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Abstract. Orthonormal matri ces, Procrustes  and qua-
ternion analysis are closed form solutions of the con-
figuration matching problem, common in geodesy as 
in the datum transformation problem. Literature re-
ports more Procrustes based geodetic applications 
than Quaternions, which are more used in other appli-
cation fields, such as aerospace navigation, robotics 
and computer vision. The large popularity of Pro-
crustes in geodesy is mainly due to its capability to 
take into account a priori observation weighting in a 
simple way. 

Keywords. Rotations, quaternions, ortonormal ma-
trices, Procrustes. 

1  Introduction  

A rotation is a transformation of the Euclidean 
space that rigidly moves objects leaving fixed at least 
one point (the origin of Euclidean space). In geodesy 
rotations are involved in  many problems, especi ally 
for solving the transformation between reference 
frames. More in detail, a rotation is an isometry of an 
Euclidean space that preserves the orientation, and it 
is described by an orthogonal matrix. In a Euclidean 
space of two or three dimensions each orthogonal ma-

trix expresses a rotation around a point or an axis, a 
reflection, or a combination of these two transforma-
tions. 

As mentioned above, the representation of a rot a-
tion expresses the orientation of an object with respect  
to a reference system, or the relative orientation of 
two or more reference systems. Euler's theorem shows 
that any space rotation can be decomposed into the 
product of the three rotations i j kR R R   , where 

i j k   and 3i, j, k , and where iR  indicates a 
rotation of αradians counterclockwise around the i  
axis. According to Euler's theorem, the attitude of a 
rigid body can be described by a rotation around only 
one axis. Furthermore, this rotation can be defined un-
iquely by a minimum of three parameters, such as the 
directors cosines matrices, that represent the most 
widespread method for estimating rotations into geo-
detic networks. 

However, for various reasons, there are several  
ways to represent rotations, making use of a number 
of parameters even higher than three, although also 
those redundant representations have always only 
three degrees of freedom. Some of these methods, 
presented over the years, are hereinafter described and 
compared.  

2  The Quaternion-based approach 

What Sir William Rowan Hamilton wrote on the 
16th of October 1843 on a stone of Brougham Bridge 
in Dublin, is simply: 

 2 2 2i j k ijk 1      ( 1 ) 
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Fig. 1 The Brougham Bridge in Dublin and the Hamilton  

commemorative plaque 

The combination: 

 0 1 2 3q q iq jq kq     ( 2 ) 

where q0, q1, q2 and q3 are real numbers, defines the 
generic quaternion. Quaternions satisfy all the laws of 
algebra, except the multiplication commutative law. 
In fact:  

 ij ij, jk kj, ki ik       ( 3 ) 

which represents a serious violation of the commuta-
tive law ab ba . It is also apparent: 

 
ij k jk i ki j
ji k kj i ik j
  
     

 ( 4 ) 

The fundamental values of quat ernions, i, j and k, 
can be handled as three mutually perpendicular 
clockwise axes in a common three-dimensional Euc-
lidean space. Each unit quaternion, in particular, de-
fine a rot ation in 3  space. These rotations are given 
by the conjuge: 

 1 *r qrq qrq      ( 5 ) 

It can be veri fied that i f r is purely imaginary (the 
real part is equal to zero), also r  is purely imaginary; 
therefore it can be defined an action of the group of 
unit quaternions on 3 . Each action defined in this 
way is indeed a rotation, since it preserves the norm: 

 **r qrq q r q r           ( 6 ) 

It is possible to show the equivalence between the 
conjuge and the product of the 3x3 Rodriguez rotation 
matrix and a real vector. In fact, the operation: 

      * * T Tqrq Qr q Q Qr Q Q r        ( 7 ) 

produce a 4x4 rotation matrix TQ Q , whose lower 
right 3x3 sub-matrix is orthonormal, and it is the rota-
tion matrix that takes r  to r . 

 
Given the three-dimensional rotation between two 

frames r  and s  with a scale-change ρ:  

 *s qrq     ( 8 ) 

where *qq 1  , the measurement equation is: 

 *
i i is qr q        ( 9 ) 

where i  are still purely imaginary quaternions. In 
the following, we will present two methods in the lite-
rature to solve the problem (9), respectively by mini-
mizing the residual vector   (Sansò, 1973) or alterna-
tively maximizing the scalar product s r   (Horn, 
1987). 

