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Multilayered shell model with variable representation of 
displacements across the thickness
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ABSTRACT
A multilayered zig-zag shell model is developed; it has a hierarchic representation of displacements across the thickness that a 
priori fulfils the interfacial stress contact conditions on interlaminar shear and normal stresses. Like for classical models, the 
functional d.o.f. are the mid-plane displacements and the shear rotations. Characteristic feature, the representation can vary 
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C. Computational modelling
, in order to adapt to the variation of solutions. The coefficients of the higher-order 
e d.o.f. by enforcing equilibrium conditions at discrete points across the thickness. The 
the second order. As shown by the numerical tests, it accurately predicts the stress 
hells with abruptly chang-ing material properties with a lower overall processing time 
ost-processing is unnecessary.
1. Introduction

Owing to their advantageous properties, laminated and sand-
wich composites are finding an increasing number of applications 
in various engineering fields. Since they can absorb a large amount 
of energy by micro-structure failures, a serious design concern is 
their damage accumulation in service. In the regions where dam-
age rises, the out-of-plane stresses and strains become as impor-
tant as their in-plane counterparts for keeping equilibrium and 
satisfying the boundary conditions. Furthermore, sandwiches need 
an accurate modelling of the transverse normal stress and 
deformation, since the core can crush. A variety of models have 
been recently developed that provide a kinematically correct 
representation of the cross-sectional warping associated with the 
deformation of multilayered structures, i.e. the so-called ‘‘zig-zag” 
behaviour (see, e.g., Savoia and Reddy [1,2] and Savoia et al. [3]). 
These models, that are known as layerwise models – LWM, feature 
displacements continuous across the thickness but, in order to 
allow for continuous equilibrating interlaminar stresses, with dis-
continuous derivatives with respect to the thickness coordinate at 
the layer interfaces. A comprehensive review being beyond the 
purpose of the present paper, the readers are referred to the recent 
survey papers and books that discuss the distinctive features, mer-
its and drawbacks in terms of solution accuracy and economy of
: +39 (0)11 5646899.
ura.ferrero.ext@siemens.com 
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LWM (see, among many others, Burton and Noor [4] and Reddy 
[5]). Aimed at accounting for the effects of damage with the ideal 
combinations of accuracy and efficiency required for developing 
safe, damage tolerant structures, the research on LWM is still fer-
vent. To put the contribution of this paper in the right perspective, a 
broad discussion of the basic features of LWM is given, where only 
the most relevant concepts and few representative papers will be 
cited.

According with the current terminology, LWM are referred as 
full or partial models whether the transverse normal strain is con-
sidered or neglected. It is here reminded the importance of this 
strain and of the related stress for keeping equilibrium in the re-
gions around holes, cutouts, free edges, delamination fronts and 
discontinuities in general, besides for core crushing of sandwiches.

LWM can also be classified into (i) models with a number of 
functional d.o.f. depending on the number of constituent layers, 
and (ii) models with a fixed number of functional d.o.f. The former 
class (i) comprises full or partial LWM in form of discrete-layer 
models – DL (see, e.g., Reddy [6]), exact solutions of simplified cases 
(see, e.g., Ren [7] and Wu et al. [8]) and full three-dimen-sional 
models (see, e.g., Sheng and Ye [9]), either in displacement based or 
mixed form (see, e.g., Wu and Liu [10]) and of 2-D or 3-D types.

The basic difference of DL models with respect to exact solu-
tions lies on the assumptions made about the distribution of dis-
placements and stresses across the thickness. In the widespread, 
versatile DL models, piecewise approximations are made across 
the thickness of each constituent layer, consequently accuracy, 
processing time and memory occupation grow with the number

http://dx.doi.org/10.1016/j.compositesb.2010.09.022
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of computational layers. For not overwhelming the computational 
capacity their use should be restricted to a detailed analysis in 
localised regions. Various techniques have been developed for 
making computationally efficient the enforcement of the contact 
conditions at the interfaces. As examples, the papers by Ascione 
and Fraternali [11] and Fraternaly and Reddy [12] are cited, in 
which the penalty method is used.

Models that can have partial of full 3-D modelling capability, as 
desired, have been developed as finite elements aimed at limiting 
the computational costs. Known as hierarchical multilayered FEM 
models, they assume different types of displacement fields in the 
same problem, namely an underlying foundation provided by and 
equivalent single layer model – ESL that constitutes the global part, 
and an optional incremental enhancement provided by a lay-erwise 
model that constitutes the local part (see, e.g., Barbero and Reddy 
[13]). Predictor–corrector iterational models have been developed 
with the same purpose, in which the information ob-tained in the 
predictor phase is used to correct key elements in the corrector 
phase. Usually an ESL model is used for computing initial estimates, 
while a DL model is used for corrections (see,
e.g., Lee and Cao [14]).

