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PARITY AND GENERALIZED MULTIPLICITY

P. M. FITZPATRICK AND JACOBO PEJSACHOWICZ

Dedicated to W. V. Petryshyn on the occasion of his sixtieth birthday

Abstract. Assuming that X and Y are Banach spaces and a:[a, b] —»

¿2?(X, Y) is a path of linear Fredholm operators with invertible endpoints,

in [F-Pl] we defined a homotopy invariant of a, a(a, I) G Z2 , the parity of

a on I. The parity plays a fundamental role in bifurcation problems, and in

degree theory for nonlinear Fredholm-type mappings. Here we prove (a) that,

generically, the parity is a mod 2 count of the number of transversal intersec-

tions of a(I) with the set of singular operators, (b) that if A0 is an isolated

singular point of a , then the local parity

a(a, X0) = lim o(a, [X0 - £, A0 + «])

remains invariant under Lyapunov-Schmidt reduction, and (c) that a{a, A0) =

(_1) <?( o> i where MG(X0) is any one of the various concepts of generalized

multiplicity which have been defined in the context of linearized bifurcation

data.

1. Introduction

Let X and Y be real Banach spaces, ®0(X, Y) be the set of operators in

5?{X, Y) which are Fredholm of index 0, and GL(X, Y) be the set of in-

vertible operators. Let S(X, Y) = %(X, Y)\GL(X, Y) be the set of singular

Fredholm operators.

Let F: [a, b] x X -» Y be a C1 map, with F(X,0) = 0 and dF/dx(X, 0) =
Lx G ®0(X, Y) for each A G [a, b]. When studying the solutions of the equa-

tion F(X, x) = 0, we call [a, b] x {0} the trivial solutions and call kt e [a, b]

a bifurcation point of this equation if (At ,0) is a cluster point of the nontrivial

solutions. By the implicit function theorem, a necessary condition for At to be

a bifurcation point is that Lx  e S(X, Y).

The usual approach in studying single-parameter bifurcation problems (cf.

[Kr, C-R, R, We, M, Sa, II, L-M, S, P-V, P, C-H, Ki, W-W, W, We, F-Pl, F-P2,

Ral, Ra2, E-L, E], and the references therein) is to consider a potential bifur-

cation point kt eJ2- {MLX G S(X, Y)}, which is isolated in X, and provide

sufficient conditions for bifurcation in terms of the germ of the linearization of
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L at Xt. These usually involve various notions of generalized multiplicity of

the curve L at A„ which, roughly speaking, measure the order of contact of L

with SiX, Y) at Xt.
A different approach consists in associating to each continuous curve a: I =

[a, b] -» ®0(X, Y), having a(dl) ç GL(X, Y), a homotopy invariant (rela-

tive to di) such that when a(X) = Lx = dF/dx(X, 0), then the nontriviality

of this invariant implies the existence of a bifurcation point Xt in (a, b).

For mappings which are compact vector fields, the second approach can be

placed in a familiar framework. Recall that h:Ax X -^> X is called a family of

compact vector fields parametrized by A provided that h(X, x) = x — C(X, x),

where C:AxX —> X is compact. So suppose that X = Y and that F:RxX —>

X is a family of compact vector fields. Then L: [a, b] -> O0(x) is a curve of

linear compact vector fields. Hence any such homotopy invariant must depend

only on the values of L at the boundary points a and b, since any two such

curves of linear compact vector fields, which agree on9/, are homotopic. From

this it easily follows that the invariant is uniquely identified as the element of

Z2 = {-1, +1} given by

(1.1) cT(L,/) = degLS(La)-degLS(L¿),

where degL s is the Leray-Schauder degree. If a(L, I) = -1, i.e., if degL s (L )

^ degLS (Lb), then Krasnosel'skii's theorem [Kr] asserts that there is a bifurca-

tion point Xt in (a, b). Moreover, Rabinowitz's theorem [R] asserts that the

bifurcation is global in that the closure of the set of nontrivial solutions of the

equation F(X, x) = 0 is not a compact subset of (a, b) x X.

Now, a general continuous curve L:I —» Q>0(X, Y) can be transformed to

a curve of linear compact vector fields by composing with a parametrix. A

parametrix for I is a continuous curve M:I—> GL(Y, X) such that each

MXLX is a compact vector field. It turns out that parametrices always exist, and

that when La and Lb are invertible, the element a(L, I) eZ2 defined by

(1.2) a(L,I) = degLS(MaLa)degLS(MbLb)

does not depend on the choice of parametrix. We call a(L, I) the parity of L

on / ; it is clear that (1.2) extends (1.1), but for a general curve of Fredholm

operators (1.2) depends on the whole curve and not just on the values of the

curve at the endpoints.

(i) The parity is a homotopy invariant of

L:(I,dI)^(%(X, Y),GL(X, Y)).

If o(L, I) = -1, then there is a bifurcation point in / [F-P3]. Moreover, the

parity is the only homotopy invariant which detects global bifurcation.

(ii) The parity is defined if L:[a, b] »-> Q>0iX, Y) is continuous, while each

of the generalized multiplicities requires additional assumptions. In each spe-

cific situation in which a generalized multiplicity is defined, the parity is deter-

mined by the multiplicity. However the multiplicities are not homotopy invari-
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ants, so they are not preserved under continuous deformations of the curve of

linearizations at 0.

(iii) The bifurcation theory of nonlinear Fredholm maps presents a variety of

phenomena which are not present in the compact vector field case. In particular,

one can have a closed curve of linearizations at 0 with parity -1. By (i), this

implies bifurcation. Such a global property can be better understood by looking

at the global homotopy invariants of the curve and not at the multiplicities of

isolated points (cf. [F-P2, F-P4]).

The role of parity in bifurcation theory and in degree theory has been studied

elsewhere [F-Pl, F-P3, F-P5]. Here, we will continue our study of the parity

function itself and its relation with various concepts of generalized multiplicity.

Some of our results were announced in [F-Pl].

In §2 we describe some properties of the parity function proved in [F-P2,

F-P5], and we also recall the local bifurcation theorem from [F-P3].

In §3 we interpret the parity as a mod 2 intersection index. To explain

the approach, let 5( = {L e 4>0(X, r)|dimKerL = /'}. Then Sx is a 1-

codimensional submanifold of <¡>0(X, Y) and S(X, Y) = Sx US,, where St =

\Ji>2 S¡ is the union of manifolds of higher codimension. Let %? be the set of

alTpaths L:(I, 81) -* (%(X, Y), GL(X, Y)) with the topology of uniform

convergence. In Theorem 3.12 we prove the density in W of the subset 2¡

of C'-paths L:I -> %(X, Y) such that L intersect S(X, Y) only at a finite

number of points Xx■ e (a, b), 1 < i < k, at which L(Xx) e Sx and L is

transverse to Sx . Moreover, for each such L,

o(L,I) = (-\f.

Hence, in the generic case, the parity is the mod 2 reduction of the number

of intersection points of L with S(X, Y), and this provides an alternative

way of defining parity, using the density of 3 in ^. We finish this section

with a short discussion of related work of Koschorke [Ko] and other geometric

interpretations of the parity.

If X0 G (a, b) is an isolated singular point of L: (a, b) —> O0(Ar, Y), we set

a(L, A0) = lim£^0 a(L, [X0 - e, X0 + e]).

The next section is devoted to proving that if F is a C1 map and one uses the

classic Lyapunov-Schmidt reduction procedure for reformulating the solutions

of the equation F(X, x) = 0 as the zeros of a finite-dimensional mapping

/:RxKerL,  —> CokerL, ,

then

§5 is devoted to the relationship between parity and generalized multiplic-

ity. When X0 e (a, b) is an isolated singular point of L:(a, b) -» &Q(X, Y),

it is natural to try to define a positive integer, mG(a, X0), a generalized alge-

braic multiplicity, which corresponds to the algebraic multiplicity of X^  , as
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an eigenvalue of K, when X = Y and a(X) — Id - XK . Under diverse addi-

tional assumptions, several different notions of generalized algebraic multiplic-

ities were introduced. Corresponding bifurcation results have been established

by Laloux and Mawhin [L-M], Magnus [M], Sarreither [Sa], Ize [II], Chow and

Hale [C-H], Krasnoseiskii and Zabreiko [K-Z], Kielhöfer [Ki], Rabier [Ral,

Ra2], Esquinas [E] and Esquinas-Lopez-Gomez [E-L]. In each of the settings in

which the generalized multiplicity at X0 is defined, we prove that

(1.3) a(L,X0) = (-l)mc{L'Xo),

so that the corresponding bifurcation theorems are consequences of Theorem

2.8. From the geometric viewpoint developed in §3, (1.3) can be interpreted

as the calculation of the intersection index at isolated degenerate intersection

points.

