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a b s t r a c t

Computational models describing the behavior of complex physical systems are often
used in the engineering design field to identify better or optimal solutions with respect
to previously defined performance criteria. Multi-objective optimization problems arise
and the set of optimal compromise solutions (Pareto front) has to be identified by an
effective and complete search procedure in order to let the decision maker, the designer,
to carry out the best choice. Four multi-objective optimization techniques are analyzed
by describing their formulation, advantages and disadvantages. The effectiveness of
the selected techniques for engineering design purposes is verified by comparing the
results obtained by solving a few benchmarks and a real structural engineering problem
concerning an engine bracket of a car.

1. Introduction

Computational models are commonly used in engineering design activities for the simulation of complex physical
systems. They are often employed as virtual prototypeswhere a set of predefined systemparameters are adjusted to improve
or optimize the performance of the physical system as defined by one or more system performance objectives.

The optimization of a specific virtual prototype requires the implementation of the corresponding computational model,
the evaluation of the performance objectives and the iterative adjustment of the system parameters in order to obtain an
optimal solution. Multi-objective optimization problems arise in a natural fashion in the engineering field. It should be
preferable to optimize the objective functions all at once but, in general, they are in competition with each other and the
optimization process has to search for the best optimal compromise solution.

The primary goals in multi-objective optimization problem solution are:

✓ to preserve non dominated points in the objective space and associated solution points in the decision space;
✓ to keep making algorithmic progress toward the Pareto front in the objective function space;
✓ to maintain diversity of points on the Pareto front and of Pareto optimal solutions (decision space);
✓ to provide the decision maker, the designer, with a large enough but limited number of Pareto points for selection.

A preliminary review on single-objective optimization problems is required if the task of a multi-objective optimization
problem and its attainment has to be fully understood. As a consequence the paper is organized as follows. At first, the basic
terminology and nomenclature for use throughout the paper is introduced. Then, a classification of some mathematical
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programming techniques that have been proposed to solve multi-objective optimization problems and the analysis of some
of themwill be presented in order to underline their advantages and disadvantages. The results obtained by solving several
benchmark problems will be shown for comparison purposes. Finally, the results obtained by the study of a real world
engineering design problem concerning an engine bracket will be presented.

1.1. The single-objective optimization problem

A single-objective optimization problem can be defined as:

Definition 1 (General Single-Objective Optimization Problem). A general single-objective optimization problem is defined as
the minimization (or maximization) of a scalar objective function f (x) subject to inequality constraints gi(x) ≤ 0, i =

{1, . . . ,m} and equality constraints hj (x) = 0, j = {1, . . . , p} where x is a n-dimensional decision variable vector
x = (x1, . . . , xn) from some universe Ω . Ω contains all possible x that can be used to satisfy an evaluation of f (x) and
its constraints. Of course, x can be a vector of continuous or discrete variables as well as f being continuous or discrete.

Observe that gi(x) ≤ 0 and hj(x) = 0 represent constraints that must be fulfilled while optimizing (minimizing or
maximizing) f (x). Constraints can be explicit (i.e., given in algebraic form) or implicit, inwhich case the algorithm to compute
gi(x) for any given vector xmust be known. Note that p, the number of independent equality constraints, must be less than
n, the number of decision variables, because if p ≥ n the problem is said to be over-constrained since there are no degrees of
freedom left for optimizing (i.e., in other words, there would be more equations than unknowns). The number of degrees of
freedom is given by n−p if the equality constraints are independent and the inequality constraints do not reduce to equality
constraints.

The method for finding the global optimum of any function (may not be unique) is referred to as Global Optimization. In
general, the global minimum of a single-objective problem is presented in Definition 2 [1]:

Definition 2 (Single-Objective Global Minimum Optimization). Given a function f : Ω ⊆ Rn
→ R, Ω ≠ ∅, for x ∈ Ω the

value f ∗ , f (x∗) > −∞ is called a global minimum if and only if:

∀x ∈ Ω : f

x∗


≤ f (x) (1.1)

where x∗ is by definition the globalminimum solution, f is the objective function and the setΩ is the feasible region of x. The
goal of determining the global minimum solution is called the global optimization problem for a single-objective problem.

1.2. The multi-objective optimization problem

Multi-objective problems are those problems where the goal is to optimize simultaneously k objective functions
designated as: f1 (x) , f2 (x) , . . . , fk (x) and forming a vector function F(x):

F (x) =


f1(x)
f2(x)

...
fk(x)

 . (1.2)

Although single-objective optimization problems may have a unique optimal solution, multi-objective problems (as a
rule) present a possibly uncountable set of solutions. Two n-space Euclidean spaces Rn are considered in multi-objective
problems (Fig. 1.1):
• the n-dimensional space of the decision variables in which each coordinate axis corresponds to a component of vector x;
• the k-dimensional space of the objective functions in which each coordinate axis corresponds to a component vector

fk(x).

The evaluation function of a multi-objective problem, F : Ω → Λ, maps the decision variables (x = x1, . . . , xn) to vectors
(y = a1, . . . , ak). The set of solutions is found through the use of the Pareto Optimality Theory [2]. This mapping may or
may not be onto some region of the objective function space depending on the functions and the constraints defining the
multi-objective problem.

A decision maker has to choose one or more solutions by selecting one or more vectors. Note that the decision maker
usually selects an acceptable solution belonging to the Pareto front. Identifying a set of Pareto optimal solutions is thus a
key point for the decision maker ’s selection of a compromise solution satisfying all the objectives as better as possible.