The above mentioned class (ii) of models with fixed d.o.f. 
comprises equivalent single-layer models (see, e.g., Dennis and 
Palazotto [15], and Jing and Tzeng [16]) that assume the multilay-
ered structures as an equivalent single layer (consequently the 
number of functional d.o.f. is independent of the number of con-
stituent layers) and zig-zag models – ZZ (see, e.g., Di Sciuva [17], Di 
Sciuva and Icardi [18], Xavier et al. [19], Cho et al. [20], Icardi [21], 
Icardi and Ruotolo [22], and Oh and Cho [23]) that a priori fulfil the 
displacement and stress contact conditions at the inter-faces of the 
constituent layers by incorporating continuity functions that are 
determined once for all for any lamination se-quence. They can be 
as accurate as DL models if post-processing procedures are 
employed, the properties are not abruptly chang-ing, the thickness 
is not extreme and anisotropy is not severe. Plate models that 
combine the concepts of ZZ and DL models have been recently 
developed by Averill and co-workers [24–28]. They group several 
layers into a computational layer, like the ZZ models, with the 
purpose of containing the computational effort and stack 
computational layers for improving accuracy, like the DL models. 
Since many computational layers should be stacked and/or post-
processing procedures should be employed for accurately predict-
ing the stresses of damaged sandwiches, their advantages can be 
only apparent as shown in Ref. [29]. Moreover, cases exist for which 
the stresses computed by post-processing methods can be still not 
accurate enough in comparison with three-dimensional elasticity 
solutions (see Cho et al. [30]).

An improved ZZ plate model based on a global–local superposi-
tion technique aimed at accurately predicting the stress fields of 
thick components grouping all the physical layers and without any 
post-processing has been recently developed by Li and Liu [31], 
while a multilayered shell model has been developed by Zhen and 
Wanji [32]. It could be noticed that most of the multilayered shell 
models available in the literature are extensions of counterpart 
plate models. As examples, the following papers by Reddy and Liu 
[33], Dennis and Palazotto [34], Xavier et al. [35], Jing and Tzeng 
[36], Reddy and Starnes [37], Savoia and Reddy [38], Cho et al. [39] 
and Fraternali and Bilotti [40] are cited, that represent the 
extension of layerwise plate models based on different ideas.

In the global–local models mentioned above, which have 17 
functional d.o.f., the transverse displacement is still assumed con-
stant across the thickness. Recently, Vidal and Polit [41] have 
developed a 6 d.o.f. ZZ beam model based on the global–local 
superposition technique, with a parabolic transverse displacement 
and a sinusoidal representation of the in-plane displacement 
across the thickness. The basic advantage of these global–local ZZ
models is that the increase of storage dimension with respect to 
classical plate models with 5 d.o.f. is compensated by the reduction 
of the overall processing time, since post-processing is unneces-
sary. They appear advantageous over DL models, since they achieve 
the same accuracy with a lower computational effort, having less 
functional d.o.f.

The contribution of the present paper is to explore whether a 
shell model with the five classical middle surface functional d.o.f.
(i.e., the three displacements and the two shear rotations) and a 
hierarchic zig-zag representation of displacements also makes 
post-processing unnecessary for obtaining accurate stress predic-
tions. The idea of an adaptive model was pioneered by the authors 
in Ref. [42] considering a mixed plate model with the 
displacements and the interlaminar stresses at the upper and lower 
surfaces of the computational layers as functional d.o.f. Herein the 
idea is extended to a shell model with the mid-plane standard d.o.f. 
It features a high-order, piecewise representation of the three 
displacement compo-nents across the thickness, that a priori fulfils 
the interfacial stress contact conditions on interlaminar shear and 
normal stresses. To this purpose, ‘‘continuity” functions are 
enclosed, that are deter-mined once for all for any lay-up enforcing 
the contact conditions at the interfaces. The present model 
represents a shell extension of a former zig-zag plate model by the 
authors, but it also extends the idea of hierarchical multilayered 
finite elements, the hierarchi-cal representation being incorporated 
directly into the displace-ment model, instead in the shape 
2. The present shell model

2.1. Characteristic features

The present shell model with displacements of variable order 
that adapt to the variation of solutions is obtained incorporating 
into the shell model of Ref. [22] the ZZ displacement field model of 
Ref. [43], here referred as the ‘‘basic model”, then incorporating 
terms with higher-order powers of the thickness coordinate. The 
functional d.o.f. are the three displacement components and the 
two shear rotations of the normals at the reference surface, since 
the coefficients of the higher-order terms are expressed as func-
tions of the d.o.f. of the basic model and their derivatives by enforc-
ing equilibrium conditions at discrete points across the thickness. 
Other characteristic feature, the model a priori fulfils the interlam-
inar shear and normal stress contact conditions at the interfaces of 
the constituent layers, as prescribed by the elasticity theory. More-
over, it can provide accurate stress predictions from constitutive 
equations. A higher-order representation of the transverse dis-
placement is considered aimed at accounting for the core crushing 
mechanism of sandwich shells. In addition, the model also achieves 
an improved strain energy description that would be precluded to 
post-processing techniques, which should be relevant for investi-
gating energy absorption/dissipation mechanisms and for optimi-
sation [44,45].

With the present model, higher-order terms are used only when 
necessary, while the computation of the continuity constants and 
coefficients of higher-order powers is required just once for all. The 
numerical results show that the present through-the-thickness 
hierarchic representation of the d.o.f. is advantageous, since it 
achieves the same accuracy of current post-processing techniques 
requiring a lower computational effort.
2.2. Notations

The middle surface X is assumed as the shell reference surface 
and the curvilinear tri-orthogonal system constituted by the lines 
a, b of principal curvature and the coordinate across the thickness
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f as the reference system. The position of the upper+ and lower�

surfaces of the generic layer k are indicated as (k)f+ and (k)f�; the
quantities that belong to a generic layer k are denoted with the suf-
fix(k); ua, ub, uf represent the elastic displacements in the direction
of a, b and f; Ra(a,b) and Rb(a,b) are the radii. The differentiation
with respect to the spatial ordinates is denoted by the symbols
(),a, (),b. The Lamé coefficients are indicated as Aa(a,b), Ab(a,b) on
X and as H�1

a ða; b; fÞ, H�1
b ða; b; fÞ at a distancef.

