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Scalable methodology for the photovoltaic solar energy potential assessment
based on available roof surface area: further improvements by ortho-image
analysis and application to Turin (ltaly)

Luca Bergamasco, Pietro Asinari

Department of Energetics, Politecnico di Torino,
Corso Duca degli Abruzzi 24, Torino, Italy

Abstract

The ongoing rush of the UE member states to the 2020 overgkt®on the national renewable energy share (see
Directive 200928/EC), is propelling the large exploitation of the solar reseufor the electricity production. How-
ever, the incentives to the large employment of PV solar riezdand the relative perspective profaseoften cause

of massive ground-mounted installationchese kind of installations are obviously the preferredigoh by the in-
vestors for their high economic yields, but their social @opshould be also considered. Over the Piedmont Region
for instance, the large proliferation BV farmsis jeopardizing wide agricultural terrains and turistieas, therefore

the policy of the actual administration is to encourage the af integrated systems in place of massive installations.
For these reasons, aff@tto demonstrate that the distributed residential generatém play a primary role in the
market is mandatory. In our previous work “Scalable mettaglp for the photovoltaic solar energy potential as-
sessment based on available roof surface area: applidatiiedmont Region (Italy)”, we already proposed a basic
methodology for the evaluation of the roof-top PV systeneptl. However, despite the total roof surface has been
computed on a given cartographical dataset, the real ratdciavailable for PV installations has been evaluated
through the assumption of representative roofing typokgied empirical caéicients found via visual inspection of
satellite images. In order to overcome this arbitrarineskrafine our methodology, in the present paper we present a
brand new algorithm to compute the available roof surfaasel on the systematical analysis and processing of aerial
georeferenced imagésrtho-images) The algorithm, fully developed in MATLAB, accounts for shadow, roof sur-
face available (bright and not), roof features (i.e. chigser walls) and azimuthal angle of the eventual instaliatio
Here we apply the algorithm to the whole city of Turin, andga®s more than 60,000 buildings. The results achieved
are finally compared with our previous work and the updategBténtial assessment is consequently discussed.

Keywords: Photovoltaic; Roof-top PV systems; Renewable Energy; Gifho-image analysis

Nomenclature

N Number of pixels. . . . . . . . [-]
S ROOFSUITACE . . . . . . . . [m?]
R G,B Color band matrices (red, green, blue) . . . . ... .. .. [-]
C,D  CodfiCient . . . . ... . [-]
Ma  Arithmetic mean (operator). . . . . . . . . .. . [-]
Me Median. . . ... e [-]
v Gradient . . . . .. e [-]
N Pixelindices. . . . . . . . [-]
n Buildingindex . . . . ... [-]
k Pixelregionindex . . . . . . ... [-]
9 Tiltangle. . . [°]
y Azimuthal angle . . . . ... [°]
A Exponential distribution rate parameter . . . . . . . ... [-]
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u Meanvalue . . . . . .. [-]

02 NVAMANCE . . . . [-1
o Standard deviation . . . . . ... [-]
Abbreviations

DEM Digital Elevation Model

GIS  Geographic Information System

RBG Image format

RAM Random Access Memory

HVAC Heating Ventil. and Air Cond. systems

1. Introduction

As already discussed in our previous work [1], the intereshe renewable energy exploitation is growing fast in the
EU member states, due to the EU directive for 2020 (Dire@3@928EC). In the framework of renewables, the solar
energy exploitation is one of the main topics of discussibitaly, the national incentives to the electricity protion

by means of photovoltaic systems, is cause of an ongoingfgnation of PV farms As regards the Piedmont region,
the policy of the actual administration is to either pronsa&ar installations and preserve agricultural and toigrest

eas [1]. In this perspective, the Piedmont Regional Copani its Capital Turin in particular, are currently assugnin
the national leadership in the promotion and incentive dflimg integrated PV systems (Piedmont Regional Council
[2] and [3]).

The drift to the full exploitation of integrated systemsnmvertheless hold by the lack of reliable tools to evaluate
the territorial potential. Despite lots of interactive I®are by now available to compute the useful solar radiation
for a given geographical area (i.BVGIS Tool[4], see also MSri et al. [5] and [6]) their applications estimate the
geographical potential at the detail of the urbanized afietasSiri et al. [7]), which is obviously still a limit. A first
tentative to address the lack of informations on the real sooface available has been carried out by Izquierdo et
al., [8], by means of a crossed sampling of various GIS andsteal data, and by Kabir et al., [9], by the satellite
image analysis. Another tentative to address the problentbéan done by Wiginton et al. [10], using a specific GIS
tool for the feature extraction, but they anyway make usengfigcal codficients found in literature to evaluate the
availability. The importance of a reliable assessment@ftiof surface available for integrated installations ruoeg,

is not only related to the PV energy assessment, but to thedialr energy resource planning, as already proposed by
Izquierdo et al. [11] for both PV and solar-thermal instiédias. However, as far as the authors know, there exist no
tools specifically developed for a detailed roof analysis.