The final section, §6, is devoted to two specific calculations of the local parity

when a: I —> ®0(X, Y) is differentiable at X0. First, we prove the formula

oc

(1.4) a(a, X0) = (-1)     where k — dim \^j Ker(a(/l0))"

n=\

if X = Y, aiX)aiX0) = a(A0)a(¿) for all X G (a, b), Kera(A0) n Kera'(A0) =

{0} and the above k is finite. Then, we prove the formula

k
(1.5) <t(q, X0) = (-1)     where k = dimKer(a(A0))

if

(1.6) a'(A0)(Ker(a(A0)) eRangea(A0) = Y.

If dimKera(A0) = 1 , (1.6) means that a: (a, b) -> ®0(X, Y) is transverse

to S(X, Y) at XQ . Corresponding formulas for the Magnus multiplicity were

given in [M].

2. The parity

Let GLC(X) be the set of compact vector fields in GL(X). For each S e

GLC(X), we denote by degLS (S) the Leray-Schauder degree of the restriction

of 5 to a neighborhood of the origin. The Leray-Schauder formula is the

assertion that

degLS(S) = (-iy\

where az is the sum of the algebraic multiplicities of the negative eigenvalues

of S (see [L]).
Given a: [a, b] -> 0>0(X, Y) continuous, there exists a continuous ß: [a, b]

-» O0(X, Y) with ß(X)a(X) a compact vector field for each X e [a, b]. We

call such a ß a parametrix for a (cf. [F-Pl] and [F-P5]).

Definition. Let a:[a,b] —► ®0(X, Y) be continuous with a(a), a(b) G

GL(X, Y). Choose ß:[a, b] —<• GL(Y, X) to be a parametrix for a. The

parity of a: [a, b] —► R, ct(q , [a, b]), is defined by

o(a, [a, b]) = degL,s (ß(a)a(a)) ■ degLS (ß(b)a(b)).
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In [F-Pl, F-P5] we showed that the above definition is meaningful, and we

derived the following properties of the parity:

(2.1) Let Z and W be Banach spaces with

n:[a, b] ^ GL(Y, Z)   and   y:[a, b] — GL(W, X) continuous.

Then

a(a, [a, b]) = a(nay, [a,b]).

(2.2) If c e [a, b] and a(c) G GL(X, Y), then

a(a, [a, b]) = a(a, [a, c]) • a(a, [c, b]).

(2.3) a(a, [a, b]) - 1 if and only if a: [a, b] —> $>0(X, Y) can be deformed

in O0(X, Y), through a homotopy with invertible endpoints, to a curve in

GL(X, Y). In particular, a(a, [a, b}) is a homotopy invariant of

a:([a, b], {a,b}) - (%(X, Y), GL(X, Y)).

(2.4) If X - Y and each a(X) is a compact vector field, then

(2.5) cr(a, [a, b]) = degL s (a(a)) -degLS(a(b)).

In particular, if X = Y = R" , then

(2.6) a(a, [a, b]) = sgndet(a(¿z)) • sgndet(a(¿>)).

(2.7) If X = Xx e X2, Y = YX®Y2, and a = ax © a2, in the sense that

a(X)\x¡ = %(Xt, Yt)   for / = 1, 2, Xe[a,b],

then

cr(a, [a, b]) = a(ax, [a, b]) ■ a(a2, [a, b]).

As a specific connection between parity and bifurcation, we recall the follow-

ing

Theorem 2.8 [F-P3]. Let cf ç R x X be open and F: cf —► Y be continuous.

Suppose that dF/dx(X, 0) G ®0(X, Y) exists as a Fréchet derivative and is

continuous in X. Let [a, b]x {0} ç cf with

||(a.0),     ^(b, 0) e GL(X, Y)   and   *(§§(¿, 0), [a, b]\ = -1.

Then (a, b) contains a bifurcation point of the equation F(X, x) = 0 if one of

the following holds:

(i)   F:cf - Y is C1.

(ii)   F(X,x)-3F(X,0)/dx(x) = C(X,x) + R(X,x), where C:cf ^ Y is

compact and

\\R(X, u)-R(X, i/)\\ <k\\u-v\\   for(X, u), (X,v)ecf,

with k sufficiently small.
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Remark 2.9. When (ii) holds and R = 0, then the bifurcation is global.

Remark 2.10. The parity is a complete invariant for detecting bifurcation at

isolated singular points, in the following sense. When L: (a, b) -* O0(X, Y) is

C1 and Xt e (a, b) is an isolated singular point of L with a(L, X J = 1, then

one may choose e > 0 anda C1 map R:(a, b)xX —> Y with dR(X, 0)/dx = 0

if \X - X0\ < e, so that (At - e, Xt + e) contains no bifurcation points of

F(X, x) = Lx(x) + R(X, x) = 0. This is proved in [F-P3], based on results of

[12].

3. The parity as an intersection index

In this section, we give a geometric interpretation of the parity. Let

oo

(3.1) %(X, Y)\GL(X, Y) = S(X, Y) = [jSj(X, Y),
7=1

where

Sj(X, Y) = {Le %(X, 7)| dimKerL = ;}   for ; G N.

We show that, generically, a(a, [a, b]) is the mod 2 reduction of the number

of intersection points of a(a, b) with S(X, Y). To do so, we first describe

the Sk 's.
Let az g N and let T eSn(X, Y). Choose P e 2"(X, X) to be a projection

onto KerT and Q e J?(7, Y) to be a projection onto Ranger. Then each

L e ~2?(X, Y) may be represented as a 2 by 2 matrix of operators

Lxx    Lx2
L2X    L22_

with respect to the decompositions

X = (I - P)(X) © P(X),        Y = Q(Y) © (/ - Q)(Y).

Since Txx e GL((I - P)(X), Q(Y)) we may select e > 0 so that Lxx e

GLÜI - P)iX), Q(Y)) if L G S'iX, Y) and \\L - T\\ < e. In particular,

LgO0(X,T) if \\L-T\\<e.
Let L e 5?(X, Y) with \\L - T\\ < e . Let x e X. Then

(3.2) L(x) = 0

(Lxx(I-P)(x) + L[2P(x) = 0

\ L2l(I - P)ix) + L22Pix) = 0

iff

(3.3) (L2x(LxxyXLx2-L22)P(x) = Q.

Define iy: NE(T) ̂  ¿f(P(X), (I - Q)(Y)) by

y/(L) = L2x(LX]yiLX2-L22   for Le5?(X, Y) with ||L-7|| < e.
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Now, if \\L- T\\ < e and L(x) = 0, it follows that x ± 0 iff P(x) / 0. From
this and the equivalence of (3.2) and (3.3), it follows that

(3.4) if\\L-T\\<e,    then LeSn(X, Y)   iff y/(L) = 0.

It is also clear that yiN^T) ç <D0(X, 7) -* ^f(PiX), (/ - ß)(7)) is C1.

Let us compute Dy/(T). Indeed, let L G -S^X, 7). Since TX2 - T22 = T2X =

0, it follows that

Dv{Tm . g, y<r + »¿)-iKr) . -(, - e)L|w,

and hence Dy/(T) is surjective. Since ¿¿?iP(X), (/ - Q)(Y)) is a Euclidean

space of dimension az , from (3.4) and the surjectivity of Dy/(T) it follows

that Sn(X, 7) is a smooth submanifold of O0(X, 7) of codimension az  .