2.3. Strains

The elastic displacements being supposed small, the following
linear strain–displacement relations are assumed, as in the 
previ-ous shell models [21,22] (Hf = 1):

eaa ¼
ua;a

Ha
þ Ha;b

HaHb
ub þ

Ha;f

HaHf
uf ð1Þ

ebb ¼
ub;b

Hb
þ Hb;a

HaHb
ua þ

Hb;f

HbHf
uf ð2Þ

eab ¼
Ha

Hb

ua

Ha

� �
;b

þ Hb

Ha

ub

Hb

� �
;a

ð3Þ

eaf ¼
Ha

Hf

ua

Ha

� �
;f

þ Hf

Ha

uf

Hf

� �
;a

ð4Þ

ebf ¼
Hb

Hf

ub

Hb

� �
;f

þ Hf

Hb

uf

Hf

� �
;b

ð5Þ

e11 ¼
1

H1
u1;1 ð6Þ

The transverse displacement u1 is assumed to vary across the thick-
ness for describing the core crushing mechanism. As in Ref. [22], the
reciprocals of the Lamé coefficients 1/Ha, 1/Hb are approximated up
to a second-order expansion with respect to f/Ra, f/Rb:

1
Ha
¼ 1

Aa
1� f

Ra
þ f

Ra

� �2
!

;
1

Hb
¼ 1

Ab
1� f

Rb
þ f

Rb

� �2
!

ð7Þ

Anisotropic 3D stress–strain relations are assumed for the constitu-
ent layers:

rðkÞlm ¼ Q ðkÞlmcde
ðkÞ
cd ; rðkÞlf ¼ Q ðkÞlfmfe

ðkÞ
mf ð8Þ

(l,t,c,d that in turn represent a,b; repeated indices imply the Ein-
steinian summation convention). Herein, the sandwich shells are
treated as multilayered shells that are made of an arbitrary number
of thin layers constituting the faces and of a thick intermediate layer

constituting the honeycomb core, this assumption being suc-
cessful in the studies [42,44,45] (core properties computed from 
the cellular properties; see, Gibson and Ashby [46]).

2.4. Displacement fields

The in-plane displacements are postulated to vary across the
thickness as follows:

uaða;b; fÞ ¼ 1þ f
Ra

� �
uð0Þa ða;bÞ � f

uð0Þf;aða; bÞ
Aa

þ fð1

þ ðC2aða;bÞfþ C3aða;bÞf2ÞÞcð0Þa ða;bÞ þ ðOf4 . . .Þ

þ
XS

k¼1

UðkÞa ða;bÞðf� fðkÞÞH:kðf� fðkÞÞ ð9Þ
ubða; b; fÞ ¼ 1þ f
Rb

� �
uð0Þb ða; bÞ � f

uð0Þf;bða; bÞ
Ab

þ fð1

þ ðC2bða;bÞfþ C3bða;bÞf2ÞÞcð0Þb ða;bÞ þ ðOf4 . . .Þ

þ
XS

k¼1

UðkÞb ða;bÞðf� fðkÞÞH:kðf� fðkÞÞ ð10Þ
The three displacements uð0Þa ;uð0Þb ; uð0Þf and the two shear rotations
cð0Þa ; cð0Þb of the points on the reference surface X are chosen as
functional d.o.f., like in the classical models. The terms in the
summations, which are characteristic of zig-zag models, represent
contributions being continuous across the thickness, but with
discontinuous derivatives at the layer interfaces. They enable an a
priori fulfilment of the transverse shear stress contact conditions
at the layer interfaces

rafjðf¼ðkÞfþÞ ¼ rafjðf¼ðkþ1Þf�Þ ð11Þ
rbfjðf¼ðkÞfþÞ ¼ rbfjðf¼ðkþ1Þf�Þ ð12Þ

suitably choosing the expressions of the continuity functions
UðkÞa ;UðkÞb as outlined in Section 3.1. H�k is the Heaviside unit step
function, i.e. H�k ¼ 1 for f P f(k) and 0 for f < f(k). The coefficients
C2a,C3a, C2b,C3b are expressed in terms of the functional d.o.f. and
their derivatives by enforcing the stress-free boundary conditions
for the transverse shear stresses

rafju ¼ 0; rafjl ¼ 0; rbfju ¼ 0; rbfjl ¼ 0 ð13Þ

at the upper ju and lower jl free surfaces. Non classical feature, the
transverse displacement is approximated by the following higher-
order representation:

ufða; b; fÞ ¼ aða;bÞ þ fbða; bÞ þ f2cða;bÞ þ f3dða; bÞ

þ f4eða;bÞ þ ðOf5 . . .Þ þ
XS�1

k¼1

WðkÞf ða;bÞðf

� ðkÞfÞHk þ
XS�1

k¼1

XðkÞf ða; bÞðf� ðkÞfÞ
2
Hk ð14Þ

Two zig-zag contributions are incorporated in order to fulfil the
stress contact conditions on the transverse normal stress and
gradient:

rffjðf¼ðkÞfþÞ ¼ rnfjðf¼ðkþ1Þf�Þ; rff;fjðf¼ðkÞfþÞ ¼ rff;fjðf¼ðkþ1Þf�Þ ð15Þ

as prescribed by the elasticity theory, since they derive from the
local equilibrium equations. The expressions of the continuity func-
tions WðkÞ;XðkÞ are determined in a straightforward way by enforcingf f