The multi-objective optimization problem (also called multi-criteria optimization, multi-performance or vector
optimization problem) can then be defined as the problem of finding [3] ‘‘a vector of decision variables which satisfies
constraints and optimizes a vector functionwhose elements represent the objective functions. These functions form amathematical
description of performance criteria which are usually in conflict with each other. Hence, the term ‘optimize’ means finding such a
solution which would give the values of all the objective functions acceptable to the decision maker ’’.

A multi-objective global minimum (or maximum) problem is formally defined in Definition 3 [4]:
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Fig. 1.1. Evaluation mapping of a multi-objective problem.

Definition 3 (General Multi-Objective Optimization Problem). A general multi-objective optimization problem is defined as
the minimization (or maximization) of the objective function set F(x) = ( f1(x), . . . , fk(x)) subject to inequality constraints
gi(x) ≤ 0, i = {1, . . . ,m}, and equality constraints hj(x) = 0, j = {1, . . . , p}. The solution of a multi-objective
problem minimizes (or maximizes) the components of a vector F(x) where x is a n-dimensional decision variable vector
x = (x1, . . . , xn) from some universe Ω . It is noted that gi(x) ≤ 0 and hj(x) = 0 represent constraints that must be fulfilled
while minimizing (or maximizing) F(x) and Ω contains all possible x that can be used to satisfy an evaluation of F(x).

Thus, a multi-objective problem consists of k objectives reflected in the k objective functions, m + p constraints on the
objective functions and n decision variables. The k objective functions may be linear or nonlinear and continuous or discrete
in nature. Of course, the vector of decision variables xi can also be continuous or discrete.

Definition 4 (Ideal Vector). Let:

x0(i) =


x0(i)1 , x0(i)2 , . . . , x0(i)n

T
(1.3)

be a vector of variables which optimizes (either minimizes or maximizes) the ith objective function fi(x). In other words, the
vector x0(i) ∈ Ω is such that:

fi

x0(i)


= opt fi(x). (1.4)

Then, the vector:

f0 =

f 01 , f 02 , . . . , f 0k

T
(1.5)

where f 0i denotes the optimum of the ith function, is ideal for an multi-objective problem and the point in Rn which
determined this vector is the ideal solution and is consequently called the ideal vector. In other words, the ideal vector
contains the optimum for each separately considered objective achieved at the same point in Rn.

Definition 5 (Convexity). A function φ(x) is called convex over the domain of R if for any two vectors x1 and x2 ∈ R:

φ (θx1 + (1 − θ)x2) ≤ θφ (x1) + (1 − θ)φ(x2) (1.6)

where θ is a scalar in the range 0 ≤ θ ≤ 1. A convex function cannot have any value larger than the function values obtained
by linear interpolation between φ (x1) and φ(x2). If the reverse inequality of the previous equation holds, the function is
concave. Thus φ(x) is concave if −φ(x) is convex. Linear functions are convex and concave at the same time.

A set of points (or region) is defined as a convex set in n-dimensional space if, for all pairs of two points x1 and x2 in the
set, the straight-line segment joining them is also entirely in the set. Thus, every point x, where:

x = θx1 + (1 − θ) x2 0 ≤ θ ≤ 1 (1.7)

is also in the set. So, for example, the sets shown in Fig. 1.2 are convex, but the sets shown in Fig. 1.3 are not.
The concept of optimumwith several objective functions changes because in multi-objective problems the aim is to find

good compromise solutions (or trade-offs) rather than a single solution as in a global optimization problem. The concept of
optimummost commonly adopted is that originally proposed by Francis Ysidro Edgeworth and later generalized by Vilfredo
Pareto. The formal definition is provided next.
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Fig. 1.2. Two examples of convex sets.

Fig. 1.3. Two examples of non-convex sets.

Definition 6 (Pareto Optimality). A solution x ∈ Ω is said to be Pareto optimal with respect to Ω if and only if there is no
x′

∈ Ω for which v = F(x′) = ( f1(x′), . . . , fk(x′)) dominates u = F(x) = ( f1(x), . . . , fk(x)). The phrase Pareto optimal is
taken tomeanwith respect to the entire decision variable space unless otherwise specified. Inwords, this definition says that
x∗ is Pareto optimal if there exists no feasible vector xwhichwould decrease some criterionwithout causing a simultaneous
increase in at least one other criterion (assuming minimization).

Additionally, there are a few more definitions that are also adopted in multi-objective optimization:

Definition 7 (Pareto Dominance). A vector u = (u1, . . . , uk) is said to dominate another vector v = (v1, . . . , vk) (denoted
by u 4 v) if and only if u is partially less than v, i.e., ∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

Definition 8 (Pareto Optimal Set). For a given multi-objective problem, F(x), the Pareto Optimal Set, P ∗, is defined as:

P ∗
:=

x ∈ Ω | ∃x′

∈ ΩF(x′) 4 F(x)

. (1.8)

Pareto optimal solutions are those solutions within the decision space whose corresponding variables cannot be all
simultaneously improved. These solutions are also termed non-inferior, admissible or efficient solutions with the entire
set represented by P ∗. Their corresponding vectors are termed non dominated. By selecting a vector from this vector set
(the Pareto front set P F∗) implicitly indicates acceptable Pareto optimal solutions, decision variables. These solutions may
have no apparent relationship besides their membership in the Pareto optimal set. They form the set of all solutions whose
associated vectors are non dominated. Pareto optimal solutions are classified as such based on their evaluated functional
values.

