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Abstract

This paper presents a fast simulation method for long coupled
multi-chip interconnects. The channel is represented through a
time-domain passive delay-rational macromodel, which is iden-
tified from tabulated scattering samples. A two-level Waveform
Relaxation (WR) framework is then applied in order to perform
fast transient simulation of the terminated channel via an iter-
ative process. A new over-relaxation scheme is introduced for
improving the convergence of the WR iterations.

1 Introduction

The electrical verification of point-to-point links connecting
different subsystems requires extensive simulation [1, 2]. This
analysis is quite demanding, since multiple coupled channels
must be simulated concurrently in the time domain, in order
to investigate all possible sources of signal degradation includ-
ing intersymbol interference, crosstalk, jitter, and nonlinear dis-
tortions induced by driver and receiver circuitry. Long bitse-
quences need to be analyzed for each sensitive channel, includ-
ing multiple aggressor patterns to assess worst-case scenarios.

The most direct simulation approach involves a linear anal-
ysis based on convolution, combined with a statistical post-
processing. This technique allows very fast and comprehen-
sive analyses. Unfortunately, nonlinear effects of drivers and
receivers are only approximated, so that the results may not
be fully representative. Alternative approaches based on di-
rect circuit-based (SPICE) simulations allow direct treatment
of nonlinear transceiver models. In these simulations, suit-
able macromodels of the channel are first identified from native
tabulated scattering responses and then synthesized as SPICE-
compatible netlists. Main drawback of this approach is runtime,
which can be considerable for complex channels.

In this work, we propose an alternative approach that is able
to preserve SPICE (or better) accuracy, with dramatic speedup
in runtime. The technique we pursue in this work is based on
a two-level Waveform Relaxation (WR) [3, 8, 9, 11, 12, 13].
One relaxation loop is based on transverse partitioning, aimed
at decoupling individual channels though suitable relaxation
sources. A second relaxation loop is based on a longitudinal
partitioning, aimed at decoupling each individual channelfrom
its terminations. The basic scheme was first presented in [10].

The main contribution of this paper is a new formulation
based on a successive over-relaxation [14, 15]. The new for-
mulation is able to fix possible convergence issues of the basic
scheme through the introduction of an over-relaxation parame-
ter, which is tuned in a preprocessing phase in order to guaran-
tee the best convergence rate. Although we cannot prove that
the over-relaxed scheme will be able to guarantee convergence
in the general case, we show its practical effectiveness on aset
of industrial benchmarks.

2 Problem statement
We consider a generic chip-to-chip link withP fully-coupled

electrical ports (P even), terminated by possibly nonlinear
single-ended termination circuits (drivers and receivers). A
graphical illustration of the system topology is depicted in the
left panel of Fig. 4. The mathematical formulation of the inter-
action between channel and terminations can be obtained as

{
b(t) = h(t) ∗ a(t)
Fq

(
aq(t); bq(t); t;

d
dt

)
= 0 , q = 1, . . . , P

(1)

where the first row represents the convolution between transient
scattering wavesa(t) entering the channel and the channel im-
pulse response matrixh(t), and second row collects all nonlin-
ear and dynamic equations representing drivers and receivers.
For convenience, also the terminations are represented in the
transient scattering form. Using a more compact operator nota-
tion, we have {

b = Ha ,

a = F (b) ,
(2)

where the linear operatorH represents the channel, and where
the explicit nonlinear operatorF is diagonal.

We assume that a Delay-Rational Macromodel (DRM) is
available for the channel [5, 4]. In the Laplace-domain, a DRM
can be expressed as

Hi,j(s) =
Mi,j∑

m=0

Qi,j
m (s)e−sτ i,j

m +Di,j ,

Qi,j
m (s) =

Ni,j
m∑

n=1

Ri,j
mn

s− p
i,j
mn

(3)

wherei, j denote a particular element of the scattering transfer
matrix, τ i,jm are suitable delays, andQi,j

m (s) are rational coef-
ficients. The identification of (3) can be performed from tab-
ulated scattering matrix sampleŝSl ∈ CP×P avaiable at the
discrete frequenciesωl, l = 1, . . . , L through Delayed Vec-
tor Fitting (DVF) or the Delayed Sanathanan-Koerner (DSK)
iterations, see [5, 4]. Model passivity can also be checked end
enforced [6, 7]. The main advantage of DRM operators is that
their time-domain application can be cast as a delayed recursive
convolution, whose numerical evaluation has a cost that scales
only linearly with the number of time steps to be computed [10].
Thus, the time-domain evaluation of the first row in (2) is ex-
tremely efficient.

3 Inner and Outer Waveform Relaxation
The main disadvantage of (1) or (2) is that, for each time

step, there is an instantaneous coupling between channel and
terminations. Within a time-stepping framework, this would
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Figure 1: Spectral radius of operatorPI for I = 2, 4,∞ plotted
versus frequency for Cases A and B.

require the concurrent solution of the fully-coupled channel to-
gether with its terminations using a nonlinear solver. Thisis
what standard SPICE solvers do. We use a completely different
approach here. Our unknowns are vectors collecting all time
samples of all port variables, rather than individual time sam-
ples. These unknowns are computed collectively through an
iterative scheme that refines an initial estimate via a Waveform
Relaxation (WR) approach.