the contact conditions (15) as shown in Section 3.1. The symbol a in
Eq. (14) plays as the transverse displacement on the reference mid-
plane uð0Þf . The still unknown coefficients b to e are determined by
enforcing the boundary conditions on the transverse normal stress
and its gradient at the upper and lower bounding surfaces:

rffju ¼ p0ju; rffjl ¼ p0jl; rff;fjl ¼ rff;fju ¼ 0 ð16Þ

(p0 represents the transverse distributed loading). The displacement 
fields featured by Eqs. (9), (10) and (14) fulfil the following kine-
matic contact conditions that yield for perfect bonding:

uajðf¼ðkÞfþÞ ¼ uajðf¼ðkþ1Þf�Þ; ubjðf¼ðkÞfþÞ ¼ ubjðf¼ðkþ1Þf�Þ; ufjðf¼ðkÞfþÞ
¼ ufjðf¼ðkþ1Þf�Þ ð17Þ

The classical (CLST) and the first order shear deformation (FSDST)
shell models can be particularised from Eqs. (9), (10) and (14)
assuming a constant transverse displacement and the shear rota-
tions as vanishing or being linear. The RHSDST model of Ref. [15],
here referred as RHSDST0, RHSDST1, RHSDST2 for constant, linear
or quadratic 1/Ha, 1/Hb, is particularised assuming a constant trans-
verse displacement and cubic the in-plane displacements. Of
course, the corresponding plate models can be obtained disregard-
ing the terms involving the radii of curvature.

The higher-order terms (Of4. . .) and (Of5. . .), that represent the
adaptive part of the representation, give contributions of the fol-
lowing form:

Pn
J ðHn�1 �HnÞ þ Pm

J ðHm�1 �HmÞ þ � � � ð18Þ
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where Pn
J and Pm

J represent the hierarchic parts incorporated in the
layer n and m, respectively (J stands for a,b). The Heaviside unit step
functions Hn�1 and Hm�1 make the contributions Pn

J and Pm
J active

at the interfaces n � 1 and m � 1, respectively, while Hn�1 �Hn

and Hm�1 �Hm disable them at the interfaces n and m. Their expli-
cit expressions are:

Pt
a ¼ Aaf4 þ Baf5 þ Caf6 þ Daf7 þ Ea18 þ � � � ð19Þ

Pm
b ¼ Abf4 þ Bbf5 þ Cbf6 þ Dbf7 þ Ebf8 þ � � � ð20Þ

Pm
f ¼ Aff5 þ Bff6 þ Cff7 þ Dff8 þ Eff9 þ � � � ð21Þ

the symbol m being used for representing n and m. The contributions
Pt

a; P
m
b and Pm

f hold for ua, ub and uf, respectively. As a particular case,
Pn

J can coincide with Pm
J , so the representation can be the same for a

group of layers. The coefficients Aa . . . Ea, Ab . . . Eb, Af . . . Ef, that are
referred as the coefficients of the higher-order powers, are deter-
mined by enforcing local equilibrium conditions at selected points
across the thickness or over a region, as outlined in Section 3.2.

3. Continuity functions and coefficients of higher-order powers

3.1. Continuity functions

The expressions of the continuity functions UðkÞa ;UðkÞb ;WðkÞf ;XðkÞf

are determined as outlined hereafter. In order to obtain expression
that hold for general displacements Ua, Ub, Uf with any expansion
order, the displacements are written in the following compact form

uaða;b; fÞ ¼ Uaða;b; fÞ þ
XS

k¼1

UðkÞa ða;bÞðf� fðkÞÞH�kðf� fðkÞÞ ð22Þ

ubða;b; fÞ ¼ Ubða;b; fÞ þ
XS

k¼1

UðkÞb ða;bÞðf� fðkÞÞH:kðf� fðkÞÞ ð23Þ

ufða;b; fÞ ¼ Ufða;b; fÞ þ
XS�1

k¼1

WðkÞf ða; bÞðf� ðkÞfÞHk

þ
XS�1

k¼1

XðkÞf ða;bÞðf� ðkÞfÞ
2
Hk ð24Þ

According with this representation, the continuity functions are ex-
pressed as [42]:

UðkÞa ¼ UðkÞu1 Ua;a þUðkÞu2 Ua;b þUðkÞu3 Ua;f þUðkÞu4 Ub;a þUðkÞu5 Ub;b

þUðkÞu6 Ub;f þUðkÞu7 Uf;a þUðkÞu8 Uf;b þUðkÞu9 Uf;f ð25Þ

UðkÞb ¼ UðkÞv1Ua;a þUðkÞv2Ua;b þUðkÞv3Ua;f þUðkÞv4Ub;a þUðkÞu5 Ub;b

þUðkÞv6Ub;f þUðkÞv7Uf;a þUðkÞv8Uf;b þUðkÞv9Uf;f ð26Þ

WðkÞf ¼ WðkÞ1 Ua;a þWðkÞ2 Ua;b þWðkÞ3 Ua;f þWðkÞ4 Ub;a þWðkÞ5 Ub;b

þWðkÞ6 Ub;f þWðkÞ7 Uf;a þWðkÞ8 Uf;b þWðkÞ9 Uf;f ð27Þ

XðkÞf ¼ XðkÞ1 Ua;aa þXðkÞ2 Ua;ab þXðkÞ3 Ua;af þXðkÞ4 Ua;bb þXðkÞ5 Ua;bf

þXðkÞ6 Ua;ff þXðkÞ7 Ub;aa þXðkÞ8 Ub;ab þXðkÞ9 Ub;af

þXðkÞ10 Ub;bb þXðkÞ11 Ub;bf þXðkÞ12 Ub;ff þXðkÞ13 Uf;aa

þXðkÞ14 Uf;ab þXðkÞ15 Uf;af þXðkÞ16 Uf;bb þXðkÞ17 Uf;bf þXðkÞ18 Uf;ff ð28Þ

since enforcing the interlaminar stress contact conditions a system
of four relations is obtained at each interface that involves the
continuity functions, the material properties of the adjacent layers,
the generalised displacements uj, vj, wj and their first and second
order derivatives. Therefore, 45 continuity constants UðkÞu1 ; . . . ;
UðkÞu9 ;U
ðkÞ
v1 ; . . . ;UðkÞv9 ;W