Definition 9 (Pareto Front). For a given multi-objective problem, F(x), and Pareto optimal Set P ∗, the Pareto front P F∗ is
defined as:

P F∗
:=

u = F (x) |x ∈ P ∗


. (1.9)

When plotted in the objective space, non dominated vectors are collectively known as the Pareto front. Again, P ∗ is
a subset of some solution set. Its evaluated objective vectors form P F∗ of which each is non dominated with respect to
all objective vectors produced by evaluating every possible solution in Ω . In general, it is not easy to find an analytical
expression of the line or surface that contains these points and in most cases, it turns out to be impossible. The normal
procedure to generate the Pareto front is to compute many points in Ω and their corresponding f (Ω). When there is a
sufficient number of these, it is then possible to determine the non dominated points and to produce the Pareto front. A
sample Pareto front is shown in Fig. 1.4.

Definition 10 (Weak Pareto Optimality). A point x∗
∈ Ω is a weak Pareto optimal if there is no x ∈ Ω, x ≠ x∗ such that

fi (x) < fi (x∗) for i = 1, . . . , k.
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Fig. 1.4. Pareto front of a problem with two objective functions: cost and efficiency.

Definition 11 (Strict Pareto Optimality). A point x∗
∈ Ω is a strictly Pareto optimal if there is no x ∈ Ω, x ≠ x∗ such that

fi (x) ≤ fi (x∗) for i = 1, . . . , k.

Definition 12 (Kuhn–Tucker Conditions for Non Inferiority). If a solution x to the general multi-objective problem is non
inferior, then there exist wl = 0, l = 1, 2, . . . , k (wr is strictly positive for some r = 1, 2, . . . , k), and λi = 0, i =

1, 2, . . . ,m, such that:

x ∈ Ω (1.10)

and:

k
l=1

wl∇fl (x) −

m
i=1

λi∇gi (x) = 0. (1.11)

These conditions are necessary for a non inferior solution and, when all of the fl(x) are concave and Ω is a convex set, they
are sufficient as well.

Pareto optimal solutions are those which, when evaluated, produce vectors whose performance fi cannot be improved
without adversely affecting another fj, i ≠ j. The Pareto front P F∗ determined by evaluating P ∗ is fixed by the defined
multi-objective problem and does not change. Thus, P ∗ represents the best solutions available and allows the definition of
the global optimum of a multi-objective problem.

Definition 13 (Multi-Objective Global Minimum). Given a function f : Ω ⊆ Rn
→ Rk, Ω ≠ ∅, k > 2, for x ∈ Ω the set

P F∗ , f

x∗

i


> (−∞, . . . ,−∞) is called the global minimum if and only if:

∀x ∈ Ω : f

x∗

i


4 f (x) . (1.12)

Then, x∗

i , i = 1, . . . , n is the global minimum solution set (i.e., P ∗), f is the multiple objective function, and the set Ω

is the feasible region. The problem of determining the global minimum solution set is called the multi-objective global
optimization problem.

2. Multi-objective optimization techniques

There have been several attempts to classify themulti-objective optimization techniques currently in use. First of all, it is
quite important to distinguish the two stages inwhich the solution of amulti-objective optimization problemcanbedivided:
the optimization of the objective functions involved and the process of decidingwhat kind of trade-offs are appropriate from
the decision maker perspective (the so-called multi-criteria decision making process). In this section, some of the many
techniques available for these two stages are discussed by analyzing some of their advantages and disadvantages.

Cohon and Marks [5] proposed one of the most popular classification of techniques within the Operations Research
community that focuses on the way in which each method handles the two problems of searching and making decisions:
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1. a priori Preference Articulation: take decisions before searching (decide ⇒ search). This group of techniques includes
those approaches that assume that either a certain desired achievable goals or a certain pre-ordering of the objectives
can be performed by the decision maker prior to the search.

2. a posteriori Preference Articulation: search before making decisions (search ⇒ decide). These techniques do not require
prior preference information from the decision maker. Some of the techniques included in this category are among the
oldest multi-objective optimization approaches proposed.

3. Progressive Preference Articulation: integrate search and decisionmaking (decide⇔ search). These techniques normally
operate in three stages:
✓ find a non dominated solution,
✓ get the reaction of the decision maker regarding this non dominated solution and modify the preferences of the

objectives accordingly,
✓ repeat the two previous steps until the decision maker is satisfied or no further improvement is possible.

A different kind of approach is represented by Evolutionary Algorithms that are based on Darwin’s theory of survival of
the fittest. They are found on the idea that as the population evolves in a genetic algorithm, solutions that are non-dominated
are chosen to remain in the population.

One a priori Preference Articulation, two a posteriori Preference Articulations and one Evolutionary Algorithm have been
analyzed and compared in terms of performance in the following sections.

2.1. Global criterion method

The global criterionmethod is an a priori Preference Articulation. Its aim is tominimize a function (global criterion)which
is a measure of how close the decision maker can get to the ideal vector f 0. The most common form of this function is [6]:

f (x) =

k
i=1


f 0i − fi(x)

f 0i

p

(1.13)

where k is the number of objectives. For this formula Boychuk and Ovchinnikov [7] have suggested the exponent p = 1
whereas Salukvadze [8] has suggested p = 2, but other values of p can also be used. Obviously, the results differ greatly
depending on the value of the exponent p chosen. Thus, the selection of the best p is an issue in this method and it could
also be the case that any p could produce an unacceptable solution.

Another possible measure of closeness to the ideal solution is a family of Lp-metrics defined as follows:

Lp(f ) =


k

i=1

f 0i − fi(x)
p1/p

, 1 ≤ p ≤ ∞. (1.14)

In general, relative deviations of the form:

f 0i − fi(x)
f 0i

(1.15)

are preferred over absolute deviations because they have a substantive meaning in any context. The relevant Lp metrics are:

Lp(f ) =


k

i=1

 f 0i − fi(x)
f 0i

p
1/p

, 1 ≤ p ≤ ∞. (1.16)

The value of p points out the type of distance. For p = 1, all deviations from f ∗

i are taken into account in direct proportion to
their magnitudes which corresponds to ‘group utility’. For 2 ≤ p < ∞, the larger deviations carry greater weight in Lp. For
p = ∞, the largest deviation is the only one taken into consideration which leads to a purely ‘individual utility’ (min–max
criterion) in which all weighted deviations are equal.