We start by reviewing the two-level WR scheme presented
in [10]. A first level exploits a decoupling process between
different channels, by decomposing the channel operator as
H = D + C, whereD collects all transfer matrix entries rep-
resenting direct transmission and reflection coefficients.andC
collects all near and far end crosstalks. A transverse partitioning
and “outer” relaxation loop with indexµ is obtained by delay-
ing the application of the coupling operatorC by one iteration.
This can be expressed as

{
bµ = D aµ + θµ−1 , θµ−1 = Caµ−1

aµ = F (bµ) ,
(4)

to be solved forµ = 1, 2, . . . with a suitable initial condition,
e.g.,θ0 = 0. The evaluation of the relaxation sourceθµ−1

is performed via recursive convolutions. The above outer re-
laxation is motivated by the small correction that is expected
at each iteration as an effect of the inter-channel couplings C,
which for a well-designed link are small. This condition should
also ensure fast convergence of the WR iterations.

A second “inner” relaxation loop is also introduced in order
to avoid the concurrent solution of individual (decoupled)chan-
nels and their terminations. A longitudinal partition is applied
in order to separate channels from terminations, and port vari-
able estimates are refined through a longitudinal relaxation with
index ν, whereas channel and termination equations perform
updates to the interface variables alternating in time. Formally,
this can be represented as

{
bµ,ν = D aµ,ν−1 + θµ−1 ,

aµ,ν = F (bµ,ν) ,
(5)

to be solved for any fixedµ for ν = 1, . . . , Iµ with a suitable
initial condition, e.g., the available solution estimate at previous
transverse relaxation stepaµ,0 = aµ−1,Iµ−1

. Further details on
this scheme, denoted as WR-LPTP (Waveform Relaxation via
Longitudinal and Transverse Partitioning) are available in [10].
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Figure 2: Evolution of the inner (line) and outer (dots) loop
errors through iterations for case A (left) and B (right).

Convergence of inner and outer loops is detected by monitor-
ing the respective residual norms

ξ(µ, ν) = ||aµ,ν − aµ,ν−1|| (6)

δ(µ, Iµ) = ||aµ,Iµ
− aµ−1,Iµ−1

|| . (7)

When below a prescribed toleranceǫ, these norms are used as
stopping conditions for the iterations.

A more formal convergence analysis can be performed in the
frequency domain by assuming linear terminations with passive
scattering matrixΓ, such that||ΓD|| < 1. In this case, the
operator mapping one iteration onto the next can be explicitly
constructed as

PI = P+ (ΓD)I (I−P) , (8)

with P = limI→∞ PI = (I− ΓD)
−1

(ΓC) and where for
simplicity a constant numberI of inner iterations are assumed,
independently on the outer iterationµ. Under such hypothesis,
the error of the iterative solution at the outer iterationK with
respect to the exact solution reads

EK,I = AK,I −Aexact = −P
K

IAexact . (9)

As a result, a necessary and sufficient condition for convergence
is the unitary boundedness of the spectral radius of the iteration
operator

ρmax{PI} < 1 , (10)

which must hold for all frequencies.
Two industrial benchmarks will be used to illustrate the pro-

posed WR schemes. Case ”A” is a fully-coupled 18-port chan-
nel providing the electrical link between CPU and an IO card.
Case ”B” is a similar 18-port channel connecting two boards
through a connector. Both cases are courtesy of IBM. Figure 1
reports the frequency-dependent spectral radius of iteration op-
eratorPI for the two cases. We see that case A is expected to
converge, since condition (10) holds. Case B is instead expected
to have problems, since there are some frequencies for which
condition (10) is violated. The results confirm these proposi-
tions. Figure 2 reports the inner and outer error estimates (6)-
(7) through iterations (withI = 4) for the two cases. The er-
ror for case A converges below the adopted stopping threshold,
whereas the outer error for case B blows up. For case A, the
transient results are in perfect agreement with SPICE, as Fig. 3
shows. However, a 1000-bit SPICE simulation requires about
23 minutes, whereas the same deck is solved by WR in only 31
seconds, with a44× speedup. No validation is possible for case
B, since the transient waveforms are not even bounded through
iterations.
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Figure 4: Graphical illustration of terminated channel (left) and WR-SOR partitioning scheme. Dark (light) gray boxesdenote
outer (inner) relaxation sources, respectively.

4 Successive Over-Relaxation
In Section 3, we observed that there may be cases where

the standard WR-LPTP algorithm does not converge, since the
spectral radius of the iteration operator exceeds one and con-
dition (10) does not hold. We now construct a new relaxation
scheme that overcomes these difficulties. This new algorithm
is denoted as WR-SOR and uses a Successive Over-Relaxation
technique, as described in [14, 15].

The starting point is system (2), where operatorH is split
into its (block-) diagonal partD and remainderC

{
b−Da− Ca = 0
a−F (b) = 0 .

