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STRUCTURE AND DIMENSION 
OF GLOBAL BRANCHES OF SOLUTIONS 

TO MULTIPARAMETER NONLINEAR EQUATIONS 
BY 

J. IZE, 1. MASSAB6, J. PEJSACHOWICZ AND A. VIGNOLI1 

ABSTRACT. This paper is concerned with the topological dimension of global 
branches of solutions appearing in different problems of Nonlinear Analysis, in 
particular multiparameter (including infinite dimensional) continuation and bifurca-
tion problems. By considering an extension of the notion of essential maps defined 
on sets and using elementary point set topology, we are able to unify and extend, in 
a selfcontained fashion, most of the recent results on such problems. Our theory 
applies whenever any generalized degree theory with the boundary dependence 
property may be used, but with no need of algebraic structures. Our applications to 
continuation and bifurcation follow from the non triviality of a local invariant, in the 
stable homotopy group of a sphere, and give information on the local dimension and 
behavior of the sets of solutions, of bifurcation points and of continuation points. 

1. Introduction. This paper arose from an attempt to unify, clarify and extend 
some recent work on the topological dimension of global branches of solutions 
appearing in different problems of Nonlinear Analysis. 

We shall consider equations of the form 

(1.1) f(x, A) = 0, 

where f: E X A ~ F is a continuous map (see, however, §3). E, F are Banach spaces 
and A is the "parameter space" which is a (not necessarily finite dimensional) 
Banach space. 

We will look for global branches of solutions of problem (1.1), their behavior and 
structure, paying particular attention to their (local) topological dimension. 

A first, rather natural, but nalve approach to this type of problem is that of 
reducing it to a one-dimensional parameter problem by looking at one-dimensional 
"slices" of the parameter space and by applying to the reduced case the already 
known results such as the Leray-Schauder continuation principle [LS] or, say, the 
Rabinowitz global alternative for bifurcation problems [R]. By doing so one obtains 
a family of one-parameter global branches, each member of which having a known 
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behavior. The problem that now arises is to understand how these one-dimensional 
branches "patch together". In absence of differentiable structures (such as manifold 
structures) a good substitute for a direct approach in describing the global structure 
of the set of solutions of problem (1.1) is that of the topological covering dimension. 
A first result in this direction, when the map f: E X A ~ E has the form 

(1.2) f(x, A) = x - k(x, A), 

where k: E X Rn ~ E is compact, has been successfully undertaken in [AA,Ij. In this 
last paper a global multidimensional version of the global bifurcation result con-
tained in [Rj was obtained. 

For problems of the form (1.2) the well-known Leray-Schauder continuation 
principle was studied in [MP]. Extensions of the same problem, when A varies in an 
infinite dimensional Banach space, were obtained in [AA,II and AMPj respectively. 
Further refinements and simplifications of the Leray-Schauder continuation princi-
ple, by allowing the map f to belong to the wider class of A-proper maps, has been 
obtained in [FMP,Ij. 

Finally, [FMP,IIj contains a unified approach to the finite multiparameter version 
of the implicit function theorem, the continuation principle and the global bifurca-
tion results. All of the above mentioned papers use cohomology theories (in 
particular Cech cohomology). 

In this paper we will deal, at the same time, with both the finite and infinite 
dimensional parameter cases. 

Another important point is that we will obtain our results by elementary means, in 
the sense that our tools will be based essentially on point-set topology. This is, in 
contrast to the above papers, where the more sophisticated machinery of Algebraic 
Topology was exploited in some depth. 

We will reach our goal by first introducing an appropriate and very broad class of 
maps and then prove, again in elementary terms, a general theorem that will include 
as particular cases all of the previously mentioned results. 

We wish to give here an idea of what our class of maps looks like and how wide it 
is, referring the reader to §2 for further details and extensions. 

Let E, G be Banach spaces, U c E open and S an arbitrary subset of E. A 
continuous map g: U ~ G defined on the (not necessarily bounded) open set U is 
called zero-epi (O-epi) on S n U provided that g - 1 (0) n S is a bounded subset of U 
and the equation g( x) = h (x) is solvable in S n U for any compact map h: E ~ G 
whose support is bounded and contained in U. 

In the case when S coincides with the whole space E (recall that SeE is 
arbitrary), the above class coincides with that introduced in [FMV,IIj, where it has 
been shown, in particular, that when the map g is a compact perturbation of the 
identity, then g is O-epi provided that the Leray-Schauder topological degree 
degLs(g, U,O) is defined and different from zero. Also, monotone maps are O-epi 
under suitable assumptions (see [FMV,II]). 

We shall indicate here that in fact our class of maps contains many more types of 
maps than those given above. In particular, it contains any class of maps for which a 
classical degree theory, satisfying the boundary dependence property under compact 



STRUCTURE AND DIMENSION OF GLOBAL BRANCHES 385 

perturbations, is defined (e.g. K-set-contractive and condensing vector fields [N and 
S]; maps of type S + [Br]; A-proper maps [BP]; coincidence degree [M]; etc.). Indeed, 
it suffices that the degree theory under consideration satisfies 

deg(g - h, U,O) = deg(g, U,O) 
for any compact map h having bounded support contained in U. 

The class of O-epi maps also includes that of compact vector fields which are 
essential in the sense of A. Granas [G]. This last case furnishes an example of a class 
of maps for which the topological degree automatically vanishes (the image of the 
compact vector field is contained in a proper subspace) and, nevertheless, is O-epi. 
We shall return to this point in §2, giving an example of a map from the real line 
into itself, having zero topological degree and being O-epi. For such a class of 
compact vector fields a generalized degree theory (stable cohomotopy) has been 
constructed in [GG). 

A further important class of O-epi maps is represented by that of (not necessarily 
smooth) compact perturbations of nonlinear C1 Fredholm maps of nonnegative 
index. For this class of maps a generalized degree (bordisms and equivalent theories) 
has been constructed in [BZS]. If a certain map has a nonvanishing generalized 
degree in the sense of [BZS], then this map is O-epi. 

In the case when S is given by the zeros (i.e., S = r1(0» of a continuous function 
/: U -+ F, where F is another Banach space, then our concept of O-epi map on 
S n U gives an extension of the class of zero-regularizable maps, introduced in [FP], 
in order to study the existence of unbounded components of solutions of nonlinear 
equations. In [FP] the pair (j, g) is required to be O-epi on U. This clearly implies 
that g is O-epi on S n U (see Property 2.9 in §2). A sufficient condition for the pair 
(j, g) to be O-epi on U is that the Leray-Schauder degree of the pair, when defined, 
is nonzero. This idea, together with Cech cohomology, was used in [FMP,II] to 
obtain their dimension results. 

Note however that g may be O-epi on r1(0) n U and (j, g) not O-epi on U. In 
fact, if E = R2, F = G = R, /(x, y) = x 2 - 1 and g(x, y) = y, then the index of 
(/, g) at (± 1, 0) is ± 1, so that the degree of (/, g) with respect to any open set U 
containing (± 1, 0), is zero. From Remark 2.7 it follows that (j, g) is not O-epi on U 
if U is connected. On the other hand, if y - h(x, y) =1= 0 on S n U for some h with 
bounded support contained in U, then y - h(l, y) =1= 0 which is not possible since 
this map has degree 1 on the intersection of U with the line x = 1. Hence, g is O-epi 
on S n U, where S = r 1(0). In this example the fact that S is not connected does 
not play any role (replace x 2 - 1 by (x 2 - l)(y + 1) or by x 2 ). 

Note that if zero is a regular value of /, then 

deg«(f, g); U,O) = deg(g, r1(0) n U,O) 
(see [FMP,I)). This is false in general even if S is a manifold (the above example with 
/(x, y) = x 2 shows it). 

In our applications we will be interested in a subset S of r 1(0) so that one has to 
know the properties of g only on S (this usually leads to a relaxation of the 
compactness hypotheses on f). This consideration prompted us to deal directly with 
an arbitrary set S, obtaining shorter proofs and more refined results. 
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We would like to remark that we are also dealing with the notion of essentiality (if 
U is bounded, then g is O-epi on S n U means that g: S n au ~ G \ {O} has no 
nonvanishing extension to S n U). Thus it is clear that, if some additional hypothe-
ses are put on S, then one may construct, in the spirit of [GG], a generalized stable 
co homotopy theory relative to S and hence a generalized degree theory for maps 
defined on S (similar constructions could be carried over for the other topological 
invariants mentioned above). In this way we would obtain algebraic properties for 
these invariants. In this paper we will use only their nontriviality. 

In order to give an idea of the type of results that we are going to obtain let us 
subsume the main result of this paper. 

Let g: U ~ G be O-epi on S n U, sending bounded sets into bounded sets; then the 
following alternative holds: Either S n U is unbounded, or S n au * 0. If, moreover, 
g is proper on bounded and closed subsets of S n U, then there exists a minimal 
connected subset ~ of S n U such that g -1(0) n ~ * 0 and has covering dimension at 
each point at least dim G. Furthermore, ~ is either unbounded, or ~ n au * 0. 
Finally, ~ is minimal for any map homotopic to g. 

Using this result (or the more complete version represented by Theorem 3.1 in §3) 
we will obtain, in a unified fashion, the multidimensional versions of the Leray-
Schauder continuation principle, the global bifurcation alternative of Rabinowitz 
and a global version of the classical implicit function theorem. 

Our main result will be exploited to study global multiparameter problems that 
cannot be tackled with the techniques used in [AA,I; AA,II; FMP,I and FMP,II] (see 
§4). 

This paper consists of this Introduction and three further sections. In §2 we give 
the definition and prove the main properties of zero-epi (zero-essential) maps on 
S n U. In §3 we obtain the main result of this paper and in §4 we give applications 
of our result to the global implicit function theorem, continuation principle and 
global bifurcation. 

As regards the length of this paper, we would like to observe that we start from 
scratch, building up a complete theory for zero-epi maps on S n U and the paper 
itself, as a whole, is intended to be as selfcontained as possible. 

The reader may notice that our list of references is rather short. This is due to the 
fact that we have restricted our attention mainly to those previous results on the 
local topological dimension of global branches of solutions of nonlinear equations. 
We do not mention, unless strictly necessary, the wealth of global results that have 
been obtained by several authors, starting from the pioneering work of Leray and 
Schauder [LS]. The interest in this area had been renewed, something more than a 
decade ago, by the work of Rabinowitz [R]. 

Finally, we wish to mention that in a forthcoming paper we exploit similar 
(suitably modified) ideas to obtain results on the topological dimension of global 
branches for equivariant problems (e.g. global Hopf bifurcation phenomenae). 

2. Zero-epi and zero-essential maps. In what follows E, G are Banach spaces, U is 
an open, not necessarily bounded, subset of E, and S, unless otherwise specified, will 
stand for an arbitrary subset of E. 
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In this section we introduce and study two new classes of maps. Namely we 
introduce the concept of zero-epi and zero-essential maps on S n U (and on 
S n U). These two classes tum out to be equivalent. We show this immediately after 
giving the corresponding definitions. We state next the most elementary properties 
of these maps and then prove the homotopy invariance which is one of the most 
important properties of O-epi and O-essential maps on S n U (S n U). 

Next, we state and prove several relevant cOI)sequences of the homotopy principle 
which will be of importance in the remainder of the paper. 

Finally, we close this section by introducing the broader class of sectionally 
zero-epi (zero-essential) maps that will playa fundamental role in proving results for 
the infinite dimensional parameter case. 

A. Definitions. 
DEFINITION 2.1. Let E, G, U and S be as above and let g: U ~ G be a continuous 

map. We say that g is admissible on S n U if there exists an open and bounded 
subset Vo such that g -1(0) n S c Vo c Vo c U. 

In the case when g: U ~ G is defined on the closure U of U, we say that g is 
admissible on S n U if there exists an open and bounded subset Vo such that 
g-l(O) n S c Vo c U. This is, of course, equivalent to saying that g-l(O) n S is a 
bounded subset of U. 

Note that if g-l(O) n S is bounded, closed and contained in U, then the existence 
of Vo with the above properties follows from the normality of E. 

DEFINITION 2.2. Let g be admissible on S n U (S n U). The map g is called 
zero-epi on S n U (S n U) if the equation g(x) = h(x) has a solution in S n U for 
any compact map h: E ~ G with supph bounded and contained in U ({x E E: 
h(x) -=1= O} c U or, equivalently, supp h c U and h(x) = 0 for all x E aU), where 
supp h = closure { x E E: h(x) -=1= O} is the support of the map h. 

Note that in the case when the map g is defined on U the solutions of g( x) = h (x) 
are in S n U since h(x) = 0 on au and g is admissible on S n U. The class of maps 
introduced in Definition 2.2 is a generalization and a refinement of the concept of 
zero-epi map introduced in [FMV,II]. 

DEFINITION 2.3. Let g be admissible on S n U (S n U). The map g is called 
zero-essential on S n U (S n U) if for any open and bounded set V such that 
g-l(O) n S eVe V c U (g-l(O) n S eVe U), any continuous extension g: 
V ~ G of g: av ~ G, with g - g compact on V, has a zero on S n V. 

We would like to point out that the set S above may coincide with the whole 
Banach space E. 

PROPOSITION 2.1. If U is bounded and g: U ~ Gis nonvanishing on S n au, then g 
is O-essential on S n U if and only if any extension g: U ~ G of glau with g - g 
compact on U has a zero on S n u. 

PROOF (Only if). Take V = U. 
(If). Assume that there exists an open set V such that g-l(O) n S eVe U and 

g: V ~ G extends glav with g - g compact and g -=1= 0 on S n V. Then, the map gl 
defined as g on V and g on U\ V is nonvanishing on S n U. Moreover, g - gl is 
compact on U and gl is an extension of glau. Q.E.D. 
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Note that the rather involved definition of O-essential map in the case of 
unbounded U is due to the fact that, unlike the excision property for the topological 
degree, a map g may be O-essential on S n U and not O-essential on S n W, where 
W is an open set containing U. The following simple example shows this. Let 
E = S = R and let g: R ~ R be defined by g(x) = x 2 - 1. The map g is O-essential 
on S n U (and on S n U), with U = R \ {O}, but it is not O-essential on S n W, 
where W = R. Indeed, on one hand g changes sign on the boundary av of any open 
and bounded subset V C U such that g-l(O) c V and hence is O-essential on S n U. 
On the other hand, by taking the open subset V of W defined by the open interval 
V = (-a, a), a > 1, we have that the constant function g = a 2 - 1 is a nonvanish-
ing extension of glav. 

Warning about the notation. The above example shows that for our definition to be 
O-epi on S n (R \ {O} ) is not the same as to be O-epi on S n R. 

A justification of the term O-essential on S n U will be given after Remark 2.4 
below. 

PROPOSITION 2.2. The map g is O-epi on S n U (S n U) if and only if g is 
O-essentialon S n U (S n U). 

PROOF. (If). Let h be as in Definition 2.2 and set V = {x E E: h(x)"* O} U Yo, 
where Vo is as in Definition 2.1. Clearly, V is open, bounded and V = supp h U Yo. 
Moreover, V satisfies the properties of Definition 2.3. Since h vanishes on av, then 
g == (g - h)lv is an extension of glav satisfying the requirements of Definition 2.3 
and, as such, g has a zero on S n V. 

(Only if). Let V and g be as in Definition 2.3. Define 

on V, 
onE\ V. 

Then supp h c V and h satisfies the requirements of Definition 2.2. Hence, the 
equation g( x) = h (x) must have a solution xES n U. Since x cannot be in E \ V, 
then it has to be in S n V. Q.E.D. 

REMARK 2.1. In the first implication of Proposition 2.2 the set g-l(O) n S does not 
play any role, while in the second the only thing needed is g -1(0) n S c V so that 
one may replace g-l(O) n S by any set Kwith the property g-l(O) n S eKe V. 

REMARK 2.2. The following is a variant of Definitions 2.2 and 2.3. 
Instead of requiring h compact on E (g - g compact on V) one may require 

h compact on S (g - g compact on S n V) or, equivalently, h 
(*) compact on S n U (S n U), since h is identically zero 

outside U. 

Notice that this is a stronger requirement on g and that Proposition 2.2 is still 
valid in this context. Furthermore, if S n U is closed in U (S n U is closed), then 
the above definitions are equivalent to Definitions 2.2 and 2.3. In fact, the map h 
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restricted to the set A == (S () supp h) u {x E E: h (x) = O} is compact, since h is 
compact on S () U. Moreover, the inclusion supp h c U (supp h c [j) implies that 
S () supp h is closed and, thus, so is A. Hence, by Dugundji's extension theorem [D, 
p. 188], the restriction hlA has a compact extension h to the whole space E. Clearly, 
{x E E: h(x) *' O} c {x E E: h(x) *' O} and from (*) above the equation g(x) = 

h(x) has a solution in S () U, where h = h. An analogous proof holds for Definition 
2.3. 

REMARK 2.3. An even stronger assumption on g would be to require h(g - g) to 
be only continuous. It is easily seen that Proposition 2.2 is still valid in this context. 
However, if G is infinite dimensional this class of maps may be very small. For 
example, the identity map (with S = E and U = unit ball of E) is not O-epi on 
S () U. Indeed, the identity restricted to au has a nonzero continuous extension 
given by any continuous retraction of the unit closed ball onto its boundary (such a 
retraction exists since dim G = + 00 ). 

Other variants could be obtained by asking different properties on the map h such 
as k-set-contractivity, A-properness, equivariance, etc. 

REMARK 2.4. A relative (to S) variant of Definition 2.3 could be given by 
requiring that any extension of g: S () a v ~ G \ {O} to S () V such that g - g is 
compact on S () V has a zero in S () V. 

Note that the above variant is weaker than Definition 2.3. However, if S () U is 
closed in U (S () [j is closed), then both definitions coincide: one has to extend g, 
defined only on S () V, to a map g which coincides with g on aVo This is possible 
considering the compact map defined on the closed set (S () V) u av as g - g on 
S n V and zero on aVo Now, use Dugundji's extension theorem and proceed as in 
Remark 2.2. 

The above conclusion holds also in the context where h is assumed to be only 
continuous, since one has also continuous extensions [D, p. 188]. 

Before going into the exposition of the elementary properties of O-epi maps we 
would like to, at least partially, justify our terminology of O-essential map on S n U. 
Taking into account Proposition 2.1 and the above, if U is bounded and S () [j is 
closed, then the map g is O-essential on S () [j if and only if the restriction gl s n au is 
essential (in the classical sense, see [G)) with respect to S () fJ. 

B. Elementary properties. We list now the first, and more elementary, properties of 
O-epi (and, therefore, of O-essential) maps on S () U (S () fJ). In what follows Vo 
stands for an open and bounded subset. 

PROPERTY 2.1 (EXISTENCE). If g is O-epi on S () U (S () fJ), then g-l(O) () S *' 0. 
This follows at once by taking as h the identically zero map on E. 

PROPERTY 2.2 (LOCALIZATION WITH RESPECT TO THE OPEN SET). If g is O-epi on 
S n U (S n fJ), then g is O-epi on S () V (S () V) for any open set V such that 
g-l(O) () S c Vo c Vo c Vc U(g-l(O) () SeVe U). 

PROPERTY 2.3 (LOCALIZATION WITH RESPECT TO THE BOUNDARY). If g is O-epi on 
S n fJ and g-l(O) () S c Vo c Vo c U, then g is O-epi on S () U. 

PROPERTY 2.4. If g is O-epi on S () U, then g is O-epi on S () V for any open set V 
such that g-l(O) () S eVe V c U. 
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PROPERTY 2.5, If g is O-epi on Sl n U (Sl n U) and S2 is a set such that Sl c S2 
and g -1(0) n S2 c Vo c Vo c U (g -1(0) n S2 is bounded and contained in U), then g 
is O-epi on S2 n U (S2 n U). 

PROPERTY 2.6. If g is O-epi on S n U (S n U), then g is O-epi on (S \ UC) n U 
«S \ U C ) n U). 

PROOF. This follows from the fact that g( x) - h (x) = 0 has its solutions on 
S n U = (S\ UC) n U. Q.E.D. 

PROPERTY 2.7 (NORMALIZATION). If i: U'-4 E is the inclusion map, 0 (/: au and S 
is any subset of E, then the map i is O-epi on S n U if and only if 0 E S n U and the 
connected component of 0 in U is contained in S. In particular, if U is connected, then 
SnU=u. 

PROOF. (Only if). That 0 E S n U follows from Property 2.1. If the second 
assertion is false, then there exists a point Xo in the connected component of U 
containing zero such that Xo (/: S (and, obviously, Xo oF 0). Now, U is an open subset 
of a Banach space and so is locally path connected. Therefore the component of 0 in 
U is path connected and open. Let aCt), t E [0,1], be a path (in U) from 0 to xo' 
Clearly, {a( t)} is compact so that there exists an e-neighborhood of the path which 
is contained in the path component. Let </> be an Urysohn function taking value 1 on 
the path a and vanishing outside the e-neighborhood. Put h(x) = a( </>(x ». Since 
a(O) = 0, it follows that supp h is contained in the e-neighborhood and supp h is 
bounded. Taking into account that the map g(x) = x is O-epi on S n U we obtain 
that the equation x - a( </>( x» = 0 has a solution xES n U. The equality x = 
a( </>(x» implies that x belongs to the path a and thus </>(x) = 1. Hence x = Xo (/: S. 

(If). Assume that 0 E U and that the component V of 0 in U is contained in S. 
Then the fact that the inclusion map is O-epi on S n U follows from a degree 
argument. In fact, under the above assumptions, the Leray-Schauder topological 
degree degLs(I - h, V,O) = degLs(I, V, 0) = 1 (notice that hex) = 0 for all x E av). 
Thus, x - hex) = 0 is solvable in V. Q.E.D. 