ðkÞ
1 ; . . . ;WðkÞ9 ;XðkÞ1 ; . . . ;XðkÞ18 have to be determined

at each interface. Owing to their arbitrary nature, the homologous
displacements and displacement derivatives can be collected apart,
giving rise to an appropriate system of 45 equations in the 45 un-
known continuity constants.

Initially the second order derivatives of the generalized dis-
placements are disregarded, except for certain terms that provide 
the necessary rank to the system of contact conditions in decom-
posed form. Their omission transforms ()(25)–(28) into a system
of 27 equations in the 27 unknowns UðkÞu1 ; . . . ;UðkÞu9 ;U

ðkÞ
v1 ; . . . ;

UðkÞv9 ;W
ðkÞ
1 ; . . . ;WðkÞ9 , since the contributions by XðkÞ1 ; . . . ;XðkÞ18 are disre-

garded. This system provides an approximate solution for the con-
tinuity functions UðkÞu1 to WðkÞ9 that is used for determining
approximate expressions for XðkÞ1 to XðkÞ18 . The errors consequent
to this approximation are recovered by introducing new continuity
functions that are computed in a straightforward way by enforcing
the stress contact conditions

rJ
xz ¼ r̂J

xz þ
XS

k¼1

KðkÞHðkÞ ð29Þ

rJ
yz ¼ r̂J

yz þ
XS

k¼1

HðkÞHðkÞ ð30Þ

rJ
zz ¼ r̂J

zz þ
XS

k¼1

CðkÞHðkÞ ð31Þ

rJ
zz;z ¼ r̂J

zz;z þ
XS

k¼1

PðkÞHðkÞ ð32Þ

at the interfaces. The derivatives of the d.o.f. involved by the present
model are converted into their primitive functions in a way that
preserves their contribution to the strain energy, as outlined here-
after, since could make it computationally inefficient. The scalar
products of the displacement derivatives that appear in the expres-
sion of the strain energy kUa,ak, kUa,bk, . . . ,kUb,ak, kUb,bk,. . . are con-
verted into the scalar products of their primitive functions kUak,
kUbk,. . . by equating their energy norms:

kUa;ak ¼ AkUak; kUa;bk ¼ BkUak; kUb;ak ¼ CkUbk ð33Þ

The constants A, B, C. . . are computed by expressing the unknown
generalized displacements as a combination of trial functions

u1
1;...u

1
n;...

� �
with unknown amplitudes a1

1;...a
1
n;...

� �
, i.e. Ua ¼ a1

1u1
1þ...

a1
nu1

n;Ub ¼ a2
1u2

1þ...a
2
nu2

n. The conversion of the derivatives of the
displacements that appear in the strain energy turns into the con-
version of the derivatives of the trial functions:

uJ
m;auJ

n;a

D E
¼ A uJ

muJ
n

� �
; uJ

m;buJ
n;b

D E
¼ B uJ

muJ
n

� �
ð34Þ

(the symbol hi represents the integration across the thickness). The
second order derivatives are converted in a similar way by:

kUa;ak ¼ 2AkUak; kUa;abk ¼ 2BkUak; kUb;abk ¼ 2CkUbk ð35Þ

computing the appropriate coefficients 2A, 2B, 2C. . .

3.2. Coefficients of higher-order powers

The displacements are now represented in the following form

ua¼^UaþAaf4þBaf5þCaf6þDaf7þEa18þ���þ
XS

k¼1

UðkÞa . . .

ð36Þ

ub¼^UbþAbf4þBbf5þCbf6þDbf7þEbf8þ���þ
XS

k¼1

UðkÞb . . .

ð37Þ

uf¼^UfþAff4þBff5þCff6þDff7þEff8þ���þ
XS

k¼1

WðkÞf . . . ð38Þ
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that focuses on the higher-order terms of the polynomial represen-
tation. The coefficients (Aa, . . . ,Ea, . . .), (Ab, . . . ,Eb ,. . .), (Af, . . . ,Ef, . . .) of
the higher-order powers of f are determined in closed form, by
enforcing equilibria. In order to illustrate the procedure, the follow-
ing stress derivatives appearing in the equilibria in local differential
form are reported as examples:
 
 
 
 

 

ra;a ¼

2
4ðkÞCJ

11=Ha
^Ua þ Aaf4 þ Baf5 þ Caf6 þ Daf7 þ Ea18

þ � � � þ
XS

k¼1

UðkÞa . . .

