
Half Planes

[13] In the case of a PEC half plane, the boundary
condition (8) yields Va = Vb = V+(h). By summing Ia and
Ib (i.e., equations (11) and (12)) one gets

Y
 
þ Y
!� �

Vþ hð Þ ¼ A� hð Þ ð13Þ

A� hð Þ ¼ Ia þ Ib ð14Þ

where A�(h) is the Fourier transform of the total electric
current induced on the half plane.
[14] In the case of a PMC half plane, the boundary

condition (7) yields Ia = �Ib = I+(h). By subtracting Va

and Vb (i.e., equations (11) and (12)) one gets

Z
 
þ Z
!� �

Iþ hð Þ ¼M� hð Þ ð15Þ

M� hð Þ ¼ Va � Vb ð16Þ

where M�(h) is the Fourier transform of the total
magnetic current induced on the half plane.
[15] For sake of brevity we omit, for a moment, a

detailed discussion of the incident wave and simply
assume an incident plane wave that, at y = 0, yields
(see (1))

ŷ� Ei
t x; 0; zð Þ

Hi
t x; 0; zð Þ

� 	
¼ E0 exp �jh0xð Þ exp �ja0zð Þ e0t

h0t

� 	
ð17Þ

where e0 and h0 are incident polarization vectors, and
where the factor exp(�jhox) introduces, in the Fourier
domain, a pole at h = ho. The residues of this pole
for V+(h) and I+(h) are known since they represent, in
the Fourier domain, the contribution at y = 0 of the
incident plane wave. From equations (9) and (17) one
gets

Res Vþ hð Þ½ �jh¼ho ¼ jEoe0t ð18Þ

Res Iþ hð Þ½ �jh¼ho ¼ jEoh0t ð19Þ

which, together with equations (13) and (15), yield

A� hð Þ ¼ As
� hð Þ þ Y

 
hoð Þþ Y

!
hoð Þ

� � jEoe0t

h� ho
ð20Þ

M� hð Þ ¼ Ms
� hð Þ þ Z

 
hoð Þþ Z

!
hoð Þ

� � jEoh0t

h� ho
ð21Þ

with A�
s (h) and M�

s (h) regular at h = ho. By substituting
these latter equations into (13) and (15) one obtains the
nonhomogeneous WH equations for the PEC and the
PMC problem. These equations, as well as those reported
in Appendix A, always take the following form:

G hð ÞFþ hð Þ ¼ Fs
� hð Þ þ R

h� h0
ð22Þ
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2.2. Solution of the Nonhomogeneous Equations

[16] The factorization of the matrix kernel G(h) =
G�(h)G+(h) leads to [see Daniele, 2004a]

Fþ hð Þ ¼ G�1þ hð ÞG�1� h0ð Þ
Ro

h� h0
ð23Þ

F� hð Þ ¼ Fs
� hð Þ þ Ro

h� h0
¼ G� hð ÞG�1� h0ð Þ

Ro

h� h0
ð24Þ

[17] In section 4 we illustrate four cases where closed-
form factorization is possible. The technique to obtain
the factorization in the general case is given in section 5,
where we also apply this technique to obtain the diffrac-
tion coefficients for a PEC half plane surrounded by a
gyrotropic medium, that is, an important, previously
unsolved problem.

3. Half-Space Characteristic Impedances

and Admittances

[18] The transverse field equations obtained by using
the Bresler-Marcuvitz formalism [Bresler and Marcuvitz,
1956; Daniele, 1971, 2006] yield

� d

dy

V

I

� 	
¼ P

V

I

� 	
ð25Þ

with V and I defined in (9) and where P is a (4 � 4)
matrix partitioned into four (2 � 2) submatrices

P ¼ Te hð Þ Z hð Þ
Y hð Þ Th hð Þ

� 	
ð26Þ

P(h), Te(h), Z(h), Y(h), and Th(h) are second-degree
polynomial matrices, since all their coefficients are
second degree polynomials of the variable h. The general
expression of P(h) can be obtained as reported in
Appendix B.
[19] We now discuss two methods to evaluate the

characteristic impedances Z
!

and Z
 

introduced in (11)
and (12) by first observing that the coefficients of the
matrix

P ¼
Te hð Þ
ko

Z hð Þ
koZo

Y hð Þ
koYo

Th hð Þ
ko

264
375 ð27Þ

� d

d koyð Þ
V

ZoI

� 	
¼ P

V

ZoI

� 	
ð28Þ

are dimensionless. Notice that P and P have the same
eigenvectors, and that the eigenvalues of P are ko times
those of P.

3.1. First Evaluation Method

[20] The general solution of (25) in terms of the four
eigenvectors gi and eigenvalues [Vz

(i), Vx
(i), Iz

(i), Ix
(i)]t of the

matrix P reads

V

I

� 	
¼

Vz

Vx

Iz
Ix

2664
3775 ¼ X4

i¼1
Ci exp �giyð Þ

V ið Þ
z

V ið Þ
x

I ið Þ
z

I ið Þ
x

2664
3775 ð29Þ

where the scalar coefficients Ci, for i = 1, 4, are y-
independent. If the medium surrounding the half plane is
passive, one can suppose that two eigenvalues (g1 and g2)
have a nonnegative real part, whereas g3 and g4 have a
nonpositive real part. A proof of this conjecture, that is
verified by all the passive media we have considered in
our studies, is discussed by Daniele [2006]. In the lower
half-space, the solution is obtained by taking C1 = C2 = 0,
whereas one sets C3 = C4 = 0 in the upper y > 0 half-space.
Thus, for y > 0, one has