REMARK 2.5. If g: U ~ G is one-to-one and O-epi on S n U, then the connected 
component of g -1(0) in U is contained in S. The proof is analogous to that of 
Property 2.7. It suffices to consider the map g(a(</>(x»), where a is a path from 
g-l(O) to xo' 

REMARK 2.6. The above properties (together with the homotopy property) are very 
close to those enjoyed by any degree theory except the excision property. Namely, if 
g: U ~ Rn is a continuous map defined on the closure U of an open and bounded 
set U of Rn such that g-l(O) eVe U, where V is open, then the Brouwer 
topological degree satisfies deg(g, V,O) = deg(g, U,O). In particular, if this degree is 
nonzero, then g is O-epi on V and also on U::J V (see also Remark 2.7 below). This is 
not true in general for O-epi maps, even in the simple case when S = E. For example 
let VeRn + m be the open (connected) set defined by V = {x E Rn, y E R"': 
(Ilyll- a)2 + IIxl12 < r2}, a> r, i.e., Vis a full torus. Now, fixin x E Rn the set V 
yields the thickened sphere a - Vr2 - IIxl12 < Ilyll < a + r2 - IIxl12 and, fixing 
y E Rm we get the ballllxli < /r 2 - (Ilyll - a f . Therefore V has the homotopy type 
of Bn x sm-1. Consider now the map g: Rn+m ~ Rn + 1 defined by g(x, y) = (x, 
Ilyll - a) and let B be the following ball B = {(x, y) E Rn+m: IIxl12 + IIyl12 < R2}, 
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where R > a + r. Clearly, B::J V and g(x) * 0 for all x E B \ v. Moreover, 
g(x, y) = (x, VR2 - IIxll2 - a), for all (x, y) E aB, which is deformable to (0, R -
a) via (tx, VR2 - tllxll2 - a) and, as such, the restriction glaB is inessential and has 
a nonzero extension to B (see [I, II, p. 154]). Assume now that glav has a nonzero 
extensiong to V. Writey as (y, y) withy E Rm - 1; theng(x, y,O) * 0 on V n {Y = 

O}, which is the disjoint union of two closed balls in Rn-1: {(x, y): Ixl2 + 
(±y - a)2 < r2}. On their boundary g(x, y) = (x, ±y - a) is a linear map with 
topological degree ± 1, and as such is essential, contradicting the assumption. Hence 
g is O-epi on V. 

REMARK 2.7. If g: U -+ Rn with U open, bounded and connected in Rn , then g is 
O-epi on U if and only if deg(g, U,O) * 0 (see [I, II, p. 161]). In the above example 
for n = 1, the set V has two components, the global degree is zero. Nevertheless, g is 
O-epi on V. 

The following result will playa key role in §3. 

PROPOSITION 2.3. Let g: U -+ G be continuous and S be any subset of E such that 
(i) g-l(O) n S is bounded, 

(ii) for any closed and bounded subset D of au, dist(g(S nD), 0) is positive whenever 
SnD*0. 

Then g is O-epi on S n U if and only if g is O-epi on S n U. 

PROOF. (Only if). Clearly, g-l(O) n S nau = 0, so that from the normality of E, 
there is an open and bounded set Vo such that g -1(0) n S e Vo e Vo e U and 
hence, by Property 2.3, the map g is O-epi on S n U. 

(If). Let h: E -+ G be a compact map with supp h bounded, contained in U and 
h(x) = 0 for all x E U e• 

1st case. If S n supp h n au = 0, then there is a bounded and open set V such 
that S n supp h eVe Ve U. Let 4> be an Urysohn function with 4>(S n supp h) = 
1 and 4>(V<') = O. Put h(x) = 4>(x)h(x); then supp h e supp h n Ve U so that 
g(x) = h(x) has a solution xES n U. Now, either h(x) = 0, in which case 
h(x) = 0, or X E supp h and thus h(x) = h(x). 

2nd case. If Snsupph n au* 0, then IIg(Snsupph n aU)1I ~ d> O. The 
first step will be to replace h with another compact map having bounded support 
contained in U and h(x) = 0 on au, also called h, for which the inequality 
IIg(supp h n aU)1I ~ IC, for some IC > 0, holds. Let A be the open (in U) set defined 
by A = IIgll- 1(d/2. +00)= {x E U: IIg(x)1I > d/2}. Clearly, Snsupph n aUe 
A. Furthermore, (S\A) n supp h and au are disjoint closed sets and so, by 
normality. there exists an open set V such that (S\A) n supp h eVe Ve U. 
Then V U A in an open (in U) neighborhood of S n supp h and, if necessary~ 
intersecting it with a large ball containing S nsupp h, we may assume that V U A is 
bounded. Now, (V UA) n au = An au and IIg(A n aU)1I ~ d/2. Set W = (V U 
A) n supp h. Clearly, W is an open subset of supp h such that S n supp heW and 
dist(g(W n aU), 0) ~ d/2 > O. Since, S n supp hand supp h \ Ware two closed 
disjoint subsets of supp h, there exists an Urysohn function 4> with 4>(supp h \ W) = 0 
and 4>( S n supp h) = 1. Let h be the map defined as 4>h on supp h and zero on 
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E\supph. Clearly, {xEE: h(x)=/;O}c W() {xEE: h(x)=/;O}c Uand h is 
compact since so is h. If g(x) = hex) for some xES () U, then either xES () 
supp h, in which case hex) = hex), or x E U\ supp hand hex) = hex) = 0. One 
may thus replace h by h and assume that dist(g(supp h () aU), 0) ~ K > 0, where 
K = d/2. 

Our next step will be to replace our new function h with another having support 
contained in U. To do this consider the open (in U) sets 

both of which contain supp h () au, and the closed sets 

- -1 
BK/6 = Ilhll ([0, K/6]), 

also containing supp h () au. Then, the set AK/2 () BK/ 3 is open (in U) and the set 
A3K / 4 () BK/ 6 is closed and contained in the first. Clearly, supp h \ (AK/2 () BK/ 3) 
and A;K/4 () BK/ 6 () supp h are two closed and disjoint subset of supp h so that there 
is an Urysohn function <p: supp h -> [0,1] such that <pc A;K/4 () BK/6 () supp h) = ° 
and <p(supp h \ (AK/2 () BK/ 3)) = 1. Let us put hex) = <p(x)h(x); then supp h c 
supp <p c supp h \ (A3K/4 () BK/ 6) c U. Finally, g(x) = hex) has a solution xES 
() U. However, on AK/2 () BK/ 3 () S, one has Ilg(x)11 > K/2, Ilh(x)11 < K/3 and 
Ilh(x)11 < K/3, so that x$. AK/2 () BK/ 3 () S. This implies that g(x) = hex). Q.E.D. 

PROPERTY 2.8. Assume that A is a closed (in U) subset of U such that S () A = 0. 
Then g is O-epi on S () (U\A) (S () (U\A)) if and only if g is O-epi on S () U 
(S () U). 

PROOF. (If). This will follow from Property 2.2 provided g is admissible on 
S () (U\A) (S () (U\A)). Now, since S ()A = 0, there exists an open subset W 
such that A eWe We U and S () W () U = 0. Then g-1(0) () S () U = g-1(0) 
() S () (U\A) is bounded. On the other hand, g-1(0) () S () U = g-1(0) () S c 
U\ We U\ We U\A (notice that U\ W is closed in U and in U\A). More-
over, since g is admissible on S () U, there exists an open and bounded subset Vo 
such that g-1(0) () S c Vo c Vo c U. Therefore, g-1(0) () S c Vo () (U\ W) c Vo 
() we c U\A. 

(Only if). Let h: E -> G be compact with bounded support contained in U. If 
supp he U\A, then g(x) = hex) has a solution in S () (U\A) = S () U. If supp h 
() A=/;0, take an Urysohn function <p: E -> [0,1] such that <p(x) = 1 on Sand 
<p(x) = ° on W, where W is closed and supp h () A eWe We U (notice that 
supp h () A is closed in E). Let h: E -> G be defined by hex) = <p(x)h(x). We have 
{x E E: hex) =/; O} = {x E E: hex) =/; O} () {x E E: <p(x) =/; O}. Therefore, supph 
c supp h () supp <p c U\A. Hence, g(x) = hex) has a solution in S () (U\A) = 
S () U, where <p = 1. Now, assume that g is O-epi on S () (U\A). If {x E E: 
hex) =/; O} c U\A, then g(x) = hex) has a solution in S () (U\A) = S () U. If 
{x E E: hex) =/; O} () A=/;0, then supp h () A=/;0 and is closed in U. It follows 
that there exists an open subset W such that supp h () A eWe W () U, W () U () 
S = 0. Let <p: U -> [0,1] be an Urysohn function such that <p(x) = 1 on Sand 
<p(x) = ° on W () U. Define h: E -> G by hex) = <p(x)h(x) on U and hex) = ° on 
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U e (notice that h is continuous since h(x) = 0 on aU). Hence, {x E E: h(x) =1= O} 
C {x E U: qJ(x) =1= O} n {x E U: h(x) =1= O} c U\A and we are done. Q.E.D. 

EXAMPLE 2.1. Let V cUbe an open neighborhood of S n U. Take A = ve• Then, 
on the basis of Property 2.8, we have that g is O-epi on S n V (S n V) if and only if 
g is O-epi on S n U(S n U). 

The following simple, though important, property will be used several times in the 
sequel. 

PROPERTY 2.9. Let G;, i = 1,2, be Banach spaces and let g;: U --+ G;, i = 1,2, be 
continuous maps. Define g: U --+ G I X G2 by g(x) = (gl(X), g2(X». Assume that g is 
O-epi on S n U (S n U). Then g2 is O-epi on gll(O) n S n U (gll(O) n S n U). 

PROOF. If h 2 : E --+ G2 is compact with bounded support contained in U (U and 
h 2(x) = 0 on aU), then the map h == (0, h 2) is compact on E and has bounded 
support contained in U (U and h(x) = 0 on aU). Therefore, the equations g2(X) = 
h2(x) and gl(X) = 0 are solvable in S n U. Q.E.D. 

Note that if S is closed in U (S n U is closed), then g-\O) n S is closed in U 
(g -1(0) n S n U is closed). 

The examples given in the Introduction show that g2 may be O-epi on gll(O) n S 
n U and, nevertheless, the map g = (gl' g2) may be not O-epi on S n U. 

C. Homotopy property. Up to this point we did not impose any assumption on the 
set S. In order to get deeper results we shall assume that S is closed in U for O-epi 
maps on S n U and assume S n U closed in E when considering O-epi maps on 
S n U. The fact that S need not be closed (nor open) for a map g to be O-epi on 
S n U can be seen from the following example. Take U = R2, S = {y-axis} UK, 
where K is any set not intersecting the x-axis, and define g: R2 --+ R by g(x, y) = y. 
Then g is O-epi on S n U. To see this take a sufficiently large ball B centered at the 
origin. Then, g(S naB) =1= 0 by the choice of K and, if it is a nonvanishing (on S) 
extension of gisnaB to S n B, then it(O, y) =1= 0 on the y-axis, which is impossible 
since gi Lv.axis} naB changes sign. Due to the fact that any bounded set may be 
included in such a ball, from Proposition 2.1 and Property 2.2 it follows that g is 
O-epi on S n U. 

Finally, if g is O-epi on S n U (S n U) and g is admissible on S n U (S n U), 
then, from Property 2.5, we obtain that g is O-epi on S n U (S n U). This shows, in a 
certain sense, that the requirement of the closedness of S is not too heavy. 

Our homotopy principle will be based on the following result, which is, in its turn, 
an extension of [FMV,I, Theorem 4.2.1]. 

THEOREM 2.1 (COINCIDENCE THEOREM). Let g: U --+ G be O-epi on S n U, where S 
is closed in U. Let h: U --+ G be continuous and such that: 

(1) There exists an open and bounded subset Vo with the property 
A == {XESn U:g(x)-th(x) = Of or so met E [0, I]} c Voc Voc U. 

(2) Let qJ: E --+ [0, 1] be a given continuous function such that its support (denoted by 
VI) is bounded and contained in U, and qJ(Vo) = 1. Assume that the following holds: if 
M is a bounded and closed (in E) subset such that 

M = g-I( co ((qJh)(M) U {O})) n S n VI' 
then (qJh )(M) is precompact. 
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Then the equation g(x) = h(x) has a solution in S n U. (If supp h is bounded and 
contained in U, then the set A satisfies automatically condition (1). It suffices to take 
Vo::::> (g-I(O) n S) U supph. By admissibility this set is always bounded, contained in 
U and one has q;h = h.) 

(In the case when g: U -+ G is O-epi on the closed set S n U and A c Vo c U, one 
gets the same conclusion.) 

PROOF. Set h = q;h. If there is some xES n U such that g(x) = q;(x)h(x), then 
xES n Vo and q;(x) = 1. Hence g(x) = h(x). Let..$( be the following family of 
sets: 

..$( = {M c S n VI: M is closed and g -1 ( co ( h ( M) U {O} )) n S n VI eM}. 

The family ..$( is not empty since S n VI E..$(. If ME..$(, then g -1(0) n S n VI = 
g-I(O) n ScM (recall that g-I(O) n S is not empty, since g is O-epi on S n U). Let 
Mo = nME.-K M; then Mo ::::> g-I(O) n S =1= 0. Now, 

g-I( co (h(Mo) U {O})) n S n VI c g-l( co (h(M) U {O})) n S n VI 

for all ME..$(. 

This implies that 

Moreover, Ml is closed. Therefore, 

g-l( co (h(MI) U {O})) n S n VI c g-I( co (h(Mo) U {O})) n S n VI = MI' 

It follows that MI = Mo and, by condition (2), we obtain that h(Mo) is precompact. 
Now, define h as h on Mo and zero on V{. Clearly, h is a compact map and, by 
Dugundji's extension theorem, there exists a compact extension 

h: E -+ co (h(Mo) U {O}) 

of h such that supp h c VI C U. Since g is O-epi on S n U, there exists Xo E S n U 
such that g(xo) = h(xo). Since h(xo) E cO(h(Mo) U {OD, we get Xo E 
g-l(co(h(Mo) U {Om n S. Moreover, Xo E VI' Indeed, if Xo E V{, then q;(xo) = 0 
= h(xo), yielding g(xo) = O. Then, Xo E g-I(O) n S c Vo C VI' and therefore Xo E 
Mo, h(xo) = h(xo), which gives g(xo) = q;(xo)h(xo) = h(xo). Q.E.D. 

Note that in Theorem 2.1 one could take the function q; with q;(A) = 1 and 
q;(Vo") = O. 

The following theorem is a further important property of O-epi maps on S n U 
(S n U). Its proof will rely on Theorem 2.1. 

THEOREM 2.2 (HOMOTOPY PRINCIPLE). Let g: U -+ G be O-epi on S n U and let h: 
(S n U) X [0,1] -+ G be continuous and such that h(x, 0) = 0 on S n U. Assume that 
the following two assumptions hold: 

(1) There exists an open and bounded set Vo for which Ao == {x E S n U: g( x) -
h(x, t) = Oforsomet E [0, I]} c Vo c Vo c U. 
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(2) For any compact map k: E ~ G with bounded support contained in V set 
Ak == {x E S n V: g(x) - h(x, t) - k(x) = ° for some t E [0, In and let <Pk: E ~ 
[0,1] be a continuous function such that <Pk(A k) = 1 and <Pk(Vn = 0, where Vk = Vo 
U {x E E: k(x) =fo O}. Assume the following: If M is a closed subset of S n Vk such 
that M = g-l(co(h«·, <Pk(·» + k(- »(M) u {Om n S n Vk, then h(·, <Pk(· »(M) is 
precompact. 

Then, the map g( . ) + h ( . ) is O-epi on S n V for any h continuous extension to V of 
h(·, 1). (If g: U ~ Gis O-epi on S n U, replace V everywhere by U a.nd recall that, in 
this case, k(x) = ° on av.) 

PROOF. The first step of the proof will be to extend h to a continuous map h 
defined on V X [0,1] with h(x,O) = ° and h(x, 1) = h(x) on U. This is done via 
Dugundji's extension theorem since «S n V) X [0, I)) U (V X {O}) U (V X {I}) is 
a closed subset of V X [0,1]. 

Now, the inclusion Ak C {x E E: k(x) =fo O} U Ao C supp k U Vo C V holds, so 
that the set Ak is bounded. Let us show that Ak is also closed. Take a sequence {x n }, 

xn E A k, n E N, such that xn ~ x. There corresponds a sequence {tn} in [0,1] such 
that g(x n ) - h(xn' tn) = k(x n ). Without loss of generality we may assume that tn 
converges to some element t E [0,1]. Taking into account the continuity of all the 
maps involved and the fact that S is closed in V, we obtain that x E A k, i.e., Ak is 
closed (notice that the same argument yields the closedness of Ao). Let <Pk be an 
Urysohn function such that <Pk(Ak ) = 1 and <Pk(Vn = 0. Now, consider the map 
h(·, <Pk(·» + k(·) which is identically zero on V/::' and coincides with the map 
h(·,<Pk(·» + k(·) on S n Vk. Observe that if g(x) = h(x, <Pk(X» + k(x) for some 
xES n V, then <Pk(X) = 1 (since x E A k) and, by Theorem 2.1, one has that g - h 
is O-epi on S n V (recall that our perturbation has bounded support). Q.E.D. 

The following consequences of Theorem 2.2 will show that condition (2) covers 
several well-known cases of homotopy invariance. "-" 

COROLLARY 2.1. (a) Assume that the homotopy h(·, .) of Theorem 2.2 is compact on 
(S n V) X [0,1]. Then condition (2) is satisfied. 

(b) Let g: U ~ G be O-epi on the bounded set S n U and let h: (S n av) X [0,1] 
~ G be compact and h(x,O) = ° on S n au. Assume that g(x) =fo h(x, t) on (S n 
av) X [0,1]. Then, g - his O-epi on S n U for any extension h to U of h(· ,I) which is 
compact on S n V. 

PROOF. (a) Obviously, condition (2) is satisfied. We would like to mention the fact 
that one can give a direct proof of this part of the proof by observing that the map 
h(·, <Pk(·» + k(·) is compact and with bounded support contained in V. Thus, from 
the definition of O-epi map on S n V, the result follows. 

(b) Let h be the compact map defined as zero on (S n U) X {O}, h on (S n av) 
X [0,1] and h on (S n U) X {I}. By Dugundji's extension theorem h can be 
compactly extended to a map h defined on (S n U) X [0,1]. We shall show that the 
set Ao == {x E S n U: g(x) - h(x, t) = ° for some t E [0, In is a bounded subset 
of V. Indeed, notice first that A 0 C V, since if g( x) - h (x, t) = 0 for some xES n 
av and t E [0,1], then h = h. But g(x) - h(x, t) =fo ° and thus Ao n av = 0. 
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Secondly, Ao is bounded since so is S n fl. Therefore, by part (a) above the map 
g(.) - h(·, 1) is O-epi on S n fJ. Q.E.D. 

REMARK 2.8. Note that Corollary 2.1(b) is very close in spirit to the classical 
Borsuk extension theorem in finite dimensions. In fact, 

Let X be a metric space, A a closed subset of X and g: X -+ G a continuous map. Let 
h: A X [0,1] -+ G be a compact map such that hex, 0) = 0 on A and g(x) + hex, t) =1= 0 
on A X [0,1]. If the restriction glA has a nonvanishing extension g to X such that g - g 
is compact on X, then (g + h1)IA has a nonvanishing extension g + hI on X such that 
hI is compact on X. 

PROOF. (SKETCH). The map H: (X X {On U (A X [0,1]) -+ G defined as g - g on 
X X {O} and h on A X [0,1] satisfies g + H =1= 0 on that set and, by Dugundji's 
extension theorem, it has a compact extension H to X X [0,1]. Now, the closed sets 
A and B = {x E X; g(x) + H(x, t) = 0 for some t E [0, In are disjoint. Hence, 
there is an Urysohn's function !P: X -+ [0,1] with !pCB) = 0 and !peA) = 1. Finally, 
let g: X X [0,1]-+ G\ {O} be the map defined by g(x, t) = g(x) + H(x, t!p(x». 
Clearly, go = g and gIlA = (g + h1)IA so that gl is the required extension. Q.E.D. 

In the sequel the notation a( A) will stand for a measure of noncompactness of the 
set A, satisfying the following properties. 

(1) a( A) = 0 if and only if A is compact, 
(2) a(.i U B) = max{ a(A), a(B)} (this implies a(A) ~ a(B) if A c B), 
(3) a(coA) = a(A), 
(4) a(A + B) ~ a(A) + a(B), 
(5) aCtA) = ta(A) for any t ~ O. 
DEFINITION 2.4. Let the maps g: S n U -+ G and h: (S n U) X [0,1]-+ G send 

bounded and closed (in E) sets into bounded sets. The map h will be called 
condensing with respect to g on S n U if and only if for any bounded set M c M c S 
n Uwe have 

a(h(·, ·)(M X [0, 1])) < a{g(M)) 

if a(g(M» > 0 and 

a(h(-,' )(M X [0, 1])) = 0 
if a(g(M» = O. (A similar definition holds in the case when U is replaced by fl.) 

COROLLARY 2.2. If h is condensing with respect to g on S n U(S n fl), then 
condition (2) of Theorem 2.2 is satisfied. 

PROOF. Let M be a closed subset of S n Vk , satisfying the assumption of 
condition (2). Then 

g(M) c co ((h(·, !Pk(')) + k(· ))(M) U {O}). 
By properties (1)-(5) of the measure of noncompactness a we get 

a(g(M)) ~ a(h(·, !Pk(- ))(M)) ~ a(h(·, ·)(M X [0, 1])). 