In the present paper we present a novel algorithm (fully ezl in MATLAB®) for the systematical roof sampling,
which is able to account for the roof share availability fostallations, pitch brightness, shadowing and azimuthal
angle of the eventual installations. Particularly, thiskgoaims to be a methodological refinement of our previous
paper [1], in which we proposed a scalable methodology ferrtof-top PV system potential assessment. In that
work, despite the total roof surface area has been computdldedbasis of a given GIS dataset (for the entire Pied-
mont region), the roof surface availability has been edtthdy means of cutting céiicients to take into account the
shape of the roof, eventual aerials or chimneys, solar thkimstallations etc. Particularly, a representative rugpfi
typology has been assumed, and the empiricafficdents has been found via human inspectiocobgle Earthv
images. The goal of the present work is to overcome the arbigss of both the assumptions and theftcents and
address the computation of the real roof surface availapladans of the systematical processing of geo-referenced
aerial images. The present methodology is a substantialovement in the computation of the real roof surface
available, because the analysis is carried out on reall greiographs of the geographical unit. Here we apply the
methodology to the city of Turin, and process more than 8Ddlidings. The results achieved by means of the
present methodology are then compared with the assumptiads in our previous work.

The outlines of the paper are as follows: the input data asé firesented, together with a brief discussion on the
data structure, successively the novel methodology isepted in detail together with the relative results achieved
The comparison with our previous work and a discussion ofitftertainties concludes the paper. The computational
issues are presented and discussed in detall, firstly t0 tieeattention to the non-trivial data amount to be proedss
secondly as a remark on the complete reproducibility of teéhwdology at dterent scales and forfiierent regions.
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2. Input data

2.1. Geographical metadata

The geographical and cadastral data of the Municipality win consist of a set of shapefiléshp) covering the
whole extent of the City. The shapefile is a particular metadarmat, thought to be used by means of a GIS
software. The shapefile is basically a georeferenced ldy@athematical features, such as dots, lines or polygons.
Each feature is endowed of a serie of stored attributes (defer{ details on the format array). For the purpose of
our study, we only take into account the shapefiles concgm@neidential and industrial buildings. The layers are
organized in polygons, representing the building shapesh polygon is provided of its relative attributes (such as
its intended use and its surface area) and the cartesiadicates of the polygon vertices in the adopted reference
system. The geo-reference system assumed for the data bfuhieipality of Turin is a national reference grid:
Roma4@Gauss-Boaga Time Zone 32 (Western Italy). Roma40 refersetDatumof the reference system, which is
the reference ellipsoid;auss-Boagas the projection type. The current version update is Seipéer2010.

2.2. Orthoimagery

An orthophoto, also called orthophotograph or orthoimagdasically a high resolution aerial photograph, which
has been subsequently “orthorectified”. The “orthoreéttfan” process consists in the geometrical correction ef th
image to achieve a uniform scale. Particularly, the maingendistortion corrections are: the topografical relief dis-
tortion (using a Digital Elevation Model, DEM), the acqtiish lens camera distortion and the acquisition angle. The
rectified images are accurate representations of the Eatiface and have the same scaling properties of a map, thus
can be used to perform any spatial measurement and andtysexample by a GIS software). The georeferencing
system grants the correct position of the image and evéythal superimposition of other geographical data provided
of the same coordinate system. The complete dataset of tihécldality of Turin, consists of 124 orthoimaggk?].
Each orthoimage consists of a compressed RGB infjpgg and relative reference system fileorldfile (jgw), for a
total data size of 2 GB ca. The acquisition years are 2002 80d,According to the lot (see Fig. 1 for details).

3. Data pre-processing

3.1. Image extraction

The extraction of the image of each building, passes thrabgtsuperimposition of the cadastral metadata to the
orthoimagery. The coherent reference systems betweemthdata, allow an accurate positioning of the polygons
on the relative buildings in the orthoimage. A specific pdrthe MATLAB® code has been developed for the

systematical extraction of the buildings. The code worksbsrsecting the two data types, according to the following
steps:

find edges and bounding box of the selected building (Big. 2
crop the orthoimage at the bounding box (Fig. 3(a));

translate the polygon vertices to the cropped image gixel
create a logical mask of the building (Fig. 3(b));

extract the building image on white background (Fig. B3(c)
create a new reference system file for the new infageldfile bpw)
save data.

NookrwpdpE

The code iteratively repeats the process for all the bugllifalling completelely within the selected orthoimage. In
order to avoid the loss of the buildings falling on more thae orthoimage, the 124 orthoimages cannot be processed
singularly, but have to be merged in a bigger mosaic. A siimglege of the complete extent of the city would be
the excellent solution, but the data size would be (in thsegduge. The strategy adopted to tile the orthoimages
and solve the problem is discussed in paragraph 3.2. Theioofphe code is a new uncompressedpimage, the
relative geo-refence system fitlgpw, and an arrayrfat file) containing all the attributes of the building. The fota
number of buildings of the Municipality of Turin is 61,555rfeesidential and 3,936 for industrial. In our analysis,
we exclude from the computation those constructions cgiild as residential or industrial but not suitable for PV
system installations, such as churches, barracks ordedfs for residential and tanks or gasholders for industria
The residential buildings to process are hence 59,861, ait® 3he industrials, for a total number of buildings to be
processed of 63,630.
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Figure 1: (color online) Overview of complete orthoimage data The colors refer to the acquisition year: 2002 for lotetl), 2004 for all the
other lots (2 yellow, 3 green and 4 light blue). The orthoinslgave been aggregated in 6 mosaics, one of the city centre@frtiéoutskirts.