V ¼ V 1ð Þ
z V 2ð Þ

z

V 1ð Þ
x V 2ð Þ

x

� 	
C1 exp �g1yð Þ
C2 exp �g2yð Þ

� 	
ð30Þ

I ¼ I 1ð Þ
z I 2ð Þ

z

I 1ð Þ
x I 2ð Þ

x

� 	
C1 exp �g1yð Þ
C2 exp �g2yð Þ

� 	
ð31Þ

which, together with (10) and (11), yield

Z
!
¼ V 1ð Þ

z V 2ð Þ
z

V 1ð Þ
x V 2ð Þ

x

� 	
I 1ð Þ
z I 2ð Þ

z

I 1ð Þ
x I 2ð Þ

x

� 	�1
ð32Þ

Similarly, in the indefinite lower medium (y < 0) one gets
(see (10) and (12))

Z
 
¼ V 3ð Þ

z V 4ð Þ
z

V 3ð Þ
x V 4ð Þ

x

� 	
I 3ð Þ
z I 4ð Þ

z

I 3ð Þ
x I 4ð Þ

x

� 	�1
ð33Þ

3.2. Second Evaluation Method

[21] The expressions of the characteristic impedances
(32) and (33) are in general, too complex to permit one to
study their properties, in the complex h plane. More
convenient expressions are obtained by eliminating I or
V from (25) by use of (26):

d2V

dy2
� AV

dV

dy
þ BV V ¼ 0

d2I

dy2
� AI

dI

dy
þ BI I ¼ 0

ð34Þ
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and by assuming solutions of the form

V ¼ exp �gV yð ÞVo ; I ¼ exp �gI yð ÞIo ð35Þ

to obtain

g2
V þ AV gV þ BV ¼ 0

g2
I þ AI gI þ BI ¼ 0

ð36Þ

with

AV

BV

� 	
¼ � Te þ ZThZ

�1

Z Y� ThZ
�1Te

� �� 	
ð37Þ

AI

BI

� 	
¼ � Th þ YTeY

�1

Y Z� TeY
�1Th

� �� 	
ð38Þ

In general, the matrix equations (36) admit several
solutions; for a passive medium we choose those with

real positive (g
!
V, g
!
I) and real negative (g

 
V, g
 
I)

eigenvalues for y > 0 and y < 0, respectively. From
equations (25) and (26), one gets

gV V ¼ Te Vþ Z I

gI I ¼ YVþ Th I
ð39Þ

which immediately yields

Z
!
¼ Y�1 g

 
I � Th

� �
; Z

 
¼ Y�1 g

 
I � Th

� �
Y
!
¼ Z�1 g

 
V � Te

� �
; Y

 
¼ Z�1 g

 
V � Te

� � ð40Þ

Although (32) and (33) differ from (40), these expres-
sions are equivalent and yield the same numerical results
in all cases we have considered.

3.3. Evaluation of the Eigenvalues

[22] The eigenvalues of gV and gI are the same; these
eigenvalues are g1 and g2 (for g

!
V and g

!
I), and g3 and g4

(for g
 
V and g

 
I). In the most general case of a linear

bianisotropic medium, one has to solve the matrix
equation (36) which, by omitting the V and I subscripts,
reads

gg2 þ Agg þ B ¼ 0 ð41Þ

Since this equation involves only (2 � 2) matrices, it is
associated with the characteristic equation

gg2 � tggg þDg1 ¼ 0 ð42Þ

where the scalar coefficients tg and Dg are the trace and
the determinant of g, respectively; these coefficients are

tg ¼ g1 þ g2; Dg ¼ g1 g2 ð43Þ

for the upper half-space y > 0, and

tg ¼ g3 þ g4; Dg ¼ g3 g4 ð44Þ

for the lower half-space y < 0. The problem posed by
(41) is difficult whenever A and B are of arbitrary order
and not commutative. Fortunately, in our case, equations
(41) and (42) allows one to eliminate gg2 and yield

gg ¼ Aþ tg1
� ��1 Dg1� B

� �
ð45Þ

Now, according to Cayley’s theorem, one has (A + tg1)
�1 =

x1 + yA and from (45),

gg ¼ xDg1� xBþ yDgA� yAB ð46Þ

with

x ¼ tg þ tA

tg tg þ tA
� �

þDA

y ¼ �1
tg tg þ tA
� �

þDA

ð47Þ

where tA and DA are the trace and the determinant of A,
respectively.
[23] The characteristic impedances and admittances are

obtained directly from (40) after evaluating and ordering
the four eigenvalues of the matrix P given in (27)

det g 14 � P
� �

¼ g4 þ ag3 þ bg2 þ cg þ d ¼ 0 ð48Þ

The results provided by (48) always coincide with those
of Graglia et al. [1991]; the compact expression of the
four solutions of (48), for i = 1, 4, is

gi ¼ �
a

4
� 1

2

ffiffiffiffi
T
p
�

ffiffiffiffi
Q

p� �
ð49Þ

with

T ¼ a2

4
þ b2 � 3acþ 12dð Þ

3u1=3
þ u1=3 � 2b

3
ð50Þ

Q ¼ 3a2

4
� 2b� T þ a3 � 4abþ 8c

4
ffiffiffiffi
T
p ð51Þ

u ¼ vþ
ffiffi
s
p

2
ð52Þ

v ¼ 2b3 þ 9 3a2d � abcþ 3c2 � 8bd
� �

ð53Þ

s ¼ v2 � 4 b2 � 3acþ 12d
� �3 ð54Þ
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In this connection, it is of importance to point out that the
quantities Te(h)/ko, Th(h)/ko, Z(h)/(koZo), and Y(h)/(koYo)
appearing into (27) are independent from ko, Zo and Yo.
Furthermore, these matrices result to be independent
from the angular frequency w if the dimensionless
tensors e, m, x, and z do not depend on w. Thus, by
considering equations (40) and the normalized version of
(46), one immediately recognizes that the normalized
propagation matrices gV/ko and gI/ko, and the normalized
characteristic impedance and admittance matrices Z