This may occur only if a( h ( " . )( M X [0, 1]) = 0, since h is condensing with respect 
to g on S n U. Q.E.D. 
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DEFINITION 2.5. Let g == f - go: S Ii U -+ G and h: (S Ii U) X [0,1] -+ G be 
such that f, go and h send bounded and closed (in E) sets into bounded sets. The 
homotopy go( . ) + h(', . ) is called K-set-contractive with respect to f on S Ii U if and 
only if there exists ° ~ K < 1 such that for any bounded subset M C M c S Ii U 
the following holds: 

a((go(-) + h(·, ·»)(M X[O,l])) ~ Ka(j(M». 

(An analogous definition holds in the U case.) 

COROLLARY 2.3. Let g == f - go: U -+ G be O-epi on S Ii U and let go + h be 
K-set-contractive with respect to f on S Ii U, with hex, 0) = ° on S Ii U. Assume that 
there exists an open and bounded set Vo such that Ao == {x E S Ii U: f(x) - go(x) -
hex, t) = ° for some t E [0,1]} c Vo c Vo C U. Thenf(·) - go(') - h(·) is O-epi on 
S Ii U for any h continuous extension to U of h ( . , 1). 

PROOF. The starting point is to make the same extensions as in the first step of the 
proof of Theorem 2.2. Next, let V be any bounded open set such that Ao eVe V 
c U. Let cp: E -+ [0,1] be an Urysohn's function, having bounded support con-
tained in U, and such that cp(V) = 1. Consider the map f(·) - go(') - h(·, tcp(·» = 
g( . ) - h '/ " t). Clearly, h cp has bounded support, so that condition (1) of Theorem 
2.2 is automatically satisfied by hcp and by 'Thcp for any 'T E R. We shall prove that 
the map g(.) - h(·, cp(.» is O-epi on S Ii U. Since the zeros of this map on S Ii U 
are in Ao c V, then g(.) - h(·, cp(.» is O-epi on S Ii V. But cp(V) = 1 and hence 
the map g(.) - h(·) is O-epi on S Ii V for any such V. Hence, by definition, 
g(.) - h(·)isO-epionS Ii U. Now, 

a((go(-) + h(·, .cp(- »)(M X [0, 1])) 
~ a((go(') + h(·, . »)(M X [0, 1])) ~ Ka(j(M)). 

This implies, a«go(') + h(·, tcp(' »)(M» ~ Ka(f(M» for all t E [0,1] (notice, for 
t = 0, we have a(go(M» ~ Ka(f(M»). The trivial equality h(·, .cp(.» = go(') + 
h(', .cp(-» - go(') yields 

a«h(·, .cp(. »)(M X [0, 1])) ~ 2Ka(j(M». 

Also, the equality f(·) = f(·) - go(') - h(·, tcp(·» + go(') + h(·, tcp(·» gives 

a(j(M)) ~ a((j(·) - go(') - h(·, tcp(· »)(M») + Ka(j(M». 

Thus, 

(1 - K)a(j(M» ~ a((j(·) - go(') - h(·, tcp(· »)(M»). 

Now, for t = ° 
a« 'Th(·, .cp(- )))(M X [0, 1]) ~ 2Km(j(M» 

~ /~'Tk a«(j(·) - go(- »)(M»). 
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Therefore, by Corollary 2.2, the map f(·) - gO(') - Th(·, ((I ( .» is O-epi on S n U 
provided T < (1 - K)/2K. Now, this map can be written as 

f(-) -(T(gO(-) +h(-,((I(-))) +(1- T)gO(-))' 

But, 

a(T(gO(') + h(·, ((1(-))) +(1- T)go(-))(M)) 

~ TKa(j(M)) +(1 - T)Ka(j(M)) = Ka(j(M)). 

Therefore, as above, 

(1 - K)a(j(M)) ~ a((j(-) - (T(gO(-) + h(-, ((1(- ))) + (1 - T )go(- )))(M)). 

Again, if T < (1 - K )/2K, then the map f(·) - go( . ) - 2Th (', ((I ( .» is O-epi on 
S n U. In a finite number of steps one gets to f(·) - go(') - h(·, ((I ( . », which is 
O-epi on S n U. Q.E.D. 

We would like to remark that Corollary 2.3 is an extension of Theorem 7.3.1 of 
[FMV,I]. 

COROLLARY 2.4. Let g == f - go: U ~ G be O-epi on S n U and let h: (S n U) X 
[0, 1] ~ G be such that the map go(') + h(·, .) is condensing with respect to f on 
S n U. Assume that h(x,O) = ° on S n U and let Ao be as in Corollary 2.3. 
Furthermore, suppose that f is proper on hounded and closed subsets of S n U and that 
for any open and bounded subset V such that Ao eVe V c U there exists Tv for 
which the map f - (1 - T)go is O-epi on S n V for ° ~ T < TV' Then the map 
f(·) - go(') - h(·) is O-epi on S n U for any h continuous extension to U of h(·, 1). 
(A similar result holds for the V case.) 

PROOF. Let V be as above and let us show that there exists E > ° such that 
Ilf(x) - go(x) - hex, t)11 ~ E for all xES n aVand t E [0,1]. In fact, if not, there 
is a sequence {(xn' tn)} in (S n aV) X [0,1] such that f(x n) - go(xn) - h(xn, tn) 
~ ° as n ~ + 00. From the equality 

f(x n) = go(xJ + h(xn' tJ + (j(x n) - go(xn) - h(xn' tJ) 

it follows, denoting by A the sequence {x n }, 

a(j(A)) ~ a«go(-) + he,· ))(A X [0, 1])) < a(j(A)) 

which is impossible unless f( A) is precompact. This implies, by the properness of f, 
that Ais compact. Therefore, there exist subsequences xn ~ x and tn ~ t such that 
f(x) - go(x) - hex, t) = ° for xES n av, contradicti~g the admi~sibility of the 
homotopy. 

Since go(') + h(·,·) is bounded on bounded sets of (S n U) X [0,1], then 
Ilgo(x) + hex, t)11 ~ Lon (S n V) X [0,1]. Choose T such that TL < E/2. Then, 

Ilf(x) -(1 - T)(gO(X) + hex, t))11 ~ ~ on (S n au) X[O,I]. 

Furthermore, 

a«1 - T )(go(-) + he, . ))(M X [0, 1])) ~ (1 - T )a(j(M)). 
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From Corollary 2.3 it follows that the map f - (1 - 7" )go is O-epi on S n V if and 
only if the mapf(-) - (1 - 7")(go(·) + h(·, .» is O-epi on S n V. Moreover,f(·) = 
f(·) - (1 - 7")gl(·) + (1 - 7")gl(·)' whereg1(·) = go(·) + h(·,l). This implies 

f(M) c (f(-) - (1 - 7" )gl(- ))(M) + (1 - 7" )gl(M). 

Thus, 

a(f(M)) ~ a((f(-) -(1 - 7")gl(-))(M)) +(1 - 7")a(gl(M)) 

< a((f(-) -(1 - 7")gl(-))(M)) +(1 - 7")a(f(M)) 

(if a(f( M» > 0). Hence, m(f( M» < a«f(·) - (1 - 7" )gl ( . »( M» and m( gl (M» 
< a«f(·) - (1 - 7")gl(· »(M». Notice that, setting [0, l]M = {tx: t E [0,1] and 
x EM}, we have Me [0, l]M c co(M U {OD. Hence, a([O, l]M) = a(M). Now, if 
k(x, t) is the homotopy t7"gl(X), then 

a((k(·, ·))(M x [0,1])) = m(gl(M)) < a((f(·) -(1- 7")gl(·))(M)). 

Hence, from Corollary 2.2, it follows that the map f - (1 - 7") g 1 - 7"g 1 is O-epi on 
S n V if f - (1 - 7" )gl is O-epi on S n V. Therefore, the assumption that f -
(1 - 7" )go is O-epi on S n V provided 7" < 7"vends the argument. Q.E.D. 

Note that, in the case when S = E and when I - go has a nonzero topological 
degree (as a condensing vector field), then also the vector field 1- (1 - 7")go has 
nonzero topological degree. This is, actually, the way in which the degree for 
condensing vector fields can be constructed (cf. [N]). 

The following result, which is another consequence of Corollary 2.1(a), gives 
information on the structure of the set S n U when there is a map which is O-epi on 
it. 

PROPOSITION 2.4. Let g be O-epi on S n U (S n U). Then: 
(a) Either S n av =1= 0, or g(S n V) = G for any open and bounded set V such that 

g-l(O) n S eVe V c U (g-l(O) n S eVe U). In particular, if g sends bounded 
and closed (in E) subsets of S n U (S n fJ) into bounded sets of G, then S n a V =1= 0. 

(b) Either S n U is unbounded, or there exists Vas above such that g( S n V) = G 
or (S n U) n au =1= 0. In particular, if S n fJ is closed, then S n au =1= 0. 

PROOF. (a) Assume there is such a V for which S n av = 0. Then, from Property 
2.4 (Property 2.2), the map g is O-epi on the closed and bounded set S n V. Assume 
that there exists pEG such that p ~ g(S n V) and let h(x, t) = tp. Clearly, the 
map h satisfies the assumptions of Corollary 2.1(b) (g(x) =1= h(x, t) on S n av = 0) 
and therefore g - h is O-epi on S n V, where h == p. The result now follows from 
Property 2.l. 

(b) If (S n U) n au = 0 and S n U is bounded, then by normality, there exists 
an open and bounded set V such that S n U eVe V c U. Since S n av = 0, 
then, from part (a), we get g(S n V) = G. 

Finally, if S n fJ is closed and (S n U) n au =1= 0, then (S n U) n au c S n au, 
so that S n au =1= 0. Q.E.D. 

D. Zero-epi (zero-essential) maps on sections. In this part we shall introduce a class 
of maps which is larger than that of O-epi maps. This new family of maps will be of 
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crucial importance in proving results when the parameter space is infinite dimen-
sional. Actually, our main result on dimension will be given for this broader class of 
maps. 

Our starting point will be close to that adopted in [AA,II). Let us first fix a family 
of sections for the Banach space G in the following sense. Let Mo be a fixed finite 
dimensional subspace of G and let.H be a collection of finite dimensional subspaces 
of G satisfying the following conditions: 

(i) If ME.H, then Mo c M. 
(ii) For all M 1, M2 E .H there exists M3 E.H such that M 1, M2 c M 3. 

(iii) U ME"" M = G. 
The family of sections of G just defined differs from that introduced in [AA,II), 
where our condition (iii) is replaced by U ME"" M = G. 

We are now ready for the main definition of this section. 
DEFINITION 2.6. Let g: U(U) -+ G be admissible on S n U (S n U). The map g 

is called sectionally O-epi on S n U (S n U) if and only if the equation g( x) = h (x) 
has a solution on S n U for any bounded map h: E -+ M having bounded support 
contained in U ({ x E E: hex) "4= O} c U) and for any ME.H, i.e., if g is written as 
g = (gM' gN)' then gM is O-epi on g,Vl(O) n S n U (g,Vl(O) n S n U), where N is 
such that G = M E9 N. 

DEFINITION 2.7. The map g will be called sectionally O-essential on S n U (S n U) 
if and only if for any bounded set V with g-l(O) n S eVe V c U (g-l(O) n S c 
V c U), any extension g: V -+ G of the restriction glav: av -+ G \ {O} with g - g 
bounded on V and (g - g)(V) eM for some ME.H, has a zero on S n V, i.e., gM 
is O-essential on g,Vl(O) n S n U (g,Vl(O) n S n U). 

Clearly, from Property 2.9, if g is O-epi on S n U (S n U), then g is sectionally 
O-epi on S n U (S n U). 

Conversely, one has the following. 
PROPERTY 2.10. Assume that g is proper on bounded and closed (in E) subsets of 

S n U (S n U). Then g is O-epi on S n U (S n U) if and only if g is sectionally O-epi 
on S n U(S n U). 

PROOF. (Only if). This implication is given by Property 2.9 (notice that the 
properness of g is superfluous). 

(If). Suppose that g is not O-epi on S n U (S n U). Then, there exists a compact 
map h: E -+ G with bounded support contained in U ({x E E: h(x) "4= O} c U) 
such that g(x) - h(x) "4= 0 for all xES n U. Since g is proper on supp h n S, then 
g - h is also proper on supp h n S and so there exists an e > 0 such that II g( x) -
h(x)11 ;;;. e for all x E supph n S. Now, h(E) is compact and hence there exists a 
finite dimensional polyhedral approximation h: E -+ M for some ME.H, such that 
Ilh(x) - h(x)11 ~ e/4 for all x E E (this follows easily from the fact that U ME"" M 
is dense in G and each vertex of the polyhedron belongs to some M E .H so that, by 
assumption (ii), h(E) c M for some ME .H). Now, the inclusion A == {x E E: 
hex) = O} c IIhll- 1([0, e/3)) holds since Ilhll ~ e/4 on this set. Let <p: E -+ [0, I) be 
an Urysohn function with <peA) = 0 and <pCB) = 1, where B == IIhll-1([e/3, + 00)). 
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By letting h M = f{!h we obtain that supp h M C supp h. Moreover, 
Ilh M{X) - g(x )11 > Ilg{x) - h{x )11 -llh(x) - h{x )11 - (1 - f{!(x »llh(x )11 

> e - e/4 - e/3 = Se/12 
for all x E supph n S. Furthermore, g(x) - hM(x) '* 0 for all x E (supph)C n S 
n U (U) from our assumption on g and h M (x) = 0 on the same set. Hence, 
g(x) - hM(x) '* 0 for all xES n U (S n U), contradicting the hypothesis. 
Q.E.D. 

We point out that all our previous results regarding O-epi (O-essential) maps on 
S n U (S n U) extend to the context of sectionally O-epi (O-essential) maps on 
S n U (S n U) under very small changes in the hypotheses. For the reader's 
convenience we shall reproduce the main results here. 

PROPOSITION 2.5. (a) The map g is sectionally O-epi on S n U (S n U) if and only 
if g is sectionally O-essential on S n U (S n U). 

(b) If g: U ~ G is such that g-\O) n S is bounded and for any closed and bounded 
subset D of au one has dist(gM(g,V1(0) n S nD),O) > 0 whenever g,V1(0) n S nD '* 
o and for any M E .,{(, then g is sectionally O-epi on S n U if and only if g is 
sectionally O-epi on S n U. 

Properties 2.1-2.9 remain valid with the following modification for the Normal-
ization Property 2.7. The connected component V of zero in U is such that V c Sand 
V n (U MEA' M) c S. In fact, from Property 2.S the inclusion i is sectionally O-epi 
on S n U and is proper on it. The first conclusion follows then from Property 2.10. 
On the other hand, if Xo E V n (U MEA' M) but Xo $. S, then let a( t) be a compact 
path from 0 to Xo as before. By covering it with balls having centers in some Mi and 
approximating it by a piecewise linear path contained in some M, one may proceed 
with the same argument as before. 

Note also that Remark 2.S has to be modified, either by defining section 
preserving maps (d. [AA,IIJ) or, more simply, by assuming that S n U is closed in 
U. Indeed, since g is one-to-one on S n U, it is proper and then one uses Property 
2.10. 

Regarding the homotopy properties we have to pay the price of dealing with a 
larger class of maps. Namely, the class of admissible homotopies is smaller and, 
precisely, the homotopies defines on (S n U) X [0,1] or on (S n aU) X [0,1], as 
well as the extension h of h(·, 1) in Corollary 2.1, and, as regards Remark 2.8, g - g, 
hI and hI must have their ranges in some element M of.,{( (compactness here means 
that bounded sets are sent into bounded sets of M). 

The first advantage of our new definition concerns Proposition 2.4, since one 
obtains the same results under weaker assumptions. Namely, the following holds 
true. 

PROPOSITION 2.6. If g is sectionally O-epi on S n U (S n U), then: 
(a) Either S n av '* 0, or g(S n V) = U MEA' M for any open and bounded set V 

such that g-I(O) n S eVe V c U (g-\O) n S eVe U). In particular, if G = M 
E9 N for some M E.,(( with dim M > 1, and if gM sends bounded and closed subsets of 

g,V \0) n S n U (g,V 1(0) n S n U) into bounded subsets of M, then S n av '* 0. 
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(b) Either, S n U is unbounded, or g(S n V) = U MEA· M for some Vas above, or 
(S n U) n au =1= 0. In particular, if S n V is closed, then S n au =1= 0. 

PROOF. Notice first that the homotopy tp is finite dimensional. It is enough to be 
able to choose pin U MEA M. If gM satisfies the above boundedness property, then 
one may choose p EM so large that p $. gM(gN1(0) n S n V), but then g - p is 
not sectionally O-epi on S n V. Q.E.D. 

The hypotheses of Proposition 2.6 lead to the following two definitions which will 
be used, in particular, in the main result. of this paper (see Theorem 3.1). 

DEFINITION 2.8. Let X be a closed subset of E. A continuous map g: X ~ G will 
be called 

(a) sectionally bounded on X if and only if, for any M E.A, gM(g.v 1(0) n X) is 
bounded, where N is such that G = M EB N (cf. Definition 2.6), 

(b) sectionally proper on X if and only if for any M E .A and any compact set 
K c M, the set g-l(K X {O}) is compact. 

REMARK 2.9. (A-proper O-epi maps on S n U.) One could reduce further the 
dimensions of the Banach spaces E and G by using a sequence of finite dimensional 
subspaces En and Gn of E and G (not necessarily of the same dimension) and 
projections Qn: G ~ Gn· Then, if gn = QnglunEn~Un is continuous and admissible 
on S n Un one may ask that gn be O-epi on S n Un for infinitely many n's. Clearly, 
all of the previous results are valid for gn with very weak conditions on the gn itself 
(for example Proposition 2.3 is valid provided gn(x) =1= 0 on aU). However, one may 
not infer any conclusion on g unless further hypotheses are given. We shall assume 
that the following assumptions, on the (not necessarily continuous) map g and 
projections Qn' are satisfied. 

(1) g-l(O) n S c Va c Va c U for some open and bounded subset Va' and 
g;; 1(0) n S c Vo n En for all n's. 

(2) IIQnl1 ~ K for all n's. 
(3) If for a given z E G and for an increasing sequence of n's one has Xn E S n 

Un. n V, with V open and bounded such that V eVe U, and gn.(xn) - Q:.z ~ 0, 
then x n• has a subsequence which converges to some xES n U, with g(x) = z. 
Under the above assumptions the following holds. 

If gn is O-epi on S n Un for infinitely many n 's, then the equation g( x) = h (x) has a 
solution in S n U for any compact map h: E ~ G with bounded support contained in U 
(i.e., the only missing condition for g to be O-epi is its continuity). 

PROOF. Let h: E ~ G be as above. Then hn = QnhlE has bounded support 
contained in En' Hence there is xn E S n Un such that gn(xj = hn(xn) for infinitely 
many n's. Now, if infinitely many of the xn's belong to supp h, then they are 
bounded and, passing to a subsequence if necessary, we have h(x n ) ~ z E G. It 
follows that Qn(h(xn) - z) ~ 0, because of hypothesis (2). Therefore, from (3) we 
get g(x) = z = h(x). On the other hand, if gn(xn) = 0 for infinitely many n's (i.e., 
x n $. supp h), then x n E Vo n En and, again one gets g( x) = 0 from (1). Q.E.D. 

Note that homotopies which meet (1)-(3) above are admissible in the class of 
A -proper O-epi maps. 
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The result we have just proved shows that the class of continuous A-proper O-epi 
maps is contained in that of O-epi maps. As a matter of fact, there exist O-epi maps 
which are not A-proper O-epi, as the following example shows. Let E = G = 12 , 

S = {(E, E2, E3, •• . ): lEI < I}, Gn = En = the n first components and let g: E -+ R be 
defined by g(x) = xlllxl12. One has gls = E3/(1 - E2), S n En = {O} so that glsnE 
= {O} is not O-epi, g-l(O) n S = {O} and, if Qnz -+ 0, then Z = 0 = g(O). Hence: 
conditions (1)-(3) are met. But, g is O-epi on S, since any map h with bounded 
support is bounded on S and gls is onto R. 

In spite of this example, the following holds. If E = G ffi Eo and En = Gn ffi Eo so 
that (I - Qn) = (I - Pn), where Pn is the projection onto En' and if (I - Qn)g(x) 
= (I - Pn)x + kn(x) with k n compact (as it happens frequently in applications) 
and having the property that the homotopy Qng(x) + (I - Pn)x + tkn(x) is admis-
sible (for large n) on S n U, then g is O-epi on S n U if and only if Qng(x) + 
(I - Pn)x is O-epi on S n U and, from Property 2.9, Qng is O-epi on S n Un (for 
further results on A-proper O-epi maps see Remarks 3.3 and 3.4). 

Regarding the theory of A -proper maps, their topological degree and applications 
(in the case when S = E) see [BP and FMP,I]. 

3. Dimension. In the first part of this section we give first a result relating the 
concept of O-epi map on S n U with the classical notion of essential map. We 
proceed further with a result regarding real valued O-epi maps on S n U. The last 
result of this part is a characterization of A-H essential maps. 

The second part is devoted to the study of the relation between the concept of 
O-epi maps and classical dimension theory. The dimension we shall use throughout 
this paper is the covering dimension, whose definition runs as follows. A normal 
topological space X has covering dimension equal to n, provided that n is the smallest 
integer with the property that whenever 0/1 is an open covering of X, there exists a 
refinement CfI' of CfI, which also covers X, and no more than n + 1 members of 0/1' 
have nonempty intersection. 

The third, and most important, part of this section contains the main result of this 
paper (Theorem 3.1). This theorem extends all of the previous results contained in 
[AA,I; AA,II; AMP; FMP,I; FMP,II and MP]. 