!
;a

3
5
;a

þ � � � þ ðkÞCJ
16eab;a ð39Þ
 
 
 
 
 

 
 

rab;b ¼ ðkÞCJ
61eaa;b þ � � � þ

2
4ðkÞCJ

66Ha=Hb
^Ua þ Aaf4 þ Baf5 þ Caf6�

þ Daf7 þ Ea18 þ � � � þ
XS

k¼1

UðkÞa . . . =Ha

!
;b

3
5
;b

þ

2
4ðkÞCJ

66Hb=Ha ^Ub þ Abf4 þ Bbf5 þ Cbf6 þ Dbf7
�

þ Ebf8 þ � � � þ
XS

k¼1

UðkÞb . . . =Hb

!
;a

3
5
;b

ð40Þ
raf;f ¼ � � � þ ðkÞCJ
54ebf;f þ ðkÞCJ

55Ha
^Ua þ Aaf4 þ Baf5 þ Caf6	h

þ Daf7 þ Ea18 þ � � � þ
XS

k¼1

UðkÞa . . . =Ha

!
;f

þ ðkÞCJ
55=Ha

^Uf þ Aff4 þ Bff5 þ Cff6
h

þ Dff7 þ Eff8 þ � � � þ
XS

k¼1

WðkÞf . . .

!
;a

3
5
;f

ð41Þ
A system of independent equations is obtained that allows to deter-
mine all the unknown parameters, since any number of points at
which enforce equilibria can be chosen. The expressions of the
derivatives of Aa, Ab, Af are determined disregarding the derivatives
of the higher-order terms Ba, Bb, Bf, . . . ,Ef. In a similar way, the
derivatives of Ba, Bb, Bf are determined disregarding Ca, Cb, Cf, and
so on, since in this way the higher order models contain the low-
er-order ones as particular cases.

These expressions are substituted into the governing equations;
where necessary, integrations (indefinite integrals) are carried out
by substituting the d.o.f expressed in terms of the trial functions.
The derivation of the governing equations is omitted since the
standard techniques can be used.

The stress continuity conditions can be easily restored at the 
points where the representation is varied, since the enforcement 
of any condition of interest implies the addition of a new power 
term to the expansions (36)–(38), which is computed by the condi-
tion itself.

Owing to the variable representation used, a consistent behav-
iour can be obtained with a suited choice of the coefficients of
higher-order powers. For instance, zero normal and transverse
shear stresses in presence of nonzero bending strains could be en-
forced in order to prevent Poisson’s locking when approaching the
thick limit, as well as a state of zero transverse shear stress in pres-
ence of nonzero bending strain, in order to avoid shear locking
when approaching the thin limit. Another important condition that
can be enforced is a non vanishing transverse shear at clamped
edges, although the displacements and their derivatives vanish,
to avoid the poor behaviour of the models with displacements
and shear rotations as functional d.o.f.

4. Numerical applications

Just simply-supported cross-ply cylindrical shells in cylindrical
bending under sinusoidal loading are considered. In fact for this
case the exact three-dimensional elasticity solution can be
determined, as shown by Ren [7]. Furthermore this option offers
the possibility of comparing the results with many others in liter-
ature, since it is customary chosen by the researchers (see, e.g.
[21,22,32,41]). To enable the comparison with other models, the
angle w substented by the ends is assumed equal to p/3, in such
a way b traces a circumferential path of length Rbw. In the other
direction Ra = 1 is assumed. The distributed loading is represented
as p0ju = P sin (pb/w). Most of the results refer to a thickness ratio
S = R/h (R = Rb) of 4 because, although unrealistic for engineering
applications, it constitutes a severe test for the models; for this rea-
son it is customary chosen by the researchers. According with Ref.
[7], displacements and stresses are reported at b = w/2 or at b = 0
where they assume their maximum, in the following normalised
form:

�ubðfÞ ¼
ubðf;0Þ

q0h
; �ufðfÞ ¼

ufðf;w=2Þ
q0h

;

�rbbðfÞ ¼
rbbðf;w=2Þ

q0S2 ; �rbfðfÞ ¼
rbfðf;0Þ

q0S2h
;

�rffðfÞ ¼
rffðf;w=2Þ

q0 ð42Þ

The variation of the d.o.f. over the reference plane is assumed as a
trigonometric series expansion, within the framework of the
Galerkin’s method:

uð0Þb ¼
XQ1

i¼1

Aub cosðipb=wÞ; uð0Þf ¼
XQ2

i¼1

Auf sinðipb=wÞ;

cð0Þb ¼
XQ3

i¼1

Acb cosðipb=wÞ ð43Þ

Only the first term is retained with the RHSDST model, as it gives
the exact solution to governing equations. On the contrary, several
terms (up to 6) should be retained with the present model.

Numerical applications are presented for laminated shells, with
the purpose of assessing whether the present model can accurately
predict the interlaminar stresses without post-processing. Results
for sandwich shells with damaged faces or a damaged core are also
presented since, owing to their abruptly changing material proper-
ties across the thickness, represent very severe tests cases.

4.1. Laminated shells

The same cases already examined in Refs. [7,21,22,32,41] are 
considered, in order to asses the improvements brought by the 
present adaptive representation of displacements. According, the 
following material properties are chosen: EL/ET = 25; GLT/ET = 0.5; 
GTT/ET = 0.2; tLT = 0.25. Table 1 presents the normalised deflection 
�uf at f = 0 of 0�/90� unsymmetric and 90�/0�/90� symmetric cross-
ply shells in cylindrical bending under sinusoidal loading. The 
thickness ratios S = R/h (R = Rb) considered range from 4 up to 500. 
Here 0� means fibres parallel to the b direction, while 90� fibres 
perpendicular to b. The symbol BM represents the basic model, i.e. 
the RHSDST model of Ref. [22]. The symbols 0, 1, 2 rep-resent the 
expansion order of the reciprocals of the Lamé coeffi-cients 1/
Ha, 1 / Hb (see, Eq. (7)) used with the basic model. All the
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Table 1
Normalised deflection of simply supported cross-ply shells in cylindrical bending under sinusoidal loading, for different thickness ratios.