3.2. Computational issues on data size

As mentioned above, the size of a single orthoimage of theeetity of Turin, would be huge. Furthermore a single
image of the whole dataset would not be, in this case, an aptioiution for the reasons discussed hereafter. It should
be noticed that the orthoimages are in the loosy compressetifjpg, and the compression rate is high and variable
(5:1 or higher). In MATLAB®, the orthoimages are decompressed and stored in a 3-donahsirray, where the
three matrices corresponds to the three color bands of taganRGB (Red, Green and Blue). The original images
are in the format of unsigned integer 8 bit per barfiM@ues, that is 0 to 255 colors), which means 24 bit depthrcolo
images. Despite the band matrices are in the integer fothmatiigh compression rate of the orthoimages, causes a
really high RAM (Random Access Memory) allocation. For epdéana 20 MB image causes a memory allocation
of 100 MB or higher, depending on the compression rate ofritege. The total uncompressed data size is then 10
GB ca, but building a single image of the complete dataset ATMAB® would lead to allocate a 3-dimensional
matrix of 20 GB ca. (6.5 billion elements per band ca.) beeabsing the matrices square, billions of unuseful matrix
elements should be anyway stored in the RAM for the backgtpwhere no data exist. Considering smaller tiles,
involves anyway non-trivial computational issues, as the sf the biggest mosaic achievable directly depends on the
available memory of the computer used.

The computational facility we used for the present work is EnerGRID cluster, available at the Department of
Energetics of Politecnico di Torino. It is a Transtec HPGstdw of 72 total virtual cores, 144 GB total RAM and 5.5
TB total hard disk capacity. Each node of the cluster (8 cdatmnal nodes plus the Master node), dispose of 16 GB
RAM. Being the image merging a serial process (not worth talfedize on multiple processors), we built the biggest
image of the City centre compatible with the amount of menagilable in one node. The dataset has been thus
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Figure 2: (color online) Building detection: the roof edgee calculated from the polygon vertex coordinates (tedadIto pixels). The polygon
extent also allow the computation of the bounding box.

organized in a central block of 103 orthoimages for 13 GB cagalering a 3 GB hiier for storage of variables when
running code), plus 5 blocks of the outskirts (see Fig. 1}hiaway, the possibility of representative data loss due to
gaps among tiles is reduced to the minimum (compatibly withdomputational resources), as the highest building
density area is within a single block. By means of this apghogve have been able to extract 59,845 (over 59,861)
residential and 3,756 (over 3,769) industrial buildings.

3.3. Data sorting and corrupted pixel identification

As already mentioned in section 2, the orthoimagery actiisyears are 2002 and 2004, while the metadata version
is that of September 2010. This discrepancy between theugatates, unavoidably produces an error during the
extraction of the building images. The built-up area chanigethe aftermath of 2004, are indeed present in the
metadata but not in the orthoimagery. The attributes of thiggons in the metadata do not provide informations
about the construction year, hence it is not possible indage to filter the selection and acquire only the buildings
older than 2004 (or 2002). The algorithm inevitably extsaali the polygons, clipping also those that should be
the newly built buildings. As regards the industrial cabe, huildings are for the almost totality extracted properly
which means that no substantial changes have occurred$dypwology after 2004. On the other hand, the residential
building extraction presents a non-negligible number kéfemages that must be excluded from the analysis.
Another issue concerning the building extraction is thegenguality, because the extracted images present some
corrupted pixel zones (Fig. 4(a)). This problem, due to thtbarectification algorithm (Biasion et al. [13]), is
embedded in the given orthoimagery and represent a lackarhirations. We decided to face the problems according
to the following strategy:

1. filter the fake images;
2. identify the corrupted pixels.
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Figure 3: (color online) Building extraction process exylton: (a) roof edges and bounding box detection, (b) pinaask construction and (c)
RGB roof image extraction.

As regards the first step, having no other informations, stieen decided to base the sorting algorithm on the RGB
color bands. It has been found empirically that for the residl roof images, the preponderant color band is the
red one. This is quite obvious for the reddish roofs, not saitime for the grayish. The gray color is characterised
by equal values for the three color bands (RGB): at the baigglahree zeros represent black, three 255s (in 8 bit
images) represent white and all the equal terns in the mgldéethe diferent tones of gray (256 exactly). We anyway
found that the grayish residential roofing present a smalklynificant preponderance of the red color band on the
others. The imagery has been thus sorted getting rid of thgéswhere the mean value of the blue or green color
bands are greater than the red one. By means of this algotitlenmumber of discarded fake “residential” images is
6,625, that is 11% of the total.

The second step, which is to identify the corrupted pixeth@&images, is non-trivial, as there is no way to univocally
pinpoint those pixels. They appear as variable tone daddpir the image, which makes itfficult to sort them as
corruptions or shadows (Fig. 4(a)). We decided to make usemtrossed empirical criteria: the first based on the
color darkness and the second based on the two-dimensiomedrical color gradient. Particularly a pixel is defined
as corruption if its color band values are all less than 58.(B{b)) and the module of its gradient (calculated on the
band with maximum variance) is greater than an imposedhbtégFig. 5(c)). The gradient threshold is achieved
evaluating the median of the color band first and then the roétire pixels over the median. This procedure allows
to evaluate the mean of the higher gradient sub-distributioly. Let the R band be that with the highest variance
(could be also G or B, according to the maximum variance)fwleconditions can be summarised as follows:

Rj <50 Condition 1
[VRj| > Ma(R; > Me(R;)) Condition 2

The numerical gradient of the band with maximum variancéhisicase R, namelyR, is calculated by central finite
differences with unitary step size (except at the boundariestenorward or backward finite fierences have been
used).