Theorem 3.1 shows, in particular, that if a certain map g is sectionally O-epi on 
S n U (plus some, very mild, extra assumptions), then there is a minimal closed 
subset of S n U having a number of properties related, not only to its global 
structure, but, also, to its covering dimension at each point (local dimension). 

A. O-epi maps on S n U (S n U) with finite dimensional range. The results of 
dimension theory that we are going to use are given in terms of maps having range in 
finite dimensional spheres. Using the classical notion of essentiality we shall show, in 
this section, that the definitions given in §2 allow us to use these classical results. 

The following result relates the classical concept of essential map with that of 
O-epi map on S n U. 

PROPOSITION 3.1. Let U be bounded and S n U be closed. Let g: U -+ R" be 
bounded on U with g-l(O) n S c U. Then, the restriction g: S n au -+ Rn \ {O} is 
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essential with respect to S Ii U (i.e., g is O-epi on S Ii U) if and only if g/llgll: 
S Ii au ---+ S,,-l is not extendible over S Ii fl. 

PROOF. (Only if). Consider the map h: (S Ii aU) x [0,1]---+ R" defined by h = 
- tg(1 - IlgID/(1 - t(1 - Ilgl!)). Then the map g - h: (S Ii aU) x [0,1] ---+ Rn \ {O} 
gives an admissible homotopy (notice that h is compact since Ilhll ~ 11 - II gil !). By 
Corollary 2.1(b), if g is O-epi on S Ii fl, so is g - h, where h is any extension (to fl) 
of h(·, 1). We have that g - h = g/llgll on S Ii au. However, if g/llgll has an 
extension g: S Ii fl ~ sn-\ then, taking g - h to be g on S Ii fl and any 
continuous extension of g outside S Ii fl, g - h would be nonvanishing on S Ii fl, 
contradicting Property 2.1. 

(If). Assume that g: S Ii au ---+ Rn \ {O} has a bounded continuous extension g: 
S Ii fl ---+ Rn \ {O}. Then g/llgll is an extension of g/llgll. Q.E.D. 

COROLLARY 3.1. If U, S are as above and if g: fl ---+ R is O-epi on S Ii fl, then 
S Ii au has at least two components on which g changes sign. 

PROOF. If g does not change sign on S Ii au, then, clearly, g/llgll has a constant 
(± 1) extension to S Ii fJ. This contradicts Proposition 3.1. Q.E.D. 

The following definition has been extensively used in the literature regarding 
classical dimension theory (see [GT] for a recent survey on this subject). 

DEFINITION 3.1. Let X be a topological space and let In denote the unit cube in 
Rn. A map g: X ---+ 1" is called A-H-inessential if and only if there exists a map gl: 
X ---+ In such that gl(X) = g(x) for all x E g-l(aJ n) and gl(X) =1= In (i.e., gl is not 
onto) (see e.g. [GTJ). 

PROPOSITION 3.2. The map g: X ~ 1" is A-H-inessential if and only if g: g-l(a1") 
---+ aI n is continuously extendible over X. 

PROOF. (If). Assume that g: g-l(aJn) ~ a1" is continuously extendible over X. 
Then, clearly, g is A-H-inessential since one can take gl = g. 

(Only if). Assume that there exists gl: X ---+ 1" such that it coincides with g on 
g-l(aI") and that for some AD E In we have that gl(X) =1= AD for all x E X. Put 
g(x) = t(gl(X))(g(x) - AD) + AD, where t(gl(X)) is the unique positive solution of 
IIAt + (1 - t)Aoll = 1 for A E In. Clearly, g is a continuous extension of g over X. 
Q.E.D. 

B. Preliminary results on dimension. Note that, in most of the results given up to 
now, we have only used the normality of the space E (the metric of E has been used, 
because of our definitions, when dealing with bounded sets). However, in what 
follows, in order to avoid complications in the definitions, the metric of E will be 
used in a crucial way. 

For metric spaces the three most widely used concepts of dimension of a set X, 
namely, the small inductive dimension of X, ind X, the large inductive dimension of 
X, Ind X and the covering dimension of X, dim X, are related by 

ind X ~ Ind X = dim X, 
where the first inequality is replaced by equality if X is separable [P, pp. 156 and 
181]. 
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As a warning for the reader who is unfamiliar with dimension theory we have the 
following: If A is a subset of a metric space X, then dim A ~ dim X provided that A 
is closed, while ind A ~ ind X for any A c X [P, pp. 152 and 158]. 

In the remainder of this paper we shall use the covering dimension. 
The following is a result relating O-epi maps on S n fl with dimension theory. 

PROPOSITION 3.3. Let U be bounded, S n U be closed and g: U --+ Rn be bounded on 
fl. Assume that g is O-epi on S n fl. Then dim(S n fl) ~ nand dim(S n aU) ~ 
n-1. 

PROOF. The first inequality follows from [P, p. 127] and Propositions 3.1 and 3.2. 
The second inequality follows from the fact that the set 

A = {x E S n au: g(x)/llg(x)11 * p E sn-l} 
can be written as A = U;=~~, with ~ = {x E S n au: Ilfo(X) - fl(x)11 > r 1 }, 

where fo = g/llgll and fl = p. By the Countable Sum Theorem [P, p. 125] dim A ~ 
dim(S n aU), so that if dim(S n aU) < n - 1, then g/llgll and the constant map p 
are uniformly homotopic [P, p. 333]. This implies that g/llgll has a nonzero 
extension to S n fl. This contradicts Proposition 3.1 since g on S n au cannot have 
a non,zero extension to S n fl. Q.E.D. 

In the case when the range of the map g is infinite dimensional we have the 
following. 

PROPOSITION 3.4. Let U be bounded, g: fl --+ G be sectionally O-epi and sectionally 
bounded on S n fl. If dim G = + 00, then dim(S n fl) = dim(S n aU) = + 00. 

PROOF. Assume that dim(S n fl) ~ 11 < + 00. Let ME vi( be a 2n-dimensional 
subspace of G and let N be a topological complement of M. Write g = (gM' gN)' 
where gM(fl) c M. Then, by Property 2.9, the map gM is O-epi on gN 1(O) n S n fl. 
Therefore, by Proposition 3.3 

dim(gNl(O) n S n fl) ~ 2n, 

contradicting dim(S n U) ~ n. 
Assuming dim(S n aU) ~ n - 1, the same argument yields 

dim(gN1(O) n S n au) ~ 2n - 1. Q.E.D. 

REMARK 3.1. By Propositions 3.3 and 3.4 we have that if g is sectionally O-epi on 
S n U (S n fl) and sectionally bounded on bounded and closed (in E) subsets of 
S n U (S n fl), then dim(S n V) ~ dimG and dim(S n aV) ~ dimG - 1 for any 
open bounded set V such that g-I(O) n S eVe V c U (g-I(O) n S eVe U). 
This implies, in particular, that dim(S n U) ~ dim G (notice that S n V is closed in 
S n U). 

In the case when g is sectionally O-epi on S n fl and S n fl is bounded, then 
dim(S n aU) ~ dimG - 1 (take a sufficiently large ball B such that S n fl c B 
and let V = Un B; then, clearly, S n av c S n aU). 

c. Main results on dimension. The following technical lemma will be used in the 
principal result of this paper. 
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LEMMA 3.1. Let A = Al U A 2, where AI' A2 are bounded and closed subsets of A. 
Let g, gl' g2: A ~ G be continuous maps which are sectionally bounded on A and 
satisfy the following assumptions. 

(i) gi - g is compact, i = 1,2. 
(ii) gi: Ai ~ G\ {O}, i = 1,2. 

(iii) There exist a closed subset Hi c Ai such that gi = g on Hi' i = 1,2. 
(iv) dim{x E Al n A 2: gl(x)!llgl(X)11 -=1= g2(x)!llg2(X)II} < dimG - 1 if gi - g 

are finite dimensional maps (i.e., with range in some ME .A), 

if dim G = + 00, in which case g is assumed to be proper. 
Then, the restrictions glBI U B 2' gilA" i = 1,2, extend to g, gi: A ----+ G \ {O}, i = 1,2, 

with g - g and gi - gi' i = 1,2, compact on A. (If gi - g are finite dimensional, then 
g - g, gi - gi have range in some ME .A.) 

PROOF. (a) (dim G = n.) From [P, p. 334] each g;/ligill has an extension to A so 
that g/llglll BI U B2 extends to A. The result now follows from Proposition 3.1. 

(b) (dimG = + 00 and dim{x E Al n A 2: gl(x)/llgI(X)11 -=1= g2(x)/llg2(X)II} < n 
- 1 and gi - g are finite dimensional maps.) Decompose the space G as a direct 
sum M EB N, where M is finite dimensional, dim M ~ 2n, and gi - g: A ----+ ME.A. 
Write g = (gM' gN); then 

gi = gi - g + g = (gi - g + gM' gN) 

so that the restriction gMlg,vI(O)nB, has an extension to gNI(O) nAi, i = 1,2, via 
gM + (gi - g) = gilg,vI(O)nA,' However, the set 

is a closed subset of the set {x E Al n A 2: gl(x)/lIgI(X)11 -=1= g2(x)/lIg2(X)II} and 
hence it has dimension less than n - 1. Therefore, from the first part of the proof, it 
follows that (gM + gi - g)lg,vI(O)nA" i = 1,2, and gMl g,vl(o)n(BIUB2 ) have extensions 
to gNI(O) n A and so the maps (gM + gi - g, gN) = gi' i = 1,2, and (gM' gN) = g 
will have finite dimensional extensions. 

(c) (dimG = + 00, dim(AI n A2 \ (HI n H2» < n - 1 and g proper.) Since gi = 
gi + g - g is proper (this follows from the fact that g is proper and gi - g is 
compact), i = 1,2, there exists e > 0 such that IIgi(X)11 ~ e for all x E Ai' i = 1,2. 
Now, gi - g can be approximated within e/4 on A by a finite dimensional map hi' 
Furthermore, as in the proof of Property 2.10, one may replace hi by hi = f{!ihi with 
f{!i(H;) = 0 and IIg(x) + hi(x)1I ~ 5e/12 for all x E Ai so that the map g + hi 
extends g on Hi to Ai with the finite dimensional map hi' Now, since dim(AI n A 2) 
< n - 1, then the set 
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also has dimension less than n - 1, being a countable union of closed sets (cf. the 
proof of Proposition 3.3). Then, (gM + hi' gN) = g + hi and (gM' gN) = g have 
finite dimensional extensions to A as follows from (b). 

Finally, since gi and g + hi are 7E/12-close on Ai and compactly homotopic (via 
the homotopy gi - t(gi - g - h;), then gi has a compact extension to A (see 
Remark 2.8). Q.E.D. 

In Lemma 3.1 the properness assumption on g seems to be unnecessary. It was 
needed for the approximation process since the dimension results used here are for 
mappings with finite dimensional range. 

The following result can be viewed as a further interesting property of O-epi maps 
on S n fJ. 

PROPOSITION 3.5. Let g: fl ~ G be sectionally O-epi on S n fl and sectionally 
bounded on bounded and closed subsets of S n fl. Assume that the following property 
holds. 

g-l([O, p]) n Sis boundedfor any p E U M. 
MEJ( 

Then dim(S n aU) < dimG - 1 implies g(S n fl):::l UME..KM. (Note that if the 
family vi( is taken to be that of all finite dimensional subs paces of G, then G = U M EJ( M.) 

PROOF. From Remark 3.1, S n U cannot be bounded. Assume now that g(x) =fo p 
for some p E U M E..K M and all xES n fl. Since g -1([0, p]) n S is bounded, take 
R > 0 so large that this set is contained in a ball B R centered at the origin with 
radius R. Let cp: R+ ~ R + be an increasing function such that cp(r) = 0 if 0 ~ r ~ R, 
and cp(r) = 1 if r ~ 2R. Now, on S n aCB2R n fl) consider the admissible homo-
topy 

g(x, t} = g(x} - tcp(lIxll}p. 

From Corollary 2.1(b) the map g - cpp is sectionally O-epi on S n B2R n fl. Apply 
Lemma 3.1 with A = S n B2R n fl, A1 = S n a(B2R n fl), A2 = A, B1 = S n BR 
n au, B2 = 0, gl = g - cpp and g2 = g - p (observe that gl and g2 differ on a 
subset of S n au which, by assumption, has dimension less than dimG - 1). We 
obtain that gl has a nonvanishing extension to A, contradicting the fact that gl is 
sectionally O-epi on A. Q.E.D. 

REMARK 3.2. If g is either sectionally proper on S n fl, or IIg(x)11 ~ + 00 as 
IIxll ~ + 00, xES n fl, then g satisfies property (*) of Proposition 3.5. 

The following theorem is the main result of this paper. 

THEOREM 3.1. Let S be closed in U and let g: U ~ G be sectionally O-epi on S n U. 
Assume that g is sectionally proper and sectionally bounded on bounded and closed (in 
E) subsets of S n U. Then, there exists a minimal closed (in U) subset ~ c S n U 
such that: 

(a) g is sectionally O-epi on ~ n U = ~. This implies, in particular, that g-l(O) n ~ 
=fo 0; ~ is either unbounded, or }; n au =fo 0; dim ~ ~ dim(~ n V) ~ dim G and 
dim(~ n aV) ~ dimG - 1 for any open and bounded set V such that g-l(O) n S c V 
eVe U. 
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(b) If ~ = ~l U ~2' with ~l' ~2 closed (in ~) and proper subsets of ~, then 
dim(~l n ~2) ~ dimG - 1. This implies, in particular, that ~ is connected and has 
dimension at each point at least dim G. 

(c) ~ is minimal for any map gl homotopic to g via a finite dimensional homotopy 
and, if g and gl are proper on bounded and closed subsets of S n U, then ~ is minimal 
for any map gl homotopic to g. 

(d) If ~ = ~l U ~2' where ~l' ~2 are closed and proper subsets of ~, then 
dim(~l n ~2 n U) ~ dimG - 1, and there is no proper and closed subset C c ~ 
such that g is sectionally O-epi on C n U. In particular, ~ is connected and has 
dimension at each point at least dim G. In fact, dim( W n U) ~ dim G for any open 
neighborhood W of p in ~. 

(e) If g is defined on [j with g(x) * 0 on ~ nau and if g is sectionally proper and 
sectionally bounded on bounded and closed subsets of ~ n U, then g is sectionally O-epi 
on ~ n [j = ~ and there is no proper and closed subset of ~ n [j on which g is 
sectionally O-epi, i.e., ~ is minimal. Furthermore, dim(~ naV) ~ dimG - 1 for any 
open and bounded subset V with g-l(O) n ~ eVe U and one can take V = U if 
~ n [j is bounded. Finally, if g satisfies property (*) of Proposition 3.5 and 
dim(~ n aU) < dim G - 1, then g(~) ::::> U MEJI M. 

(Sectionally bounded and sectionally proper maps are given in Definition 2.8.) 
PROOF. (a) Since g is sectionally proper on bounded and closed (in E) subsets of 

S n U and g-l(O) n S is such a set, then g-\O) n S is compact. Now, let 'efbe the 
family 

'ef = {C c S, C closed in S n U: g is sectionally O-epi on C n U}. 

The family 'ef is not empty since S n U E 'ef. Define an order in 'ef by inclusion of 
sets and let 'ef' be a chain in 'ef. Consider ~ = nCE'ti"c. Since g-l(O) n C is a 
descending family of compact sets (notice that g-l(O) n C * 0 by Property 2.1), 
then g-l(O) n ~ is nonempty and compact. 

Let h: E --+ M E vi( be compact with bounded support contained in U and let Va 
be an open and bounded set such that g - 1(0) n S c Va c Va c U. Set VI = Va U 
{x E E: hex) * O} which is bounded, open and VI c U. Writing g = (gM' gN)' 
since gM is proper on gNl(O) n S n VI and h is compact, we have that gM - h is 
proper on gNI(O) n S n VI' Therefore, (g - h)-leO) n S n VI is a compact set and 
(g - h) -1(0) n C n VI is a descending family of compact sets. These sets are 
nonempty since g is sectionally O-epi on en u, g(x) = hex) has a solution in 
en u, but hex) = 0 and g(x) * 0 for all xES n V{; thus the solution is in 
C n VI' Hence, (g - h) -1(0) n ~ n VI * 0, i.e., g is sectionally O-epi on ~ n U. 

By Zorn's Lemma, 'efhas a minimal element, also denoted~. Since g is sectionally 
O-epi on ~ n U then, by minimality, ~ c S n U. In particular, since g is sectionally 
bounded on bounded and closed (in E) subsets of~, we get that the remaining part 
of (a) follows from Property 2.1, Proposition 2.6 and Remark 3.1. 

(b) Assume now that ~ = ~l U ~2' where ~l' ~2 are closed proper subsets of ~ 
such that dim(~l n ~2) < dimG - 1. Since ~l' ~2 are closed proper subsets of~, it 
follows that g is not sectionally O-epi on ~i n U, i = 1,2. Therefore, there exist open 
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and bounded sets v: with g-I(O) n~; c v: c V; c Usuch thatgl~(1av:~; n av: ~ 
G \ {O} extends to g;: ~; n V; ~ G \ {O}, with (g; - g)(V;) bounded in some 
M E Jt, i = 1,2. We shall apply Lemma 3.1. To this aim let V = VI U V2 , A = ~ 
n V, A; = (~; n V) u (~n aV) and B; = (~; n (V\V:)) u (~n aV), i = 1,2. 
Take a compact finite dimensional extension hj to Aj of the map defined as g; - g 
on ~; n V; and zero on B;,j -4= i, i, j = 1,2. Set 

onB;, 
on~; n V;, 
onA j ,j-4=i, 

i, j = 1,2. Since g -4= 0 on B;, then g; -4= 0 on A;. Moreover, gi and g2 restricted to 
Al n A2 differ on a subset of ~l n ~2 n V so that assumption (iv) of Lemma 3.1 is 
also satisfied. Therefore gl BuB has a nonvanishing extension g to A with (g - g)( A) 1 2 _ 

bounded in M. In particular, gl~(1av has an extension to ~ n V, contradicting the 
fact that g is sectionally O-epi on ~. 

It remains to show that ~ is connected and has dimension at each point at least 
dimG. 

If ~ is not connected, let ~I' ~2 be a partition of ~. Then ~I n ~2 = 0 and so 
~l' ~2 cannot be proper subsets of~, i.e., ~ must be connected. 

Finally, let p E ~ and recall that dimp ~ ~ m if for each neighborhood V of pin 
~ there is an open set W such that pEW C V and dim W ~ m [P, p. 197]. Now for 
any open neighborhood W of p, let ~I = ~ \ W and ~2 = W. Then dim(~1 n ~2) 
= dimaW ~ dimG - 1. If dimG = n, then dim W ~ n [P, p. 160] and, if dimG = 
+ 00, then dim W ~ dimaW = + 00 and hence dimp ~ ~ dimG. 

(c) Let g(.) - h(·, t) be the homotopy joining g with gi = g - hI' Then, by 
Corollary 2.1(a), gl is sectionally O-epi on ~ n U. Since hI is compact on S n U, 
then gl is sectionally proper and sectionally bounded on closed and bounded subsets 
of ~ n U. From (a) there is a minimal set ~I c ~ on which g - hI is sectionally 
O-epi. Since, obviously, the homotopy is reversible, then g is sectionally O-epi on ~I 
and hence ~I = ~. If g and gi are proper on bounded and closed subsets of S n U, 
then use Property 2.10 to get the same result. 

(d) Note first that since S is closed in U, then S n U = S n U, so that from 
Properties 2.5 and 2.6 the map g is sectionally O-epi on S n U if and only if g is 
sectionally O-epi on S n U. This implies the minimality of~. If ~ = ~I U ~2' where 
~I' ~2 are closed and proper subsets of ~, then ~ = (~I n U) u (~2 n U) with 
~l n U and ~2 n U closed in ~. If ~I n U = ~, then ~I n U = ~ C ~I n V = ~I' 
so that ~l n U and ~2 n U are proper subsets of ~. If P is a point of ~ n au and W 
is an open neighborhood of p in ~, then (aW) n U is closed in W n U and 
dim(W n U) ~ dimG. 

(e) From the hypothesis we have that g-I(O) n ~ = g-l(O) n ~ which is a 
compact subset of U. If D is any closed and bounded subset of au such that 
g N 1(0) n ~ n D -4= 0, then, since g is sectionally proper on ~ n D, the hypotheses of 
Proposition 2.5 are met and g is sectionally O-epi on ~ n V. Similarly, g is sectionally 



410 J. IZE, I. MASSABO, J. PEJSACHOWICZ AND A. VIGNOLI 

O-epi on C n fJ if and only if g is sectionally O-epi on (C n U) n U for any closed 
subset C of ~, using the above argument and Properties 2,5 and 2.6. The minimality 
of ~ follows as in (d) and the remainder of the proof is a consequence of Remark 3.1 
and Proposition 3.5, Q.E,D. 

We wish to point out that the idea of the proof of (a) and (b) of Theorem 3.1 is 
close to that of the existence of a Cantor space in a compact Hausdorff space [P, p. 
335]. 

As mentioned earlier Theorem 3.1 contains, as particular cases, the dimension 
result obtained in [AA,I; AA,II; AMP; FMP,I; FMP,II and MP] (see §4). 

REMARK. 3.3. If g is A-proper O-epi on S n U (see Remark 2.9) and sectionally 
proper on bounded and closed subsets of S n U (g not necessarily continuous), it is 
not difficult to see that one gets a minimal set :2:, Moreover, :2: n Un has, in its turn, 
a minimal set :2: n on which gn is O-epi for infinitely many n's. Furthermore, if 
:2: = :2:1 U :2:2 (:2:1' :2:2 proper and closed subsets of :2:), then dim(:2:1 n :2:2 n En> ~ 
dim Gn - 1 for infinitely many n's. Therefore, all the remaining conclusions of 
Theorem 3.1 are valid. In fact, stronger results are obtained, since one gets 
dimensional results on En for infinitely many n's. 