!
/Zo,

Z
 
/Zo, Y
!
/Yo, and Y

 
/Yo are independent from ko, Zo and

Yo. The main consequence of this behavior is that the
eigenvectors of the normalized propagation matrices are
equal to those of the unnormalized ones (gV and gI),
and that the eigenvalues of gV = gV/ko and gI = gI/ko are
independent from ko, Zo and Yo.
[24] By setting, as suggested by equation (2),

h ¼ ko h; ao ¼ ko ao; g ¼ jk ð55Þ

into equation (48), one obtains an algebraic equation of
the form f (h, k) = 0 whose coefficient do not depend on
ko, Zo, and Yo. The true physical eigenvalues gi, for i = 1,
4, of the P matrix are

gi ¼ jko ki ð56Þ

where ki are suitable solutions of the equation f(h, k) = 0.
It can be proven that f(h, k) is an algebraic function of
order 4 both in h and k.
[25] In order to appreciate the physical meaning of the

function f(h, k), let us consider a linear lossless material
and its two dispersion surfaces in the {a, h, k} space. In
the present paper, a is constant, since we consider a
problem invariant in the z direction. In fact, the value a =
ao appears in the exponential factor exp(�jaoz) that
expresses the z dependence of the electromagnetic fields.
In the (h, k) plane, the solutions of the equation f(h, k) =
0 lie on two curves obtained by cutting the dispersion
surfaces with the a = ao plane. Typical dispersion curves
for a lossless medium are shown in Figure 2, where four
real values of k (and consequently of g = jkok) are
associated with a given value of h. The two solutions
that hold in the y < 0 half-space are those with k < 0,
the remaining two with k > 0 are valid in the y > 0
half-space.
[26] To apply the WH technique, one has to know the

properties of the multivalued functions gi(h) = jkoki(h).
By noticing that the coefficient of g4 in (48) is equal to
one and by considering f(h, k) a function of the variable
k, the branch points of the functions gi in the h plane
belong to the set of points defined by all the zeroes of the
discriminant D(h) of the polynomial function f(h, k)

[Bliss, 2004]. In all the cases we have studied, the zeroes
of the discriminant D(h) coincide with the zeroes of the
function s(h) given in (54). In general, one has 12 branch
points. For lossless media, four of these are real; the
h values of the real branch points are the abscissas of the
four vertical lines which are tangent to the two dispersion
curves. In Figure 2, the branch points are marked by
circles.
[27] As previously noticed, the propagation matrices

g! (for y > 0) and g (for y < 0) depend on (g1 + g2),
g1g2 and on (g3 + g4), g3g4, respectively. It is remarkable
that with the exception of the four real branch points, all
the other branch points of g1, g2, g3, and g4 do not
appear in the quantities (g1 + g2), (g3 + g4), g1g2, and
g3g4. This means that the characteristic impedance (and
admittance) has only four branch points, that are real for
lossless media. Although it is rather simple to prove this
property for an f(h, k) biquadratic in k, as it happens for
media with vanishing Te(h) and Th(h) matrices [Hurd
and Przezdziecki, 1981], in the most general case this
property can only be proved after algebraic computer
manipulations, for example by expanding in the
neighborhood of the complex branch point hbr the
quantities (g1 + g2), g1g2, (g3 + g4), and g3g4 in terms
of Puiseux series. The point hbr is an ordinary point if,
in the Puiseux series, the term containing the factor

Figure 2. Dispersion curves for a lossless gyrotropic
medium with m = 1, and e as in (117). The curves show
the (h, k) values for a = ao = 1/2; the corresponding
vector wave numbers are k = ko (aoẑ + h x̂ + k ŷ). The
four branch points given in (120) and (121) are circled.
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(h � hbr)
1/r, with r integer, is associated to a coefficient

numerically equal to zero.

4. Special Cases With Closed-Form

Solutions

[28] The general expressions of the characteristic
impedances and admittances (32), (33), or (40) simplify
in special cases. This section reports four important
special cases for which the half plane diffraction problem
is solvable in closed form by using the WH approach.

4.1. Isotropic and Bi-isotropic Media

[29] In case of a bi-isotropic (chiral) material defined
by the parameters e = e13, m = m13, x = �jJ13, z = +jJ13
one gets

Z
!
¼ Z11 a0; hð Þ Zm a0; hð Þ

Zm a0; hð Þ Z22 a0; hð Þ

� 	
ð57Þ

Z
 
¼ Z11 �a0; hð Þ �Zm �a0; hð Þ
�Zm �a0; hð Þ Z22 �a0; hð Þ

� 	
ð58Þ

with

Z11=pc ¼ k1 c1 � ja0 hð Þ k2 c2 þ ja0 hð Þ ð59Þ

Z22=pc ¼ t21 t
2
2 ð60Þ

Zm=pc ¼
a0 h t21 þ t22

� �
þ jk1 c1 t

2
2 � jk2 c2 t

2
1

2
ð61Þ

pc=Zo ¼
k1 þ k2

k ja0 h t21 � t22
� �

þ k1 c1 t22 þ k2 c2 t21
� � ð62Þ

and where

Zo ¼
ffiffiffi
m
e

r
ð63Þ

k ¼ w
ffiffiffiffiffiffi
em
p ð64Þ

k1
2

¼ k � wJ ð65Þ

t1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21;2 � a2

0

q
ð66Þ

c1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21;2 � h2

q
ð67Þ

[30] When the chirality factor J vanishes, the charac-
teristic impedances simplify into the expected free-space
result:

Z
!
¼ Z
 
¼ Zo

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

0 � h2
p k2 � h2 a0 h

a0 h k2 � a2
0

� 	
ð68Þ

In order to ascertain the possibility to obtain closed form
factorizations of the matrix kernels appearing into (13)
and (15), or into (A4), it is of importance to know the
expression of the characteristic impedance matrices.
Notice that the known closed form solutions available in
the literature are relative only to the case of a PEC or a
PMC half plane; these solutions involve the factorization
of (2 � 2) matrices. At skew incidence, that is for a0 6¼
0, the factorization of these matrices is often simplified
by the transformation [Senior, 1978; Lüneburg and
Serbest, 2000]

t ¼ h �a0

a0 h

� 	
; ta ¼

h a0

�a0 h

� 	
ð69Þ

For example, in case of a PMC half plane immersed in a

chiral medium, one has to factorize the matrix (Z
!