Koski [9] has suggested Lp-metrics with a normalized vector objective function of the form:

fi (x) =

fi (x) − min
x∈F

fi(x)

max
x∈F

fi (x) − min
x∈F

fi (x)
. (1.17)

In this case, the values of every normalized function are limited to the range [0, 1].
Using the global criterion method one non-inferior solution is obtained. If certain parameters wi are used as weights for

the criteria, a required set of non-inferior solutions can be found. Duckstein [10] calls thismethod compromise programming
and his Lp-metric is:

Lp (x) =


k

i=1

w
p
i


fi (x) − f 0i
fi max − f 0i

p1/p

(1.18)

6



where wi are the weights, fi max is the worst value obtainable for criterion i, fi(x) is the result of implementing decision x
with respect to the ith criterion. The displaced ideal technique which proceeds to define an ideal point, a solution point,
another ideal point, etc. is an extension of compromise programming.

Another variation of this technique is the method suggested by Wierzbicki [11] in which the global function has a
form that penalizes the deviations from the so-called reference objective. Any reasonable or desirable point in the space
of objectives chosen by the decision maker can be considered as the reference objective. Let fT =


f r1 , f r2 , . . . , f rk

T be a
vector which defines this point. Then the function which is minimized has the form:

P

x, fT


= −

k
i=1

(fi(x) − f ri )2 + ϱ

k
i=1

max(0, (fi(x) − f ri )2) (1.19)

where ϱ > 0 is a penalty coefficient which in this method can be chosen as constant. Minimizing (1.19) for the assumed
point fr a non-inferior solution which is close to this point can be obtained. If for different points fr the procedure is carried
out, some representation of non-inferior solutions can be found.

The main advantage of these methods is their simplicity and their effectiveness because they do not require a Pareto
ranking procedure. However, their main disadvantage is the definition of the desired goals which requires some extra
computational effort. An additional problem with these techniques is that they will yield a non dominated solution only
if the goals are chosen in the feasible domain and such conditions may certainly limit their applicability. More information
on these methods can be found in [6,12,13].

2.2. Linear combination of weights

Zadeh [14] was the first to show that the third of the Kuhn–Tucker conditions for non inferior solutions implies that non
inferior solutions might be found by solving a scalar optimization problem in which the objective function is a weighted
sum of the components of the original vector-valued function. That is, the solution to the following problem:

min
k

i=1

αifi(x) (1.20)

subject to:

x ∈ Ω (1.21)

where αi ≥ 0 for all i and strictly positive for at least one objective, is usually non inferior. The non inferior set and the set of
non inferior solutions can be generated by parametrically varying the weights αi in the objective function. This was initially
demonstrated by Gass and Saaty [15] for a two-objective problem.

The reduction of the problem to a single-objective functionmeans tomake all alternatives comparable with a preference
framework that becomes a total order. Hence αi values choice is very important to achieve the final decision and, for this
reason, value choice is made by the decision maker. However the decision maker, in order to choose the coefficients, must
have a clear perception of how this choice influence optimal points.

Let consider a particular solution x for which the value of the objective function is fi = fi(x). Let fix two criteria h and k
and a value ∆h > 0 little enough. The decision maker is asked for which value ∆k > 0 there is no difference among x and an
hypothetical alternative that gives values f ∗

i = fi for i ≠ h, k and fh = fh −∆h and fk = fk +∆k. It is reasonable to think that
such value ∆h > 0 exists. Indeed for ∆h > 0 the hypothetical alternative dominates x while increasing ∆k the situation is
expected to be reversed. Because of the indifference of the two alternatives, the following must hold:

i

αifi =


i

αif ∗

i ⇒ 0 = αk∆k − αh∆h ⇒
αh

αk
=

∆k

∆h
. (1.22)

The previous equation links the coefficients of the linear combination to the comparative evaluation among the two criteria.
Varying h on all criteria, αh can be described through αk. Since coefficients are defined up to a positive constant (indeed
multiply all for the same positive constant does not change the problem (1.20)), αk can be set as αk = 1 and so αh = ∆k/∆h.
Obviously the bigger is the coefficient αh, the more the objective h is taken into account in the decision choice. Moreover it
has no meaning to consider a coefficient equal to zero since it would say non considering the corresponding objectives.

The procedure described implicitly assumed the linearity of the objective functions. In other words the values ∆h can
depend on levels fh of the objective considered. If the h criterion has been satisfied yet, the decision maker could prefer to
improve further while it could take an opposite behavior for a non-satisfying level. The interaction with the decision maker
normally supposes of resolving several times the problem (1.20) attempting different values for αi until a satisfying solution
is found.