REMARK. 3.4. Since g is sectionally O-epi on :2: n U, then gM is O-epi on g"N 1(0) n :2: 
n U and, as such, g"N 1(0) n :2: has a minimal set:2: M on which gM is O-epi. In general, 
:2: M is not the whole of g"N 1(0) n :2:. As an example of this fact, take S = E = G = R2, 
g(x, y) = (x 3 - X, y). Then, the homotopy (x(x 2 - (1 - t», y) is admissible and 
:2: is minimal (notice that, from Property 2.7, we have:2: = R2). However, g11(0) n :2: 
= {x = 0, x = ± I} ~hich is not connected. 

4. Applications. In this final section we shall return to our original motivation; that 
is, the study of global branches of solutions to multiparameter nonlinear equations. 

We shall show, in particular, how our main result on dimension can be applied to 
continuation, global implicit function and global bifurcation theorems. 

We will recover and improve all of the previous results [AA,I; AA,II; AMP; 
FMP,I; FMP,II and MP], where topological degree arguments have been used. 
Furthermore, we shall give similar results in the case when degree theory cannot be 
applied as, for example, in continuation problems with Fredholm operators of 
positive index and bifurcation problems having bifurcation set of codimension larger 
than one. 

In this section the set S considered in Theorem 3.1 will be a subset of the zeros of 
a map f: E x A ~ F, where E, A and F are Banach spaces. The choice of the map 
g, that will turn out to be O-epi on S n U, will depend on each particular 
application. In order to prove that g is O.-epi on S n U, the only topological 
hypothesis will be that the pair (f, g) has a nontrivial stable homotopy class on a 
suitable small sphere. We shall also give specific conditions yielding the nontriviality 
of this homotopy class. From this local hypothesis we shall prove that (f, g) is O-epi 
on some appropriate open set U and thus, from Property 2.9, obtain that g is O-epi 
onS n U. 

In all of the previous papers mentioned above the local topological invariant is the 
topological degree of the pair (f, g). This implies, in general, that f must be of a 
certain special form. 
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The first result of this section enables us to show that, under appropriate control 
on the zeros of the pair (f, g), (f, g) is O-epi on a small ball if and only if (f, g) is 
O-epi on any large open set U. This technical result is a good substitute for the 
excision property existing in classical topological degree theory. 

In this section a( A) will stand for the Kuratowski measure of noncompactness of A 
(see e.g. [N)). 

A. Scaling property and consequences. The following result can be regarded as a 
further and useful property of O-epi maps. 

PROPOSITION 4.1 (SCALING PROPERTY). Let E = El X Ez and G = Gl X Gz, with 
the maximum norm, i.e., II· II = max{II·lh, II ·llz}, and let S = E. Let the map g: 
E --+ G be written as g = (gl' gz), where gi(Xl, xz) = /;(xl, X2) - ki(X l , x 2) is such 
that /;(tlx l, t 2XZ) = t'l;t!{';/;(xl , X2) for all Xl EEl' X2 E E2, tl , t2 > 0 and some 
nonnegative integers n i' m i' i = 1,2. Assume that for any bounded set M C E there 
exists 0,.;; K(M) < 1 such that a(ki(M»,.;; K(M)a(/;(M», i = 1,2 (this condition 
implies that k i and fi send bounded sets into bounded sets, unless k i is compact). In the 
case when K(M) is not uniformly bounded by some constant 0,.;; K < 1, the map 
f = (f1> f2) is assumed to be proper on bounded and closed sets of E. Furthermore 
assume that g-l(O) C HI X Hi U A, where Hi" = {Xi E Ei: IIXili < ri - e}, e > 0, and 
Hi will stand for Hi = {Xi E Ei: IIXil1 < ri }, ri > 0, i = 1,2, and A C (El \ HD X {O} 
is a closed set such that if (Xl'O) E A, then (txl,O) E A for any t ~ 1 (so that if 
A =/= 0, then A is unbounded). Then: 

(a) If A c (El \ HI) X {O} and K(M) < K < 1, then g is O-epi on E\A if and 
only if g is O-epi on HI X H2. If A = 0 and the map go == (k l , k 2) is compact, then 
one may take e = 0 and g is O-epi on Bl X B2. If K = 1 andf - (1 - 'T)go is O-epi on 
HI X H2 for 0 ,.;; 'T < 'To' then g is O-epi on E \ A, provided that the zeros of f -
(1 - 'T)go are in HI X Hi U A. 

(b) If g-l(O) n (HI X H2 \ (HI X {Om is closed and K < 1, then g is O-epi on 
E\(A U (Bl X {Om if and only if g is O-epi on HI X H2 \(A U (Bl X {Om. If 
K = 1 and f - (1 - 'T)go is O-epi on HI X H2 \ (A U (Bl X {O})) for 0 ,.;; 'T < 'To, 
then g is O-epi on E \ (A U (Bl X {O} », provided that the zeros off - (1 - 'T )go are 
in HI X Hi U A. 

PROOF. (Only if). Since g-l(O) is closed and g-l(O) n (E\A) c Hi X Hi, it 
follows that g is admissible on HI X H2 (Bl X Bz if A = 0 and e = 0). In case (a), 
the set g-l(O) n (E\A) is closed. In case (b), we have 

g-l(O) n(E\(A U(BI X {O}))) = g-l(O) n(Hl X Hi\(Bl X {O})) 

= g-l(O) n (HI X H2 \(Hl X {O})), 

which is closed by hypothesis. Hence, by normality, g is admissible on 

The implication now follows from Property 2.2. 
(If). We shall consider first the case when e > O. Assume that g is not O-epi on 

E\A (on E\ (A U (Bl X {O}» respectively). From Propositions 2.1 and 2.2 it 
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follows that there exists an open and bounded set V, satisfying 

g-l(O) n(E\A) eVe V c E\A 

(g-l(O) n (E\ (A U (11; X {O}))) eVe V c E\ (A U eR; X {O})) respectively), 
and such that g is not O-epi on V. Obviously, V c Bl X B2, where Bi = {Xi E Ei: 
IIXill < R i }, Ri > 0, i = 1,2. Therefore, by Property 2.2, g is not O-epi on 

(Bl X B2) \A 

«Bl X B2)\(A U (Bf X {O}» respectively). For K= 1, the mapf- (1- 'T)go is 
not O-epi for a sequence 'Tn - 0 (see Corollary 2.4). On Bl consider the scaling 

{
Xl if IIxlil ~ '1 - e, 

S(t)Xl = ( t(Rl - rl){IIxlll -(rl - e») . 
1 + Xl If rl - e ~ IIxlil < rl . 

fTl 

The scaling S(t)Xl is a homeomorphism from Bl into B l , leaves B; invariant and 
S(l)Xl is onto B l . Then it is easy to see that g is O-epi on 

(Bl X B2) \A 

«Bl X B2)\(A U (B; X {O})) respectively), if and only if the map g(s(l)·,·) is 
O-epi on (B j X B2) \s(l)-l(A)«Bl X B2) \ (s(l)-l(A) U (Bf X {O})) respectively). 
Consider the homotopy 

( gl{S(t)Xl' x 2) g2{S(t)X l , X2)) 
s(tr1 ' s(t)n2 

= ( ) _ (kl{S(t)Xl , x 2) k2{S(t)Xl' X2)) 
f Xl' X2 S(tr1' s(tr2 

defined on (Bl X B2)\s(1)-1(A) «Bl X B2)\(s(l)-1(A) U (Bf X {O})) respec-
tively). The set of zeros of the homotopy are those of g for IIxlil ~ '1 - e and are 
contained in S(l)-l(A) for x 2 = 0, '1 - e ~ IIxlil since s(t) is increasing in t and 
from the construction of A, so that s(t)-l(A) c S(l)-l(A). Hence, on the above 
sets, the zeros are not moved. 

Let M be a bounded subset of Bl X B2 and let n = max{ n l , ml, n 2, m 2}. Choose 
an integer N such that N> Kl/n(Rl - rl)/(l - Kl/n)'l' Then, for any integer 
j = 0,1, ... ,N - 1, one has that 0 ~ s«i + l)/N) - s(i/N) ~ (Rl - rl)/Nrl and 
hence, 

K( s((i + l)/N) ) n < 1. 
s(i/N) 

Write M X [0,1] as ME X [0, 1]U7==-Ol NE X Ij , where ME = M n (Bl X E2), NE = M 
n «Bl \ BJ.) X E 2) and I j = [j/N, (j + l)/N]. Then, 

a ( ( k 1 (; ~ : ~ ~l ' • ) ) (M X [0, 1]) ) 

= max { a { k 1 (-, . ) ( M.) ), a ( ( k 1 (; ~ : ~ ~l ' • ) ) (N. X IJ ) } 
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and 

Then, 

for any large N. Sending N to infinity one obtains the constant K < 1. Since the 
same estimate holds for k 2' one gets that 

a(( kl(s(-)·,·) k 2 (s(-)·, .) )(M x[O 1])) 
s( . fl ' s(· f2 ' 

~ Kmax{a(jl(-' ·)(M)),a(j2(-' ·)(M))}. 

However, for any set C c G one has that C c PIC X P2C, where Pi is the projection 
onto Gi, i = 1,2. Hence, a(C) ~ a(PlC X P2C) ~ max{a(PlC), a(P2C)} (see 
[FMV,I, p. 238]) and since a(PlC) ~ a(Pl)a(C) ~ a(C), then 

a( C) = max { a(PlC), a(P2C)}. 

Here, taking C = (fl' f2)(M) = f(M) one obtains that the homotopy is K-set-
contractive with respect to f. 

From Corollaries 2.1,2.3 and 2.4 it follows that g is not O-epi on 

(Bl X B2 )\s(1)-\A), 
«Bl X B2 ) \ (S(l)-l(A) U (iii X {Om respectively) if K < 1, and there is a se-
quence Tn --+ 0 such that f - (l - Tn)go is not O-epi on those sets for K = 1. Since 
the zeros of glB1 xB2 are in Bi X Bi in case (a) and in (Bi X BD U (A n (Bl X {O})) 
in case (b), in which case A n (Bl X {On c S(l)-l(A), then, from Property 2.2, it 
follows that g is not O-epi on Bl X B2 «Bl X B2)\(A U (iii X {Om respectively) 
for K < 1, f - (1 - Tn)go for K = 1 and Tn close to 0 (notice that from the 
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properness of f it follows that the zeros of the last map are close to those of f - go 
for 'Tn close to 0; see the proof of Corollary 2.4). 

If A = 0, E = 0 and k; is compact, i = 1,2, then !!J.e sl!..me argument with 
set) = 1 + t(RI - rl)/rl , will show th.llt g is not O-epi on BI X B2 if and only if the 
map g(S(l) . , .) is not O-epi on EI X B2 • The homotopy defined as above, with s(i.) 
replaced by set), but only on a(BI X B2), will give that g is not O-epi on EI X B2 
from Corollary 2.1(b). 

Finally, the scaling in the B2 direction, with all the indices 1 replaced by 2 in the 
expression for s(t), will contradict the hypothesis. Q.E.D. 

The following consequence of Proposition 4.1 shows that, under certain extendi-
bility properties of ki (or k 2 ), the map g need not be defined on the whole Banach 
space E. 

COROLLARY 4.1. Let U c E be an open subset such that EI X E2 C U and let g: 
U ---+ G have the same properties of noncompactness, homogeneity and zeros as in 
Proposition 4.1, relative to U. Assume, in addition, that either kl' or k2 (say k 2) has an 
extension to E such that the corresponding g2(XI, x 2) = f2(X I, X2) - k 2(X I, x 2) (here 
f2 is extended by homogeneity) has, on E, the same properties of noncompactness and 
has all its zeros, either in some open and bounded subset VI such that E I X E2 C VI C 

VI C U, or in A. Then, the conclusions of (a) and (b) in Proposition 4.1 are valid, 
provided one replaces E by U. 

PROOF. (Only if). As in Proposition 4.1, replacing E by U. 
(If). Assume that g is not O-epi on U\A (U\ (A u (EI X {Om respectively). 

Again, there is an open and bounded set V satisfying g-I(O) n (U\A) eVe V c 
U\A (g-I(O) n (U\ (A U (EI X {Om) eVe V c U\ (A U (EI X {O})) respec-
tively) and such that g is not O-epi on V. Let cp: E ---+ [0,1] be an Urysohn's function 
with cp(V U VI) = 1, having bounded support contained in U. Consider g(XI' x 2) = 
f(x l , x 2) - go(xl, x 2), defined on E as (f1(XI, x 2) - CP(XI' x2)kl(X I, x 2), 
g2(XI, x 2 », wherefl has been extended by homogeneity to E. Clearly, the conditions 
on the measure of noncompactness are conserved. If K = 1, then f is proper on 
bounded and closed subsets of E by the homogeneity and the zeros of g are those of 
g in V U VI and contained in A outside VI' Since g = g on V, then Proposition 4.1 
will give that g is not O-epi on BI X B2, EI X E2 «BI X B2) \ (A U (EI X {O})) or 
f - (1 - 'T) go respectively), but there g = g. Q.E.D. 

Note that Corollary 4.1 represents a substitute for the excision property of degree 
theory. Actually, if one of the classical degree theories applies, then one may replace 
BI X B2 by an arbitrary open set containing the zeros of the map g. 

The following consequence of Theorem 3.1 and Corollary 4.1 will be applied to 
obtain both the continuation principle and the global implicit function theorem. 

COROLLARY 4.2. Let U and g be as in Corollary 4.1 and satisfy the hypotheses of 
Proposition 4.1(a), with (gl' g2) O-epi on BI X B2 (on EI X E2 if A = 0, go is 
compact, E = 0; f - (1 - 'T)go O-epi on BI X B2 if K = 1). Let S = gll(O). Assume 
thqt g2 is sectionally proper and sectionally bounded on closed (in E) and bounded 
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subsets of S \ A. Then, there is a minimal subset}; of S \ A such that g2 is sectionally 
O-epi on }; n (U\ (A n ~» and}; has all of the properties listed in Theorem 3.1. 

PROOF. From Corollary 4.1 we have that (gl' g2) is O-epi on U\A and, from 
Property 2.9, g2 is O-epi on S n (U\A). Let W = U\ (A n S),1 = A \ S. Then W 
is open, 1 is closed in W, S n1 = 0 and W\1 = U\A. From Property 2.8 the 
map g2 is O-epi on S n Wand, by Property 2.6, on (S\A) n (U\(A n S». 
Applying Theorem 3.1 one gets the set}; such that g2 is sectionally O-epi on 
}; n (U\ (A n S». Again, by Property 2.8 (see §2D), taking WI = U\ (A n ~), 
Al = (A n S) \~, we get that g2 is sectionally O-epi on }; n (U\ (A n ~». The 
fact that}; is also minimal for U\ (A n ~) comes from the reverse implication in 
Property 2.8. Q.E.D. 

The following corollary will be used to obtain our global bifurcation result. 

COROLLARY 4.3. Let U and g be as in Corollary 4.1 and satisfy the hypotheses of 
Proposition4.1(b), with (gl' g2)0-epionB1 X B2 \(A u (Ii; X {O}»(f- (1 - 'T)go, 
if K = 1). Let S = gll(O). Assume that g2 is sectionally proper and sectionally bounded 
on closed (in E) and bounded subsets of S \ (A U (B; X {O}». Then there is a 
minimal subset }; of S \ (A U (Ii; X {O}» such that g2 is sectionally O-epi on 
}; n (U\ (A U (Ii; X {O}) n ~» and}; has all of the properties listed in Theorem 
3.1. 

PROOF. The same as in Corollary 4.2 replacing A everywhere by A U (Ii; X {O}). 
Q.E.D. 

We now give an extension of Corollaries 4.1, 4.2 and 4.3 to the context of 
A-proper O-epi maps on S n U. 

COROLLARY 4.4. Assume that the Banach spaces E and G have projectional schemes 
as in Remark 2.9. Assume that g = (gl' g2) satisfies the assumptions (2) and (3) of 
Remark 2.9 and that g-l(O) C Bl X Bi U A, gzl(O) C VI U A, g;;-l(O) C (Bl X Bi 
U A) n En' g2.~(O) C (VI U A) n En' where g2 is defined on E and A, e, VI are as in 
Corollary 4.1 (notice that neither homogeneity, compactness, nor continuity on g are 
assumed). Then: 

(a) If either A c (El \ B1) X {O}, or A C (El \ B1) X {O} and e = 0, then g is 
A-proper O-epi on U\A if and only if g is A-proper O-epi on Bl X B2. If g is A-proper 
O-epi on Bl X B2 and, moreover, if S = gll(O) is closed in U, g2 is continuous on S, 
sectionally proper and sectionally bounded on closed (in E) and bounded subsets of 
S \ A, then one has the same conclusions as in Corollary 4.2. 

(b) If 
g;;-l(O) n(Bl X B2 \(B1 X {O})) 

C Vo n En C Vo n En C (Bl X B2 \(B1 X {O})) n En' 
for n large, then g is A -proper O-epi on U \ (A U (B; X {O}» if and only if g is 
A-proper O-epi on Bl X B2 \ (A U (Bf X {O}». If g is A-proper O-epi on Bl X 
B2 \ (A U (B; X {O}» and, moreover, if S = gll(O) is closed in U, g2 is continuous 
on S, sectionally proper and sectionally bounded on closed (in E) and bounded subsets 
of S \ (A U (B; X {O}», then one has the same conlusions as in Corollary 4.3. 
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PROOF. If e = 0 and A c (E\Bl ) X {O}, since g;l(O) n (Bl X B2) is compact 
and A is closed, the existence of an en with the properties of Proposition 4.1 is 
assured for each n (for the other cases en = e). By Corollary 4.1 the map gn is O-epi 
on (U\A) n En if and only if gn is O-epi on (Bl X B2) n En and gn is O-epi on 
(U\ (A U Bf X {Om n En if and only if gn is O-epi on (Bl X B2 \ (A U Bf X {Om 
n En. The results analogous to Corollary 4.1 follow from the control on the zeros of 
g and gn. If S is closed in U and g2 is continuous on S, then, from Remark 2.9, the 
map g2 is O-epi on S n (U\A), respectively on S n (U\ (A U (Bf X {Om). The 
last part of the conclusion follows as in Corollaries 4.2 and 4.3. Q.E.D. 

B. Application to continuation and global implicit function theorem. Let U be an 
open subset of E X A, where E and A are Banach spaces. Here A is the parameter 
space which may be infinite dimensional: if this is the case, let {A M} be the family 
of sections of A given by all finite dimensional subspaces of A. 

Assume that 0 E Bl X B2 C U and that gl: U ~ G is of the form gl(X, A) = 
fl(x) - kl(x, A), withfl(tx) = t nfl(x) for t > 0 and some n > O. 

Assume also that: 
(l)fl is proper on Bl . 

(2) If C is a bounded subset of UM == un (E X AM)' then a(kl(C» ~ 
KM(C)a(fl(C», with KM(C) < K ~ 1, for large M (unless kl is a compact map, fl 
and kl send bounded sets into bounded sets). 

(3) gl(X, 0) =F 0 for all x E aBl. 
With this preparation we have the following. 

THEOREM 4.l. Let U and gl be as above and assume that (gl(X,O), AM) is O-epi on 
Bl X (B2 n AM) for large M (the map (fl(X) - (1 - 'T )kl(x, 0), AM) is O-epi on the 
same set if K = 1 for 0 ~ 'T < 'To). Then, if S = gll(O) and A = {(x,O): IIxll ~ rd, 
the set S \ A has a minimal closed subset ~ such that g 2 (x, A) == A is sectionally O-epi 
on ~ n (U\ (A n ~» with the following properties. 

(a) ~ intersects the fiber {A = O} inside Bl and, if gl(X, A) =F 0 on aBl X B2(rD for 
some r; ~ r2, then ~ intersects the fiber {A = AO} inside Blfor any Ao with IAol < r;. 

(b) ~ n AM for M large is either unbounded, or (~n AM) n aUM =F 0, or 
(~ n AM) n A =F 0. 

(c) If~ = ~l U ~2' with ~l' ~2proper and closed subsets of~, then dim(~l n ~2) 
~ dim A - l. In particular, ~ is connected and ~ has dimension at each point at least 
dim A (for points of ~ n au and ~ nA this has to be taken in the sense of Theorem 
3.1). 

(d) If ~ nA = 0 and the hypotheses for gl hold with U replaced by 0, then A is 
sectionally O-epi on ~ n 0, ~ is minimal and dim(~ n aV) ~ dim A-I for any 
bounded open set V with Bl X B2 eVe U and for V = U if ~ is bounded. Finally, if 
~ n(E X [0, AoD is bounded for any bounded AO and if dim(~ naU) < dim A-I, 
then ~ covers A. 

PROOF. Note first that fl is proper on closed and bounded subsets of E so that, 
from hypothesis (2), the map gl is proper on closed (in E) bounded subsets of UM. 
In particular the intersection of S with any closed (in E) bounded subset of UM is 



STRUCTURE AND DIMENSION OF GLOBAL BRANCHES 417 

compact. From this fact and property (3), it follows that there is an f > 0 such that 
(gl(X, A), A)-I(O) c BI X B2 U A. Clearly A is sectionally proper and sectionally 
bounded on closed (in E) bounded subsets of S. 