Now suppose that az = 1 and a: (a, b) -> O0(X, 7) is a C1 curve with

a(X0) = T. Then a: (a, b) -> 3>0(X, 7) is transverse to 5,(X, 7) at A0 iff

^(r)(a'(Ao))#0;

i.e.

(3-5) ('-0)a'(A0)lKerQ(Ao)¿0.

Since a(A0) G ̂ (X, 7), Kera(XQ) has dimension 1. Hence, (3.5) means that

(3.6) a'(X0)(Kera(XQ)) n Range a(A0) = {0}.

Since Rangea(A0) has codimension 1, (3.6) holds if and only if

a'(XQ)(KeTa(X0)) © Rangea(X0) = 7.

We have proved the following result; see also [Ko].

Proposition 3.7. Let n e N. Then

Sn(X, Y) = {Te%(X, 7)|dimKerr = Az}

2 i
is a submanifold of Q>0(X, 7)   of codimension  n .    Moreover, a  C    path

a: (a, b) -> O0(X, 7), with a(XQ) G Sx(X, Y), is transverse to Sx(X, 7) at X0

iff
(3.8) a'(X0)(Kera(X0))ea(X0)(X) = Y.

Remark 3.9. In [F] it was observed that (3.8) holds if and only if there is some

c> 0 and S > 0 with

(3.10) \\a(X)(x)\\>c\X-X0\\\x\\   for \X - X0\ < S and x e X.

The foregoing discussion, when X = Y = V is a /c-dimensional real Eu-

clidean space, leads to the decomposition

k

S?(V)\GL(V) = S(V) = {JSJ(V)
7=1

with S(V) a submanifold of S?(V) of codimension j , if 1 < j <k .
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Lemma 3.11. Let V be a finite-dimensional real vector space. Given a:il,dl)

-» {&(V), GL(V)) and e > 0, there is a C curve a:I -* ¿?(V) which agrees

with a on di, is a uniform e-approximation of a and, moreover, S{I)nS(V) =

{Xx, ... , Xj} ç SX(V) and a is transverse to SX(V) at each Xr

Proof. It follows from the Thorn Transversality Theorem that the set of all C1

curves rf.I —> &(V) which are transverse to all of the S¡(V) 's is residual in

Cyl, SfiV)) (see Theorem 2.5, Chapter 3 of [H]). Accordingly, if we choose

à > 0 with ô < max{e, ||a(ô) - a(a)||} , such that 5(a(a), 2ô) ç GLiV) and

B(a(b), 2ô) ç GLiV), we may choose à:I -* L(V) to be C1, transverse to

each S¡(V) and such that

sup||a(A)-3(A)||<<5.
xei

Let cfx = B(a(a) ,ô),c?2= 5?(V)\{B(a(a), S/2)uB(aib), Ô/2)} , and cf3 =

B(a(b), S}. Then {<f¡}i=l is an open cover of ¿¿'(V), subordinate to which

we may choose a C   partition of unity {y,},=1 . Define

3(A) = yx(X)a(a) + y2(X)a(X) + y3(X)a(b)   for all A G /.

Then a:I —> 2C(V) is C1 and supA6/||a(A) - a(A)|| < e. Moreover, one

easily sees that 3(A) = 3(A) unless 3(A) G GL(V), so that 3 is transverse to

each S\V). But each S¡(V) has codimension greater than 1 if i > 1, and so

a(I)r\S(V)CSx(V).    D

Theorem 3.12. Let X and Y be real Banach spaces. Given a:(l,dl) -*

(O0(X, 7), GL(X, Y)), and e > 0, there is a C1 curve a:I -» %(X, 7)

w/zz'c/z agrees with a on di, is a uniform e-approximation of a, and, more-

over, 5(1) nS(X, 7) = {Xx, X2, ... , Xk} ç SX(X, Y) and 3 is transverse to

SX(X, 7) at each X¡ with <r(3, A;) = -1. Furthermore, if e > 0 is sufficiently

small, a (a, I) = a(a, I) = (-1)   .

Proof. By uniformly approximating a:[a, b] —► ^(X, 7) by a piecewise lin-

ear path and then invoking the Stone-Weierstrass theorem, it is clear that we

may, without loss of generality, suppose that a: [a, b] —* O0(X, 7) is analytic.

If a(a, b)f)S(X, Y) - 0, the proof is complete. Otherwise, choose Xte(a, b)

with aiXJeSiX, 7).
Since a is analytic we may choose e > 0 such that q(A) g GL(X, 7) if

0 < |A-AJ < e . Choose P e 5?(X) and Q e S?iY) projections onto Kera(AJ

and Range q(AJ , respectively. Then choose

A e GL(P(X), (I - Q)(Y)).

Observe that a(AJ + AP e GL(X, 7) ; hence we may choose 0 < e, < e with

a(X) + APe GL(X, Y) if |A - XJ < et.
Observe that if \X - XJ < et, then

a(X) = [I- AP(a(X) + AP)~\[a(X) + AP] = p(X)[a(X) + AP],
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and we may represent y/(X) with respect to the decomposition 7 = Q(Y)

(I-Q)(Y) as
I        0  "

ß(X)   az(A)_

Choose a C1 curve y: [Xt -et, Xt + ej -> ¿¿?((I-Q)(Y)) as in Lemma 3.11

such that

sup ||7(A) - a/(A)|| < e = fi[sup{||(a(A) + APfl\\ \X e [A, - e., A. + e,]}]_1.

Then 7 (A) is invertible except at a finite number of points in (At - £», A,, + e J ,

where it crosses SX((I - Q)(Y)) transversally. Set

a(X) = ip(X)[a(X)+AP],

where ^(A) is represented by

/        0  '

_ß(X)   y(X)_

Then 3: [Xt - e„, A, + ej —» O0(A", 7) is C , and from the choice of e' it

follows that it is a uniform e-approximation of a. Moreover, one sees that if

x ^ 0, then

2(A)(x) = 0   iffy(A)(/-ß)(a(A) + ^P)(x) = 0   and   x e P(X).

It follows that 3(A) e S(X, 7) iff y(X) e S((I - Q)(Y)) and at each such X,
5(A) e SX(X, 7). It remains to check transversality. However, in view of the

equivalence of (3.10) and transversality, it is clear that 5 inherits transversality

from y.

We have found that 3:[At - et, Xt + ej —> ®0(X, 7), which is an e-

approximation of a: [Xt - et, Xt + ej , is C and is transverse to S(X, 7).

Moreover, a coincides with a at Xt ± e .

Since the singular points of a: [a, b] —> O0(Z, 7) are isolated, we may patch

the above constructions at each singular point to find 3: [a, b] —► $>0(X, 7),

which is C1 , is a uniform e-approximation of a:[a, b] —> O0(Af, 7) and is

transverse to SxiX, 7).

Finally, let X^ e ia, b) with 2(AJ eS,(I, 7). Decomposing a as we did

a , we have 5(A) = 5¡(A), where

3,(A) =   J      ^    (5(A) + i?)   for |A- AJ < e and 0 < j < 1.

Using properties (2.1), (2.3), and (2.7) of the parity, it follows that aiâ, AJ =

ct(50, AJ = ct(á), XJ . Moreover, in view of the equivalence of (3.8) and (3.10),

rj inherits transversality from 5. But rj:(Xt - e, Xt + e) —► ^(7,), where

7, = coker S(AJ is one-dimensional. Since n'(XJ) ^ 0 and n(Xt) = 0, from

(2.6) it follows that a(rj, XJ = -1.

The last assertion of the theorem follows from the fact that if 5 is close

enough to a, then

H(t,X) = ta(X) + (\ -0«(A)   for0<f<l, a<X<b

is a homotopy in O0(X, 7) with each 77 (d/) C GL(X, Y).   D
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It follows from the above theorem that one could define a(L, I) as the

mod 2 reduction of the number of intersection points of L with S(X, 7), for

curves transverse to S(X, 7), and then extend it to the general case by approx-

imation. This is the usual approach to defining the mod 2 intersection index

in differential topology. From this point of view one can say that bifurcation

arises wherever the curve at linearizations crosses S(X, 7) nontrivially. Notice

also that one cannot improve the mod 2 index in Z2 to an oriented index in

Z, because S(X, 7) is not two-sided in ®0(X, 7). This makes the situation

even more interesting, since one can have closed curves L that cross S(X, 7)

once and transversally and hence have parity -1. The implication of this for

bifurcation theory was investigated in [F-P2, F-P4].