S = R/h Dennis–Palazotto [8] BM 0 [15] BM 1 [15] BM 2 [15] Presenta Exact (Ren [4])

0�/90�
4 0.6993 0.6398 0.6589 0.6554 0.8316 0.854

10 0.4593 0.4408 0.4472 0.4462 0.4814 0.493
50 0.4048 0.3939 0.3958 0.3957 0.4048 0.409

100 0.4018 0.3911 0.3920 0.3920 0.4014 0.403
500 0.3998 0.3893 0.3895 0.3895 0.3991 0.399

90�/0�/90�
4 0.382 0.3771 0.4817 0.4709 0.4506 0.457

10 0.128 0.1343 0.1386 0.1381 0.1468 0.144
50 0.0796 0.0796 0.0797 0.0797 0.0800 0.0808

100 0.0781 0.0778 0.0778 0.0778 0.0781 0.0787
500 0.0774 0.0773 0.0773 0.0773 0.0775 0.0773

a The expansion order across the thickness is 6 for ua and 4 for uf. A quadratic representation of the reciprocals of Lamè coefficients is
used.
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order expansion of these coefficients and a sixth order expansion of 
the in-plane displacements Ua, Ub and a fourth expansion for the 
transverse displacement. Uf in Eqs. (22)–(24). The distributions 
across the thickness of the in-plane and transverse shear stresses 
�rbb; r�bf are shown in Fig. 1a–f, with the purpose of focusing the 
different behaviour of the present model and of the basic model. 
Fig. 1a represents the through-the-thickness variation of the in-
plane stress �rbb for a 0�/90� lay-up and S = 4, while Fig. 1b 
represents the transverse shear stress r�bf. Fig. 1c and d report the 
in-plane stress r�bb and the transverse shear stress �rbf for a 
90�/0�/90� shell with S = 4, respectively. Fig. 1e shows the trans-
verse shear stress �rbf for the same lay-up and S = 10, while Fig. 1f 
shows the same stress for a 90�/0�/90�/0�/90� five layer cross-ply 
shell with S = 5 and S = 10. The through-the-thickness variation of 
the transverse displacement �uf is omitted in order to contain the 
length of the paper, being very small and similar to that of 
undamaged sandwich shells. The variation of the in-plane dis-
placement �ub and of �rff are also omitted for the same reason. 
These distributions will be considered in the case of sandwich 
shells, being different with or without damage.

It appears by the numerical results that the present model pre-
dicts the displacement and stress fields with an improved accuracy 
with respect to the basic shell model of Ref. [22], either for thin or 
thick shells. While the basic model can quite accurately capture 
�rbb from the constitutive equations and consequently capture �rbf 

by integrating the local differential equilibrium equations, the 
present model always provides accurate stress predictions by the 
constitu-tive equations. Although improved predictions of the in-
plane stress �rbb are also obtained, this represents the most 
important advantage of the present five d.o.f. model. Indeed, this 
property makes it suited for damage analysis, and in particular for 
impact studies, owing to the a low memory occupation. As it 
appears from Table 1, the pres-ent model can also more accurately 
predict the deflections with re-spect to the basic model, owing to 
its improved representation of the transverse displacement. 
Obviously, the higher-order terms play a marginal role in the case 
of very thin shells.

The improved predictive capability of the present model results
in computational costs saving, since the overall processing time of
the present model is lower than that of the basic shell model that
requires a quite long post-processing for obtaining a comparable
accuracy. If the processing time on a laptop computer of the FOR-
TRAN computational model forS = 4 is normalised to the case of the
basic model, it appears that the post-processing operations take
about the 60% of the overall processing time, while the present
model, without any post-processing, requires an overall computa-
tional time that is 70% of the one of the basic model.
This advantage becomes consistent when repeated computa-
tions are required, since the continuity constants and of the coeffi-
cients of higher-order terms, whose computation takes up to 15%
of the overall time, need to be determined once for all for any lam-
ination sequence, loading and boundary conditions.

4.2. Sandwich shells

Cylindrical sandwich shells with S = 4 and 10, in cylindrical bend
ing under the same loading and boundary conditions than in the pre
vious section, and with the material properties and lay-up of Ref.[29
are considered. The face layers are made of materials 1 to 3, while th
core is made of material 4, whose mechanical properties are a
follows. MAT 1: E1 = E3 = 1 ,  G13 = 0.2 (GPa), t13 = 0.25; MAT 2: E1 

33, E3 = 1 ,  G13 = 8 ,  t13 = 0.25; MAT 3: E1 = 25, E3 = 1 ,  G13 = 0.5, t13 

0.25; MAT 4: E1 = E3 = 0.05, G13 = 0.0217, t13 = 0.15. MAT 1 is rathe
weaker in tension–compression and shear compared to MAT 2
whereas MAT 3 is stiff in tension–compression but rather weak i
shear. As usual, MAT 4 compared to the other materials is very wea
in tension–compression and rather weak in shear. The sandwic
shell is simulated as a multilayered shell with a (MAT 1/ 2/3/1/3/4
stacking sequence and the following thickness ratios of th
constituent layers (0.010/0.025/0.015/0.020/0.030/0.4)s. A
shown in Ref. [29], this combination of materials and the lay-up cho
sen result in rather intricate displacement and stress distribution
across the thickness that are more difficult to capture of those o
laminates. A very refined subdivision into computational layers wa
required by the SZZ model of Ref. [29] for obtaining accurate stres
predictions from the constitutive equations, in particular whe
damage was considered. The integration of the local differen-tia
equilibrium equations reduced the overall computational effor
although the post-processing was rather laborious.

