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On Practical Implementation and

Generalizations of max* Operator for Turbo

and LDPC Decoders

Maurizio Martina, Member, IEEE, Guido Masera, Senior Member, IEEE, Stylianos Papaharalabos,

P. Takis Mathiopoulos, Senior Member, IEEE, and Fotios Gioulekas.

Abstract

In this paper, we deal with practical implementation issues of the max∗ operation in generalized form used for

both turbo and Low-Density-Parity-Check (LDPC) codes decoding. In particular, first a unified framework for the

so-called generalized max∗ operation is established, which includes most of previously published algorithms already

known for turbo decoding. Next, the hardware architectures used for the practical implementation of the generalized

max∗ operation, which is derived from this novel framework, are revealed for the first time and further analyzed, in

terms of hardware complexity reduction. It is also shown how this generalized max∗ operation can be adopted in

LDPC decoding achieving essentially optimal BER performance with small computational complexity against other

algorithms in joint turbo-LDPC architectures. This solution is useful in applications where joint decoding architectures

are deployed to decode both turbo and LDPC codes. An important example of such application is in software radio

receivers of 4G wireless communication systems, such as those proposed in conjunction with the WiMAX standard.

Index Terms

Maximum a posteriori (MAP) and Log-MAP algorithms, Turbo codes, LDPC codes, iterative decoding, VLSI

architectures.

I. INTRODUCTION

Turbo and LDPC codes [1], [2] have been proposed as powerful error correcting codes able to approach the

Shannon limit. Not only these codes have been adopted in several standards for wireless and wired communication
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systems, but also their exceptional error correcting capabilities have captured the interest of scientists working in

other field of research, such as magnetic disk reliability [3] and telemetry [4]. However, the hardware implementation

of turbo and LDPC decoders is a challenging task, due to the high computational complexity requirements of the

decoding algorithms [5]–[7]. In terms of implementation, the log-sum-exp (lse) function is a common operator

used in Log-MAP turbo decoders and its efficient implementation has been addressed in several works [6], [8]–[11].

Essentially, all previous implementations rely on approximating the following mathematical expression

lse(x1, x2) = log(ex1 + ex2) = max∗ {x1, x2} (1)

where

max∗ {x1, x2} ≈ max {x1, x2}+ fc(|x1 − x2|) (2)

and fc(|x1 −x2|) is a correction term. More accurate approximations of fc(| · |) lead in general to smaller bit error

rate (BER) performance degradation against Log-MAP turbo decoding at the expense of small complexity increase,

e.g. see [6], [9]–[11]. It has been shown in [8] that, in order for the correction term fc(|x1−x2|) to achieve nearly

floating point BER performance, at least three fractional bits are used to represent |x1 − x2|. Therefore, in this

paper we will show experimental results obtained for data represented with three fractional bits.

Recently in [12] the approximation of the lse function as a robust geometric programming problem (optimization

problem) has been presented. In particular, the following two conclusions reached in [12] are useful to our current

research.

i) The two-terms lse function (1) is well approximated by an r-term piece-wise-linear (PWL) function

lse(x1, x2) ≈ max {x1, . . . , yi, . . . , x2} (3)

or

z = max {x1, . . . , yi, . . . , x2} (4)

where yi = ar−i−1x1 + aix2 + bi, i = 1, . . . , r − 2 and ai, bi are appropriate coefficients [12].

ii) The r-term PWL function obtained as in [12] is the best r-term PWL convex approximation of the bivariate

lse function. In [13], [14] this approximation, termed as generalized max∗ operator, is exploited in turbo trellis-

coded modulation (TCM) and turbo codes. In particular, the generalized max∗ operator shows significant, i.e. near-

optimal, BER performance evaluation and hardware complexity savings, being comparable with other known lse

approximations [6], [9]–[11]. However, to the best of our knowledge, no systematic approach has been previously

proposed in the open technical literature trying to unify lse approximations in a general framework. This work

aims to partially fill this gap and, although no new algorithm approximating the lse function is proposed here, to

concentrate on the efficient implementation of previously known algorithms.