+ Z
 
)

(see (15)), with

t Z
!
þ Z
 � �

ta ¼
2Zo k1 þ k2ð Þ a2

0 þ h2
� �

k k1 c2 þ k2 c1ð Þ
c1 c2 0

0 k1k2

� 	
ð70Þ

Thus factorization is accomplished by factorizing the
scalars c1 c2, and (k1c2 + k2c1). Similar considerations
apply to the PEC case, exhaustively studied by
Przezdziecki [2000].

4.2. Bianisotropic Media With Diagonal Te and Th

Matrices

[31] Explicit solutions can also be obtained when the
matrix coefficients of (36) commute, as it happens, for
example, in case of diagonal Te(h) = Te 12 and Th(h) = Th
12. In this case one gets

V ¼ V1 exp � A
!

y
� �

þ V2 exp � A
 

y
� �

ð71Þ

Z
!
¼ A
!
Z ð72Þ

Z
 
¼ A
 
Z ð73Þ

RS6S05 DANIELE AND GRAGLIA: DIFFRACTION BY AN IMPERFECT HALF PLANE

7 of 16

RS6S05



with

A
!
¼

Te þ Thð Þ12 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te � Thð Þ212 þ 4 ZY� TeTh12

� �q
2

24 35�1

ð74Þ

A
 
¼

Te þ Thð Þ12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te � Thð Þ212 þ 4 ZY� TeTh12

� �q
2

24 35�1

ð75Þ

In spite of the fact that the cases of diagonal Te(h) and
Th(h) can hardly be classified, we notice that this
certainly happens in the special case

e ¼
ezz ezx 0

exz exx 0

0 0 eyy

24 35; m ¼
mzz mzx 0

mxz mxx 0

0 0 myy

24 35
ð76Þ

x ¼ x
0 1 0

�1 0 0

0 0 0

24 35; z ¼ z
0 1 0

�1 0 0

0 0 0

24 35 ð77Þ

In this case, the kernel (Z
!

+ Z
 
) and (Y

!
+ Y
 
) commute

with polynomial matrices and can be factorized in closed
form [Daniele, 2004a]; that is to say that the closed form
solution for the problem of a PEC or a PMC half plane
immersed in a bianisotropic medium defined by (76) and
(77) can always be obtained.

4.3. Bianisotropic Media With Vanishing Te and Th

Matrices

[32] For appropriate values of the electromagnetic
constitutive parameters, the matrices Te(h) and Th(h)
vanish. This happens, for example, for x = 0, z = 0 and e
and m given as in (76). This particular case has been
addressed by Hurd and Przezdziecki [1981] after
reducing the factorization problem to a Hilbert problem.
At any rate, in this case, equations (36) simplify into

gg2
V � ZY ¼ 0

gg2
I � YZ ¼ 0

ð78Þ

so that one is actually faced with the classical
transmission line problem, extensively studied in the
literature. In this case, the characteristic impedances are
[Paul, 1975]

Z
!
¼ Z
 
¼ g�1V Z ¼ gVY

�1 ¼ Y�1gI ¼ Zg�1I ð79Þ

with

gV ¼
ffiffiffiffiffiffiffi
ZY
p

; gI ¼
ffiffiffiffiffiffiffi
YZ
p

ð80Þ

By taking into account that gV commutes with the
polynomial matrix ZY, or that gI commutes with the

polynomial matrixYZ, one can express the kernel (Z
!
+ Z
 
)

and (Y
!
+Y
 
) in terms of a polynomial matrix multiplied by

a matrix that commutes with a polynomial matrix. In this
connection, once again, we remark that matrices that
commute with a polynomial matrix are factorized in
closed form [Daniele, 2004a].

4.4. Anisotropic Media of the Hurd-Przezdziecki
Problem

[33] We conclude this section by briefly considering
the case of the PEC half plane for x = 0, z = 0, m = m13
and

e ¼
ezz 0 0

0 exx exy
0 �exy eyy

24 35 ð81Þ

which has been solved by Hurd and Przezdziecki [1985]
with a different approach. In this case the Te and Th

matrices do not vanish, and our formulation yields

t Z
!
þ Z
 � �

ta ¼ fo hð ÞQo hð Þ þ f1 hð ÞQ1 hð Þ

t Y
!
þ Y
 � �

ta ¼ go hð ÞSo hð Þ þ g1 hð ÞS1 hð Þ
ð82Þ

Although, for the sake of brevity, the rational matrices
Qo,1(h), So,1(h) and the not-rational functions fo,1(h),
go,1(h) are not reported here, we notice that the matrices
appearing in (82) commute with polynomial matrices
and can certainly be factorized in closed form.