Now (gl(X, AM)' AM) is O-epi on BI X (B2 n AM) if and only if (gl(X,O), AM) is 
O-epi on this set, since the homotopy (gl(X, tAM)' AM) is admissible 

a(k l (·, ·)(C X 1)) = a(kIC, ')(Cr )) 

~ KM(Cr)a(jI(Cr )) = KM(Cr)a(jI(C)), 

where Cr = {(x, tAM): (x, AM) E C}). (Note also that, since gl is proper on 
IiI X (Ii2 n AM)' from Proposition 2.3, the map (gl(X, 0), AM) is O-epi on BI X (B2 
n AM) if and only if it is O-epi on IiI X (Ii2 n AM)') Thus, from Corollary 4.1, the 
map (gl' AM) is O-epi on (U\A) n (E X AM) and, from Property 2.9 we obtain 
that AM is O-epi on (S n AM) n (UM \A) and hence on (S n AM) n (U\A) 
(compact maps on U\A give compact maps on UM \A and the solutions of 
AM - h(x, AM) = 0 have to be on S n AM)' Thus A is sectionally O-epi on S n 
(U\A), then from Corollary 4.2 and Theorem 3.1, one gets all of the properties of 
the theorem except the second part of (a). 

If gl(X, A) =F 0 on aBl X Ii2(rD, then from the compactness of S n AM n (IiI X 
Ii2(rD) one gets fM such that gl(X, AM) =f:. 0 on (IiI \ IiIM) X (Ii2(rD n AM)' Then 
let Ao, with IAol < r{, be fixed so that Ao E A M for M large enough. Let cp: R + --+ R + 
be a nonincreasing function with cp(r) = 1 for 0 ~ r ~ r l - fM and cp(r) = 0 for 
r ~ r l. Consider the finite dimensional homotopy A - tcp(lIxlI)A o which is admissible 
by construction. Therefore A - cp(lIxll)A o is sectionally O-epi on }: and, from 
Property 2.1, the set}: must intersect the zero set of A - cp(llxlI)A o in U\ (A n ~), 
hence in BIM, where cp(lIxli) = 1. Q.E.D. 

In the context of A-proper O-epi maps we have the following. 

COROLLARY 4.5. Assume that E and F have projectional schemes as in Remark 2.9 
(so that one can give natural schemes on E X A M and F X A M by adding the identity 
on the second component). Assume that (gl (x, AM)' AM) satisfies assumptions (2) and 
(3) of Remark 2.9. Suppose that: 

(1) g 11(0) n A M intersected with any bounded and closed (in E) subset of U is 
compact for large M (this is automatically true if g I is continuous on U M ). 

(2) gl(X, 0) =F 0 on aBl' 
(3)(gl(X,0), AM) is A-proper O-epi on BI X B2. 
Then S \ A has a minimal closed subset }: such that A is sectionally O-epi on 

}: n (U \ (A n ~» with the properties of Theorem 4.1. 

PROOF. Note first that the local compactness of gll(O) n AM for a continuous 
A-proper map gl is well known. From assumptions (1) and (2) there is an f > 0 such 
that gl(X,O) =f:. 0 for rl - f ~ IIxll ~ rl + f. Let A. = {(x,O): IIxll ~ rl + f}. Then 
g(x, AM) = (gl(X, AM)' AM) has its zeros in (BI X B2 U A.) n (E X AM) as well as 
gn(x, AM) = (gl,n(X, AM)' AM) for n large enough, since if gl,n(Xn, O) = 0 for 
rl - f ~ Ilxll ~ rl + f, then from Property (3) of Remark 2.9 one would have 
gl (x, 0) = 0 for some x in this annulus. The rest of the proof follows from Corollary 
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4.4(a), modifying the argument for an infinite dimensional parameter space as in the 
proof of Theorem 4.1. Q.E.D. 

We shall give below equivalent conditions for (gl(X, 0), AM) to be O-epi on 
B 1 X (B2 n AM) when g 1 belongs to a more restricted class of maps. 

PROPOSITION 4.2. Assume that gl(X,O) is of the form x - kl(x)from Bl into E oo - n, 
where Eoo-n is an n-codimensional subspace of E and kl is compact. Then (gl(X,O), 
AM) is O-epi on Bl X (B2 n AM) if and only if the Mth suspension of the homotopy 
class of g 1 (x, 0) I aB is nontrivial (the stable homotopy class if dim E = + 00), where 

I 

M = dim AM. In particular, if E oo - n = E, if and only if the Leray-Schauder degree of 
gl(X,O) on Bl is nonzero. 

PROOF. Here A M acts as a suspension and the proposition follows from [GG or 1,1, 
p. 74]. Q.E.D. 

REMARK 4.1. Similar statements hold if gl(X, 0) = x - kl(x) with kl condensing, 
Eoo-n = E, or if gl is A-proper with dim QnF = dim PnE and the respective 
degrees. Also, if gl is A-proper, one may ask that the Mth suspension of the 
homotopy classes of gl,n be nontrivial for an infinite number of n's. As noted above, 
if E 00 - n = E, one may replace B 1 by any bounded open set in E, since then one 
may use the additivity property of the classical degree theory. 

The following result contains the application to the global implicit function 
theorem. 

PROPOSITION 4.3. Assume that fl is a linear Fredholm operator of nonnegative index 
and that kl(x,O)=o(lIxID for x close to zero (hence gl(O,O) = 0) and Qkl is 
condensing with respect to fl on Bl, where Q is a projection from F onto Range fl. 
Assume that for all rl small enough (1- Q)kl(Xl + x 2 ) "* ° for Xl E Ker fl with 
II xlii = rl and X2 belonging to a complement of Ker fl with IIx211 = o(rl). Then, 
(gl(X,O), AM) is O-epi on Bl X (B2 n AM) if and only if (1- Q)kl(Xl ) as a map-
ping from Sd-l == {x E Ker fl: Ilxlll = rd, d = dim Ker fl' onto Rd" \ {a}, d * = 
codimRange fl' has a nontrivial stable homotopy class (the n + M suspended homo-
topy class ifn == dimRangefl < + 00), Iffl is one-to-one, then (gl(X,O), AM) is O-epi 
on Bl X (B2 X AM). 

PROOF. Note first that if fl is a linear operator which is proper on Bl, then fl is 
semi-Fredholm with finite dimensional kernel and closed range, so that assumption 
(1) of Proposition 4.1 gives a part of the above hypothesis. Write then x = Xl + X2 , 

with Xl E Ker fl and x 2 in a complement of Ker fl' putting the maximum norm on 
the summand. Then, the map gl(X,O) == gl(X) can be written as gl(X) = f lx 2 -

Qkl(Xl + x 2 ) E9 -(1- Q)kl(Xl + x 2 ). Since a zero for the first summand gives 
x 2 = o(lIxlID, by taking the radius rl of Bl small enough, the homotopy f l x 2 -

(1 - t)Qkl(Xl + x 2 ) E9 -(1- Q)kl(Xl + (1 - t)x 2 ) is admissible (no zeros near 
the boundary and the condensing condition is verified). Hence, the map (gl(X), AM) 
is O-epi on Bl X (B2 n AM) if and only if the map (flX 2 , (1- Q)kl(Xl ), AM) is 
O-epi on the same set and, since fl is an isomorphism from the complement of Ker fl 
onto Range fl' if and only if the stabilized homotopy class of (1- Q)kl(Xl ) is 
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nontrivial. If Ker fl = {O}, then (fIx, AM) is always O-epi. Note that, from the 
construction, the map (f - (1 - ,. )go, AM) is also O-epi for 0 ..; ,. < 1. Q.E.D. 

REMARK 4.2. Note first that if the norm in F is given by the maximum of the 
norms on Range fl and on the complement of it, then IIQII = 1 and Qkl is 
condensing if and only if kl is condensing. The assumption on (1 - Q)kl(Xl + x 2 ) 

enables us to perform the deformation to (flx 2 , (1 - Q)kl(X 1 )). Any other similar 
assumption may replace the previous one: for example, if, close to zero, one has 

Ilkl(x) - kl(y )11..; c{max{ Ilxll, Ilyll} )Pllx - yll 
with /3 > 0, and 11(1 - Q)kl(xl)11 ~ Cllxll a with a < 2/3 + 1 and kl(O) = 0, then kl 
is a local contraction (hence Qk1 is a k-set-contraction); the first part of the equation 
is uniquely solvable for x 2 in terms of Xl with IIX211 ..; Kllx&B+l. Then we have 
11(1 - Q)k l (X I + x2)11 ~ Cilx111 a - C'IIXII12/Hl. 

REMARK 4.3. In Proposition 4.3 we have chosen Bl small. Of course, similar results 
could be obtained for arbitrary B l , provided the deformation is valid. For example 
with conditions on kl of the Landesman-Lazer-Nirenberg type for large B l. 

REMARK 4.4. It may happen that (1 - Q)k1(X l ) "* 0 only on a subspace of Ker fl. 
Then, by decomposing Ker fl one may regard the complement of the above subspace 
as a space of parameters, thus adding its dimension to the local dimension, provided 
the corresponding stable homotopy class is nontrivial. This argument applies, of 
course, to the setting of the preceding remark. 

REMARK 4.5. It would be extremely interesting to find an example of a mapping 
gl(X, A) such that gl(X, 0) gives a nontrivial map but such that (gl(X, 0), A) is trivial 
(for A E R for example) and such that the zeros of gl(X, A) do not satisfy the 
conclusion of Theorem 4.1. This is equivalent to the following homotopy problem: 
Letf: B X [-1,1] --+ Rm (B a ball in Rn) be such thatf(x, t) "* 0 on (oB) X [-1,1]. 
Assume that f(·,O): oB --+ Rm \ {O} defines a nontrivial element in IIn_l(sm-l) 
(hence by homotopy f( ., t) is nontrivial for each t and so r 1(0) n {t = to} "* 0). 
Assume that (f(x, t), t) as a mapping from o(B X [-1,1]) into Rm+l \ {O} defines 
a trivial element, the suspension of the preceding, in IIn(sm). Is it then true that r 1(0) has a I-dimensional connected subset connecting B X { - I} to B X {1}? 
Clearly, this is true if one is in the stable range (the suspension is then an 
isomorphism). 

The last result of this section is not stated in its maximal generality so as to 
achieve a clearer geometrical meaning (see also Remark 4.6 below). 

PROPOSITION 4.4 (ON THE EXISTENCE OF LOOPS AND BUBBLES). Let A be the 
(possibly infinite dimensional) parameter space and assume that E = F. Let gl (x, A) 
be of the form X - kl(x, A), where kl is compact on V and k 1(x, 0) = o(lIxll) close to 
zero. Suppose that in a neighborhood of (0, 0), say of the form Bl X B2 , the zeros of gl 
are of the form (A, X(A)), with X(A) continuous and x(O) = O. Let ~ be the connected 
component of gll(O) containing those zeros and assume that ~ is bounded and 
contained in U. Then: 

(1) There is a bounded open set V c U such that ~ c V and gl(X, A) "* 0 on oVand 
V "looks like" Bl X B2 in a neighborhood of zero. 
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(2) The set ~\ {(O, O)} has a closed minimal subset }; (~ = }; U {(O, O)} is the 
" bubble ") such that 

(a) }; is connected and has local dimension at least dim A and}; has the properties 
listed in Theorem 3.1 (in particular}; meets {A = O} outside Bl X B2); 

(b) A is O-epi on }; II (V\ {(O, O)}), in particular, for any neighborhood W of (0, 0), 
the map A restricted to }; II aw has no extensions (as those of Definition 2.3) to 
}; II (U\ W); 

(c) the set}; U {(O,O)} coincides with the set of zeros of the form (A, X(A» in a 
neighborhood of (0,0); 

(d) each intersection of}; with a hyperplane of the form E X {tAO}' for Ao E A, 
IIAoll = 1, has a minimal subset };~o of local dimension at least 1 such that 
};~o \ {tAO' X(tA O)' -e ~ t ~ e} is connected for e small enough and there is a map 
from };~o U {(O,O)} into Sl which is not homotopic to a constant (i.e., the set 
}; ~o U {(O, O)} "looks like" a loop ). 

PROOF. The construction of the set V is by now standard in Nonlinear Functional 
Analysis and has been used extensively in bifurcation theory (a standard reference is 
[W]) (see also [I, II, p. 191]), since ~is compact. 

Due to the fact that the deformation (x - tk1(x, A), A) is admissible in any 
neighborhood of (0,0) contained in Bl X B2, the index of the pair at (0,0) is 1. 
However, the Leray-Schauder degree of the pair (gl' A) in V is zero. In fact, if this is 
not so, then A is O-epi on g1 1(0) II V and, taking into account that V is bounded, 
one has that g11(0) II av * 0 (see Proposition 2.4). Then, by the additivity prop-
erty of the Leray-Schauder degree, the degree of the pair with respect to V\ W is 1 
for any open neighborhood Wof (0,0) contained in Bl X B2. Since V\ W contains 
the zeros of the pair, when restricted to V\ {(O, O)}, then the degree of the pair, with 
respect to any open set VI satisfying g 11(0) II {A = O} C VI C VI C V \ {(O, O)}, is 
1. This implies that the pair is O-epi on V\ {(O, O)} and, by Property 2.9, the map A 
is O-epi on g1 1(0) II (V\ {(O, 0) D. From the compactness of g1 1(0) II V the remain-
ing conditions of Theorem 3.1 are met and one gets the subset}; that meets {A = O} 
outside Bl X B2 and also meets aw for any Was above: this implies (recall that}; is 
connected) that}; is a subset of ~\ {(O, O)} and ~ = }; U {(O, O)} since ~ II au = 0. 
Decompose now the parameter space A as {tAO} e A, A = tAo e :\. From Property 
2.9 the map tAo is O-epi on {:\ = O} II}; II (V\ {(O,O)D. In particular, tAo must 
change sign on the set {:\ = O} II}; II a{(x, A): Ilxll < e' , IIAII < e} (from the 
compactness of}; U {(O,O)}, then A is O-epi on U\ {(x, A): Ilxil < e', IIAII < e} by 
Proposition 2.3). Clearly, one may choose e' , e so small that on the boundary of the 
ball {(x, A): Ilxll < e' , IIAII < e} the elements of}; II {:\ = O} are of the form (±e, 
x(±e». This implies (c). 

The first part of (d) is again an application of Theorem 3.1. Let h: V II {:\ = O} 
- Sl be the map defined by 

{ ei'ITt/E if x E B2 and It I ~ e, h(x,t)= 
- 1 otherwise 

(keep in mind the construction of the set V). If hl~ is homotopic to a constant, 
Xo 

then, by the homotopy extension property (see Remark 2.9), the map h is homotopic 
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to a constant also on Vn{~ = O}. Then, there is a lifting [Sp, p. 103] hI: 
V n {~ = O} -+ R of h, which coincides [Sp, p. 54] with the map t ~ '!Ttle in 
{It I ~ e} X B2 and such that h1(x, t)"* 0 for It I ~ e (from the exponential map). 
That is the map (gl(X, tAo)' hl(x, t» is nonzero on av and on V\ ({ It I ~ e} X B2) 
which leads to a contradiction since, on one hand, the degree of the pair on V must 
be the degree on {It I ~ e} X B2 , thus equal to 1, and, on the other hand (gl "* 0 on 
aV), the degree of this pair must be O. Q.E.D. 

REMARK 4.6. In the case when A = R one may give a third proof of the existence 
of the loop (besides that of the exponential map given in part (d) of the above 
proposition). Let ~ ± be the two pieces of ~ emanating from (± e, x( ± e». If these 
two pieces do not intersect, then, since they are compact, one may construct two 
disjoint open sets V ± with ~ ±c V ± and V = V +U V _U({ IAI < e} X B2). Defining 
g(x, A) as A on {IAI < e} X B2 and ±e on V ±' then the degree of (gl' g) on Vis the 
degree of (gl' A) on {IAI < e} X B2 , that is 1, which is impossible since V is 
bounded and gll(O) n av = 0. 

REMARK 4.7. It is clear that the same arguments apply for condensing maps and, 
also, when the identity is replaced by a Fredholm operator with the degree of 
(I - Q)kl(XI) nonzero. It would be interesting to have the same result in the case 
when the additivity property of the degree is not available. 

C. Application to bifurcation. Let U be an open subset of Ax E, where A and E 
are Banach spaces. Assume A = A X A, with dim A < + 00. The space A may 
reduce to {O} or may be infinite dimensional, in which case A is equipped with the 
family of all finite dimensional subspaces A M containing a fixed subspace A Mo. 
Assume that 0 E BI X B2 C U and that gl: U -+ F is of the form gl(A, x) = fl(X) 
- k1(A, x), with kl(A, 0) = O,fl(tX) = tnfl(X), for t > 0 and for some n > O. 

Assume that: 
(1) fl is proper on B2 • 

(2) If C is a bounded subset of UM = Un (A X AM X E), then a(kl(C» ~ 
KM(C)a(fI(C», with KM(C) < K ~ 1 for large M (unless kl is a compact map,jl 
and kl send bounded sets into bounded sets). 

(3) Assume that there is a continuous map f: A -+ A Mo' sending bounded sets into 
bounded sets, and positive numbers rl, r2 , e such that if gl(A, x) = 0 for Ilxll ~ r2> 
r1 - e ~ IIAII ~ r1 + e and A of the form (~, X = f(A», then x = O. Recall that 
Bl = {A: IIAII < rd, B2 = {x: IIxli < r2} and denote by Btt the set {(~, X M): 
X M E AM with IIAII < rd. (The set X = f(A) will be specified later on as a "surface" 
which is transversal to an "eigensurface" going through 0 and having as a tangent 
plane the hyperplane A.) Note that if A is finite dimensional, then X - f(A) may be 
any map from A into A. 

THEOREM 4.2. Let U and gl be as above and assume that the map (gl(~' XM , x), 
XM - f(~, XM), IIxll - r2/2) is O-epi on Btt X B2 for M large enough (the map 
(fl(X) - (l - 'T)kl(~' XM, x), XM - f(~, XM), Ilxll - r2/2) is O-epi on the same set 
if K = 1 for 0 ~ 'T < 'To). Then, if S = {(A, x) E U: gl(A, x) = 0, x "* O} we have 
that S has a minimal closed (in S) subset ~ such that the map (X - f(A), Ilxll - <p(IIAIJ) 
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is sectionally O-epi on the set ~ n (U\«A X {O}) n ~)), where cP: R+~ R+ is a 
nonincreasing function with cp{r) = r2/2 for r ~ rl and cp{r) = 0 for r? rl + e. 
Moreover, ~ has thefol/owingproperties: 

(a) The set ~ n {{x, A): ~ = f{A)} intersects B: X {O} and contains a closed 
connected subset, having local dimension at least 1, which is either unbounded, or 
intersects either au or A X {O} outside Bl X {O}. 

(b) If~ = ~l U ~2' with ~l' ~2 two proper closed subsets of~, then dim{~l n ~2) 
? dim A. In particular, ~ is connected and ~ has dimension at each point at least 
dim A + 1 (for points of~ nau and ~ n{A X {On this has to be understood in the 
sense of Theorem 3.1). 

(c) If the estimate of (3) holds for a family of mappings fr( A), then ~ is also minimal 
for the family of corresponding mappings with the same properties. 

PROOF. Let A = {A \ BD X {O}. As in the proof of Theorem 4.1 fl is proper on 
closed and bounded subsets of E and gl is proper on closed (in E) bounded subsets 
of UM , so that the intersection of S with bounded and closed (in E) subsets of UM is 
compact. Let g{A, x) == (gl{A, x), ~ - f{A)), IIxll - cp{IIAII) and gM(~' ~M' x) be 
the same map when restricted to X X A M' Then the zeros of g, which are the zeros 
of gM for M ? Mo by the construction of f(A), are the zeros of gl in B'l X B2 with 
~ = f(A), IIxll = r2/2, IIAII < rl - e, together with the set of A's with ~ = f(A), 
IIAII > rl + e, x = O. Furthermore, the zeros of (~ - f(A)), IIxll - cp(IIAII) satisfy the 
hypotheses of Corollary 4.1 (here the map f2 that appears in Corollary 4.1 is given by 
f2(A, x) = (~, II x II) which is homogeneous of degree 1 and f(A) is compact). From 
the hypotheses and Corollary 4.1 it follows that gM is O-epi on UM \ (AM X {On. By 
Property 2.9 the map (~M - f(~, ~M)' IIxll- cp(II(~, ~M)II)) is O-epi on (S n (X X 
AM)) n (UM \ (A X {Om and, as in the proof of Theorem 4.1, on (S n (X X AM)) 
n (U\ (A X {Om. Thus, since the complementing map is gN(A, x) = AN' then 
(~ - f(A), IIxll - cp(IIAII)) is sectionally O-epi on S n (U\ (A X {O})). Hence, from 
Corollary 4.3 and Theorem 3.1, one gets all the properties (b) and (c) of the theorem 
(It being finite dimensional gives an admissible homotopy for sectionally O-epi 
maps). 

Finally, by Property 2.9, the map IIxil - cp(IIAII) is O-epi on ~ n {(x, A): ~ = f(A)}. 
Therefore, by Theorem 3.1, one gets a minimal subset ~l of this set which is 
connected with local dimension at least 1 and such that IIxil - cp(IIAII) is O-epi on 
~l n (U\ «A X {On n ~)). Moreover, ~l meets the leve1l1xll = r2/2 inside B: X B2 
and ~l is either unbounded, or ~l intersects au or (A X {On n ~. It remains to 
show that ~l intersects B: X {O} and that, if ~l is bounded and ~l n au = 0, then 
~l also intersects the set of trivial solutions outside Bl. In fact, if ~l n (B: X {O}) 
= 0, then ~l n (B: X B2 ) is compact and, as such, is at a positive distance d from 
B: X {O}. The deformation IIxil - tcp(IIAII) for d/r2 ~ t ~ 1 is valid. But then, on 
~l n (Bl X B2) we have IIxil "" d/2 and this contradicts Property 2.1. On the other 
hand, if ~l is bounded and does not intersect neither au nor A X {O} outside Bl, 
then, again by compactness, the distance d from ~l to (A X {O n \ (B 1 X {O n is 
positive. By Property 2.2 the map IIxil - cp(l1A11) is O-epi on ~l n V, where V is the 
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intersection of a bounded open neighborhood of ~1 in U with the set {(A, x): IIxli 
> ~ min(d, r2/2)}. But, on ~1 II av, which is contained in B1 X B2, the map 
IIxll - <p(IIAII) is negative. From Corollary 3.1 one gets a contradiction (also one may 
argue as follows: From Property 2.9 the map IIxli - <p(IIAIi) is O-epi on ~1 II 
(U\ «A X {O}) II ~1» so that, if (A X {O}) II ~1 is contained in lif, the map 
cannot change sign on aV). Q.E.D. 