In particular, we extend [14] into the following novel directions: i) It is shown, for the first time, that several

lse approximations proposed in the literature can be obtained as special cases of (3); ii) Practical hardware

implementation architectures for the generalized max∗ operator are proposed and analyzed. To the best of our

knowledge such implementation is, for this first time, presented in the open technical literature; and iii) It is shown
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Figure 1. Block scheme of a different implementations of (4): (a) A1 architecture, (b) A2 architecture, (c) A3 architecture

that essentially optimal BER performance can be obtained by employing proper versions of (3) in LDPC decoders

with adequate computational complexity. In particular, one of the architectures proposed implementing the best

approximation proposed in [14] outperforms the recently published algorithm in [6], [10], in terms of both BER

performance and complexity. Moreover, the proposed architectures can be used to reduce the complexity of the

dual mode architectures for turbo-LDPC decoding proposed in [15], [16]. These architectures are thus identified as

promising candidates for joint turbo-LDPC decoder architectures in future 4G wireless communication systems.

II. APPROXIMATED lse FUNCTION AS A GENERALIZED max∗ OPERATOR

In general, direct implementation of (3) leads to high complexity. However, the implementation of (4) can be

simplified by exploiting the characteristics of ai and bi coefficients being calculated with the algorithms detailed

in [12]. As shown in Fig. 1 (a), the direct implementation of (4), referred to as A1 in the following, requires r− 2

combiners devoted to compute yi and an appropriate structure to find the maximum among the possible r inputs

of the max function. Each combiner requires two multiplications and two additions as shown in Fig. 1 (a). A tree

of two-inputs compare-select (CS) blocks is used to find the maximum among r elements; each CS selects the

maximum value between its inputs p and q. Thus, each CS requires a subtracter and a multiplexer. The multiplexer

selector is driven by the sign of the subtraction δ(p, q) = p− q (shown with dashed line in the right part of Fig. 1

(a)).
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However, the best PWL approximation of the lse function, obtained as in [12], features the following properties:

0 < a1 < a2 < · · · < ar−2 < 1 (5)

ai + ar−i−1 = 1 (6)

bi = br−i−1 (7)

with i = 1, . . . , r − 2. Moreover, a⌈r/2⌉−1 = 0.5 and b⌈r/2⌉−1 = ln(2) when r is odd. From (5) we can infer

ar−i−1 = ai + ki (8)

with ki ≥ 0 and i = 1, . . . ,
⌈
r
2

⌉
− 1 where ⌈.⌉ is the next highest integer value. Thus, we can conveniently group

each yi = ar−i−1x1 + aix2 + bi term in (4) with the corresponding yr−i−1 = aix1 + ar−i−1x2 + br−i−1 one in

order to rewrite z as

z = max {max{x1, x2}, . . . ,max{yi, yr−i−1}, . . .}

= max {x∗, . . . , y∗i , . . .} (9)

where x∗ = max{x1, x2}, y∗i = max{yi, yr−i−1} and i = 1, . . . ,
⌈
r
2

⌉
− 1. By means of (7) and (8) we rewrite y∗i

as

y∗i = max{yi, yr−i−1} = ai(x1 + x2) + kix
∗ + bi. (10)

When r is odd k⌈r/2⌉−1 = 0 and the max arguments in (9) also include the term

y∗⌈r/2⌉−1 = 0.5(x1 + x2) + ln(2). (11)

The architecture obtained by implementing (9) and (10) is shown in Fig. 1 (b) where >> i stands for a hard-wired

i-position right-shift block (dashed block in the right part of Fig. 1 (b)). In the following we will refer to this solution

as A2. As it can be inferred from Figs. 1 (a) and (b), A1 requires 2[r − 2 − (r mod 2)] multiplications, whereas

A2 requires only 2(⌊r/2⌋ − 1) multiplications1 where ⌊.⌋ is the next lowest integer value. As a consequence, A2

additionally reduces the complexity of the CS-tree which has ⌈r/2⌉+ 1 inputs instead of r.