In summary, if a pixel is dark (according to our empiricateria, Condition J) and presents a high gradient value
(over the meanCondition 2, theniit is likely to be a corrupted pixel (i.e. very dark @i in a coloured neighborhood).
The constraint on the gradient excludes the pixels in darktets, because in case of clustering there is no way to
univocally define a pixel as shadow or corruption. If the dadster is large enough, the image is excluded by the first
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Figure 4: (color online) Example roof chosen to illustrate torrupted pixels (a). The blue box pinpoints the zoom asea in Fig. 5 to explain
the algorithm developed to identify the corruptions. Idfeed corrupted pixels, highlighted in blue (b).

sorting algorithm based on the mean of color bands, otherthis inner pixels of a dark cluster will be catalogued
as shadow. For the sake of clarity, it must be told that weltsieveral ways to adjust the images and recover the
corrupted pixels using filters. For example we tried to retarct the corruptions by interpolation of the pixel values
in the local neighborhood. This method nevertheless dependhe size of the floating mag&onvolution matrix)
used to evaluate the local mean and in general producesiattfalues where no data exist. We hence decided just to
pinpoint and quantify the entity of the corruptions per immdgxcluded in the following processing) and analyse the
original data (detail in Fig. 5(d) and final result in Fig. %(b

It is important to remark that this part of the methodologyg haen specifically developed for this particular case. The
sorting step has been necessary because of the discrepemeeh the data updates and the fake pixel identification
because of the embedded corruptions. In general, the poegsing steps for the input data should be studied case-
by-case, while the following analysis, which is the corehs proposed algorithm, applies in general.

4. Image analysis

In our previous work [1], we found the empirical dheients used to compute the roof surface available by visual
inspection ofGoogle Earti™ images. The idea at the basis of the present algorithm isatshxte the human-eye
analysis in an computational code through statisticalstéml a systematical analysis. Particularly, the purpoge is
identify four zones:

e shadow;
e suitable but not bright;
e suitable and bright;

e roof features (e.g. chimneys, walls, HVAC).

Obviously we assume the shaded zones and the roof featusest suitable for PV installations, while the suitable
share is sub-divided into bright, which is recommended,rastdright, not recommended. Before proceeding, a brief
clarification on this color-based division is mandatorye®malysis is carried out on aerial images, which have been
acquired at a certain time of the day (and unfortunately waatchave informations on it). Rigorously, the results
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Figure 5: (color online) (a) Detail of the corrupted pixeheo(blue rectangle in Fig. 4(a)). Color isocontours for [sx@aracterised by all band
values under 50 (b), gradient isocontours for pixels chiaresed by a color gradient over the threshold (c) and filtexrupted pixels (d).

of the analysis would be therefore valid for the image adtjiaistime and not for all the day (neither forftérent
periods along the year). Nevertheless, if we assume thairihges are generally acquired at a good day-light time,
the color-based analysis can be representative of the niteatien during the day. As regards the shadowing, for
instance, its fiective value should be calculated as the integral mean ashihded zones during the day (same as
for the pitch brightness). This approach however, wouldiirega complete 3D city model or at least a complete
ortho-image sample for the given geographical area aadjairéiferent time intervals during one dayith regards

to this issue, we mention a German project named SUN-AREA Hirhing to compute the roof-top PV potential by
means of aircraft scanner data. However, this method resjai-hocaerial data acquisition, while the purpose of
our methodology is to provide an easy tool for the analysise#ly available and easy accessible data, therefore we
assume the ortho-imagery to be representative of a meatisitiduring the day. This hypothesis should be always
kept in mind for the algorithm steps discussed in the folfayyaragraphs.

4.1. Dynamical image segmentation

Despite the format of the images is RGB color, for the purpafseur study we decided to perform the analysis on
one of the three bands only, as the combination of the bandkjs case, does not add any appreciable additional
information. The first step of the analysis is thus to iderttile most significant color band to study. We then calculate
the bi-dimensional variance of the three bands and assumhe asost significant one that with the highest variance.
On this band, we construct the pixel color histogram, withuanher of bins equal to the value range of the band
(one bin contains a single value). This discrete distrdouttan be used to dynamically found the threshold values
for the image segmentation: the bin counts are indeed iolzigrd by a variable degree polynomial. Particularly, the
thresholds should be set in correspondence to the mininteeqfdlynomial, consequently the code adapts the degree
of the polynomial in order to have at least two minima for ¢hneacro-zones (considering the boundary values). The
three macro-zones are: shadow, suitable and roof featlinessub-division of the suitable zone in bright and not, is
carried out considering the absolute maximum of the distidim (between the two minima). However, this division

is not able to properly identify the shaded zones and the femifires, hence we doubled the number of minima to
four (at least): in this way the suitable zone has been shanikthe other two zones expanded. Hence we consider
the absolute maximum as described above and the two clogsistarto identify the zones. The algorithm applies
both to residential (Fig. 6) and industrial (Fig. 7) roofin§ampling the images, it has been found that two particular
cases deserve aftiirent treatment, whether the image is very bright or verk.diarthis cases, the maximum of the
polynomial corresponds to the last or the first stationamptsaespectively and there is no margin to pinpoint the
features or the shadow. Hence in case of a light peak, therésaare not taken into account, on the other hand in case
of a dark peak the shadow is neglected. The zone thresh@dkear shifted and the considered minima are those two