To close this section, let us briefly discuss another geometric interpretation

of parity that can possibly be useful in several-parameter bifurcation.

First, as in the finite-dimensional case, there is an algebraic topological ap-

proach to the parity as a mod 2 intersection index. This can be obtained from

a very special case of the theory of characteristic classes of Fredholm mor-

phisms developed in [Ko]. It follows from this work that S(X, 7) has a

normal class axx (in the notation of [Ko]) belonging to 77'(O0, <Î>0\S; Z2),

where <J>0 stands for O0(X, 7). Now if L:(I, di) -> (O0, $>0\S) is our

curve, one can easily show that a(L, [a, b]) coincides with the evaluation of

L*(axx) e H\l,dl; Z2) on the generator of 77,(7, di; ZJ « Z2. (This can

be obtained from Theorem 3.12, or from Proposition 5.3 in [Ko].) This raises

the question of the relevance of the higher-order characteristic classes y in

[Ko], generalizing xn = L*(axx) to several-parameter bifurcation.

Yet another interpretation can be given through the real k-theory, which is a

cohomology theory particularly suitable to measure intersections with S(X, 7).

In [F-P2] the parity is identified with the first Steifel Whitney class of the index

bundle of L. This appears as the appropriate setting for the extension of the

theory to the several-parameter case (see [Pej] and [F-P4]).

4. The parity computed via the Lyapunov-Schmidt reduction

The Lyapunov-Schmidt reduction is a method of reformulating an infinite-

dimensional system of equations as an equivalent finite-dimensional system.

For a single-parameter bifurcation problem, we now show that the local parity

of the path of linearizations of each of these formulations is the same.

Let F.R x X - 7 be C1 , with R x {0} ç F~l(0) and

Lx = ^(X,0)e%(X,Y)   for A G R.

Let A0 G R and choose P e 2f(X, X) and Q e Sf(Y, 7) to be projections

onto KerT..   and Range L, , respectively.

According to the implicit function theorem, we may choose 8 > 0 and a C1

function
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yr. (X0-S,X0 + S)x [KerLx n 5(0, Ô)] -» (7 - P)(X)

with

(4.1) OF(A,x + V/(A,x)) = 0.

Moreover, we may suppose that

if F(X, x) - 0 with Hxll < ô and IA - AJ < ô,

v     y then(7-P)(x) = v(A,P(x)).

It follows that if ||x|| < S , \X - XJ < S, and u = P(x), then

(4.3) F(X,x) = 0

if and only if

(4.4) f(X ,u) = (I- Q)F(X ,u + y/(X, «)) = 0.

Equation (4.4) is called the Lyapunov-Schmidt reduction of equation (4.3).

Lemma 4.5. Let Ke2'(Y, X) with

(4.6) LXKQ = Q   and   (7 - P)K(I - Q) = 0.

There exists e > 0 so that if \X - A0| < e, í/z^az

(4-7) §£(A, 0) = (7- 0)7^(7 + *Ô(LA-L/lo)r1|Ker^

Proof. Since ßZ^ |(/_mm e C7L((7 - P)iX), 0(7)), we may select some e G

(0, S) so that QLX\{I_P){X) G GL((I-P)(X),Q(Y)) if |A-A0| <e. By possibly

shrinking e , we may also suppose that

I + KQ(Lx-LXo)eGL(X)   if|A-A0|<e.

The first restriction on e implies that if |A - A0| < e and u e KerLx , then

there is at most one x e X with

(4.8) QLx(x) = 0   and   P(x) = u.

However, from (4.6) it follows that [I + KQ(L, - L, )]~l(u) satisfies (4.8).

Moreover, by differentiating (4.1) it follows that u + dy//du(X, 0)« also

satisfies (4.8). Thus

(4.9)

u + |^(A, 0)w = [7 + KQ(LX - LxJf[]iu)   for u G KerL^ and |A - A0| < e,

from which (4.7) follows.   D

Theorem 4.10. Let F:R x X -» 7 be C1, wifA dF/dx(X, 0) G <P0(X, 7) /or

every XeR Let X0eR, P e SC(X,X), and Q e 5?(Y, 7) be projections

onto KerdF/dx(XQ, 0) oazí/ Range ô F/dx(X0, 0), respectively.  Suppose that
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f.U CRx KerLx -> (I - Q)(Y) is the Lyapunov-Schmidt reduction, (4.4), of

(4.3). If A0 is an isolated singular point of dF/dx(X, 0), then

(4.11) (j(||(A,0),A0)=(j(^(A,0),A0

Proof. For notational convenience, let A0 = 0, set A = Lx   and Tx-Lx-L

for A G R. Let e be as in the assertion of Lemma 4.5.

Since 7 + KQTX e GLiX) if \X\ < e , it follows from (2.1) that

(4.12) o(Lx,0) = o(Lx, [-e, e]) = a((A + TX)(I + KQTxfl, [-e, e]).

Let |A| < e . Observe that with respect to the decompositions

X = P(X) © (7 - P)(X)   and    7 = (7 - Q)(Y) © Q(Y),

(A + TX)[I + KQTX]~~   is represented by the 2-by-2 matrix of operators

-sxx(X) sX2(xy
S2X(X)   S22(X)L^21

where

S2x(X) = (A + QTx)(I + KQTx)-'\KerA,

S22(X) = (A + QTx)(I + KQTx)-l\KeTP,

Sxx(X) = (I-Q)Tx(I + KQTx)-1\KeTA,

and

SX2(X) = (I-Q)TX(I + KQTX)
-i

iKerf

Note that S2X(X) = 0 if |A| < e . Now define

77:[0, I] x [-e, e] ^ %(X, Y)

by

H(t,X) = for |A| <e and t e [0, 1].
■sxx(X) tsX2(xy

0       522(A).

One sees that H(t, X) e GL(X, 7) if 0 < \X\ < e and t € [0, 1]. According

to the homotopy invariance of the parity,

(4.13)

where

(7(77. , [-e, e]) = a(n, [-e, e]),

iW =
suW o

for < e.
0       S22(X)_

According to the decomposition property of the parity, (2.7),

(4.14) ait], [-e,e]) = a(Sxx, [-e, e])a(S22, [-e,e]).

Since S22(X) is invertible if \X\ < e, from (2.3) we conclude that

(4.15) a(S22,[-e,e])=l.
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On the other hand, by (4.7), df/du(X, 0) = SXX(X) for \X\ < e. Thus (4.11)
follows from (4.12)-(4.15).   D

5. The parity as a mod 2 count of generalized multiplicity

In a number of diverse contexts, given a: I -> Q>0(X, 7) and A0 G 7 an

isolated singular point of a, a generalized multiplicity mG(a, A0) has been de-

fined. We will devote this section to proving that for each of these multiplicities

(5.1) <7(a,A0) = (-l)mc(Q'2o).

The Ize multiplicity [II]. In [II] Ize assumed that F:R x X —> 7 is analytic,

and letting P, Q , and K be chosen as in the previous section, he then set

/, = (7 - Q)LX(I + KQ(LX - Lx))-l\KeT       for \X - A0| < e.

Choosing bases for KerL, and (7-ß)(7) with respect to which /, is repre-

sented as a matrix, one has

det lx = (A - XQ)mc(X)   for \X - X0\ < e0,

where c: (A0 - e0, A0 + e0) -» R is analytic and c(X0) ̂  0. We are assuming

that L is nonconstant. Ize defined the multiplicity of L:R -» Q>0(X, 7) at A0

to be aaz = aaj7(L, A0).

From Theorem 4.10 and property (2.6) of the parity, it follows that

a(L,X0) = (-\)mi{L'À°).

In a recent paper of Esquinas [E], which is a sequel to [E-L], another definition

of multiplicity is given for an analytic curve at an isolated singular point. In

[E] it is proved that this multiplicity coincides with the Ize multiplicity.