The positive aspect of this approach is that min {F(x) : x ∈ X} provides a Pareto optimal point. Indeed if y is a dominated
solution by x, from dominance definition the following holds:

αifi(x) ≤ αifi(y) with i = 1, . . . ,m and αkfk(x) < αkfk(y) (1.23)

7



Fig. 2.1. The weighted sum method fails for non-convex problems.

leading to:
i

αifi(x) <


i

αifi(y). (1.24)

Thus no dominated solution can be optimum of (1.20).
On the contrary, a negative aspect is due to the fact that is usually not true that each Pareto optimal can be obtained

through a suitable choice of αi coefficients. The reason is the following: to solve (1.20) is equivalent to minimize the linear
functional


i αiyi for y ∈ f (X). A minimum of a linear functional on a set Y belongs both to the set Y and to the border of

the convex envelope of Y . Hence, those non dominated points that do not lie on the border of the convex envelope cannot be
generated by (1.20).More exactly, since only positiveαi coefficients are admitted, solving (1.20) generates only solutions that
lie on the border of the convex envelope f (X) + Rm

+
. In order to explain these concepts, let consider the following example:

let X =

x ∈ R2

: x21 + x22 = 1

and f (x) = x; in this case the efficient point set being XE =


x ∈ R2

: x21 + x22 = 1

, yet

x∗

1 = (1, 0) and x∗

2 = (0, 1) are the only feasible solutions that are optimal solutions of (1.20) for any αi ≥ 0 (Fig. 2.1).
The main advantages of this method are its simplicity (in implementation and use) and its efficiency (computationally

speaking). Its main disadvantage is the difficulty to determine the appropriate weight coefficients to be used when enough
information about the problem is not available (this is an important concern, particularly in real-world applications). Also,
a proper scaling of the objectives requires a considerable amount of extra knowledge about the problem. To obtain this
information could be a very expensive process. A more serious drawback of this approach, as underlined before, is that it
cannot generate certain portions of the Pareto front when its shape is concave, regardless of the weights combination used.
Nevertheless, aggregating functions could be very useful to get a preliminary sketch of the Pareto front of a certain problem
or to provide prior information to be exploited by another approach.

2.3. The ε-constraint method

Besides the weighted sum approach, the ε-constraint method is probably the best known technique to solve multi-
criteria optimization problems. There is no aggregation of criteria, instead only one of the original objectives is minimized
while the others are transformed to constraints. The idea was introduced by Haimes [16]. Through this approach among p
objective function only one is kept as such, the other p − 1 are transformed in constraints fixing threshold values εk (with
k = 1, . . . , p, k ≠ j) over them (if functions must be minimized). Therefore the problem:

min
x∈X


f1(x), . . . , fp(x)


(1.25)

is substituted by the ε-constraint problem:

min
x∈X

fj(x) (1.26)

fk(x) ≤ εk k = 1, . . . , p, k ≠ j. (1.27)

Fig. 2.2 illustrates a bi-criterion problem where an upper bound constraint is put on f1(x). The optimal values of the (1.26)
problem with j = 2 for two values of ε1 are indicated. These show that the constraints fi(x) ≤ εi might or might not be
active at an optimal solution.
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Fig. 2.2. Optimal solutions of ε-constraint problems (1.26).

The εi coefficients represent objective values that the decision maker wants however to be guaranteed. Even if the model
(1.26)–(1.27) introduces a total order among alternatives, there is no mixing among objectives and each one keeps its
identity. Even in this case, it is possible to consider these questions: given the εi > 0 values, it is possible to obtain a
Pareto optimal solution? Given a Pareto optimal point x∗, do εi > 0 values exist for which x∗ is an optimum for (1.25)?
Which relationship exist among εi and Pareto optimum?

Unlike linear combination of weights, Eqs. (1.26)–(1.27) are able to generate all Pareto optimal points varying εi > 0
values. Indeed if x∗ is a Pareto optimum, it is sufficient to choose ε such that:

εi = fi

x∗


i = 2, . . . , p. (1.28)

Thus if exists an admissible solution x such that f1 (x) < f1 (x∗) it would dominate x∗ contrary to the Pareto optimality
assumption of x∗. Hence no Pareto optimum is lost varying εi, independently from convexity or non-convexity of f (X).

On the contrary, it is not true that, given εi > 0, a Pareto optimal solution can be obtained. In fact the solution of
(1.26)–(1.27) is certainly non-dominated if it is the unique optimum. Unfortunately the property of the optimumuniqueness
is not easy to check. It could happens that solving (1.26)–(1.27), an optimum x∗ can be obtained, while another optimum x
exists, unknown by the analyst, such that:

f1

x∗


= f1 (x) , f2 (x) < f2

x∗


≤ ε2. (1.29)

Thus the point x∗ is dominated. However in this case the problem can be overcome by solving again (1.26)–(1.27) with
ε2 = f2 (x∗) − 1 (if for example f2 assumes only integer values). In this way it is possible to exclude from computation
x∗, while if x is admissible, it would be generated solving (1.26) (unless it is a dominated solution yet). Comparing the two
solutions x∗ can be eliminated as it is dominated.

In order to get adequate εi values, single-objective optimizations are normally carried out for each objective function in
turn by using mathematical programming techniques. For each objective function fi (i = 1, 2, . . . ,m) there is an optimal
solution vector x∗

i for which fi

x∗

i


is a minimum. Let be fi


x∗

i


the lower bound on i.e.:

εi ≥ fi

x∗

i


i = 1, 2, . . . , j − 1, j + 1, . . . , k (1.30)

and fi(x∗

j ) be the upper bound on εi, i.e.:

εi ≤ fi

x∗

j


i = 1, 2, . . . , j − 1, j + 1, . . . , k. (1.31)

When the bounds εi are too low, there is no solution and at least one of these boundsmust be relaxed. This approach is more
effective than the previous as it is able to generate all Pareto optima. However there are some algorithmic problems that
can be preferable linear combination.

There are relevant cases in which the set X has a particular structure such that allows efficient solving with only one
objective. Objective aggregation keeps these features of algorithmic efficiency. Vice versa adding constraints, changing the
structure of X , prevent application of know algorithms and often transform an easy problem into a difficult one. Hence what
you gain in information amount you lost in computational efficiency.