COROLLARY 4.6. As in Corollary 4.5 assume that E and F have projectional schemes 
and that the map gM(A, x) == (g1(X, X M, x), XM - f(X, X M), IIxll - <p(II(X, XM)II)) 
satisfies assumptions (2) and (3) of Remark 2.9. Suppose that: 

(1) g11(0) II (A X AM) intersected with any bounded and closed (in E) subset of U 
is compact for large M (this is true if g1 is continuous on U M). 

(2) If g1(A, x) = 0 for Ilxli ~ r2, r1 - e ~ IIAII ~ r1 + e and A of the form (X, X = 
f(A», then x = 0, wheref(A) is as in Theorem 4.2. 

(3) gM(A, x) is A-proper O-epi on B1 X Bzfor M ~ Mo. 
Then, there is a minimal subset ~ of S == g11(0)\(A X {O}) such that (X - f(A), 

Ilxll - <p(IIAII) is sectionally O-epi on ~ II (U\ «A X {O}) II ~», with the properties 
of Theorem 4.2. 

PROOF. As in the proof of Corollary 4.5 it is enough to show that one has control 
on the zeros of gn near IIAII = r1 at the level IIxli = rzl2. If g1 n(An, x n) = 0 for 
r1 - e ~ IIAnli ~ r1, Xn = f(An), one would get, from the A-p;operness of g, a 
subsequence converging to (A, x) with g(A, x) = 0 and II xII = r2/2, r1 - e ~ IIAII ~ 
r 1. The rest of the proof follows from Corollary 4.4(b), modifying the argument for 
an infinite dimensional parameter space as in the proof of Theorem 4.2. Q.E.D. 

In Theorem 4.2 the decomposition of A has been used only in order to specify the 
dimension of the space where the range of the map X - f(A) lies. 

We shall give below sufficient conditions for the map gM to be O-epi on Bf X B2 
which will be applied to the usual bifurcation situation. 

LEMMA 4.1. Assume that g1 and U satisfy properties (1) and (2) (in the case when 
K = 1 assume that, for C contained in B2, KM(tC) ~ KM(C) for all t E [0,1]) and 
that, in a neighborhood of B1 X B2, the map g1(A, x) has theformf1(x) - T(A)(X)-
h1 (A, x), with T(A)(X) homogeneous in x of degree n (as f1) and Ilh1(A, x)11 = o(llxlln) 
uniformly for A in A X AM. Assume also that the equation X = f(A) is solvable in that 
neighborhood in the form X = j(X), with j continuous. Assume finally that, for 
r1 - e ~ IIAII ~ r1 + e, the map f1 - T(X, j(X» is one-to-one. Then, for r2 small 
enough, the map gMis O-epi on Bf X B2 if and only if the map (f1(X) - T(X, j(X»(x), 
AM - f(A), Ilxll - r2/2) is O-epi on Bf X B2. In the case when K = 1, replace k1 
everywhere by (1 - 'T )k1 with 0 < 'T < 'To. Then if the map with (1 - 'T )k1 is O-epi, it is 
so with 'T = O. 

PROOF. Note first that, from the homogeneity of f1 and T(A) and from the 
smallness assumption on h1' it follows that for any bounded subset C of E we have 
a(T(X, XM)(C» ~ K M(C)a(f1(C» for (X, X M) in a neighborhood of Bf. In fact, if 
C is such a set, then for t small enough the set tC is contained in B 2 , so that there is 
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an e(t) such that Ilh1(~' ~M' tx)11 ~ e(t)t n for.x E C and e{t) -+ 0 as t -+ O. Then 

a((T(~, ~M)(') + h1(X,' ))(tC)) = tna((T(~, ~M)(') + h1(X, t· )/tn)(c)) 

~ K M(tC)t na(f1(C)), 

Hence a(T(~, ~M)(C» ~ KM(toC)a(j1(C» + 2e(t) for to small enough and t ~ to. 
Therefore, the map T(~, ~ M) is condensing with respect to f1 (in the case when k1 is 
k-set-contractive with respect to f1' so is T(~, ~M) with the same constant k). In 
particularf1 - T(~, ~M) is proper on B2 • Then for each (~, f(~» with IIiXII - r11 ~ e 
there is an r2 such that gl satisfies the hypothesis (3) of Theorem 4.2. In fact, if there 
is a sequence IIxKl1 tending to zero such that gl(XK, X) = 0, then setting YK = 
xK/llxKII and using the homogeneity of f1 and T(X) one would have f1(YK)-
T( X )( YK) = hI ( X, X K )III x Kiln. Since the right-hand side tends to zero and the 
left-hand side is proper, one would get a contradiction with the properties of 
f1 - T(X). The continuity of /(~) and the compactness of the set (~, i = j(~» 
(recall thatfhas range in AMo) when intersected with B1(r1 + e), will give a uniform 
lower bound for r2 such that the hypothesis is verified. Then let C be a bounded set 
in Bf X B2 • Choose t1 such that Ilh1(X, tx)t-nll ~ (1 - K)a(j1(C»/4 for 
(~, ~M' x) in C and 0 ~ t ~ t1 (if K = 1, then Kis replaced by 1 - T, 0 < T < TO)' 
Then, 

a ( T( . ) + hI ( . , .. ) ( . ) - n) ( C X [0, t 1]) ~ a ( T( . ) ( C)) + (1 - K) a (f1 ( C) ) /2 

~ (1 + K)a(f1( C))/2 
(k1 replaced by (1 - T)k1 if K = 1). Dividing the interval [t1' 1] in small slices, the 
argument of Proposition 4.1 together with the fact that (1 + K)l2 < 1 implies that 
the homotopy f1(X) - T(X)(x) - h1(X, tx)t- n is admissible (from the homogeneity 
it follows that the zeros are not moved for t > 0). One may then replace in gM the 
term gl(X, x) by f1(X) - T(~, ~M)(X). The finite dimensional deformation 
T(~, (1 - t)~M + t/(~» is also admissible. Finally, since k1 and T(X) are con-
densing with respect to f1' from Corollaries 2.2 and 2.4 one gets the last statement of 
the lemma. Q.E.D. 

In the classical bifurcation theory f1 - T( X) is a linear operator, corresponding to 
the linearization of gl(X, x) near X = 0, so that n = 1 and T(O) = O. As noted in the 
proof of Proposition 4.3, the fact that f1 is proper implies in this case that f1 is 
semi-Fredholm. In the rest of the paper f1 == A will stand for a Fredholm operator. 

LEMMA 4.2. Assume that f1 == A is a linear Fredholm operator with dim Ker A = d, 
codim Range A = d * and that T( X) is a family of linear operators, continuous in X in 
the norm topology, with T(O) = O. Then there is an r1 small enough such that, if 
IIXII ~ r1, A - T(X) is a Fredholm operator of index d - d* and the spectral proper-
ties of A - T( X) are given by the spectral properties of a d X d * matrix B (X) with 
B (0) = O. In particular, if d = d *, the points X for which A - T( X) is not an 
isomorphism are given by the zeros of det B (X). 

PROOF. This result is proved in [1,1, pp. 43, 44 and 48]. For the reader's 
convenience we shall give the form of B(X). (In [1,1] the map T(X) was assumed to 
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be real analytic in A. For the above result this is not necessary.) Let Q be a 
projection from F into Range A, decompose E as Ker A EB E 2 , X = Xl + X 2 and let 
K: Range A ~ E2 be the inverse of A. Then Ax - T(A)X can be written as 

AX2 - QT(A)(XI + x 2) ED - (I - Q)T(A)(XI + X2) 

and also as 

(A - QT(A))[X2 -(I - KQT(A))-IKQT(A)X I] 

EB - (I - Q)T(A)(I - KQT(A)) -IXI 

-(I - Q)T(A)[X2 -(I - KQT(A))-IKQT(A)XI], 

where rl has been chosen such that IIKQT(A)II < 1, hence A - QT(A) is an 
isomorphism for all A E A X A M' This implies that all the spectral information is 
given by B(A) == -(/ - Q)T(A)(/ - KQT(A»-I restricted to Ker A. Q.E.D. 

Even if A has index 0 and T(A) is real analytic in A, the set of zeros of det B(A) 
may be very complicated, being the union of algebraic varieties of different dimen-
sions (if A is complex and T( A) is complex analytic, then this set is an algebraic 
variety of complex codimension 1) (see [1,1, Chapter lID. 

In order to apply the sufficient condition of Lemma 4.1 and hence Theorem 4.1 to 
our next result, it is necessary for A to have nonpositive index (A - T(A) one-to-one 
for IIAII "" r I , on the "surface" ~ = j(> .. » and, in order to get a nontrivial invariant, 
for A to have index 0 (the case of nonzero index will be considered later). Since one 
is working in a neighborhood of A = 0, then r l is thought of as arbitrarily small, so 
that the "surface" ~ = jell.) is transversal to one of the "eigensurfaces" going 
through 0 and parametrized by ~. The reason for the form of the" transversal 
surface" is that, if its dimension does not complement the dimension of the 
eigensurface, then as explained in [1,1 and I,ll], the local invariant would be 
automatically O. Hypotheses of the form ~ = L~ + ~o, L a linear map, ~o fixed of 
small norm, are examples of such transversal surfaces. 

PROPOSITION 4.5. Assume that A is a Fredholm operator of index 0 and that T( A) is 
as above. Assume that one has a continuous family of functions J;(A) such that for 
IIAII ~ rl the zeros of~ = J;(A) have the form ~ = .I;(~) and for IIAII = rI , the operator 
A - T(~, .I;(~» is invertible. Assume that fo(A) = 0 for IIAII ~ ri . Then gM as defined 
in Theorem 4.2 is O-epi on Bf X B2 if and only if the stable image in IIK+d_I(Sd) 
under the Whitehead's i-homomorphism, of the class of B(~,O) in IIK_I(GL(d», is 
nontrivial. Here K = dim A, d = dimKer A. (For more details on the i-homomor-
phism see [I,ll, Chapter I].) (If dim E and dim A are finite, then this corresponds to the 
dim E2 + dim A suspension.) 

PROOF. From the continuity of .I; and Lemma 4.1 one gets an r2 such that 
hypothesis (3) is valid for the family J; and B(~, .I;(~» is invertible for II(~, .I;(~))II 
= r l and by continuity also for an interval [ri - e, r l + e]. Thus, from Lemmas 4.1 
and 4.2, one has to look at the map (Ax - T(~, .I;(~»x, ~M - ft(A), IIxll - r2/2). 
Decomposing A - T( A) into two summands, as in Lemma 4.2, one may perform the 
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following compact perturbations. In the first summand put 

x 2 -(1 - 'T)(I - KQT(A))-lKQT(A)Xl 
and in the second summand put 

(1 - 'T)(X2 -(1 - 'T)(I - KQT(A))-lKQT(A)Xl ): 

for IIAII = rl , A = (}.., ir(}..», A - T(A) is invertible so that those deformations are 
admissible. Then gM is O-epi if and only if «A - QT(A»X2' B(A)Xl' ~M - ft(A), 
IIxll - r2/2) is. Since T(A) is small in norm, hence strictly contracting on E2 with 
respect toA, one may use the deformation A - QT( 'TA), replace B(A) by B(}.., ir(}..» 
and, sending t to 0, the map gM is O-epi if and only if (AX2' B(}.., O)Xl' ~M' 
Ilxll - r2/2) is. That is if and only if the stable class of (B(}.., O)Xl' II xII - r2/2) in 
IIK+d_l(Sd) is nontrivial «AX2' ~M) acts as a suspension) and this is just the 
construction of the Whitehead map (see [I,ll]). Q.E.D. 

REMARK 4.8. If the index of A is positive and Ker A splits into El EB W with 
dim El = d* such that B(}.., /(}..» restricted to El and IIAII = rl is invertible, then W 
may be considered as a new space of parameters and one may replace B(A) by a 
d X d matrix B (A) by adding d - d * equations (this splitting is always possible if 
T(A) is real analytic; see [1,1, pp. 29 and 47]). If B(}", 0) is written as (B l (}..), B w(}..» 
with Bl(}..) a d* X d* matrix which is invertible for II}..II = rl , Bw (}..) a d* X 
(d - d*) matrix, then one may extend B(A) to the matrix 

with C(O) = O,C(}..) invertible for II}.. II = rl . This new matrix has the homotopy class 
in IIK_l(GL(d» of . 

( BlO(}..) 0) 
c(}..) 

so that if Bl has a nontrivial stable class one may choose C(}..) to be II}.. II I, or if Bl 
has a trivial class (hence deformable to 1) and if K ~ d - d *, then one may choose 
C(A) so that this matrix has nontrivial stable class if K == 0, 1,2,4 [8] and such that 
its image under the J-homomorphism is nontrivial. In fact, from the exact sequence 

IIK(Sd-d*) -+ IIK_l(GL(d - d*)) ~ IIK_l(GL(d - d* + 1)) -+ IIK_l(Sd-d*) 

it follows that for K ~ d - d*, the map i* is onto, hence under the Bott periodicity 
theorem and the Adams results on the J-homomorphism, one may always choose 
C(A) to be a generator of those groups with nontrivial J-image. In particular, if 
K = lone always gets a connected set ~ with local dimension at least d - d * + 1 
(see [1,1, p. 47] for a local version of this fact) if the index is positive. If K = 2 and 
d - d * ~ 2 this is also the case: in [1,1] one had this local result for A E C and A a 
complex operator of positive complex index d - d* (2(d - d*) as a real operator). 
For a negative index one could trade off the negative index against some subspace of 
the parameter space (see [1,1, p. 61]). 
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REMARK 4.9. It is not necessary to linearize gl or to take r1 small in order to obtain 
sufficient conditions. For example if E = F, fl(x) = x, then by using the weak 
homotopy equivalence between parametrized maps defined on SK-\ of compact 
and condensing type (see [AF and Bo]), one may restrict oneself to compact kl and, 
using the decomposition of the Fredholm operator A (with nonnegative index) to the 
case when A = I, I - k 1(·, A) maps E into E OO -n a fixed n-codimensional space of 
E. Then gM will be O-epi on Bf'I X B2 if and only if its stable homotopy class (as an 
element of II 00 -n-K+l(a(Bf'I X B2», see [GG]) is nontrivial. 

In our next proposition we shall give a necessary and sufficient condition for that 
to be true when dim A = 1, which includes the cases studied in [AA,I; AA,II; FMP,I 
and FMP,II] (where E oo - n = E). 

PROPOSITION 4.6. Let gl be of the form gl(A, x) = x - k 1(A, x) from E X A into 
E 00 - n, a n-codimensional subspace of E, and where k 1 is compact on finite dimensional 
subs paces of A and k 1(A, 0) == O. Assume that there are two points AI' A2 and a positive 
number e such that: 

(1) If gl(A, x) = 0 for IIxll ~ 2e, IIA - A;II ~ e, i = 1,2, and A is on the line joining 
Al with A2, then x = O. 

(2) The generalized index of gl(A1, x) is different from the generalized index of 
gl(A 2, x) (as elements ofiloo-n(s), S a sphere in E; ifn = 0, then these are the usual 
Leray-Schauder indices). 

Then, the set of nontrivial solutions has a minimal closed subset ~ with the properties 
of Theorem 4.2. In particular ~ is connected, has dimension at each point at least 
dim A. Moreover, }; n{(A, x): A belongs to the line going through Al and A2} 
intersects that line in the plane x = 0 strictly on the segment between Al and A2 and, if 
bounded, meets again that line strictly outside that segment. 

PROOF. Without loss of generality one may assume that the line going through Al 
and A 2 is represented by a one-dimensional subspace A and that Al = (- r1, 0), 
A2 = (rl' 0), where 0 E A. TakingBI = {IIAII < r1 + e}, B2 = {llxll < 2e},j(A) == 0, 
the three hypotheses of Theorem 4.2 are satisfied. It remains to show that 

_Z -= .. M' :=. (gl(A, AM' x), AM' IIxll- e) IS O-epl on Bl X B2. Fust, as above, deform, AM to 0 ill 
X - k 1(>-, ~M' x) (kl is compact on R X AM X E). Then use the following homo-
topy on the last term: (1 - t)(lIxll - e) + t(rl - 1>-1) which is positive if Ilxll > e and 
1>-1 < r1 while, if IIxll ~ 2e and r1 ~ 1>-1 ~ r1 + e, a zero of gl(>-'O, x) must have 
x = O. Hence the last term is negative so that the homotopy has its zeros in the set 
{IAI ~ rd X {llxll ~ e} and gM is deformable on Bf'I X B2 to 

(gl(>-'O, x), ~M' r1 -1>-1) == FM(A, x). 

Then let 

n = Bf'I X B2 \(:B!'1 X :B~ U :B~1 X :B~), 

where B~I = {(A = (>-, ~M): IIA + rIll < e/2)} and B~ = {llxll < e}. Then, FM sends 
U into R X RM X E oo - n \ {O}, and FM la(Bt'xB2 )' FM la(B-:'lxB2) have stable homo-
topy classes in IIoo-n(sl), where SI is a generic sphere in-R X RM X E, so that the 
sum of the last two classes is equal to the first (the generalized cohomotopy degree, 
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as defined in [I,ll, pp. 160 and 190)) of FM with respect to a~ is 0, since FM is 
nonzero on ~l Finally, the class of FM on a(B~l X B~) is the (M + I)-suspension of 
the class of gl( - r1, 0, x). Hence the class of FM in ITao -n(a(Bf X B2 » is nontrivial 
if and only if these two (M + I)-suspensions are different, i.e., if and only if gM is 
O-epi on Bf X B2 (for the case n = Osee [1,1, p. 79]). Note that if dim E = d < + 00, 
then gM on a(Bf X B2 ) defines an element of ITM+AS M+d- n) and g(±r1,0, x) 
elements of ITd_1(sd-n-l). If dim E = + 00, then the stable classes have to be 
different. Q.E.D. 

COROLLARY 4.7. The conclusions of Proposition 4.6 remain valid if the line going 
through Al and A2 is replaced by a curve defined in the form ~ - f(A) = ° with f 
having range in A Mo' i.e., the curve is given by the zeros of a mapping from A into A, a 
I-codimensional subspace of A, such that Al = (- r1, 0), A2 = (r1,0) and one of the 
following conditions is satisfied: 

(a) The curve, in the balls IIA - Aill ~ e, i = 1,2, can be parametrized by :\ and, 
furthermore, the curve between Al and A2 is contained in a box of the form 1:\1 < r1, 

I~MI < R and the curve outside the portion between Al - e and A2 + e does not enter 
the box 1:\1 ~ r 1 + e, I~ MI ~ R + e. The map cp of Theorem 4.2 is e inside the first box 
and ° outside the second box. 

(b) gl is defined only on an open subset U of Ax E and there is a mapping 1/;: 
A ~ A such that I/;Ix. = I (AN a complement in A of AM) such that I/; is a 

NO 0 0 

homeomorphism and the image of the curve under I/; satisfies the conditions of (a) (for 
example I/; = identity if U contains the boxes of (a» in which case one has a third 
possibility for ~, namely that it may meet au. The map cp is of the form cp'( I/; -1), with cp' 
as in (a) above. 

(c) gl is defined on U and I/; is a homeomorphism only in a neighborhood of the 
portion of the curve between Al and A z: in this case one has the conclusion of (b) for U, 
if n = ° (classical degree theory), or in general for that neighborhood. This is the case if ° is a regular value of~M - f(A). cp is e on the curve between Al and AZ and vanishes 
outside the above neighborhood. 

PROOF. Note first that the scaling property is true if one replaces Bl by any 
convex set containing the origin, in particular for the boxes of (a). Now, from the 
hypotheses of (a) we may perform in the box 1:\1 ~ r1 + e/2, II~ Mil ~ R, Ilxll ~ 2e, 
the deformations gl (:\, (1 - t)~ M + tf( A), x) and then 

(I - t)(lIxll- cp{IIAII) + t{r1 -1:\1)) 

(from the hypotheses of (a». We get to the point where the sum of the classes of 
- .. - -M -(gl(A, f(A), x), AM - f(A), r1 -IAI) on B +1 X B~ has to be zero. Then, if on B+l 

say, this curve is given by ~ M = j(:\) with j( r1) = 0, one may replace, in succes-
sive order, (:\, f(A» in gl by (r1,0) (linear deformation), ~M - f(A) by ~M­
f(:\, (1 - t)~M + tj(:\» and, finally, AM - f(:\, j(:\» = :\M - j(:\) by ~M­
(1 - t)j(:\) since j( r1) = 0. 

For (b) it is enough to note that gM(A, x) is O-epi (on U for example) if and only 
if gM(I/;(A), x) is O-epi (on I/;(U» and that I/; induces an isomorphism at the 
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cohomotopy level (see [1,1 Chapter III]). Hence the difference of the classes in A X E 
goes into the difference of the classes in I/;(A) X E (this is the extension of the 
classical composition rule for degree). 

For (c), in the case n = 0, it is enough to recall that the scaling property was 
introduced as a substitute for the excision property. The last statement is proved as 
in [FMP,II, proof of Theorem 2.4]. Q.E.D. 