The Magnus multiplicity [M]. This multiplicity is defined provided that a cer-

tain recursive procedure stabilizes.

Let a:(a, b) —> ®0(X, 7) be continuous with X0 e (a, b). The sequence

{an:ia, b) -» O0(X, 7)} is defined as follows: Let ax = a. Suppose that

Az G N and that an: (a, ¿>) -> %(X, 7) is defined. If an(X0) e GL(X, 7), set

an+x = an. Otherwise, suppose that there exists a projection P e Sf(X, X)

onto Keraw(A0) so that A i-> an(X)P is differentiable at X - XQ. Select such a

projection, Pn , and define an+x: (a, b) —> ®0(X, 7) by

Í (A-A0)-1an(A)7J„ + a„(A)(7-PJ   ifA#A0,

The Magnus multiplicity, mM(a, A0), is defined, provided that there is some

az0 G N with an (A0) G GL(X, 7), in which case one sets

"o

WA/(Q' ko) = XldÍmKera«^o)-
n=\
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In [M] it is shown that if the above procedure stabilizes, then A0 is an isolated

singular point of a [M, Theorem 2.1] and furthermore [M, pp. 263-264], there

is a parametrix ß:(a, b) -> GL(Y, X) for a: (a, b) -+ O0(X, 7) such that

for sufficiently small e > 0

degLS (ß(X0 - e)a(X0 - e)) degL$(ß(X0 + e)a(X0 + e)) = (-\)m"(a'x»\

It follows from the definition of parity that

a(a,X0) = (-l)m"(a-Xo).

The null multiplicity [M-S, En, Z-K-K-P, Sa, Ral, Ra2]. Suppose that a: (a, b)

—> ®0(X, 7) is analytic and X0 e (a, b) is an isolated singular point of a.

Given v e Kera(A0)\{0}, an analytic function g: (a, b) —► X with g(XQ) = v

is called a root function of a at A0 for v if

<*(A)(S(A)) = (A - XQ)shiX))   for Xe(a,b),

where h:(a, b) -> 7 is analytic and h(XQ) ̂  0. We call s the order of g at

A0 . Let r(a, XQ, v) be the maximal order of the root functions of a at A0 for

v : the isolation of A0 implies that the orders are bounded.

A canonical basis for a(X) at A0 is a basis {u0, ... , vk) of Kera(A0) with

the following properties:

(i)   r(a, A0, v0) = max{/(a, XQ, v)\v e Ker a(A0)\{0}} and

(ii) if 1 < j < k, then r(a, AQ, v.) = max{r(a, A0, v)\v e V.\{0}}, where

V- is a complement in Ker a(X0) of the linear span of {v0, ... , v.x}.

For such a basis, one define mN(a, A0), the null multiplicity of a at XQ, by

k

mN(a,X0) = J2 r(a,X0,Vj).
7=0

Then mN(a, XQ) is independent of the choice of canonical basis, and the set

of partial multiplicities, {r (a, A0, Vj)}J=Q , depends only on a and X0 . (Fora

discussion of null multiplicity see [En, M-S, Z-K-K-P].) If a: (a, b) -> £?(R")

is analytic and has XQe (a, b) as an isolated singular point, then Eni [En] has

shown that mN(a, XQ) is the order of X0 as a root of det(a(A)).

Theorem 5.2. Let a: (a, b) —<■ 0>Q(X, 7) be analytic and let A0 be an isolated

singular point of a. Then

a(a,X0) = (-l)m^^.

Proof. Let P e 2fiX, 7) be a projection onto Kera(A0) and Q e J?(X, 7)

be a projection onto Rangea(X0). Choose K e -2?(Y, X) so that

a(X0)KQ = Q   and    (7 - P)K(I - Q) = 0.

Choose e0 > 0 so that

||A-Q(a(A)-a(A0))||< 1    if|A-AJ<e0.
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Then

7 + KQ(a(X) - aiX0)) G GLiX)   if |A - A0| < e0,

and using the Neumann expansion we have

(5.3) [7 + Kß(a(A)-a(A0))r1=7 + (A-A0)A/(A)   if|A-A0|<e0,

where n: (A0 - e0, A0 + e0) -> S?(X, X) is analytic.

Let

B(X) = (7 - g)a(A)[7 + KQ(a(X) - a(A0))]"' |Kera(/lo)    if \X - A0| < eQ.

According to Theorem 4.10,

(5.4) (7(a,A0) = o(5,A0).

Observe that

(5.5) Kera(A0) = Ker7i(A0).

Let v e Kera(A0) and let g: (A0 - e0, A0 + e0) -» X be a root function of a at

A0 for v . Let 5 be the order of g, so that

aiX)igiX)) = iX-X0)shis)   for|A-A0|<e0,

where h: (A0 - e0, A0 + e0) —> Y is analytic and /z(A0) ̂ 0.

Now let g(s) = Pg(s) for |A - A0| < e0 . Then g is a root function of B at

A0 for îj . Moreover, in view of (5.3) and the fact that (7 - Q)h(X0) = h(X0),

it is easy to see that 5 is also the order of g. This observation, together with

(5.5), implies that

(5.6) mN(a,X0) = mN(B,X0).

But from Eni's characterization of null multiplicity for paths of matrices,

(5.7) a(B,X0) = (-l)m»{B-Xo).

The result follows from (5.4), (5.6), and (5.7).   D

There is also a combinatorial definition of null multiplicity: given u0 e

Kera(A0)\{0}, {w0, ux, ... , u } ç X is called a p-chain of a at XQ for u0 if

E^K_,) = 0   fork = 0,...,p.
i=0

It is clear that such a p-chain corresponds to a pth order root function g of

a at A0 for uQ defined by

g(X) = Yjuk(X-X,)k.

Moreover, each root function g: (A0 - e0, A0 + e0) —» X of a at A0 for «0 of

order p yields a p-chain {uQ, g'(uQ), ... , g    (u0)}.
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Sarreither [Sa] considers null multiplicity in terms of /z-chains. Satz 5.1 of

[Sa], which gives a formula for the change in Leray-Schauder degree in terms

of null multiplicity, is a consequence of (2.5) and Theorem 5.2.

Rabier [Ral, Ra2] also considers a generalized algebraic multiplicity defined

in terms of /z-chains. His definition coincides with that of Sarreither, and hence

Theorem 5.2 holds for the generalized multiplicity in [Ral, Ra2]. We note that

Rabier also uses the partial multiplicities to obtain more refined bifurcation

assertions.

We mention in passing that for a particular class of polynomials of operators

acting in a Hubert space, the concept of p-chain was also considered in [F-S],

where a p-chain was referred to as a packet of generalized eigenvalues of a(X)

at A0.

The eigenvalue-crossing multiplicity [K-Z, C-H, Ki]. Let a: (a, b) —► ¿2?(Rn) be

continuous, with X0e (a, b) such that a(X) e GL(R") if X e (a, b) and A ̂

A0. Then, if az(A) denotes the number, counted with algebraic multiplicity, of

negative eigenvalues of a(X), and degB denotes the Brouwer degree, it follows

that deg5(a(A)) = (-1) ' is constant on (a, A0) and on (A0, b). Set az(Aq) =

az((A0 + b)/2) and az(A~) = n((a + AJ/2). Then, by (2.6),

a(a,X0) = (-lfX+°]+n{X°).

Thus, for a path of matrices, one may interpret the parity of a at A0 as a

mod 2 count of the number of eigenvalues of a(X) which cross 0 as A passes

through A0 . This interpretation extends immediately, using the Leray-Schauder

formula, to paths of compact vector fields.

That the crossing of an odd number of negative eigenvalues of dF/dx(X, 0)

as A passes through X0 leads to bifurcation of the solutions of F(X, x) = 0

at A = A0 has been observed in a number of contexts: in Krasnosel'skii and

Zabreiko [K-Z, Theorem 56.5], for compact vector fields; in Chow and Hale

[C-H, Theorem 7.4], for dF/dx(X, 0) = A + XB at a normal eigenvalue; in

Kielhöfer [Ki], in a situation close to the context we will now describe. We will

define the eigenvalue-crossing multiplicity in the following setting:

X and  7 are real Banach spaces,  icy with /:!-• K

^ ' '        continuous, and a:(a, b) —> ®0{X, 7) is continuous.