The main disadvantage of this approach is its (potentially high) computational cost, also due to the preliminary
individuation of εi values. Also, the encoding of the objective functions may be extremely difficult or even impossible for
certain applications, particularly if there are too many objectives. Nevertheless, the relative simplicity of the technique (its
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Fig. 3.1. A typical loosely-coupled, or ‘‘black-box’’, relationship between DAKOTA and the simulation code.

main advantage) has made it popular among some researchers (particularly in the engineering field). More information on
this method can be found in [6,17].

2.4. MOGA

The JEGA library [18] contains two global optimization methods. The first is a Multi-Objective Genetic Algorithm
(MOGA) which performs Pareto optimization. The second is a Single-Objective Genetic Algorithm (SOGA) which performs
optimization on a single-objective function. Both methods support general constraints and a mixture of real and discrete
variables.

Evolutionary algorithms are based on Darwin’s theory of survival of the fittest. This kind of algorithm starts with a
randomly selected population of design points in the parameter space, where the values of the design parameters form
a ‘genetic string’ analogous to DNA in a biological system that uniquely represents each design point in the population. Then
themethod follows a sequence of generations,where the best design points in the population (i.e., those having lowobjective
function values, in case of minimization) are considered to be the most ‘fit’ and are allowed to survive and reproduce. The
algorithm simulates the evolutionary process by employing themathematical analogs of processes such as natural selection,
breeding, and mutation. Ultimately, the method identifies a design point (or a family of design points) that minimizes the
objective function of the optimization problem.

Evolutionary algorithms seem particularly suitable to solve multi-objective optimization problems because they deal
simultaneously with a set of possible solutions (the so-called population). This allows to find several members of the Pareto
optimal set in a single ‘run’ of the algorithm, instead of having to perform a series of separate runs as in the case of the
traditional mathematical programming techniques. The main disadvantage is the computational cost that is in general very
high, this is due to the operational process of the method itself.

3. Benchmark description and analysis

The evaluation of the methods previously described has been carried out by solving five selected benchmarks
representative of the different possible Pareto fronts (concave, convex, linear, discontinuous) and particular attention
has been paid to their effectiveness in terms of number of evaluations required. In order to solve the benchmark
optimization problems the program DAKOTA (Design Analysis Kit for Optimization and Terascale Applications, Sandia
National Laboratories) has been used (Fig. 3.1). DAKOTA provides for a flexible, extensible interface between any simulation
code and a variety of iterativemethods and strategies and implements a small variety of techniques to solvemulti-objective
optimization problems as:

1. linear combination of weights method (see Section 2.2)
2. MOGA method (see Section 2.4)

These two methods show several disadvantages. So, in order to include more effective techniques in the performance
comparison, two of them have been implemented within the DAKOTA program:

3. global criterion method (see Section 2.1)
4. ε-constraint method (see Section 2.3).

In the following section, the proposed benchmarks will be described and the results obtained by applying the proposed
multi-objective techniques are shown.
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Fig. 3.2. Benchmark 1: reference Pareto front.

3.1. Benchmark 1

The first benchmark [19,20] is described by the minimization of two objective functions:

f1(x) = 1 − exp


−

3
i=1


xi −

1
√
3

2


(1.32)

f2(x) = 1 − exp


−

3
i=1


xi +

1
√
3

2


(1.33)

with side constraints on the decision variables −4 ≤ xi ≤ 4. The minimum of the objective function f1(x) is located
at (x1, . . . , xn) =


1/

√
3, . . . , 1/

√
3

whereas the minimum of the objective function f2(x) is located at (x1, . . . , xn) =

−1/
√
3, . . . ,−1/

√
3

. Due to the symmetry of the two functions, the Pareto optimal set corresponds to all points on the

line defined by:

x1 = x2 = x3 ∩ −1/
√
3 ≤ x1 ≤ 1/

√
3. (1.34)

It is a bound-constrained problem with two objective functions of three variables described by an exponential function
powered to a quadratic function. Fig. 3.2 shows the solution of the problem, i.e. the Pareto front assumed as reference.

The problem has been solved through themethods described in the previous section and the results are shown in Fig. 3.3
(MOGA method), in Fig. 3.4 (linear combination of weights method), in Fig. 3.5 (global criterion method) and in Fig. 3.6 (ε-
constraint method). The number of iterations required for the Pareto front identification is shown for each implemented
method.

The Pareto front is concave as shown by Fig. 3.2. The optimal solutions obtained by implementing the MOGA method
belong to the Pareto front analytically evaluated. The Pareto front can be fully described in detail with the drawback of a
very large number of iterations. The method cannot be stopped before the conclusion of the process otherwise any optimal
solution would be available for the decision maker.

The linear combinationmethod is not able to find any point of the Pareto frontwith the exception of its extremities. Given
that the Pareto front shape is usually unknown a priori, this means the decision maker is not able to figure out the other
optimal solutions belonging to the Pareto front and is not able to correctly choose between the possible best compromise
solutions available.

The global criterion and the ε-constraint methods allow to identify many optimal solutions belonging to the Pareto front
with a limited number of iterations. The results obtained allow to identify the complete Pareto front and, as a consequence,
the shape of the Pareto front allowing the decision maker to select between any possible best compromise solution by
interpolation if required.

3.2. Benchmark 2

The second benchmark [20] is a multi-objective problem constructed using Deb’s methodology [21]. The optimization
problem is described by the minimization of two objective functions:

11



Fig. 3.3. Benchmark 1: MOGA method (iterations: 2500).