(11)

We multiply both equations by an over-relaxation parameterη

(to be determined) and we add(b−Da) and (a−F (b)) to
both sides of first and second equation, respectively, obtaining

{
ηb− ηDa − ηCa+ b−Da = b−Da

ηa− ηF (b) + a−F (b) = a−F (b) .
(12)

Rearranging the various terms and introducing the outer relax-
ation indexµ, we obtain

{
bµ = Daµ + θµ−1

aµ = F (bµ) +ϕµ−1 ,
(13)

whereθµ andϕµ are the outer relaxation sources, defined as

{
θµ = (1− η) (bµ −Daµ) + ηCaµ ,

ϕµ = (1− η) (aµ −F (bµ)) .
(14)

System (13) is a generalization of (4), which can be obtained
by settingη = 1 in (13)-(14). The introduction of the overre-
laxation adds an outer relaxation sourceϕµ also to the equation
corresponding to the channel terminations, causing a negligible
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Figure 3: Case A, comparison between WR and SPICE results.

overhead both in computation and storage. The scheme is con-
sistent, since settingµ → ∞ leads to the original system (2).

At any outer iteration, the actual solution is performed by
applying a second level of (longitudinal) partitioning, asfor the
WR-LPTP scheme, with suitable relaxation sources and inner
iteration indexν. The resulting WR-SOR scheme reads

{
bµ,ν = D aµ,ν−1 + θµ−1 ,

aµ,ν = F (bµ,ν) +ϕµ−1 ,
(15)

The right panel of Fig. 4 provides a graphical illustration of this
scheme. At the initialization stageµ = 0 we set

{
θ0 = 0
ϕ0 = F (0) .

(16)

The convergence of inner and outer loops is detected as for
the WR-LPTP algorithm, by monitoring the respective residual
norm estimatesξµ,ν andδµ as in (6)–(7).

The convergence of the WR-SOR scheme can be assessed by
a frequency-domain analysis as for the WR-LPTP scheme. The
resulting expression for the iteration operator is

PI,η = I− η
[
I− (ΓD)I

]
(I−P) . (17)

The error of the iterative solution with respect to the exactsolu-
tion can also be formally computed as

EK,I = AK,I −Aexact = −ηPK

I,ηAexact (18)

Therefore, convergence and consistency of the WR-SOR
scheme are guaranteed ifρmax{PI,η} < 1.

OperatorPI,η is parameterized byη. It is thus possible to
find a valueηopt such that the spectral radius ofPI,η is min-
imized and the convergence rate is optimal. We first provide
the feasibility conditions for this optimization. For any fixed
frequencyω, let us denote

λq(ω) ∈ eig{Λ(ω)} q = 1, . . . , P (19)

the generic eigenvalue of matrix

Λ =
{[

I− (ΓD)
I
]
(I−P)

}
(20)

such thatPI,η = I−ηΛ from (17). The WR-SOR scheme will
converge if

|1− ηλq(ω)| < 1 ∀ω, q . (21)

A straightforward derivation leads to the feasibility condition

0 ≤ η ≤ η̌min = min
ω,q

2 cosφq(ω)

ρq(ω)
(22)
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Figure 5: Case B. Left: spectral radius of the over-relaxed it-
eration operator withη = ηopt. Right: evolution of the inner
(continuous line) and outer (dots) loop errors through the cor-
responding WR-SOR iterations.
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Figure 6: Case B: comparison between WR-SOR and SPICE
results.

with ρq andφq denoting magnitude and phase ofλq . Condi-
tion (22) is feasible only ifℜλq > 0 ∀q, ω, leading to a non-
vanishing range for the overrelaxation parameter. The optimal
value forη is then found by minimizing the spectral radius of
the iteration operator, i.e.,

ηopt = argmin
ω,q

|1− ηλq(ω)| . (23)

5 Results
In this section, we show that the WR-SOR scheme is able

to fix the convergence problems that were observed in Sec-
tion 3 when applying the WR-LPTP scheme to case B. The
optimal over-relaxation parameter was first computed through
a preprocessing analysis by minimizing the spectral radiusof
the iteration operator throughout the frequency range of inter-
est. The resultingρmax, depicted in the left panel of Fig. 5,
results strictly unitary bounded. Running the WR-SOR scheme
on case B leads to the evolution of the iteration error depicted
in the right panel of Fig. 5. As expected this error converges
below the prescribed stopping threshold. Finally, we validated
the WR-SOR scheme with a direct SPICE simulation. The re-
sults for one of the termination voltages of case B are depicted
in Fig. 6, showing excellent correlation.

In conclusion, the proposed scheme is able to improve or
guarantee convergence in some cases that are probelmatic for
standard preexisting WR schemes. A general methodology for
the optimization of convergence rate of the over-relaxed WR
scheme has been presented. The numerical results are indeed
encouraging, although the proposed methodology is still not
able to guarantee the convergence in the general case. Future
work will be devoted to further generalizations and to on-the-
fly adjustment of the over-relaxation parameter.
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