5. Numerical Factorization and Far-Field

Evaluation

5.1. Normalization of the WH Equations

[34] The method to numerically factorize the WH
kernel and to evaluate the far-field quantities is illustrated,
for the sake of clarity, only for the simpler case of a PEC
half plane. The extension of this method to deal with
imperfect half planes is rather straightforward.
[35] In terms of the dimensionless normalized

admittance

yt hð Þ ¼ Zo Y
!
þ Y
 � �

ð83Þ
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the PEC half plane problem yields (see (13) and (20))

yt hð ÞVþ ¼ ZoA
s
� hð Þ þ Ro

h� h0
ð84Þ

where Ro = jE0yt(h0)e0t is a known term whereas A�
s (h)

is the Fourier transform of the total scattered current
induced on the half plane, that is the total minus the
Physical Optic (PO) current.
[36] Factorization in closed form is possible whenever

yt(h) commute with a polynomial matrix; if this does
not happen, one has to use the approximate technique
described by Daniele [2004a], which is based on the
numerical solution of a Fredholm integral equation of the
second kind. This technique requires that the WH matrix
kernel and its inverse exist and are finite for h ! ±1
on the real axis. Therefore we need to modify the kernel
yt(h) because of the following asymptotic behaviors for
h ! 1

yt hð Þ �
a11=h a12
a21 h a22

� 	
ð85Þ

y�1t hð Þ � h b11 b12
b21 b22=h

� 	
ð86Þ

where aij and bij are not vanishing constants. By
introducing the matrices

d
r
‘ hð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ko � h
ko

r
0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ko

ko � h

r
2664

3775 ð87Þ

Ge hð Þ ¼ d‘ yt dr ð88Þ

equation (84) yields

Ge hð ÞXþ hð Þ ¼ Xs
� hð Þ þ R

h� h0
ð89Þ

with

Xþ hð Þ ¼ d�1r hð Þ Vþ hð Þ ð90Þ

X� hð Þ ¼ Zo d‘ hð ÞAs
� hð Þ þ d‘ hð Þ � d‘ hoð Þ½ �

h� h0
Ro ð91Þ

R ¼ d‘ hoð ÞRo ð92Þ

and where Ge(h) and Ge(h)
�1 exist and are finite for

h ! ±1.

[37] By introducing the normalized quantities ho = ho/ko
(as per equation (2)), and

Ge hð Þ ¼ Ge kohð Þ ð93Þ

Xþ hð Þ ¼ koXþ kohð Þ ð94Þ

X� hð Þ ¼ koX� kohð Þ ð95Þ

equation (89) reduces to

Ge hð ÞXþ hð Þ ¼ X
s

� hð Þ þ R

h� h0
ð96Þ

where all the involved quantities do not depend on ko, Zo
and Yo. That is to say that the normalized WH equation
(96) does not change for a fictitious medium that has the
same normalized matrices e, m, x, and z, but different
values of ko, Zo and Yo. As a matter of fact, values of ko
with a vanishing or a very small imaginary part make the
evaluation of the eigenvalues and the numerical factor-
ization of Ge difficult; for this reason it is convenient to
introduce a fictitious lossy medium, and in our numerical
simulations we have used

eko ¼ 1� j; eZo ¼ Zo; eYo ¼ Yo ð97Þ

In the following, to avoid any confusion, the quantities
computed for the fictitious medium are indicated by a
tilde. The eigenvalue egi = jekoki computed for the fictitious
medium permits one to evaluate the corresponding
physical eigenvalue gi = koegi/eko of the real medium.
[38] In the fictitious medium, equation (89) now reads

eGe hð ÞeXþ hð Þ ¼ eXs
� hð Þ þ R

h� h0
ð98Þ

where numerical evaluation of eX+(h) by the Fredholm
method given by Daniele [2004a] is now possible. The
physical solution X+(h) is obtained by noticing that

Xþ hð Þ ¼ koXþ kohð Þ ¼ ekoeXþ ekoh� �
ð99Þ

which yields

Xþ hð Þ ¼
eko
ko

eXþ eko h=ko� �
ð100Þ
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This permits one to solve the WH problem (89) and to
obtain the functions V+(h), Ia(h) = Y

!
V+, and Ib(h) =

Y
 
V+.

5.2. Field Evaluation by Inverse Fourier
Transformation

[39] In the following, without loss of generality, we
consider only the evaluation of the transverse compo-
nent of the electric field for the PEC half plane
problem where, to simplify the notation, we set gg

 
V =

gg
 
, gg
!
V = gg

!
. The transverse component of the magnetic

field can be similarly obtained. The longitudinal field
components Ey(z, x, y) and Hy(z, x, y) are obtained from
the transverse ones by Maxwell’s equations [see Daniele,
2006].
[40] The plus function V+(h) is obtained by solving

equation (84). The transverse field Et(z, y, x) is then
obtained by inverse Fourier transformation

Et ¼ E
p
t þ

exp �jaozð Þ
2p

Z
Bþ

exp �jhx� gyð Þ

� Vþ hð Þ � ŷ dh ð101Þ

with g = g! for y > 0, and g = g in the region y < 0, and
where the integration path B+ is a horizontal straight line
located above all the singularities of V+(h). The primary
field Et

p(z, y, x) = Et
i(z, y, x) + Et

r(z, y, x) represents the
contribution of the incident plus the reflected field; the
primary field is evaluated by assuming an entire PEC
plane at y = 0. Notice that Et

p is equal to zero for y < 0 if
the incident wave impinging of the half plane propagates
in the negative y direction. Vice versa, the primary field
is zero for y > 0 whenever the incident wave propagates
in the positive y direction.
[41] Let us now assume that the incident plane

wave propagates in the negative y direction. By using
the Cayley representation for the exponential factor
exp(�gy) in (101) one gets

ŷ� Et ¼ ŷ� E
p
t þ

e�jaoz

2p

Z
Bþ

g21� gg
!

g2 � g1

� Vþ hð Þ e �jhx�g1 yð Þdhþ e�jaoz

2p

Z
Bþ

g11� gg
!