Fig. 3.4. Benchmark 1: Linear combination method (iterations: 258).

f1(x) = x1 (1.35)

f2(x) = (1 + 10x2) ·


1 −


x1

1 + 10x2

2

−
x1

1 + 10x2
sin (8πx1)


(1.36)

with side constraints on the decision variables 0 ≤ x1 ≤ 1. It is a bound-constrained problem with two objective functions
one is a plane and the other is a sinusoidal function with increasing amplitude. By allowing variables x1 and x2 to lie in the
interval [0, 1], a two-objective optimization problemwith a discontinuous Pareto-optimal front can be defined. In Fig. 3.7 is
shown the solution of the problem, i.e. the Pareto front assumed as reference.

The problem has been solved through the methods described in the previous section and the results obtained are shown
in Fig. 3.8 (MOGA method), in Fig. 3.9 (linear combination of weights method), in Fig. 3.10 (global criterion method) and
in Fig. 3.11 (ε-constraint method). The number of iterations required for the Pareto front identification is shown for each
implemented method.

The Pareto front is discontinuous as shown by Fig. 3.7. The comments on the results of the application of the proposed
methods to the present benchmark problem are not so different with respect to those previously presented.

The optimal solutions obtained by implementing the MOGA method belong to the Pareto front analytically evaluated.
The Pareto front can be fully described in detail with the drawback of a very large number of iterations. The method cannot
be stopped before the conclusion of the process otherwise any optimal solution would be available for the decision maker.
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Fig. 3.5. Benchmark 1: Global criterion method (iterations: 286).

Fig. 3.6. Benchmark 1: ε-constraint method (iterations: 257).

The linear combination method is not able to find any point of the Pareto front with the exception of its extremities. Also
for these points, the results are characterized by errors. Given that the Pareto front shape is usually unknown a priori, this
means the decision maker is not able to figure out the other optimal solutions belonging to the Pareto front and is not able
to correctly choose between the possible best compromise solutions available.

The global criterion and the ε-constraint methods allow to identify many optimal solutions belonging to the Pareto front
with a limited number of iterations. Given the discontinuity of the Pareto front, its shape can be identified with more
difficulties. In any case, the decision maker would be able to select between the possible best compromise solutions also
by interpolation if required.

3.3. Benchmark 3

The third benchmark [22] is described by the minimization of the mass and the compliance of a four bar plane truss
(Fig. 3.12) respectively described by the two objective functions:

f1 (x) = L(2x1 +
√
2x2 +

√
2x3 + x4) (1.37)

f2 (x) =
FL
E


2
x1

+
2
√
2

x2
−

2
√
2

x3
+

2
x4


(1.38)
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Fig. 3.7. Benchmark 2: reference Pareto front.

Fig. 3.8. Benchmark 2: MOGA method (iterations: 3000).

with side constraints on the decision variables:

(F/σ) ≤ x1 ≤ 3 (F/σ) (1.39)
√
2 (F/σ) ≤ x2 ≤ 3 (F/σ) (1.40)

√
2 (F/σ) ≤ x2 ≤ 3 (F/σ) (1.41)

(F/σ) ≤ x4 ≤ 3 (F/σ) (1.42)

where the design variables are the cross-sectional areas of the bars and F = 10 kN, E = 2× 105 kN/cm2, L = 200 cm, σ =

10 kN/cm2.
The problem has been solved through themethods described in the previous sections and the results obtained are shown

in Fig. 3.14 (MOGA method), in Fig. 3.15 (linear combination of weights method), in Fig. 3.16 (global criterion method) and
in Fig. 3.17 (ε-constraint method). The number of iterations required for the Pareto front identification is shown for each
implemented method.

The Pareto front is convex as shown by Fig. 3.13. The optimal solutions obtained by implementing the MOGA method
belong to the Pareto front analytically evaluated. The Pareto front can be fully described in detail with the drawback of a
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Fig. 3.9. Benchmark 2: Linear combination method (iterations: 875).

Fig. 3.10. Benchmark 2: Global criterion method (iterations: 427).

very large number of iterations. The method cannot be stopped before the conclusion of the process otherwise any optimal
solution would be available for the decision maker.

The optimal solutions obtained by implementing the linear combination and the ε-constraint methods belong to the
Pareto front and can be obtained with a limited number of iterations, particularly if the former is used. The results obtained
allow to identify the complete Pareto front and, as a consequence, the shape of the Pareto front allowing the decision maker
to select between any possible best compromise solution by interpolation if required.

The global criterion method leads to the identification of best compromise solutions that do not belong to the Pareto
front. The results are characterized by errors that can lead to an incorrect evaluation of the best compromise by the decision
maker.

3.4. Benchmark 4

The fourth benchmark [20,23] is described by the minimization of two objective functions:

f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2 (1.43)

f2(x) = 9x1 − (x2 − 1)2 (1.44)

15



Fig. 3.11. Benchmark 2: ε-constraint method (iterations: 575).
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Fig. 3.12. A four bar plane truss.

Fig. 3.13. Benchmark 3: reference Pareto front.
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Fig. 3.14. Benchmark 3: MOGA method (iterations: 2500).

Fig. 3.15. Benchmark 3: Linear combination method (iterations: 261).

with side constraints on the decision variables:

x21 + x22 − 225 ≤ 0 (1.45)

x1 − 3x2 + 10 ≤ 0 (1.46)
−20 ≤ x1 ≤ 20 (1.47)
−20 ≤ x2 ≤ 20. (1.48)

It is a bound-constrained problem with two polynomial objective functions of two variables. The first objective function is
a smooth unimodal function which has a minimum at point (2, 1). The second objective function decreases monotonically
with decreasing x1 or with increasing absolute value of x2. The contours of the first function are concentric circles with the
center at (2, 1). This function value increases with increasing diameter of the circle. The second function (parallel parabolas)
constantly decreases along the line x2 = 1 toward decreasing x1. Careful observation reveals that the tangential points of
circles and parabolas dominate all other points. This is because any such tangential point is better in the second objective
than all other points belonging to the same circle. These tangential points are Pareto-optimal points. Fig. 3.18 shows the
solution of the problem, i.e. the Pareto front assumed as reference.