It is useful to observe that (5.8) is equivalent to the assertion that each a(X),

considered as an operator in X, is closed and Fredholm of index 0, that they

have common domain, and that X is the domain of a(X), furnished with a

norm equivalent to the graph norm.

We shall also suppose that

(5.9) XQ is an isolated singular point of A •-► a(X),

and that

(5.10) 0 is isolated in the real spectrum of q(A0).
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Of course, in order that a (a, A0) be defined, it is necessary to impose (5.9).

The significance of (5.10) may be explained by the following proposition. The

result is known [G-K, II, La]. We include a short, independent proof consistent

with the methods of this paper.

Proposition 5.11. Let Y be a real Banach space, and X be a subspace of Y

equipped with a norm making X complete and I:X -* 7 continuous. Let

A e ®0(X, 7). The following are equivalent:

(i)  There is some n e N with Ker,4" © Ranged" = 7.

(ii)   0 is isolated in the real spectrum of A.

(iii)  There is some n e N with Ker An = KerAn+   and the real resolvent set

of A is nonempty.

Before proceeding with the proof, we recall that if Z is a complex Banach

space and T: D(T) ç Z -> Z is a closed linear operator having 0 as an isolated

point in its complex spectrum, then if e is sufficiently small

P = ^-[     ipI-T)~Xdp

is a projection in Sf(Z, Z) which has as its range U~ , Ker T" (cf. [Kai]).

Proof. First, suppose that (i) holds. Since A e O0(Af, 7), Ker,4" has fi-

nite dimension. But ^(Ker^") ç Ker,4", and so there is some ex > 0 with

(A - pI)\KeTA" G GL(KerAn) if 0 < \p\ < ex. On the other hand, since

Ker^"nRange^" = {0} and Ae%(X, 7), A:RangeA" nX -» Ranged" is

abijection. Hence there is some e2 > 0 with A - pi: Range AnnX -* Ranged"

a bijection if 0 < \p\ < e2. Letting e = min{e1, e2} , we see that (ii) holds.

Now suppose that (ii) holds. Let Xc and 7C be the complexifications of

X and 7, and Ac be the complex-linear extension of A e Q>0(X, 7) to

Ac e ®0(XC , Yc). Since Ac e ®0(XC, Yc), dimKer(^c - pi) is constant in

a deleted complex neighborhood of 0 (cf. [Ka2, Theorem 5]). Hence, (ii) is

equivalent to the assertion that 0 is isolated in the complex spectrum of Ac .

We shall show that Ac has finite ascent, i.e., there is some « e N with

Ker ^ = Ker£+1. Indeed, choose e > 0 such that pi - Ac is invertible if

0 < \p\ < e and consider the spectral projection

P = ^-f     (pI-Acyldp.

The finiteness of the ascent is equivalent to the finite dimensionality of P,

which, since P is a projection, amounts to the compactness of P. But since

Ac G ®0(XC, 7C) we may choose K e ^f(Xc, 7C) compact so that Ac + K is

invertible. Then M - pi - Ac- K is invertible if \p\ < e with e sufficiently

small and

(pi - Ac)~l = (MJ-1 - (Mß)~]K(pI - Ac)-\
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Since (M )     is analytic at 0, ^ j|„i=e(^7„)    dp = 0 and so P is compact.

Thus KerA^ = Ker^, for some az g N, hence Ker^4"+ = Ker A" and so

(iii) is proved.

Finally, suppose that (iii) holds. Then Ker.4" n Ranged" = {0} since

Ker^"+1 = Kery4", and so 7 = Ker.4" ©Ranged" since pi - A:X -+ 7

is invertible for some p e R.   D

Chow and Hale [C-H, p. 170] consider X and 7 Banach spaces, with X C

Y, I: X —> Y continuous and A e Sf(X, 7). They call 0 a normal eigenvalue

of A if Ker A" = Ker.4"+ for some az , dim Ker A" < oc , and 7 = Ker .4" ©

Ranged" . In view of the above proposition, it is easy to see that 0 is a normal

eigenvalue of A iff A e ®0(X, 7) and 0 is isolated in the real (equivalently,

in the complex) spectrum of A .

We have the following interpretation of a (a, A0) as a count of the negative

eigenvalues of a(X) which cross 0 as A passes through X0 .

Theorem 5.12. Let X, Y, a: (a, b) -» 4>0(X, 7), and X0e(a, b) satisfy (5.8),

(5.9), and (5.10). Then there exist e > 0 and ß > 0 such that if 0 < |A-A0| < e,

then a(X) has only a finite number of eigenvalues in (-ß,0) each of which is

of finite algebraic multiplicity. If, for 0 < |A - A0| < e, n(X) denotes the sum of

the algebraic multiplicities of the eigenvalues of a(X) in (-ß, 0), then n(X) is

constant on [A0 - e, A0) and on (A0, A0 + e], and moreover,

(5.13) a(a,X0) = (-l)n{À°+£]+n{X°-e]

Proof. Arguing as in the proof of Proposition 5.11, we complexify and choose

ß > 0 such that a(XQ)c - pi e GL(XC, 7C) if p G C with 0 < \p\ < ß . We

may then choose e > 0 such that a(X)c - pi e GL(XC, 7C) if \X - A0| < e

and \p\ = ß . We may suppose that a(X)c - pi e ®0(XC, Yc) if \p\ < ß and

\X - A0| < e and that \\P(X) - P(X0)\\ < 1, where

PW = ¿?/      {pI-<*{X))~ldp.
2m JM=ß

Then each P(X) is the spectral projection onto the sum of the generalized

eigenspaces corresponding to eigenvalues of a(X)c in {p e C | \p\ < ß}. More-

over, in view of the spectral splitting theorem [KI, p. 178] and the fact that

a(X)c-pi G <D0(Afc, 7C), it follows that a(X)c: (I-P(X))(XC) -+ (I-P(X))(YC)

is a bijection if |A - A0| < e .

Let n(X) be the inverse of q(A)(7 - P(X))\X + P(X)\X:X -» 7. In view of

Proposition 5.11 and the choice of e, the dimension of P(X)(X) is finite and

constant for |A-A0|<e. Then n: [XQ-e, XQ + e] —<■ GL(Y, X) is a parametrix

for a: [A0 - e, A0 + e] — O0(7, X), and

r1(X)a(X) = (I-P(X))\x+a(X)P(X)\x.



PARITY AND GENERALIZED MULTIPLICITY '299

Finally,

a (a, A0) = a (a, [A0 - e, A0 + e])

= degLS (n(X0 + e)a(X0 + e) degLS(n(X0 - e)a(X0 - e)

= degB(a(A0 + e)\p{Xa+em) degB(a:(A0 - e)\p{^_e){X))

-  C_l'\''(A0+£)+"(A0-£) rn

In [Ki] Kielhöfer introduced a concept of crossing number which, allowing

for formal differences, corresponds to the above n(X0 - e) + n(X0 - e). In [Ki]

0 is assumed to be isolated in the complex spectrum of the complexification

of a(X0) ; but this is equivalent to (5.10) (see [K2]). Also, in [Ki] the crossing

number is defined under a condition slightly weaker than (5.9). According to

Theorem 3.1 of [Ki], n(X0 + e) + n(X0-e) is odd precisely when the determinant

of the Lyapunov-Schmidt reduction changes sign at A0. By Theorem 4.10,

Theorem 3.1 of [Ki] is equivalent to the above Theorem 5.12. We remark that

the assumptions under which the eigenvalue-crossing multiplicity is defined,

namely (5.9) and (5.10), do not, as the following example shows, necessarily

hold in the generic case.