g1 � g2
� Vþ hð Þ e �jhx�g2 yð Þdh ð102Þ

for y > 0, and

ŷ ¼ e�jaoz

2p

Z
Bþ

g41� gg
 

g4 � g3
Vþ hð Þ e �jhx�g3 yð Þdh

þ e�jaoz

2p

Z
Bþ

g31� gg
 

g3 � g4
Vþ hð Þ e �jhx�g4 yð Þdh

ð103Þ

for y < 0. By further assuming an incident plane wave
with a propagation factor equal to exp[�jaoz � jhox �
g3(ho)y] (without loss of generality, the case of an
incident plane wave with propagation factor equal to
exp[�jaoz � jhox � g4(ho)y] can be omitted) one gets

ŷ� Ei
t ¼ E0 e0t exp �jaoz� jhox� g3 hoð Þy½ � ð104Þ

ŷ� Er
t ¼ exp �jaoz� jhoxð Þ

� Er
t1 e
�g1 hoð Þy þ Er

t2 e
�g2 hoð Þy

n o
ð105Þ

where e0t is the eigenvector of g
 
(ho) associated

with the eigenvalue g3(ho), whereas the amplitude
vectors Et1

r and Et2
r can be obtained by geometrical

optics considerations. For example, while dealing with a
PEC plane, one has Et1

r = c1et1 and Et2
r = c2et2, where et1

and et2 are the eigenvectors of g
!
(ho) associated with the

eigenvalue g1(ho) and g2(ho); the scalar coefficients
c1 and c2 are simply obtained by enforcing Et

p = 0 on the
PEC plane.
[42] The far-field contributions are evaluated by

applying the saddle point method [Felsen and Marcuvitz,
1973] to each integral of (102) and (103). For each given
observation point with azimuthal angle f, this method
requires the determination of the saddle points hs of the
function

q hð Þ ¼ h cosfþ k hð Þ sinf ð106Þ

with

k hð Þ ¼ �jgi hð Þ; i ¼ 1; 4 ð107Þ

and the determination of the steepest descent paths (SDP)
that cross the saddle points. In fact, the integration path
B+ of (102) and (103) is warped into a SDP, and each
saddle point has is own SDP. Occasionally, more saddle
points may occur for i = 1, 2, 3, or 4; in these cases,
application of the saddle point method is more difficult.
For the sake of simplicity we do not discuss these cases,
and we assume that each integral has only one significant
saddle point. We also observe that the hs are real for a
lossless medium. Since the observation angle f appear-
ing in (106) depends on the location of the observation
point, it may happen that the SDP captures the pole h =
ho of the function V+. A detailed study, not reported here,
shows that the pole is captured only if hs > ho; when this
happens, the pole h = ho is always captured clockwise. A
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careful study of the residues of the integrands and use of
the boundary condition for the PEC half plane permit one
to write, for y > 0

Et ¼ E
p
t �

e�j aozþhoxð Þ

2p
E0

h
u hs1 � hoð ÞEr

t1 e
�g1 hoð Þy

þ u hs2 � hoð ÞEr
t2 e
�g2 hoð Þy

i
þ e�jaoz

2p

�
Z
SDP1

g21� g
!

g2 � g1
Vþ hð Þ � ŷ e�jhx�g1y dh

þ e�jaoz

2p

Z
SDP2

g11� g
!

g1 � g2
Vþ hð Þ � ŷ e�jhx�g2y dh

ð108Þ

whereas for y < 0, one gets

Et ¼ u hs3 � hoð ÞEi
t þ

e�jaoz

2p

Z
SDP3

g41� g
 

g4 � g3

� Vþ hð Þ � ŷ e�jhx�g3y dhþ e�jaoz

2p

Z
SDP4

g31� g
 

g3 � g4
� Vþ hð Þ � ŷ e�jhx�g4ydh

ð109Þ

The previous results show that the total field does not
present any reflected wave contribution in the region
y > 0 if the saddle points hsi satisfy the condition hsi > ho,
for i = 1, 2. Furthermore, for y < 0, the total field does not
present any geometrical optics contribution (in particular,
the incident wave contribution) if the saddle point hs3
satisfies the condition hs3 < ho.
[43] As far as the evaluation of the SDP integrals is

concerned, after some algebraic manipulations one may
prove that all the transverse field components, including
the magnetic field ones, can be expressed in terms of
scalar integrals of the form

I s ¼
ko

2p

Z
SDP

A kohð Þ exp �jkor qð Þ dh ð110Þ

where r is the radial distance from the observation point
to the edge of the half plane, and q is given in (106). The
saddle points hs are obtained by evaluating the zeroes of
the derivative of the phase term

dq

dh
¼ cosfþ dk

dh
sinf ð111Þ

with

dk
dh
¼ �

@f h;kð Þ
@h

@f h;kð Þ
@k

ð112Þ

The saddle points are therefore given by the solutions,
with respect to h, of the following system of algebraic
equations

f h;kð Þ ¼ 0

@f h;kð Þ
@k

cosf� @f h;kð Þ
@h

sinf ¼ 0
ð113Þ

which does not change by changing f into (f � p). As a
matter of fact, for lossless media, the saddle points can be
obtained graphically [Felsen and Marcuvitz, 1973,
p. 110] by considering the dispersion curves f (h, k)
and the vector distance r = r(x̂ cos f + ŷ sin f) from the
observation point to the edge of the half plane, as shown
in Figure 3. In Figure 3, at the saddle points hs1 and hs2,
the straight lines tangent to the dispersion curve k(h) are
orthogonal to r, and this happens only and for all the
saddle points.
[44] More generally, since equations (113) are algebraic,

the saddle points hs are defined to be the zeroes of the
polynomial in h obtained from the resultant