8



Image band

Pixel statistics

Image segmentation

700
600
504
500
100+ & 400
=
_ =
2 5 3m
= 450 T
E m
2004 100
i J ““\'\Q -
2504
-100
a0 100 180 200 n Al 100 140 200 250 0 100 150 200
pixel colar tone pixel
@
Image band Pixel statistics Image segrentation
800
A 700
40
600
G0
80 & &
& 4m
g 100 o
=1z £ 300
£
140 2 m
160 00 k
180 0 , 2 L
200
-100
1} 50 100 150 200
pixel color tone vixel
(b)
) I‘mage band ) ) Pixel statistice Image segmentation
400
300
-5
- =200
— - E
= W =
= . g
7 ﬁ;ﬁ £ 1m
5
1404 . 4 g
160 T~y 0
1804 "
2004 . A
T T T T o a0 100 180 2000 250 300
50 100 150 200 color tane
pixel pixel
(©)
Irmage band Pixel statistics Image segmentation
. 0 \ . 1 \ \ . .
204 - 250
i s 200
404 G P
_ f ; . K- 2 150 _
£ god B B E
= = S 2w =
e g
&0 i : ED»}\‘
100 o -y
20 a0 &0 0 100 120 140 180 0 S0 100 150 200 250 300 20 40 60 80 100 120 140 160
pixsl color tone pixel
(d)

Figure 6: (color online) Residential roof segmentation. Fhage segmentation color legend is: green for corruptiorekiflor shadow, blue for
suitable but not bright, yellow for suitable and bright aed for the roof features. The pixel statistics color legendilue for the histogram, red

for the interpolating polynomial, green for the minima, yellfaw the maxima and the black vertical lines are the zone thtdsho
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is: green for corruptions, black for shadow, blue for sugdiut not bright, yellow for suitable and bright and red floe roof features. The pixel
statistics color legend is: blue for the histogram, red ferititerpolating polynomial, green for the minima, yellow foe tmaxima and the black
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before the maximum in case of a light peak (Fig. 6(c) and &clhose two after the maximum in case of a dark peak
(the maximum peak is in these cases neglected).

A last remark on the procedure is about the peak locationreTarist cases where the peak is not the first or last
stationary point, but it is anyway very close to the boureend the shadow or feature zones result to be too wide.
While in these cases the shadow zone is wider than normal &swmable (considering the strongfeience between
light and dark pixels), the feature zone is not, becausetatdaiarea may result in a feature zone. We hence decided
to set a constraint on the maximum share of the roof by theufest particularly we empirically found that if the
biggest feature (namely, biggest cluster of pixels cataogas features) or the total feature share exceeds 10% of the
roof, then it is likely to be a wrong analysis, and we switch #one to suitable and bright.

The accuracy of the algorithm is obviously strongly dependm the quality of the image, if the resolution is too
coarse indeed, no reliable informations can be retrieved this reason we decided to exclude from the sample the
images with a resolution lower than 1,500 pixels, namely0,desidential and 197 industrial roofs. Moreover, we
exclude from the sample the images characterised by a samaber of color tones per band, that is the number of the
histogram bins. In these cases indeed, the polynomial dégre proper interpolation (according to the constraint on
the minima discussed above) would be greater than the biaiiata points, and the polynomial is not unique. This
further exclusion leads to lower the sample to 43,503 residleand 3,558 industrial images. Finally, there exist som
particular cases in which the algorithm is not able to prlypelentify the zones (Fig. 8), but unfortunately this is an
embedded uncertainty of the color based analysis (the @ndf@interval of the algorithm is discussed in paragraph
6). A brief remark on the computational times: the serialcpssing of the residential buildings took 4 hours ca.
(mean processing time per image of 0.33 s ca.) while the trnidusok 1.5 hours ca. (1.5 s per image ca.).

4.2. Azimuthal angle calculation

Once achieved the suitable roof share, in order to achievhitfhest conversion rate, the bright area is recommended
for the PV installation. We then propose a method to evaltreeazimuthal angle of the eventual PV installations
in the bright areas)y). Being all the images endowed of their own reference sygextnacted from geo-referenced
datasets), the y-axis corresponds to the North-Southtireand the x-axis to the West-East direction. We then
calculate the orientation of the bright regions as the afigleegrees ranging from -90 to 90 degrees) between the
x-axis and the major axis of the ellipse that has the samengecmments as the region (normalized second central
moments, Haralick R.M. and Shapiro L.G. [15]). A region azihal angle zergr = 0 (parallel to x-axis), means
south-facing PV modules (the module axis is indeed perpeiali to that of the region), the angle is then positive
(y*) counter-clockwise and negative () clockwise. The orientation angle is calculated for eadghiregion greater
than 10n? (that we reasonably consider the minimum significant eximna PV system installation) and finally the
weighted-average over the pixelg .. of the obtained angles is achieved by the following equa(ian 1).
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Figure 9: Code outcome for the residential (upper image) addsinial (lower image) roof analysis: roof share percentafgeo-data, shaded
share, suitable but not bright region, suitable and brifgattures and weighted mean azimuthal angle of the eventuallai®ns in the bright
regions.
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5. Results

The final output of the code is a detailed analysis for evarglsiimage: percentage of corrupted pixels, catalogued
roof zones (shadow, suitable but not bright, suitable aighbrroof features) and weighted-mean azimuthal angle
of the eventual installations in the bright regions (Fig. Bhe results achieved for the city of Turin are described in
detail in the following paragraphs.