However, the number of multiplications required to compute y∗i can be further reduced. In fact, from (6) and (8)

we obtain ki = 1− 2ai, that substituted in (10) leads to

y∗i = x∗ + bi − ai∆ (12)

where ∆ = 2x∗ − x1 − x2. Thus, (9) by means of (12) can be rewritten as

z = x∗ +max{0, . . . , bi − ai∆, . . .} (13)

when r is even and as

z = max{x∗ +max{0, . . . , bi − ai∆, . . .}, y⌈r/2⌉−1} (14)

1In both cases the trivial multiplication by 0.5 in (11) is not considered
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when r is odd. As it can be observed, this implementation reduces the number of multipliers to ⌊r/2⌋− 1, namely

by a factor of four, as compared to A1. The complexity of implementing (13) and (14) can be further reduced by

applying a predication-like technique, namely since δ(x1, x2) = x1 − x2 we obtain

∆ =

 δ(x1, x2) if δ(x1, x2) ≥ 0

−δ(x1, x2) if δ(x1, x2) < 0.
(15)

As a consequence, by applying this technique to (13) and (14) we obtain a simplified architecture referred to as

A3. This advantage is shown in Fig. 1 (c), where the generation of ∆ is no longer required. Furthermore, the sign

of δ(x1, x2) is used to select addition or subtraction for the programmable adder (PA) in the multiply-PA (MPA)

blocks (see the grey shaded block in left side of Fig. 1 (c) where cin is carry-in of the full-adder corresponding to

the least significant bit). When r is odd δ(x1, x2) is also employed to compute

y⌈r/2⌉−1 =

 χ∗ − δ(x1, x2)/2 if δ(x1, x2) ≥ 0

χ∗ + δ(x1, x2)/2 if δ(x1, x2) < 0
(16)

where χ∗ = x∗ + ln(2). However, (15) and (16) show that (13) and (14) can be unified by rewriting (9) as

z = x∗ + w∗ (17)

w∗ = max{0, . . . , w∗
i , . . .} (18)

w∗
i = bi ∓ aiδ(x1, x2) = bi − ai|δ(x1, x2)| (19)

with i = 1, . . . ,
⌈
r
2

⌉
− 1.

It is interesting to note that, from what has been shown in the previous paragraphs for the generalized max∗

operation some already known Log-MAP approximations for turbo decoding can be derived:

1) when r = 2, from (4) the lse(x1, x2) function is approximated by max(x1, x2), leading to the well known

Max-Log-MAP algorithm [8].

2) when r = 3, from (11) we can infer that the approximation of lse(x1, x2) as A2 is the Average Log-MAP

algorithm [9].

3) when r = 3, based on (19) A3 is the MacLaurin approximation [6], [10], if b1 = ln(2) and a1 = 0.5.

4) when r = 4 and the hardware friendly approximation a1 ≈ 0.25 is adopted, (19) becomes w∗
1 = ln(2) −

0.25|δ(x1, x2)|; thus, A3 is the Linear Log-MAP approximation [11].

In [14], ai and bi coefficients were approximated as simple powers of two to ease hardware implementation of

turbo decoders. In particular, we have shown in [14] for r = 3 and r = 4 that implementing

z ≈ max{x∗, 0.5(x1 + x2 + 1)} (20)

z ≈ max{x∗, y1, y2} (21)

with

y1 = 0.25x1 + 0.75x2 + 0.5 (22)

y2 = 0.75x1 + 0.25x2 + 0.5 (23)
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causes a negligible BER performance loss with respect to the original solutions for r = 3 and r = 4 found in [12].

The implementation of (20) in [14] is very simple, as shown in Fig. 2 (a), whereas, in [14] (21) is implemented

by using (10) as an A2 architecture (see Fig. 2 (b)):

z ≈ max{x∗, 0.25(x1 + x2) + 0.5 + 0.5x∗}. (24)

Further complexity is saved by implementing (24) as an A3 architecture (see Fig. 2 (c)):

z ≈ x∗ +max{0, 0.5∓ 0.25δ(x1, x2)} (25)

Post synthesis results obtained with Synopsys Design Compiler on a 130 nm standard-cell technology for a target

clock frequency of 200 MHz representing x1 and x2 on eight bits confirm that the implementation of (25) is simpler

than (24). In fact, implementing (25) requires only 676 µm2, whereas (24) [14] requires 883 µm2, therefore the

proposed architecture features a complexity reduction of about 23%. Thus, it is the lowest-complexity solution

among the six near-optimal implementations as these are summarized in Table I.