R f h;kð Þ; @f h;kð Þ
@k

cosf� @f h;kð Þ
@h

sinf;k
� 	

ð114Þ

of the two equations (113) with respect to k [Bliss,
2004].
[45] For lossless media, the contribution of each real

saddle point to the integral (110) is

I s ¼
A kohsð Þ exp �jp=4ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pkor q
00 hsð Þj j

p
� exp �jkor hs cosfþ k hsð Þ sinf½ �f g ð115Þ

Figure 3. Geometrical evaluation of the saddle points
for lossless media.
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where the plus or minus sign in the exponential factor is
chosen according to the sign of q00hs) [Felsen and
Marcuvitz, 1973, p. 387].
[46] In this connection we recall that the function

V+(h) has one pole in h = ho, with residue T = jEoe0t.
The function T/(h � ho) is the Fourier transform of the
geometrical optic field over the aperture (x > 0, y = 0).
The Physical Optics (PO) contribution to the diffracted
field is calculated by approximating A(koh) with the
value obtained by using V+

PO = T/(h � ho), Ia
PO = Y

!
T/

(h � ho), or Ib
PO = Y

 
T/(h � ho) in (108) and (109). For

this reason, the quantity

Vd
þ hð Þ ¼ Vþ hð Þ � T

h� ho
ð116Þ

evaluated at the saddle points is able to represent the
difference between the true diffracted field and the PO
contribution to the diffracted field. Notice that the
superscript d in (116) stays for difference. This difference
is considered in the numerical case study that follows.

5.3. Numerical Results for a PEC Half Plane in a
Gyrotropic Medium

[47] Let us consider a lossless gyrotropic medium with
m = 1, x = z = 0 and

e ¼
2 j2=3 j=4

�j2=3 3 j=2
�j=4 �j=2 3=2

24 35 ð117Þ

By choosing ao = 1/2, from equations (48) and (56), we
obtain

f h;kð Þ ¼ k 4 þ ak 3 þ bk 2 þ ckþ d ð118Þ

with

a

b

c

d

2666666664

3777777775
¼

0

101

24
� 3h2

j
2

9
1� hð Þ

3253

864
þ h
12
� 154

27
h2 þ h4

266666666664

377777777775
ð119Þ

These data yield 12 normalized branch points in the
normalized h plane; four of them are real

h1br ; h2br ; h3br ; h4br
� �

¼
�1:38078;�1:00638; 1:04821; 1:31776f g ð120Þ

and eight are complex

�1:4998� j0:7909; �0:8605� j0:1128;
1:1770� j0:4836; 1:1939� j0:2892

� �

[48] The k values at the four real branch points are

k1br ;k2br ;k3br ;k4brf g ¼ 0:168685;�0:205354;f
0:00587302;�0:0351789g ð121Þ

Recall that the real branch points individuate the four
branch points of the characteristic impedance and
admittance. The dispersion curves for this case are
shown in Figure 2, where it is evident that two different
kinds of waves can propagate in this gyrotropic medium.

Figure 4. Real and imaginary part of the function (left) V1+
d (h) and (right) V2+

d (h), given in (116),
for ao = ho = 1/2.
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[49] We now consider an incident plane wave of the
second kind (the wave 2 in the dispersion diagram of
Figure 2), with Eo = 1, fi = �3p/4, and

ao ¼ ko=2 ; ho ¼ �ko cosfi ;
ao ¼ 1=2 ; ho ¼ � cosfi

ð122Þ

that is for eao = eko cos bi, eho = �eko cos fi, and bi = p/3. In
the free space, and not in the gyrotropic medium, this
wave would correspond to a plane wave incident with an
azimuthal angle fi, and a zenithal angle bi. The
polarization vector in the gyrotropic medium

eot ¼
�0:0798� j0:5388

0:8387

� 	
ð123Þ

does not depend on the value of eko.
[50] The incident wave originates two diffracted

waves, one of the first and one of the second kind,

which are computed very accurately by numerically
solving, with the technique explained by Daniele
[2004a], the Fredholm equation associated with the
factorization of the WH kernel. The results of Figure 4
show the real and the imaginary part of the two
normalized components of the quantity V+

d (h) =
koV+

d (h) given in (116). As previously explained, in
order to obtain the far diffracted field according to (115)
it is enough to know the saddle points and the value of
V+
d(h) at the saddle points. The location hs of the saddle

points is obtained from (114), and the values of hs in the
observation angular region {�180� < f � 180�} are
reported in Figure 5. Tables 1 and 2 report the values of
the diffracted field components

Es
x;z ¼

EPO
x;z þ Ed

x;zffiffiffiffiffiffiffi
kor
p exp �j qc korð Þ exp �jaozð Þ ð124Þ

Table 1. Field Components for the First Wave Diffracted Field at Four Different Observation Angles f, in Case of ao = ho = 1/2a

f Ex
PO Ex

d Ez
PO Ez

d qc

45� 0.1232 � j0.0448 0.0029 + j0.0218 0.0365 � j0.2505 �0.0038 � j0.0123 1.50575
135� �0.0182 + j0.0163 �0.0633 � j0.0239 �0.0172 + j0.0259 0.0298 � j0.1199 1.60743
�45� �0.4736 � j3.3692 �0.0230 � j0.0271 �5.1562 + j0.0384 0.0504 � j0.2197 1.46782
�135� 0.1488 + j1.4465 1.4096 � j2.9930 2.2875 � j0.0757 1.0800 � j2.3424 1.34645

aSee equation (124).

Figure 5. Saddle points hs in the observation angular region {�180� < f � 180�} for the first and
second wave of the dispersion diagram of Figure 2, in case of ao = 1/2. The two values of f where
hs is the same for the first and second wave are reported. Notice that the first wave has two or three
saddle points in the region around f = �140�.
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relative to the first and second wave for different
observation angles. The values for the first kind wave
are given in Table 1, whereas Table 2 shows the values
relative to the wave of the second kind. Notice from
equation (124) that in general, the phase of the
cylindrical waves 1 and 2, with respect to the phase
one has for an isotropic medium, is corrected by a qc
factor which depends on the azimuthal observation angle
f as well as on the kind (1 or 2) of the diffracted wave.