Table 1: Summary table of the results achieved (mean value$ledanicipality of Turin for the residential and industrialildings.

DATA RESIDENTIAL INDUSTRIAL

No-data 1.7% 0.8 %
Shadow 16.3 % 12.7 %
Suitable (not bright) 38.0 % 39.5%
Suitable (bright) 43.1 % 46.0 %
Features 0.9% 1.0%
Weighted-mean azimuthal angle ~9° ~7°

5.1. Sampling of the city of Turin

After the sorting processes discussed in paragraphs 3.8.anithe image sample of the Municipality of Turin consists
of 43,503 residential and 3,558 industrial buildings. Theamvalues of the results achieved are reported in Tab. 1,
while Fig. 10 show the distributions of the results achiegadhe roof segmentation for the residential (Fig. 10(a))
and industrial (Fig. 10(b)) case respectively, over thelelsample.

000§ v bumesniiummrnmasdo bl s

2500 |

2000

1500

Number of builbings
Nurnber of builbings

1000

500

40 50 B0 70 80 90 100 30 40 50 60 70 80 0 100
pixel % pixel %

(@) (b)

Figure 10: (color online) Histogram of the roof segmentafimnthe residential (a) and industrial case (b) over thetireasamples (43,503 and
3,558 images respectively). The color legend is: black fadskv, blue for suitable but not bright, yellow for suitabledebright and red for the
roof features. Cut® of the y-axis respectively at 3,200 and 400 (in place of 18 &@d 1,750 due to the features).
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Figure 11: (color online) Histogram of the weighted-meamaehal angle distribution for residential (a) and industfig roofs over the samples.
The number of histogram bins is 90 (either cases). Street rhapééile) of the city of Turin (c), the yellow box identifiesetaoom area (d), which
shows the detail of the angles of the street lattice.

The distribution of the azimuthal angles over the samplespsrted in Fig. 11 (Fig. 11(a) for the residential and
Fig. 11(b) for the industrial roofs). It is possible to netithat in both cases, the histograms present two distinct
peaks, namely two modes. In these cases the distributionsecnought as the mixture of two (normal) distributions,
characterised by fierent meany) and varianced?), namely bi-modal bi-variate distributions. As regards tom-
parison of the residential and industrial case, the digtioln shape is consistent, particularly both cases prdésent
modes, respectively located around>28d 65 (Fig. 11(a) and 11(b)). If we consider that the central afaéhecity

of Turin is characterised by perpendicular main streetsmindr roads (Fig. 11(c)), an interesting conclusion can be
drawn. The two modes of the azimuthal angle distributioress)@cated exactly in correspondence to the angles of the
street lattice (Fig. 11(d)), their flierence is indeed 9@a. This result prove the reliability of the algorithm, as th
weighted-mean azimuthal angles reflect the major axes diuhéings and therefore the disposition of the buildings
along the streets. The shape of the cumulative distribuifaine bright roof surface over the azimuthal angle for
the residential case (Fig. 12(a)), is consistent with tlidihe histogram relative to the number of buildings over the
azimuthal angle (Fig. 11(a)). Hence we are able to concludethe bright roof surface is quitbmogeneously dis-
tributed over the azimuthal angle range. On the other hanggards the industrial case, the shape of the cumulative
distribution of the bright roof surface (Fig. 12(c))fl@irs significantly from the relative distribution of the nuentof
buildings over the azimuthal angle (Fig. 11(b)). In thisesake bright roof surface is nbbmogeneously distributed,
particularly, the highest peak in Fig. 12(c), identifies RAT Group Automobiles S.p.a. (the interested reader may
check the consistency of the roof orientation angle of tlaatlacilities onGoogle EarthiM). These results show that

in case of a large scale analysis, it is non-trivial to figurewhether the assumption of a mean value for the azimuthal
angle over the whole city can be valid or not. The correctoésisis hypothesis is discussed in a dedicated paragraph,
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5.2.2.

Finally, Fig. 12(b) and 12(d) show the histograms and fittgubaential distributions of the bright roof surface. For
the sake of clarity, we briefly recall the definition of an erpatial distribution pdf (probability density functionrf

a sample x (Eq. 2):

i (2)
Eventually, if we consider 1@ as the smallest significant extension for a solar PV ingtatiaall the buildings
disposing of a smaller bright aréaamely contiguous bright pixelshould be excluded from the suitable. Considering

a 10n? cut-of, would lead to exclude almost 4,500 residential (Fig. 124 more than 150 industrial (Fig. 12(d))
buildings (that is respectively 10% and 4% ca. of the samples

f(x|/l)=%~e’