Table I

OCCUPIED AREA COMPARISON (EQUIVALENT GATES) OF DIFFERENT max∗ APPROXIMATIONS ON A 130 NM STANDARD CELL TECHNOLOGY

Alg.

MacLaurin Average/Linear r=4 approx. [14]

approx. Log-MAP with proposed A3

[6] [10] [9] [11] architecture (25)

Area
190 140 178 163 113

(eq. gates)

III. APPLICATION OF GENERALIZED max∗ OPERATOR IN LDPC DECODING

Apart from turbo decoding, the two original approximations r = 3 and r = 4, i.e. from (20) and (21), respectively

can be applied, for the first time, to LDPC decoding. For this purpose, the check-node update of the sum-product

algorithm can be expressed as [17]:

L(U ⊕ V ) = max∗ {0, L(U) + L(V )} −max∗ {L(U), L(V )} (26)

where ⊕ denotes modulo-2 operation, and U and V are two statistically independent binary random variables with

log-likelihood ratio (LLR) values of L(U) and L(V ), respectively. In all performance evaluation results the coded

bits are binary phase-shift keying (BPSK) modulated and transmitted with bit energy Eb over an additive white

Gaussian noise (AWGN) channel with single-sided power spectral density No. The following reduced complexity

decoding algorithms are assumed for comparison: (i) Min-Sum (MS) [18]; (ii) Normalized Min-Sum (NMS) [18];

(iii) Offset Min-Sum (OMS) [18]; (iv) MacLaurin approximation [10]; as well as (v) Sum-Product algorithm (SPA)

[19] and (vi) Min-Sum plus correction [19]. The correction term of the latter algorithm is implemented with PWL

approximation using six values, thus simplifying the implementation of SPA with near-optimal performance. In
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Figure 2. Block diagram of the implementations of: (a) (20) as A2 architecture [14]; (b) (24) as A2 architecture [14]; and (c) (24) as A3

architecture

[19], the multiplying factors in PWL are power of two values being easily implemented in hardware with shift

operations.

A randomly constructed regular LDPC code obtained from [20] is considered first with block size (N,K) =

(8000, 4000), where K represents the information block size and N the coded block size, respectively. The column

weight is equal to three and the coding rate is R = 1/2, whereas the decoder assumes maximum 100 iterations.

Following [21], to further improve the BER performance scaling is applied in the extrinsic information and the

best performing values are found for all investigated algorithms. In particular, the scaling factor for NMS is equal

to 0.8, the offset value for OMS is equal to 0.15, and the scaling factor for the MacLaurin approximation is
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equal to 0.9. The two approximations r = 3 and r = 4 have used the same scaling factor as for the MacLaurin

approximation. BER performance evaluation results against Eb/No are illustrated in Fig 3, in the order of the least

to the best performing algorithm. It can be noticed that both r = 3 and r = 4 approximations (shown always with

dashed lines) are inferior to the OMS and NMS. However, when additional scaling is used, then both r = 3 and

r = 4 approximations provide essentially optimal BER performance, in contrast with OMS and NMS, which are

0.1 dB inferior at BER of 10−5. Finally, it is noticed that the performance of MacLaurin approximation degrades

as compared with r = 4 approximation but when additional scaling is used both algorithms have similar BER

performance.

Next, an irregular LDPC code is considered according to the Wi-MAX standard [22]. Note that both SPA and

Min-Sum plus correction provide optimal BER performance without using any scaling in the extrinsic information.

The block size is (N,K) = (2304, 1152), the coding rate is R = 1/2, whereas the decoder assumes maximum 50

iterations. Different from the above, the scaling factor for NMS is equal to 0.87, and the scaling factor for r = 3

approximation is 0.85. BER performance evaluation results against Eb/No are illustrated in Fig 4, with the same

order of performing algorithms and same markers. From this figure, it can be noticed that both r = 3, r = 4,

and MacLaurin approximations achieve essentially optimal BER performance with the additional use of scaling, as

opposed with OMS and NMS algorithms. In contrast, NMS provides the best BER performance, with respect to

both OMS, r = 3, r = 4, and MacLaurin approximations without scaling. For the latter codes, Fig. 5 depicts the

required average number of iterations (ANI) against Eb/No showing the fact that the better the algorithm performs

the less number of iterations requires.