REMARK 4.10. Note that if gl has a linearization at (AI' 0), in general one may not 
ask for x = ° to be an isolated zero if the linearization maps E into E 00 - n with 
n > 0, unless one may replace globally gl by a mapping from E into E of zero index 
as in Remark 4.9. 

REMARK 4.11. In the classical bifurcation situation, one supposes that one has a 
good knowledge of the behavior of gl(A, x) near x = 0, that is, that gl is lineariz-
able. As it has been seen in Proposition 4.5, the spectral properties of the lineariza-
tion are usually given in terms of a finite dimensional matrix, in particular, if n = 0, 
by the zeros of det B(A). Now, generically these zeros form a surface of codimension 
1, so that the situation of Proposition 4.6 is important for this case (more details will 
be given below). However, there are other generic situations where the zeros of 
det B(A) are not of codimension 1: for example, if A and E are complex Banach 
spaces with T(A) analytic in A, then the sets of zeros of det B(A) have (real) 
codimension 2 and the local indices do not change (there is always a path joining Al 
with A2 and not meeting the zeros of det B(A)) so that Proposition 4.6 does not 
apply (see [1,1, Chapter I]) since one has to consider all the spaces as real. In fact, if 
the linearization has the form I - T(A) with T(A) compact and analytic in A, then 
the set of points A where I - T( A) is not invertible has a discrete intersection with 
any complex plane A, provided that this plane contains one point AO where 
1- T(Ao) is invertible (see [1,1, p. 45]). If Al is a singular point for I - T(A) and 
det B(A) = a(A - A1Y + ... for the corresponding B(A) and A in that complex 
plane, then if n is odd, the map (gl(A, x), :\M' II xII - r2/2) is O-epi on Btt X B2 and 
one has the subset ~ of the nontrivial solutions branching off (AI' 0, 0) and of local 
dimension at least dim A-I (dim A is the dimension over the reals) with the 
properties of Theorem 4.2. This follows from Proposition 4.5 and, clearly, the 
hyperplane A may be replaced by any analytic surface AM - f(A). Note also that, in 
the same context, if n is even, then one may construct a nonlinear part h1(A, x) such 
that (AI' 0, 0) is not a bifurcation point for gl (A, x) (the proof of this fact will be 
given in a subsequent paper). It would be very interesting to construct an example 
where ~ has local dimension exactly dim A - l. This seems to be difficult since once 
one is on the bifurcated branch one has to avoid the continuation situation and, 
furthermore, if dimker(I - T(A 1)) = 1 one has bifurcation in all directions of a 
complex plane (see [1,1, p. 45]). 

REMARK 4.12. Another instance where the set of singular points has codimension 2 
is for the problem of periodic solutions of autonomous differential equations: 
x = f(A, x), A E A. No classical degree theory may be applied and one has to use 
either an invariant in rroo-1(S), as in [1,1], or, using the equivariant character of the 
problem, in rroo(Cpoo) (CPoo a complex projective space) as in [1,111]. The equivari-
ance will give that the local dimension is in fact at least dim A + l. (The method of 
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the present paper gives only dim A. The result for this case is included in a paper in 
preparation where the equivariant problem is considered in its generality.) 

Our last results concern the structure of the set of bifurcation points Lo == ~ (](A 
X {O}), Denote by Uo the set U (] (A X {O}) and assume dim A ~ l. 

PROPOSITION 4,7, Let L, f(A) and <p(A) be as in Theorem 4.2 and assume that 
(>- - f( A), Ilxll - <p( A» is sectionally O-epi on L (] (U - Lo). Then >- - f( A) is O-epi 
on Lo (] (Uo - Ao), where Ao == {A E A: >- = f(A), IIAII ~ rd. In particular Lo has a 
minimal closed (in Uo - Ao) subset Ll such that >- - f(A) is O-epi on Ll (] (Uo -
~l (] Ao)· Ll meets the zeros of>- - f(A) inside B 1, ~l is either unbounded or meets 
auo U Ao. Ll is connected and ~l has dimension at each point at least dim A. 

PROOF. Since the zeros of (>- - f( A), Ilxll - <p( A» on L are located in D == 
B(rl - e) X {x: Ilxll = r2/2}, then, from Property 2.2, this map is sectionally O-epi 
on L (] (U - (Lo U (Ao X E»). Furthermore on this set one may perform the 
homotopy IIxll - (1 - t)<p(A) - tr2/2, since the zeros of the pair are either in 
Ao X E or in D. Similarly (>- - f(A), Ilxll - 1) is sectionally O-epi on L (] (U - (Lo 
U (Ao X E») for any 0 < 1) < r2 • 

Suppose now that >- - f(A) is not sectionally O-epi on Lo (] (Uo - Ao). Then 
there is a finite dimensional bounded map h(A) with bounded support contained in 
Uo - A o' such that >- - f(A) - h(A) =f= 0 on Lo. Sincef(A) + h(A) is finite dimen-
sional (in some AM) and compact, there exists an open neighborhood V of 
Lo (] (Supph UBI) such that >- - f(A) - h(A) =f= 0 on V. Furthermore it is clear 
that for 1) small enough, if (A, x) belongs to ~ with A in (A. X AM) (] (Supp h UBI) 
and II x II ~ 21), then A is in V. Also, from the fact that the compact set (A. X AM) (] 
Supp h is contained in Uo, one may choose 1) smaller such that « A. X A) (] Supp h) 
X {x: IIxll ~ 31)} is contained in U. Then take !f;(x) a real function with value 0 for 
Ilxll ~ 1)/2 or Ilxll ~ 21) and value 1 for IIxll = 1). Let <p(A, x) be a Urysohn's 
function with values 0 on a neighborhood of au and 1 on «A. X AM) (] (Supp h U 
B1» X {x: Ilxll ~ 21)}. The map !f;(x)h(A)<p(A, x) has bounded support contained 
in U - (Lo U (Ao X E», thus (>- - f(A) - !f;(x)h(A)<p(A, x), Ilxll - 1) must have 
a zero in L (] (U - (Lo U (Ao X E»). For this point, !f;(x) = 1 and either A is in 
(A. X AM) (] Supp h so that <p(A, x) = 1, or h(A) = 0 and A belongs to B 1• Hence 
one has a zero of (>- - f(A) - h(A), Ilxll - 1) on L and A must belong to V, giving a 
contradiction. 

Finally, since A. is finite dimensional and f is compact, >- - f(A) is proper on 
bounded and closed subsets of A thus, from Property 2.10 >- - f(A) is O-epi on 
Lo (] (Uo - Ao). The rest of the proof follows, as in Corollary 4.2, from Theorem 3.1 
and Property 2.8. Q.E.D. 

In the case when dim A. = 1, one may give more information on Lo. For 
simplicity we shall assume, in our last proposition, that Uo is convex. 

LEMMA 4.3. Let Ua be an open subset of A, Lo be closed and Al = ( - rI, 0), 
A2 = (rI' 0) be two points of Uo - La. Then: 

(1) The following properties are equivalent: 
(a) Lo disconnects Ua betweenA I and A2 , i.e. any path in Uofrom Al to A2 meets Lo; 
(b) (t ;\2 - rI2) is O-epi on Ua - La; 
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(c) (~, :x? - r12) is not homotopic on Uo - ~o to (~, c), c a positive constant, via a 
finite dimensional homotopy, «~, c) is trivial). 

(2) If Uo is star-shaped with respect to A2 and ~o disconnects Uo between Al and A2, 
then ~o has a closed minimal subset ~ which disconnects Uo (i.e. no proper closed 
subset of~ has this property). If~ = ~1 U ~2 with ~1' ~2 two proper closed subsets of 
~, then dim ~1 () ~2 ~ dim A - 2. In particular ~ is connected and has local 
dimension at least dim A - 1. (If Uo is homeomorphic to a finite dimensional sphere 
this result is contained in [K, vol. II, p. 471].) 

PROOF. (1) Suppose first that there is a path A(t) in Uo, t in [0,1], A(O) = AI' 
A(l) = A2, which does not intersect ~o. From the compactness of the path one may 
assume that it is at a distance larger than some lo from ~ and, by taking a piecewise 
linear approximation, that it lies in some A X A M. One may modify the path so 
that, close to AI' it coincides with the segment joining Al to ( - r1 + lO,O) and, close to 
A2, with the segment joining (rl - lO,O) to A2. Finally one may move the path so that 
whenever it crosses the hyperplane ~ = r1 it does so travers ally (hence a finite even 
number of crossings) and such that, if to corresponds to a crossing, then A(to + lOT) 
= (rl + lOT, Ilo, po) for T in [-1,1], Ilo * 0 and (Ilo, po) depending only on to· 
Consider now the following finite dimensional homotopy: 

(~N' (-2rl)-\(~(t) - rl)~M -(~ - rl)~(t»), (~- ~(t)) (~- r1») 

for 0 ..; t ..; to - lo, to corresponding to the first crossing. The zeros of the second 
component represent the line joining A2 to A(t) and the zeros of the homotopy are at 
A2 and A(t). At to - lo perform the deformation 

(~N' (-2r1)-I( -EIl-(~ - r1)llo), 

(-2r1)-I( -EV -(1 - t)(~ - r1) - tlOllll(1)po), 

(1 - t)(~ - r 1 + lo)(~ - r 1) + tll(1l - Ilo»), 

where ~M == (Il, p). This homotopy does not move the line from A2 to A(to - e), nor 
its zeros, but reparametrizes the line with Il instead of~. Next cross the hyperplane 
~ = r1 with the homotopy 

(~N' (-2rl)-I(lOTIl-(~ - r1)llo), (2r1)-1(lOv - lOllllo1vo), 1l(1l- Ilo») 

for T in [-1,1]. Finally return to the parametrization by ~ for the line joining A2 to 
A(to + e), via the homotopy 

(~N' (-2rl)-1(lOll-(~ - r1)llo), (2r1)-1(lOv -(1 - t)lOllllo1 + t(~ - r1»)vO)' 
(1 - t)Il(1l - Ilo) + t(~ - r1 - E)(~ - rl»). 

One may then follow the homotopy (~N' ( - 2r1) -1«~( t) - rl)~ M - (~ - r1)~( t)), 
(~- ~(t»(~ - r1» until the next crossing, where ~ is (Il, -v) if ~ is (Il, v). Since 
there is an even number of crossings, one gets for t = 1 - lo the map 

(~N' (2r1)-llO~M' (~- r1 + lo)(~ - r1») 

which is clearly homotopic to (~N' ~M' (~ - rl)2) and to (~, c) on Uo - ~o for a 
positive c. Noting that, from Corollary 2.1, (~, ~2 - r12) is not O-epi on Uo - ~o one 
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has proved the implications b = c = a. Finally if ~o disconnects Uo' the map 
(t ).2 - r12) has local indices -1 at Al and 1 at A2 (hence Leray-Schauder degree 0 
on Uo) but is nevertheless O-epi on Uo - ~o: given any bounded open V, with 
V eVe Uo - ~o and containing Al and A2, these points belong to two different 
components of Von which the map has a nonzero degree (see Remark 2.7). This 
finishes the proof of part (1). 

For (2), let <ifbe the family of closed subsets C of ~o such that any path from Al to 
A2 cuts C. If <if' is a chain in <if, let ~ be the intersection of all elements of <if'. From 
the compactness of the paths, ~ cuts any path (and therefore is nonempty). By 
Zorn's lemma <if has a minimal element, also denoted by ~. Now, if ~ = ~1 U ~2' 
then, from the minimality of~, there are paths Al(t) and A2(t) joining Al to A2 and 
avoiding ~1 and ~2' These paths may be chosen as before. In particular, if 
dim A = 00 and dim ~1 n ~2 :s;; n < 00, one may choose AM such that dim AM;?; 
n + 3. 

Let K be the compact set of all line segments [A2' A1(t)], [A2' A2(t)]. Since Uo is 
star-shaped with respect to A2, the distance from K to auo is positive. Choose some 
positive 8 such that 38 is less than that distance and define V; = {A E Uo: 
distance(A, K) < i8} for i = 1,2,3. Then K c VI C V2 C V3 C Uo. Let <pj(A) be an 
Urysohn's function with values 1 on Y; and 0 on V;~1 for i = 1,2. Now write the 
homotopies based on A1(t) and A2(t) as (~ - hj(A, t), kj(A, t)) with hj(A, t) in AM' 
i = 1,2. By inspection of the homotopy, it is easy to see that on the line ~ - hj(A, t) 
= 0 and outside the segment [A2' A;(t)], the term k;(A, t) is positive. On V3 - ~;, 

i = 1,2, define the new homotopy 
g;(A, t) = (~- <P2(A)h;(A, t), <Pl(A)k;(A, t) +(1- <Pl(A))C). 

The zeros of gj(A, t) are A2 and A;(t). Clearly gl(A,O) = g2(A,0) is homotopic on 
V3 - ~ to (~, ).2 - rI2 ), via a linear deformation on the last term. gl(A, 1) = g2(A, 1) 
= (~, c), g;(A, t) = (~, c) when restricted to aV3 X [0,1]. Note finally that, since 
g;(A, t) is proper, one may suppose, from Proposition 2.3, that one is working on 
V3 - ~; and, from Corollary 2.1b, it is enough to define the homotopies on 
aV3 U ~j' We shall apply Lemma 3.1 on the sets Bl = B2 = (aV3 X [0,1]) U (~ X 
{OD u (~ X {l D, A; = Bl U (~; X [0,1]), i = 1,2, A = Al U A 2. The maps gl and 
g2 are those defined above and g(A, t) is (~, c) on (av; X [0,1]) U (~ X (lD, 
gl(A,O) on ~ X {O} and any finite dimensional extension on ~ X [0,1]. If dim ~1 n 
~2 < dim A - 2, then, from [P, p. 181], dim(~l n ~2) X [0,1] < dim A - 1. Since 
gl and g2 differ only on this last set, from Lemma 3.1, gl B] U B2 has a finite 
dimensional extension from A into A - {O}. That is g( A, 0) is homotopic to g( A, 1), 
via a finite dimensional homotopy and so, from Corollary 2.1b, g( A, 0) is not O-epi 
on V3 - ~, hence ~ does not separate V3 which is clearly a contradiction. The rest of 
the proof follows as in Theorem 3.1. Note that ~ is always connected for a general 
open set Uo. If this were not the case, then ~ = ~1 U ~2 with ~l n ~2 = 0 and one 
could choose Al(t) = A2(t). Q.E.D. 

PROPOSITION 4.8. Assume that Uo is convex, dim A = 1, dim A ;?; 1. Suppose that 
(~, IIxll - <p(A)) is sectionally O-epi on ~ n (Uo - ~o), where <p(A) is as in Proposi-
tion 4.6. Let Al = (- r1, 0), A2 = (rl'O). Then: 

(1) ~o has a closed connected minimal subset ~ of local dimension at least dim A, 
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which disconnects Uo between Al and A2· Also if ~ = ~1 U ~2 with ~1' ~2 two proper 
closed subsets of~, then dim ~1 n ~2 ;;:. dim A - 2 (if dim A = 1, then ~1 n ~2 * 
0). 

(2) For any pair of points ILl' IL2 with IL; in the connected component of A; in Uo - ~o, 

i = 1,2, then either ~ meets au above the segment [ILl' IL2] (this includes the case when 
~ is unbounded above this segment), or ~ covers ILl or IL2. If the first part of this 
alternative fails for all pairs (ILl' IL2),for example with a priori bounds, then ~ covers at 
least one of the components, i.e. for any IL in this component there is an x such that 
(IL, x) is in ~. 

PROOF. Part (1) will follow from Lemma 4.3 once we show that ~o disconnects Uo. 
If this is not so, there is a path A (t), lying in some A X A M at a distance at least e 
from ~, transversal to the hyperplane ~ = r1 with A(to + eT) = (r1 + eT, ILo, po), 
ILo * 0, close to a crossing at to. Assume that the path, close to AI' coincides with the 
segment from Al to (- r1 - e,O) and, close to A2, with the segment from A2 to 
(r1 + e,O). One may also assume that the path does not re-enter the box {I~I ~ r1 + 
e} X {II"-II ~ e} outside these segments (if it does so, it must cut ~o inside the box, 
from Corollary 4.7). Note that one has an odd number of crossings of the hyper-
plane ~ = r1• Finally deform cp(A) so that its value 1/ is less than e above the segment 
[AI' A2] and so that cp(A) is 0 outside the above box. Consider then the homotopy 
(X - h(A, t), IIxll - cp,(A», where h(A, t) corresponds to the rotation of the line 
from A2 to A(t) around the point A2, with its reparametrization near the crossings as 
in Lemma 4.3, and cp,(A) has values 1/ on the segment [A2' A(t)] and 0 outside the 
box consisting of all A'S at a distance less than e from that segment. Since Uo is 
convex and open and the set K of segments is compact, the zeros of the homotopy 
on ~ are above the segment [A2' A(t)] and at a distance of at least e from the 
endpoints. Then one has that ("-N' IL, -P, IIxll- CP1_.(A» is sectionally O-epi on 
~ n (U - ~o) (- P comes from the odd number of crossings) and so ~ must 
intersect the segment between A2 and (r1 + e,O) as in Theorem 4.2, leading to a 
contradiction. Note that if dim A = 1, one does not need a reparametrization of the 
lines. Note also that the map ("-N' IL, P, IIxll - CP1_.(A» would also be sectionally 
O-epi since this notion does not depend on orientation. 

For the second part of the proposition, assume there is a pair of points IL; = (s;, "-;) 
in the component of A;, i = 1,2, such that ~, above the segment [ILl' IL2], is bounded 
and contained in U and such that ~ n ({ A = IL;} X E) = 0. By slightly moving AI' 
A2 and the coordinate system in A, one may assume that Sl * r1 and Sl * S2. 
Construct paths A;(t) from A; to IL;, in the component of A;, lying in some A X AM 
for i = 1,2 as in the first part. The first path is transversal to the hyperplane ~ = r1 

and the second to the hyperplane ~ = Sl. Rotating the lines [A2' A1(t)] around A2, 
the map ("-N' (Sl - r1)"-M - (~ - r1)"-1' IIxll - CP1(A» will be sectionally O-epi on 
~ n (U - ~o), where CP1 has values 1/ on the line between A2 and ILl and 0 outside an 
e-tubular neighborhood of that line. (1/ < e and both chosen as above uniformly on 
the paths.) Writing the above map as ("-N' (Sl - r1)("-M - "-I) - (~ - Sl)"-l' IIxll -
CP1(A» and rotating the segments [ILl' A2(t)] around ILl' the map 

("-N' (Sl - S2)("-M - ~1) -(~ - Sl)(~l - ~2), IIxll- CP2(A)) 
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will be sectionally O-epi on ~ n (U - ~o)' where fP2 is.,., on [ILl' IL2] and 0 outside an 
e-tubular neighborhood of that segment. Since ~ above [ILl' IL2] is compact (see the 
proof of Theorem 4.2) one may choose e small enough such that the points on 
[ILl' IL2] at a distance less than e from the endpoints are not covered by ~. Let 
~I' == ~ n ([ILl' IL2] X E) and UI' == Un ([ILl' IL2] X E). Then, from Properties 2.2, 
2.9,2.6 and 2.10, Ilxll - fP2(A) is O-epi on ~I' n (It - ~o), hence one is reduced to a 
one-parameter problem. Since;' is compact and away from alt, one may increase .,., 
above the maximum of IIxll on ~I" thus contradicting Property 2.1. Finally if for any 
pair ILl' IL2' ~I' is bounded and contained in U, then, if ILl is not covered by ~, ~ 
must cover IL2 and any other point in the component of A2. Q.E.D. 

REMARK 4.13. If ~ is given by the zeros of x - T(A)x - h(A, x), as in Proposi-
tion 4.5, and if To is the set of A'S such that I - T(A) is not invertible, then clearly 
the local index of 1- T(A) is constant on each connected component of Uo - To 
and so To disconnects Uo. Note that in this case, the points of To are given locally 
(Lemma 4.2) by the singular points of some matrix B( A). However, by similarity, 
det B(A) is defined globally and To is given by the zeros of det B(A). One may then 
apply the results for continuation, in particular Proposition 4.4 on the map (>., 
det B(A» which is O-epi on Uo if and only if det B(A) has different signs at Al and 
A2 • 

REMARK 4.14. Proposition 4.8 is a primitive version of duality between essential 
maps on ~o and connectedness of Uo - ~o. In case A > 1, it would be interesting to 
go deeper into this duality. 

EXAMPLE 4.1. Let 
I(x, AI' A2) = X(A; + A22 - 2A 2)(A; +(A2 - 1)2) 

+x3(2A; + 2(A2 - 1)2 + 1) + x 5 

= X[(A; +(A2 - 1)2 + x2r -(A; +(A2 - 1)2 - X2)]. 
The zeros of I(x, AI' A2) correspond either to x = 0, or to a lemniscate centered at 
(0,0,1) and rotated around the x-axis. From Proposition 4.6, (f(x, AI' A2), AI' x 2 -

.,.,2) has degree 2, so that from Proposition 4.8, ~o is the union of the circle 
A; + (A2 - 1)2 = 1 and of the point (0,1). Since ~ is connected, ~ is either the 
upper or the lower part of the lemniscate. Note that at the point (0,1) the 
generalized index of (f(x, AI' A2), x 2 - .,.,2), as an element of II 2(Sl), is zero. Now, 
it is known that if all bifurcation points on a bounded continuum of S are of the 
same type, then the algebraic sum of the local indices is ° in the corresponding stable 
group (see [1,1, Chapters 1 and 2]). It would be interesting to know if a classification 
of bifurcation points is possible, for example if a point with nonzero index in IIm 
(the stable group for IIm+k(Sk» may be connected to a surface of points with 
nonzero index in IIn for n < m. 
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