2.1 Residual vector minimization 

In accordance with the least squares  approach, we 
must compute the minimum of the function:  

   *
i i

i

q,        ( 10 ) 

where 2 *q qq 1    . Differentiating  with respect to 
 and q  and introducing a real Lagrange multiplier , 
we obtain, after some mathematical steps: 

     2 22
i i i i

i i i

s r q 2 s qr 0       
        ( 11 ) 

It is possible to show that: 

 2 22
i i

i i

s r      ( 12 ) 

Using equation (12) in (11), through some mathe-
matical steps we reach the final equation: 

 
2

i i i
i i

rs q r q

Aq q

          


     

 
 ( 13 ) 

As it is possible to see, the unknowns  and q  are re-
spectively an eigenvalue and eigenvector of a symme-
tric matrix A, that can be built directly from the data ri 
and si. In particular, using the products expansion 
rules of quaternions, we find: 

   

   i i i i i i i i
i i i i

i i i
i i

r s q s qr S q r R S q

R S q A q

   

          

   

 

       

 
( 14 ) 



 
 

from which it is possible to derive the expressions of 
iA  and A. 

2.2 Scalar product maximization

 

In this second approach, we seek the quaternion q  
to maximize the scalar product: 

  
n n

*
i i i i

i 1 i 1

qrq s r s
 

          ( 15 ) 

Reminding the geometric meaning of the scal ar 
product of vectors, we have:  

 i i i ir s r s cos        ( 16 ) 

where θ is the angle subtended. Since i ir r    and is  
are constants, the maximization of the scalar product  
is equal to minimize the parameter θ (or maximize 
cos ). Using the above results, we can rewrite the 
scalar product as: 

    
n

i i
i 1

qr s q


      ( 17 ) 

The products  iqr   and  is q   can be expressed by 
means of the matrices R and S, therefore: 

 

   
n n

T T
i i i i

i 1 i 1

n
T T

i i
i 1

n
T T

i
i 1

qr s q q R S q

q R S q

q Å q q Åq

 





  

   
 
    

 





     

 

   

 ( 18 ) 

It is now simple to derive the values of the sub-
matrices iÅ , and consequently of the matrix Å , 
where T

i iÅ Å  and TÅ Å . Recalling that we were 
seeking: 

  
n

T
i iq q

i 1

Max r s Max q Åq


   
 


 
     ( 19 ) 

It is possible to note that Å A  . 

3  The Orthonormal matrices approach 

Among the existing ways to represent rotation we 
present one that is most often used in photogramme-
try: the orthonormal matrices. Again r is the position 
vector in  the original RS and s  the position vector in  
the final RS. The aim is to find the rotation that mi-
nimizes the residual errors. Therefore, we have to find 
the orthonormal matrix B, 3×3 matrix,  that maximize  

  
n n

T
i i i i

i 1 i 1

s Br s Br
 

   ( 20 ) 

Being  

  T T Ta Bb TR B ab  ( 21 ) 

it is possible to write the (20) as 

  
n

T T T
i i

i 1

Tr B s r Tr B M


   
 

  ( 22 ) 

where 
n

T
i i

i 1

M s r


  and 

 

 

1 1 1 2 1 3
i i i i i i

i i i
2 1 2 2 2 3
i i i i i i

i i i
3 1 3 2 3 3
i i i i i i

i i i

s r s r s r

M s r s r s r

s r s r s r

 
 
 

  
 
 
  

  
  
  

 ( 23 ) 

It follows that the rotation that minimize the resi-
dual errors corresponds to the orthonormal matrix B 
that maximizes  TTr B M . 

A square matrix M could always be decomposed 
into the product of an orthonormal matrix U and a 
positive semi-definite matrix S. When M is non singu-
lar, the matrices U and S are univocally determined 
and it allows to write  

 
 

1
T 2

1
T 2

MM M M US
M M

   ( 24 ) 

In this expression,  
1

T 2U M M M


  is an or-

thonormal matrix and  
1

T 2S M M  is the square root 

positive semi-definite of the symmetric matrix TM M . 