Remark 5.14. Observe that (5.9) and (5.10) are, in general, unrelated. While

(5.9) is the assumption that A0 is an isolated singular point of 1 h a(X),

(5.10) is the assumption that A0 is an isolated singular point of A >-> a(X0) -

(A-AJ7. Following [C-H, p. 175], let 7 be the space of sequences {a^ZL^,

with the l2 norm, X = Y, and a(X) = A + XBe %(X, X) defined by A(ef) =

e_, , and B(ef) = 0, if j ^ 1, while A(ex) = 0 and B(ex) - e0 . Then 0 is an
isolated singular point of a, but 0 is not an isolated eigenvalue of a(X0) = A .

In fact, one sees that dimKera(O) = 1 and a:R —► <&0(X) crosses S(X)

transversally at 0, so that a (a, 0) = -1, but this cannot be determined on the

basis of Theorem 5.12. There is no crossing of eigenvalues, since, if A ^ 0,

a(X) fails to have any negative eigenvalues.

The Laloux-Mawhin multiplicity [L-M]. Consider an affine path a: R —>

%(X, 7), given by a(X) = A + XB for all X e R. In [L-M], B is called

^-compact if (A + K0)~ B is compact, where P0 e Sf(X, X) is a projection

onto Ker A, MQ e GL(KerA, coker^), and K0 = MQPQ (see also [F-M-V,

P-V]). It is easy to see that B is .4-compact if and only if a has a constant

parametrix.

If B is ^-compact and A0 G R is an isolated singular point of a, then

choosing ß0eR with A + ß0B e GL(X, 7), we see that S = (A + ß0B)~[ is

a constant parametrix for a . Moreover,

Sa(X) = I + (X - ß0)SB   for A G R,

so that from the Leray-Schauder index formula it follows that
oo

a(a, A0) = (-1)''   where y = dim (J Ker(Sa(X0)").
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In [L-M] this y was defined to be the generalized multiplicity of A0 as a singular

point of A + XB . Thus, in this situation (5.1) also holds.

Remark 5.15. Notice that the above discussion shows that under appropriate

circumstances many of the definitions of generalized multiplicity actually coin-

cide. We shall not state precise results in this direction, since we consider the

parity to be the primary object.

6.  TWO SPECIFIC PARITY COMPUTATIONS

Let X — Y and a: R —► O0(X) be an affine path of linear, compact vector

fields. So
a(X) = 7 - K0 + (X - X0)KX    for A G R,

where K0 and Kx are compact. Suppose, moreover, that K0 = Kx = K so that

(6.1) a(A) = 7-A7c"   for A g R.

Then the singular points of a are isolated, and in view of (2.4) the Leray-

Schauder index formula amounts to the assertion that if XZl is an eigenvalue

of K, then

oo

(6.2) ff(a,A0) = (-l)*   where k = dim \J Ker(I - X0K)".
«=i

We have the following generalization of (6.2).

Theorem 6.3. Let a:(a, b) -* ®0(X) be continuous and be differentiable at

A0 G (a, b). Assume also that

(6.4) a(X)a(X0) = a(X0)a(X)   for X e (a, b),

that

(6.5) Kera(A0) n Kera'(A0) = {0},

and that

(6.6) 0 is an isolated eigenvalue ofa(X0).

Then XQ is an isolated singular point of a and

oo

(6.7) a(a,X0) = (-l)k    where k = dim (J Ker(a(A0))".
n=l

Proof. For notational simplicity let A0 = 0 and set

a(X) = A + XB + R(X)   forXe(a,b),

where

lim ii« = 0.
A->o     X

By differentiating (6.4) at 0, it follows that B and A commute. Hence 7?(A)

also commutes with A if A G (a, b).
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Using (6.6) and Proposition 5.11, we may select m e N with Kerylm =

Ker^4m+I, so that if Xx = KerAm and X2 = Range Am we have X = XX®X2

and this decomposition reduces A . But B and 7?(A) commute with A , so that

this decomposition also reduces B, and 7?(A) if Xe (a, b).

Now A\x e GL(X2), so we may choose 6 > 0 with (S, ô) ç (a, b) and

a(X)\x e GL(X2) if \X\ < S . Hence, according to (2.3),

o(a\Xi,[-ô,ô])=\.

Consequently, using (2.5), we may conclude that

a(a, [-a, S]) = aia\x , [-3, S]),

provided that a(-S), a(ô) G GL(X).
k

This last observation reduces the calculation to the case where X = R   and

A is nilpotent, and from now on we assume that this is the case.

We define F:[0, 1] x [-Ó, Ô] -> 5?(Rk , Rk) by

F(t,X) = A + XB + tR(X)   foriG[0, 1] and \X\ <S,

and claim that there is some e G (0, ö) so that

(6.8) F(t,X)eGL(Rk ,Rk)   if 0 < \X\ < e and t e [0, 1].

Indeed, suppose that no such e exists. Then we may choose {tn} e [0, 1],

{*„} Q R^ , and {AJ ç R such that

K * °> ll*JI =l and F^n. K)(xn) = ofor every «e N

and {Xn} —> 0. We may also suppose that {x^} -> xt / 0. Furthermore, since

^4 is nilpotent we may, by taking a subsequence if necessary, select k0 e N so

that

(6.9) Ak°(xn)¿0   and   ^/c°+I(xJ = 0   for every az g N.

But

^07"(a« , Xn)(xn) = 0   for every az g N,

which, in view of (6.9) and the commutativity of B and 7?(A) with A , means

that

BAk°(xn) + -¡-R(Xn)Ak°(xn) = 0   for every az g N.

For az G N, set

zn=Ak\xn)\\Ak\xn)\\-\

We may suppose that {zn} —> zt ^ 0. Observe that each zn e Ker A and so

zt G Ker A . Moreover,

B(zn) + }-R(Xn)(zn) = 0   for every az G N
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and
\m„)(zn)\\   n

so that B(zJ = 0. Thus

zt e Ker A n Ker B   and   z. ^ 0,

which contradicts (6.5).

So choose e so that (6.8) holds. From this it follows that A0 is an isolated

singular point of a. Moreover, according to (2.3) and (2.6),

(6.10) a(a, A0) = a(a, [-e, e]) = sgndet(/i + e7i)sgndet(^ -e7?).

However,

(6.11) sgndet(^ + eB) sgndet(/i - eB) = sgndet(^ + eB)iA - eB)~x.

Moreover,

(A + eB)(A - eB)~[ +1 = 2A(A - eB)'1 ;

and so, since A and B commute and A is nilpotent, (A + eB)(A - eB)~[ + I

is nilpotent. So (-1) is an eigenvalue of (A + eB)(A - eB)~] of algebraic

multiplicity k. Thus

(6.12) sgndet(^ + e5)(^-eß)_1 = (-lf.

The conclusion follows from (6.10), (6.11), and (6.12).   D

In [M] Magnus proved that if a is C°°, then under the assumptions of

Theorem 6.3 the Magnus multiplicity equals k, when k is defined by (6.6).

In fact, the proof in [M] is valid if / e Cn+ when az g N is such that

Ker(a(A0))"+1 = Ker(a(A0))" . Thus, with this additional smoothness assump-

tion, (6.7) follows from [M] and the previous section. A simplified proof of

this Magnus calculation, formulated in terms of a change in the Leray-Schauder

degree, was given by Toland [T], when a is an affine path of compact vector

fields.
We now turn to our second calculation.

Observe that if X = Y and a.R -> %(X) has the form (6.1), then

(6.13) K(x) i Range(7 - XQK)   when x e Ker(7 - A07C]\{0}

iff

(6.14) Ker(I-X0K) = Ker(I-X0K)2,

in which case (6.2) becomes

k
(6.15) a(a, XQ) = (-1)     where k = dim Ker a (XQ).

In particular, when I is a Hubert space and K is symmetric, (6.14) holds.

Now when a has the form (6.1), (6.14) may be written as

(6.16) a (X0)(x) £ Rangea(X0)   if x e Kera(A0) and x ^ 0.
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Moreover, since aiX0) e $„(!), (6.16) is equivalent to the assertion that

(6.17) a'(A0)(Kera(A0)) © Rangea(A0) = 7

As we have already observed, (6.17) is equivalent to (3.10). When X = Y is

finite dimensional and dim Ker a(A0) = az , (6.17) implies that A0 is a root of

det a(A) of order az (see [F]). This, together with the argument in the proof of

Theorem 3.12, proves the following theorem.