4
7)(10
6, i
E
@ SF q
= =
JEREE 1 E
= =)
[=2] o
B 2
o 3 b &
z £
@ S
E o 1z
=
O
’I | -
L L 1
-900 -50 0 50 100 0 50 100 150 200 250 300 350 400
Azimuthal angle [°] Eright surface [m?)
() (b)
1
%10
25 T T T 200
€ 2L FIAT Group Automabiles S pa | E B TG0 e e e e
@ H ; 4
E : ;.g 140 :
b= : 2 :
= 45 100
& o]
ei}
z 1r 1 E 80
3 =
2 &0
E]
O o5t b 40
20
! ;i a
-900 -50 a 50 100
Azimuthal angle [°] Bright surface [m?]
(c) (d)

Figure 12: (color online) Cumulative bright roof surface?] over the azimuthal angle for the residential (a) and indaisc) cases. Histogram
(blue) and fitted exponential distribution (red) of the btigoof surface, (b) residential and (d) industrial. Numbfebias respectively 2,500 and
21,348. The cut# point (yellow) is 10n? in both cases. The cutfoof the axes are: (b) y-axis 4,500 and 400 x-axis, (d) y-ax &ad 1,500
x-axis. Exponential distribution rate parametetgs = 101n?, Aing = 649n?. Remark: the industrial exponential distribution appeatse badly
fitted, this is due to the axis cutfdo allow a proper visualisation.

5.2. Comparisons with our previous work
In this paragraph, the results achieved by the presenteduoah@bgy for the city of Turin are compared with those in
our previous work, [1]). Sub-paragraph 5.2.1 deals wittdiseussion of the previously assumed and newly computed
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codficients to achieve the roof surface available. Ttieat of the resulting error on the roof-top PV potential fog th
city of Turin is also discussed. In sub-paragraph 5.2.2 pileeiously assumed mean d¢heient for the azimuthal
angle loss4zimuthal giciencynaz) is compared to the weighted-mean values over the two san@sidential and
industrial) achieved by the present methodology.

5.2.1. Roof-top PV potential

As already discussed, in our previous paper [1], the rodasaravailable has been computed by means of empirical
codficients found via visual inspection of satellite images.tiPalarly, the introduced cutting céiecients were: a
shadowing caggcient Gs 4 for the shadowing, eoof-type cogicient Gyt for the shape of the roof,faature cogicient

Cr and asolar-thermal coficient Gs 1 for the already occupied roof surface due to chimneys, laasiasolar-thermal
installations. The available roof area has been conselgumrputed by product of the cficients, namely (Eg. 3):

Savail = Sroof - CsH - Crr-Cr - Cs7 (3)

This approach has been largely used in literature (see $tange, Izquierdo et al. [8]), as it is mandatory when the
roof exploitability is unknown. This method however, maguk to be too conservative, as the product progressively
cut the same surface (and this is even statistically uyfjkdh the present work, under the hypothesis discussed in
paragraph 4, that is, the results achieved on the orthoeémgagpresent a mean situation during the day (in place of
integral mean values), the algorithm yields directly tffeetive available bright roof share. Eventually, considgri
the newly computed roof partitions, the bright area can teeaed by subtraction of the non-suitable zones to the
total roof surface. Particularly, in analogy with our p@vs work, the mean values in Tab. 1 (divided by 100) can
be defined as a new set of cutting fit@ents: no-dat®yp, shadowDs g, suitable (not brightprr and feature®k.

The mathematical definition of the new cutting flog@ents however, is radically fierent between the two papers,
therefore in this case the suitable area is calculated bysnafEq. 4, namely:

Savail = Sroof - (1 = (Dnp + DsH + Drt + Df)) 4)

The comparison between Eq. 3 and 4, allows to understandéktigoniological dierence of the two approaches. As
regards the representative roof inclination angteg:§ andd,np), we still make use of our previously assumed values
[1], namely 20 for dgres and 30 for ¢ np. Assuming representative values for this characteristitiil the only way

to take into account the 3D roof topology and correct the aatiegbplanary surfaces, because the orthoimagery does
not allow the retrieval of the 3D roof shape. Considering fiiGent spacing between modules to avoid reciprocal
shadowing, namely our previously assumed value forctheering index cofcient Goov = 0.45 [1], according to

the present methodology, the available roof surface anetoéoMunicipality of Turin may be 41% higher than that
computed in our previous work. The total PV potential for tinee scenarios (A, B and C) presented in our previous
work, would hence be respectively 719, 858 and GABHyyear.

5.2.2. Azimuthal angle

In our previous work [1], we assumed a mean azimuthal angkedaimuthal ¢iciencynaz = 0.9 over the Piedmont
Region, (UNI 10349 [16] and UNI 847% [17]). This value can be easily obtained by regressionguia interactive
web tool Atlante Italiano della radiazione solayeof the Italian National Agency for New Technologies, Energ
and Sustainable Economic Development (ENEA, [18]), whilintdeed based on this regulation. For the sake of
completeness, we compared this result with that obtainehbther interactive web tool, ti/GIStool, [4]. In both
cases, in a set condition, the value of the azimuthal angiebban made varying from 0 to 90, and the calculated
outputs have been used to evaluate the influence of the dmirarigle on the output. For the municipality of Turin,
the first tool yields exacltyaz = 0.9408 and the seconghz = 0.9243. Interpolating the values obtained by regression
on the outputs of the two web tools (Fig. 13), it is possibledfculate the azimuthal angle loss as a function of the
azimuthy, namely for each single roafz(y).