 
 

It is possible to write this matrix TM M  using its ei-
genvalues  i  and eigenvectors iû  as following: 

T T T T
1 1 1 2 2 2 3 3 3ˆ ˆ ˆ ˆ ˆ ˆM M u u u u u u      ( 25 ) 

Since TM M  is positive semi-definite, its eigenva-
lues are positive and their square root is Real and it is 
possible to write the symmetrical matrix S 

T T T
1 2 31 1 2 2 3 3ˆ ˆ ˆ ˆ ˆ ˆS u u u u u u       ( 26 ) 

As the eigenvectors are orthogonal, it follows that  
2 TS M M . This expression of the S matrix is al-

lowed also when some eigenvectors are null. For this 
reason, the result is positive semi-definite instead of 
positive definite. If all the eigenvectors are positive, S 
becomes  

1 T T T
1 1 2 2 3 3

1 2 3

1 1 1ˆ ˆ ˆ ˆ ˆ ˆS u u u u u u   
  

          ( 27 ) 

It is useful to calculate the U matrix 

 
1

1 T 2U MS M M M


  . It is possible to note that 
the sign of the determinant of U is the same of the de-
terminant of M matrix. In fact  

       1 1det U det MS det M det S    ( 28 ) 

And the  1det S  is positive because its eigenva-
lues are positive. The U matrix is a rotation when 

 det M 0  and it represents a reflection if 

 det M 0 . It is necessary to minimize this expres-

sion    T TTr B M det B US  that, substituting the ex-
pression (26) becomes  

   

   

T T T
1 1

1

T T T T
2 2 3 3

2 3

1 ˆ ˆTr B US Tr B Uu u

1 1ˆ ˆ ˆ ˆTr B Uu u Tr B Uu u

 


 
 

         ( 29 ) 

For each X and Y matrices such that the XY and 
YX products are square, it follows that 

   Tr XY Tr YX and 

   
 

T T T T
i i i i

i i i i

ˆ ˆ ˆ ˆTr B Uu u Tr u B Uu

ˆ ˆ ˆ ˆTr Bu Uu Bu Uu

 

 
 ( 30 ) 

Since  iû  is a unit vector and both U and B are 
ortogonal transformations, it is veri fied that  

1 1ˆ ˆBu Uu 1 . It follows that  

   T
1 2 3Tr B US Tr S                ( 31 ) 

And there is the maximum value of 
 TTr B US when TB U I or B U . The sought or-

tonormal matrix is the one that arises from the de-
composition of M decomposed into the product of an 
orthonormal matrix and symmetric one. When M is 
non-singular matrix, then 

  
1

T 2B M M M


           ( 32 ) 

The presented method is a closed-form solution us-
ing orthonormal matrices and their eigenvalues-
eigenvector decomposition. 

4  Procrustes approach 

The minimization problem known as “Procrustes” is 
the technique of matching one configuration R  into 
another configuration S in order to produce a measure 
of match, by an orthogonal transformation matrix T 
such that the sum of squares of the residual matrix  
E RT S  is minimum: 

 TTr E E min      ( 33 ) 

Expanding the product TE E , the  can be ex-
pressed as function of T: 

   T T T T T2Tr T R S Tr T R RT S S   

 

( 34 )

 

which partial derivative with respect to T is 

   
 

T T T

T T

2Tr M 2Tr T R R
T

Tr MT R R


  


 

 

( 35 )

 

The condition 2RT S min   it is equivalent to 

   T TTr S RT Tr M T max  . Be TUDV  the singu-
lar value decomposition of M where 

1 2 3D diag( , , )    , then 

   
 

T T T T

ii i ii i

Tr T UDV Tr V T UD

Tr ZD z

 

       
( 36 )

 

where T TZ V T U , that has a maximum in Z = I.  
Finally TT UV  is the optimal rotation matrix. 



 
 

 

5  Different Approaches comparisons 

The methods that are presented in this paper are 
widely used in geodesy, photogrammetry, robotics 
and computer graphic. Here we can underline some 
common or different aspects for each approach.  

The presented approaches di ffer in term of rotation 
representation and optimization method, while the op-
timization criteria is always least squares. 

The two quaternion approach investigated are for-
mally equivalent. In fact, it was shown that the two 
matrix A  and Å  defined respectively for the residual  
vector minimization approach and for the scalar prod-
uct maximization one, are related by Å A  . More-
over, it is find that these matrices depend only from 
the data sets: r  and s .  

The orthonormal matrix approach has been studied 
in a closed-form solution performed using orthonor-
mal matrices. This method requires the computation 
of the square root of a symmetric matrix to  solve the 
rotation problem.  

Finally the Procrustes approach is often used in  
photogrammetry, in order to solve the orient ation 
problem. When the weight (both in the data set and 
for each 3D component) in the transformation is in-
troduce we are dealing with the Generalized Pro-
crustes Analysis. It is possible to shown that the used 
orthonormal matrix T is equivalent to the Rodriguez 
matrix. 

The described algorithm have been implemented in  
a FORTRAN90 software and numeri cally veri fied on 
real data examples. 
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