The purpose now is to assess whether the displacement and 
stress distributions can be still captured by the present shell model 
without post-processing, as occurred in the previous case of lami-
nated shells. The exact three dimensional solution for the actual 
case has been computed by the authors with the technique of Ren 
[7], since at their best knowledge results were not available in the 
literature for the constituent materials here considered and in 
presence of damage. To this purpose the damage is unreal-istically 
assumed as spreading over the entire length in the b direc-tion, it 
being just considered for having abruptly changing material 
properties across the thickness. A more realistic, localized distribu-
tion will be easily simulated once finite elements based on the 
present model will be developed. In the current case the damage is 
simulated with a degradation of the elastic properties, according to 
the ply-discount theory. A factor 10�2 is used for simulating the 
residual properties in presence of damage. A damaged upper face is



Fig. 1. Displacement and stress fields across the thickness of simply-supported, laminated shells undergoing sinusoidal transverse distributed loading (the vertical coordinate
is f/h).
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simulated reducing E3 with this factor, whereas a damaged core is
simulated reducing G13 in the same way. This choice is made in or-
der the modelling of uf and rff is crucial in the former case, while
rbf is crucial in the latter case.

Fig. 2a to d show the through-the thickness distribution of the 
in-plane and transverse displacements �ub; �uf and of the out-of-
plane stresses r�bf; r�ff respectively, as predicted by the pres-ent 
model and by the exact elasticity solution for S = 4 and 10, when 
the sandwich is undamaged, the upper face is damaged, or the core 
is damaged. The solution by the present model is obtained 
assuming a sixth order expansion of the displacementsUa, Ub, Uf in 
Eqs. ()(22)–(24). Note that an interesting capability of the present 
model is the possibility of re-computing higher-order coefficients 
at new points across the thickness without increasing the expan-
sion order of the representation. Therefore coefficients that have
been already determined can be updated for refining the solution
without any increase of the polynomial degree. This allows to
account for the local variations of the solution in a more accurate
and computationally more efficient way.

Owing to position of the neutral plane close to the lower face 
when the upper face is damaged, a change of sign of the transverse 
displacement occurs for S = 4, as shown in Fig. 2b.

The numerical results of Fig. 2a–d, which have been obtained 
with a second order expansion of the reciprocals of theA Lamé 
coefficients, show the capability of the present model to predict the 
distributions of the stresses across the thickness without post-
processing, as well the displacements, even with abruptly changing 
material properties across the thickness. The steepest gradients 
consequent to this variation, that are magnificated by the presence 
of damage, are predicted with a lower computational



Fig. 2. Displacement and stress fields across the thickness of undamaged and damaged, simply-supported, sandwich shells undergoing sinusoidal transverse distributed
loading: cases. Symbols: EX aa = exact; UNDAM aa = undamaged; DAM UP aa = damaged upper face; DAM CORE aa = damaged core (aa represents the thickness ratio S = R/h;
the vertical coordinate is f/h).
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effort by the present model, despite the additional computations
involved for defining the coefficients of the higher-order powers.

The overall processing time required by the present model is 
lower than for the basic model, which requires to be post-pro-
cessed for a comparable accuracy, in all the examined cases. It is 
also lower with respect to the sublaminate model of Ref. [29], 
which requires either the subdivision into many computational 
layers, consequently resulting in a larger memory occupation, or 
the use of post-processing operations. It appears that the process-
ing time required by the post-processing phase is up to 65% the 
overall processing time for the basic model when the sandwich 
shell is undamaged, up to 68% when the upper face is damaged 
and 66% when the core is damaged. If the processing time is nor-
malised to the case of the undamaged sandwich analysed by the 
basic model, it results that the present model, which does not need 
to be post-processed, requires an overall processing time that is
just 75% in the undamaged case and 82% when the upper face is 
damaged and 79% when the core is damaged. In the undamaged 
case, the analysis by the model of Ref. [29] with subdivision into 
computational layers (up to 55 without post-processing) requires 
a processing time that is just 18% greater and a larger memory 
occupation than for the present model. The time increases to 20%
and 19%, respectively, when the upper face or the core are dam-
aged. If the model of Ref. [29] is post-processed, a single computa-
tional layer can be employed, but op to 45% of the overall time, 
which is larger by 15% with respect to the present model, is re-
quired for this operation.

5. Concluding remarks

A multilayered shell model with the classical five mid-plane
functional d.o.f. for analysis of laminated and sandwich shell has
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been developed; it can capture the through-the-thickness distribu-
tion of interlaminar stresses from constitutive equations. This
capability is enabled by a variable zig-zag representation of the
displacements whose higher-order coefficients are determined
enforcing equilibrium conditions at discrete points across the
thickness. The numerical results show that the present model
can accurately capture the stress fields of thick laminated and
sandwich shells with an expansion order of the displacements up
to 6. Although it requires the computation of higher coefficients,
its computational effort is lower than that of the counterpart lower
order model with fixed representation, which requires to be post-
processed for obtaining a comparable accuracy, as well as of a dis-
crete-layer model with subdivision of the constituent layers into
computational layers.
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