6. Conclusion

[51] A very general Wiener-Hopf approach to study the
electromagnetic diffraction by an imperfect half plane
immersed in a linear homogeneous bianisotropic medium
is presented. The effects of the material are summarized
by introducing characteristic impedance and admittance
matrices, which indeed allow for a straightforward for-
mulation of the Wiener-Hopf problem.
[52] In the simpler case of perfect electric conducting

and perfect magnetic conducting half planes, the Wiener-
Hopf equations involve matrices of order 2, which are
factorized in closed form for special form of the material
constitutive tensors. Four of these special cases are
discussed in detail.
[53] The superiority of the Wiener-Hopf technique

with respect to other existing techniques is rather evident
when one deals with the most general problem, where
the Wiener-Hopf matrix kernels must be factorized
numerically by using a technique presented in this paper.
Our numerical approach is discussed in detail on one
example, by considering the previously unsolved prob-
lem of a perfect electric conducting half plane immersed
in a gyrotropic medium. Numerical results are reported
to show that the diffracted field contribution can be
obtained by the saddle point integration method.

Appendix A

[54] For the imperfect half plane problem, by taking
into account the boundary conditions (6), the arrays

F1þ ¼ Va þ ZaIa � ZabIb
F2þ ¼ Vb þ ZbIb � ZbaIa

�
ðA1Þ

are plus functions of the complex variable h, since they
are Fourier transforms of functions that vanish for x < 0.
Furthermore, by taking into account the continuity of the
electromagnetic field on the aperture half plane region
{x > 0, y = 0}, it is straightforward to prove that the arrays

X1� ¼ Va � Vb

X2� ¼ Ia þ Ib

�
ðA2Þ

are minus functions of the complex variable h, since they
are obtained by Fourier transforming functions that
vanish for x > 0. By eliminating Va, Vb, Ia, and Ib from
(A1) and (A2) and from the first equation of (11) and (12),
one gets

G hð Þ F1þ
F2þ

� 	
¼ X1�

X2�

� 	
ðA3Þ

with

G hð Þ ¼
Z
!
þZa þ Zab

� �
Y
,

Z
!
þZa

� �
Y
,
Z
 
�Zab Y

,
Z
!

� 	
� Z
 
þZb þ Zba

� �
Y
,

Z
 
þZb

� �
Y
,
Z
!
�Zba Y

,
Z
 

� 	
2664

3775
�1

ðA4Þ

Y
,
¼ Z

!
þ Z
 � ��1

ðA5Þ

X1�
X2�

� 	
¼ Xs

1�
Xs

2�

� 	
þ jEoG hoð Þ

h� ho

e0t þ Za þ Zabð Þh0t
e0t � Zb þ Zbað Þh0t

� 	
ðA6Þ

The voltage and current functions in terms of the minus
WH unknowns are

Va

Ia

� 	
¼ Z

!
Y
,

Y
,

" #
Z
 
X2� þ X1�

� �
ðA7Þ

Vb

Ib

� 	
¼ Z

 
Y
,

Y
,

" #
Z
!
X2� � X1�

� �
ðA8Þ

Table 2. Field Components for the Second Wave Diffracted Field at Four Different Observation Angles f, in Case of ao = ho =
1/2a

f Ex
PO Ex

d Ez
PO Ez

d qc

45� �0.8191 + j0.1432 �0.0109 � j0.0201 �0.0302 + j1.3237 �0.0567 + j0.0019 1.09735
135� 0.2144 � j0.0396 �0.0848 � j0.0754 0.0087 � j0.3219 �0.1371 + j0.0497 1.00051
�45� 0.3280 + j2.3936 0.0332 + j0.0337 3.6851 � j0.0347 �0.0640 + j0.2699 1.12522
�135� �0.2353 � j1.7434 �0.4665 + j1.6206 �2.7566 + j0.0255 �0.3959 + j1.3621 1.19875

aSee equation (124).
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Appendix B

[55] The (4 � 4) matrix P given in (26) is obtained by
erasing the vanishing third and sixth rows and third and
sixth columns of the (6 � 6) matrix

Pt ¼ �G0Gy 1t Gt �Wty

� �cWy 1yGt �Wyt

� �
�Wtt

h i
Gt
0

ðB1Þ

where G0
t is the transpose of G0, and where we have

introduced the following (6 � 6) matrices

1t ¼
ẑẑþ x̂x̂ 0

0 ẑẑþ x̂x̂

� 	
zxyzxy

ðB2Þ

1y ¼
ŷŷ 0

0 ŷŷ

� 	
zxyzxy

ðB3Þ

Gt ¼ �j
0 1� a0ẑþ hx̂ð Þ

1� a0ẑþ hx̂ð Þ 0

� 	
zxyzxy

ðB4Þ

Gy ¼ 0 ŷ� 1

ŷ� 1 0

� 	
zxyzxy

ðB5Þ

G0 ¼
ŷ� 1 0

0 1t

� 	
zxyzxy

ðB6Þ

W ¼ jw
e x
�z �m

� 	
zxyzxy

ðB7Þ

cWy ¼
�j

w eymy � xyzy
� � myŷŷ xyŷŷ

�zyŷŷ �eyŷŷ

� 	
zxyzxy

ðB8Þ

Wtt ¼ 1tW1t ðB9Þ

Wty ¼ 1tW1y ðB10Þ

Wyt ¼ 1yW1t ðB11Þ

Wyy ¼ 1yW1y ðB12Þ

and the following (3 � 3) matrices

1 ¼ 13 ¼ ẑẑþ x̂x̂þ ŷŷ½ �zxy ðB13Þ

1t ¼ ẑẑþ x̂x̂½ �zxy ðB14Þ
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