IV. HARDWARE IMPLEMENTATION OF JOINT TURBO-LDPC DECODER

In order to show the effectiveness of the proposed architecture for the generalized max∗ operator in a joint

turbo-LDPC decoder a complete, parallel 8 input check node (CN) based on (26) has been designed where the

max∗ operator is implemented as in Fig. 2 (c). As highlighted in Fig. 6, the proposed architecture with some

multiplexers and PAs can be modified to implement two 8-input max∗ blocks by means of programmable units

(PU). Furthermore, these two 8-input max∗ blocks can be used to compute the a-posteriori information in an 8-state

turbo decoder architecture, as the Wi-MAX one, namely

J =

 max∗{L(Ui′), L(V i′)} if turbo

− otherwise
(27)

K =

 max∗{L(Ui), L(V i)} if turbo

L(Ui⊕ V i) if LDPC
(28)

where symbols Ui and V i are processed in the LDPC case (i = 0, 1, 2, 3), and the two symbol sets (Ui,V i) and

(Ui′,V i′) are processed in the turbo case. As in Section II, a maximum clock frequency of 200 MHz has been

set and the synthesis has been carried out on a 130 nm standard-cell ASIC library for a data width of eight bits

where the three least significant ones are devoted to represent the fractional part. In Table II the proposed dual
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Figure 3. BER performance comparison among several reduced complexity decoding algorithms (from the least to the best performing algorithm

order) assuming regular (N,K) = (8000, 4000) LDPC code, coding rate R = 1/2, the AWGN channel and maximum 100 iterations.

mode turbo-LDPC architecture is compared with other known solutions to implement CNs. As it can be observed,

Min-Sum based architectures, i.e. MS, OMS, and NMS, exhibit lower computational complexity as compared to the

architectures which are based on the max∗ design. However, our previously reported results (see Section III) confirm

similar finding reported in [15]: that is Min-Sum based LDPC decoding algorithms have inferior BER performance

as compared to the ones which are based on the max∗ operation. As a consequence, max∗ based architectures have

been suggested as an enabling solution to implement dual mode turbo-LDPC architectures [15], [16]. Moreover, the

proposed architecture can be used to reduce the complexity of the dual mode turbo-LDPC architectures proposed in

[15], [16] where the correction term fc(|x1−x2|) in (2) is implemented with a look-up table [8]. As a consequence,

in these cases two 8-input max∗ blocks ought to be added to obtain a fair comparison. Each 8-input max∗ block

requires 1.09 equivalent kgates (Eq. kgates), thus, in Table II the area for single mode (second and third column)

and dual mode (fourth column) architectures is explicitly shown. Finally, Table III depicts an overall comparison, in
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Figure 4. As in Fig. 3 but for irregular (N,K) = (2304, 1152) Wi-MAX LDPC code and maximum 50 iterations.

terms of BER performance, ANI, and equivalent number of gates obtained by post synthesis results for Wi-MAX

LDPC code with dual mode architecture. Note that from Table III, the Min-Sum plus correction algorithm [19]

requires higher computational complexity as compared to the previously mentioned reduced complexity algorithms.

From this table, it is concluded that both r = 4 and MacLaurin [10] approximations have the same performance

in terms of BER and ANI. However, the proposed architecture outperforms MacLaurin approximation in terms of

complexity. Compared with Min-Sum based implementations, the proposed architectures, in particular the one with

r = 3, achieves better BER with a small increase in the complexity.

V. CONCLUSION

In this paper practical aspects of max∗ implementation used in both turbo and LDPC decoding were discussed.

A unified framework for the generalized max∗ operation, including most of previously published algorithms, was

established. Moreover, low-complexity hardware architectures to implement the generalized max∗ operation were
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Figure 5. Average number of iterations against Eb/No value among several reduced complexity decoding algorithms. The Wi-MAX LDPC

code parameters from Fig. 4 are assumed.

presented together with architectural and VLSI design details. Finally, the adoption of this generalized max∗

operation in joint turbo-LDPC architectures was proposed, showing that generalized max∗ implementations with

r = 3 and r = 4 achieve essentially optimal BER performance with lower computational complexity as compared

to dual mode turbo-LDPC decoding architectures.
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