Theorem 6.18. Let a: (a, b) -» Q>0(X, 7) be continuous, be differentiate at A0,

and be such that (6.17) holds. Then A0 is an isolated singular point of a and

k
(6.19) a(a, A0) = (-1)     where k = dimKera(A0).

Remark 6.20. When (6.17) holds and, in addition, dimKera(A0) = 1, a local

bifurcation theorem was proved in [C-R]. Note that in this case, according to the

results of §3, a crosses SX(X, 7) transversally at A0. When a(X) - A + XB,

(6.17) is what is referred to in [C-H] as A0 being a generic eigenvalue of (A, B).

That (6.17) and the oddness of dim Ker a(A0) lead to bifurcation for higher-

order perturbations of a has been observed in many different settings (see [We,

L-M, M, T, P, A-F, C-H, W-W, W, F]).

References

[A-F] J. C. Alexander and P. M. Fitzpatrick, Galerkin approximations in several-parameter bifur-

cation problems, Math. Proc. Cambridge Philos. Soc. 87 (1980), 489-500.

[C-H] Shiu-Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren Math. Wiss.,

Vol. 251, Springer-Verlag, New York, 1982.

[C-R] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal.

8(1971), 321-340.

[En] V. M. Eni, On the multiplicity of characteristic values of an operator bundle, Mat. Issled. 4

(1969), 32-41.
[E] J. Esquinas, Optimal multiplicity in local bifurcation theory II: General case, J. Differential

Equations 75 (1988), 206-215.

[E-L] J. Esquinas and J. Lopez-Gomez, Optimal multiplicity in local bifurcation theory I: Gener-

alized generic eigenvalues, J. Differential Equations 71 (1988), 72-92.

[F] P. M. Fitzpatrick, Homotopy, linearization, and bifurcation, Nonlinear Anal. 12 (1988),

171-184.

[F-Pl] P. M. Fitzpatrick and Jacobo Pejsachowicz, An extension of the Leray-Schauder degree for

fully nonlinear elliptic problems, Proc. Sympos. Pure Math., vol. 45, Part 1, Amer. Math.

Soc, Providence, R.I., 1986, pp. 425-439.

[F-P2] _, The fundamental group of the space of linear Fredholm operators and the global anal-

ysis of semilinear equations, Contemp. Math. 72 (1988), 47-87.

[F-P3]   _, A local bifurcation theorem for C -Fredholm maps, Proc. Amer. Math. Soc. 109

(1990), 995-1002.

[F-P4]   _, Nonorientability of the index bundle and several parameter bifurcation, J. Funct. Anal.

(in press).

[F-P5]   _, The Leray-Schauder theory and fully nonlinear elliptic boundary value problems, Mem.

Amer. Math. Soc. (to appear).

[F-M-V] M. Furi, M. Martelli and A. Vignoli, On the solvability of nonlinear operator equations in

normed spaces, Ann. Mat. Pura Appl. (4) 124 (1980), 321-343.



304 P. M. FITZPATRICK AND JACOBO PEJSACHOWICZ

[F-S]     Avner Friedman and Marvin Shinbro, Nonlinear eigenvalue problems, Acta Math. 121

(1968), 77-125.

[G-K]    I. C. Gohberg and M. G. Krein, The basic propositions of defect numbers, root numbers, and

indices of linear operators , Uspekhi Mat. Nauk 12 (1957), 43-118; English transi., Amer.

Math. Soc. Transi. 13 (1960), 185-264.

[G-G] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts

in Math., Vol. 14, Springer-Verlag, New York, 1974.

[H] Morris W. Hirsch, Differential topology, Graduate Texts in Math., Vol. 33, Springer-Verlag,

New York, 1976.

[II] J. Ize, Bifurcation theory for Fredholm operators, Mem. Amer. Math. Soc, no. 174, Amer.

Math. Soc, Providence, R.I., 1975.

[12]       _, Necessary and sufficient conditions for multiparameter bifurcation, Rocky Mountain

J. Math. 18(1988), 305-337.

[Kl] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., Vol. 132,

Springer-Verlag, New York, 1980.

[K2]     _, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J.

Analyse Math. 11 (1958), 261-322.

[Ki] Hansjörg Kielhöfer, Multiple eigenvalue bifurcation for Fredholm operators, J. Reine Angew.

Math. 358(1985), 104-124.

[Ko] U. Koschorke, Infinite dimensional k-theory and characteristic classes of Fredholm maps,

Proc. Sympos. Pure Math., vol. 15, Amer. Math. Soc, Providence, R.I., 1970, pp. 95-133.

[Kr] M. A. Krasnosel skii, Topological methods in the theory of nonlinear integral equations, Pure

Appl. Math., Vol. 45, Macmillan, New York, 1964.

[K-Z] M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical methods in nonlinear analysis, Grund-

lehren Math. Wiss., Vol. 263, Springer-Verlag, New York, 1984.

[La] David C. Lay, Spectral analysis using ascent, descent, nullity, and defect, Math. Ann. 184

(1970), 197-214.

[L] N. G. Lloyd, Degree theory, Cambridge Tracts in Math., Vol. 73, Cambridge Univ. Press,

Cambridge, 1978.

[L-M] B. Laloux and J. Mawhin, Multiplicity, Leray-Schauder formula, and bifurcation, J. Differ-

ential Equations 24 (1977), 309-322.

[M] R. J. Magnus, A generalization of multiplicity and the problem of bifurcation, Proc. London

Math. Soc. (3) 32 (1976), 251-278.

[M-S] A. S. Markus and E. I. Sigal, On the multiplicity of a characteristic value of an analytic

operator-valued function, Mat. Issled. 5 (1970), 129-147.

[Pej]     Jacobo Pejsachowicz, K-theoretic methods in bifurcation theory, Contemp. Math. 72 (1988),

193-205.

[P-V]    J. Pejsachowicz and A. Vignoli, On the topological coincidence degree for perturbations of

Fredholm operators. Boll. Un. Mat. Ital. (5) 17 (1980), 1457-1466.

[P]        W. V. Petryshyn, Bifurcation and asymptotic bifurcation for equations involving A-proper

mappings with application to differential equations, J. Differential Equations 28 (1978),

124-154.

[Ral] P. Rabier, Generalized Jordan chains and two bifurcation theorems of Krasnosel'skii, Non-

linear Analysis 13 (1989), 903-934.

[Ra2]    _, Generalized Jordan chains and bifurcation with one-dimensional null-space, preprint.

[R] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7

(1971), 487-513.

[Sa] P. Sarreither, Transformationseigenschaften endlicher Kelten und allgemeine Verzweigung-

saussagen, Math. Scand. 35 (1974), 115-128.

[S] C. A. Stuart, Some bifurcation theory for k-set contractions, Proc. London Math. Soc (3)

27 (1973), 531-550.



PARITY AND GENERALIZED MULTIPLICITY 305

[Ta]      Angus E. Taylor, Functional analysis, Wiley, New York, 1958.

[T] J. F. Toland, A Leray-Schauder degree calculation leading to nonstandard global bifurcation

results, Bull. London Math. Soc. 15 (1983), 149-154.

[W-W] J. R. L. Webb and S. C. Welsh, A-proper maps and bifurcation theory, Ordinary and Partial

Differential Equations, Lecture Notes in Math., vol. 1151, Springer-Verlag, New York, pp.

342-349.

[W] S. C. Welsh, Global results concerniing bifurcation for Fredholm maps of index zero with a

transversality assumption, Nonlinear Anal. 12 (1988), 1137-1149.

[We]     D. Westreich, Bifurcation at eigenvalues of odd multiplicity, Proc. Amer. Math. Soc. 41

(1973), 609-614.

[Z-K-K-P] M. G Zaidenberg, S. G. Krein, P. A. Kuchment, and A. A. Pankov, Banach bundles and

linear operators, Russian Math. Surveys 30 (1975), 115-175.

Department of Mathematics, University of Maryland, College Park, Maryland

20742

Dipartimento di Matemática, Politécnico di Torino, Torino, Italy