2 Snaz(rn) - Sa'" .
- b Sbright ( )
n

The comparison of the mean values with the relative weighiedn on the bright roof surface (Eq. 5) allows to verify
wheter the assumption of the a mean value for a large scalgsémaan be valid or not (hypothesis discussed in
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Figure 13: (color online) Azimuthal angle losg¢) as a function of the azimuthal anglg) ( Comparison of the curves obtained by regression on
the two web toolsPVGIStool, [4] andAtlante Italiano della radiazione solay¢18].

paragraph 5.1). The weighted-mean based on the regressitie dirst tool yields;az = 0.9381 instead of the mean
valuenaz = 0.9408, while the PVGIS data yieldsz = 0.9190 in place of;az = 0.9243. The negligible dierence of
the comparisons allows to conclude that for the large saaéysis, the assumption of a mean value for the azimuthal
angle loss is consistent (at least for the city of Turin). tdwer, in case of a detailed analysis, the algorithm output
provides anyway the possibility to evaluate the loss dueitmath at the detail of the single bright zone for each roof.

6. Confidence level

In this paragraph the uncertaintiefeating the proposed methodology and the reliability of tlgo@thm are dis-
cussed. The first limit to consider is the image resolutiba gixel is the smallest significant unit to consider (despit
interpolation) and no useful informations can be retriehegond it. Therefore any detail smaller than the pixel size,
cannot be identified (i.e. thin aerials).

The second cause of uncertainty to consider is the erroradilre tbuilding image extraction. The roof images indeed,
have been extracted using the polygons of the geographiedata to clip the ortho-imageripespite the consis-
tency of scales and geo-reference systems between thelldatatee correct position and overlathe intersection
between the polygon edges and the underlying pixels pradaicepproximation during the clipping, because of the
pixel size (sort ofpixelationof the edges). The surface of the extracted images indeeuhtdexactly correspond to
that declared in the attributes stored in the metadata. &rhig is anyway negligible, as its mean value over the whole
sample analysed is 0.1%.

The core of the analysis of the uncertainties, is to evaltieeeliability of the proposed methodology and provide a
confidence interval on the quality of the analysis. We thappse an empirical method to quantify the error made
on the roof segmentation. The algorithm output is visualiglgsed for a sample of 250 residential and 250 industrial
buildings and a mark (from 5 to 10) is given to the quality o #malysis. A 10 mark, for instance, corresponds to
the 100% accuracy of the analysis (i.e. feature identificatidentified corruptions, etc.), while a 8 mark denotes
an accuracy error of 20% on the overall result (accordingnéohuman visual inspection). Obviously, the quality of
the analysis reflects the quality of the given image: if thaliquis poor, the analysis is not reliable. In these cases
however, if the algorithm works as it is expected to do, a goadk is given (as even the human-eye is not able to
properly identify the roof zones). Low marks are given if thrginal image is clear but the algorithm is not able to
properly identify the roof partitioning. On the basis ofdfgreliminary remarks, the results of the quality evaluatio
show a mean accuracy level around 90% for the two samplesiezdm

This empirical approach to the evaluation of the correcrméshe analysis is clearlyfi@cted by an embedded uncer-
tainty due to the human sensibility. Nevertheless, this@dare represents a first tentative to address the noattrivi
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problem of the error estimation. A real validation indeed/ha achieved only by comparing the results of the analy-
sis against real data (i.e. monitored integrated PV sytantbat today, we do not dispose of this kind of data for the
city of Turin. The opportunity for a validation may come frahe application of the algorithm to a territory where
real data exists.

7. Conclusions and perspectives

In the present work, a novel approach to compute the availadgf surface for solar integrated installations has
been proposed. The presented methodology accounts footfisurface available for installations, roof typology
(through the analysis of the brightness), shadowing, djreacupied roof surface and azimuthal angle of the eventual
installations. The presented algorithm has been applittetavhole city of Turin, and the results achieved on the roof
exploitability and on the relative roof-top PV potentialikdeen compared with those obtained in our previous work,
[1]. Mostly due to the dierent approaches in the evaluation of the bright roof serfie comparison has shown that
in our previous work the assessment has been largely catservAccording to the present methodology indeed, the
total roof-top PV potential for the municipality of Turin mée 41% higher.

The reliability of the methodology has been proved compatire outcomes on the azimuthal angles of the bright
areas with the street topology of the city, and a confidengial has been given to the accuracy of the algorithm
(around 90%, according to the human visual inspection).

As a concrete application of the presented methodologyatiigors would like to mention that the results achieved
in the present paper have been aggregated to fii@ab cartographical metadatahapefiles)of the Municipality

of Turin. By means of a GIS sofware, even an unskilled user,reav interactively interrogate each building and
view the informations about the roof exploitabilitfhe authors are also actively working on the source codéhtor t
development of an automatic web plug-in for a real-time ysial

As regards the methodological perspectives instdadpite the presented algorithm represents a step foiwdne
evaluation of the roof surface available for integratedasahstallations, the computation of the real (mean-time-
integral) shadowing and roof brightness still remains aanogsue. The in-time analysis would require indeed a
complete 3D city model (and an artificial-sky model) andpalaty, we do not dispose of data at this detail for the city
of Turin.
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