The problem has been solved through the methods described in the previous section and the results obtained are shown
in Fig. 3.19 (MOGA method), in Fig. 3.20 (linear combination of weights method), in Fig. 3.21 (global criterion method) and
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Fig. 3.16. Benchmark 3: Global criterion method (iterations: 450).

Fig. 3.17. Benchmark 3: ε-constraint method (iterations: 704).

in Fig. 3.22 (ε-constraint method). The number of iterations required for the Pareto front identification is shown for each
implemented method.

The Pareto front is linear, to say, concave and convex at the same time, as shown by Fig. 3.18. The optimal solutions
obtained by implementing the MOGA method belong to the Pareto front analytically evaluated. The Pareto front can be
fully described in detail with the drawback of a very large number of iterations. The method cannot be stopped before the
conclusion of the process otherwise any optimal solution would be available for the decision maker.

The linear combinationmethod is not able to find any point of the Pareto frontwith the exception of its extremities. Given
that the Pareto front shape is usually unknown a priori, this means the decision maker is not able to figure out the other
optimal solutions belonging to the Pareto front and is not able to correctly choose between the possible best compromise
solutions available.

The global criterion and the ε-constraint methods allow to identify many optimal solutions belonging to the Pareto front
with a limited number of iterations. The results obtained allow to identify the complete Pareto front and, as a consequence,
the shape of the Pareto front allowing the decision maker to select between any possible best compromise solution by
interpolation if required.
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Fig. 3.18. Benchmark 4: reference Pareto front.

Fig. 3.19. Benchmark 4: MOGA method (iterations: 2000).

3.5. Benchmark 5

The fifth benchmark [24] is based on the analysis of the two-bar plane truss shown in Fig. 3.23. The area of the cross
section of the members (A) and the position of the joints 1 and 2 (x) are treated as design variables. The truss is assumed to
be symmetric about the y axis. The coordinates of joint 3 are held constant. The weight of the truss and the displacement
of the joint 3 are considered as the objective functions f1 and f2. The stresses induced in the members are constrained to be
smaller than the permissible stress σ0. Thus the problem is formulated as the minimization of:

f1 (x) = 2ρhx2

1 + x21 (1.49)

f2 (x) =
Ph

1 + x21

1.5
(1 + x41)

0.5

2
√
2Ex21x2

(1.50)

subject to:

g1 (x) =
P(1 + x1)(1 + x21)

0.5

2
√
2x1x2

− σ0 ≤ 0 (1.51)
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Fig. 3.20. Benchmark 4: Linear combination method (iterations: 480).

Fig. 3.21. Benchmark 4: Global criterion method (iterations: 288).

g2 (x) =
P(−x1 + 1)(1 + x21)

0.5

2
√
2x1x2

− σ0 ≤ 0 (1.52)

where f1 (x) is the structural weight of the truss, f2 (x) is the displacement of joint 3 (Fig. 3.22) and g1 (x) and g2 (x) are
the stress constraints with a limiting value σ0. In the previous expressions, x1 = x/h, x2 = A/Amin, E = Young’ modulus
and ρ = density of material. It is assumed that: ρ = 0.283 lb/in3, h = 100 in, P = 104 lb, E = 3 × 107 lb/in2, σ0 =

2 × 104 lb/in2, Amin = 1 in2, and the lower and upper bounds of the design variables are 0, 1 ≤ x1 ≤ 2, 25 and
0, 5 ≤ x2 ≤ 2, 5.

It is a bound problem of two variables and two polynomial objective functions. In Fig. 3.24 the solution of the problem
is shown, i.e. the Pareto front assumed as reference. The problem has been solved through the methods described in the
previous sections and the results obtained are shown in Fig. 3.25 (MOGAmethod), in Fig. 3.26 (linear combination ofweights
method), in Fig. 3.27 (global criterion method) and in Fig. 3.28 (ε-constraint method). The number of iterations required for
the Pareto front identification is shown for each implemented method.

The Pareto front is convex as shown by Fig. 3.24. The optimal solutions obtained by implementing the MOGA method
belong to the Pareto front analytically evaluated. The Pareto front can be fully described in detail with the drawback of a
very large number of iterations. The method cannot be stopped before the conclusion of the process otherwise any optimal
solution would be available for the decision maker.
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Fig. 3.22. Benchmark 4: ε-constraint method (iterations: 758).

Fig. 3.23. A two-bar plane truss.

The optimal solutions obtained by implementing the linear combination and the ε-constraint methods belong to the
Pareto front and can be obtained with a limited number of iterations, particularly if the former is used. The results allow to
identify the complete Pareto front and, as a consequence, the shape of the Pareto front allowing the decision maker to select
between any possible best compromise solution by interpolation if required.

The global criterion method leads to the identification of best compromise solutions that do not belong to the Pareto
front. The results are characterized by errors that can lead to an incorrect evaluation of the best compromise by the decision
maker.

3.6. Results analysis

The analysis of the results obtained by solving the proposed five benchmarks shows that the MOGA method leads
always to a correct and accurate identification of the whole Pareto front. The results obtained by implementing the MOGA
method do not depend on the functions analyzed, both objectives and constraints. The drawback of theMOGAmethod is the
enormous number of iterations required and, consequently, the large computational time necessary to reach the Pareto front
identification. The large computational time makes this method generally not acceptable in usual engineering problems
where, e.g., the Finite Element Method is used and models with a large number of degrees of freedom are implemented.

The other three proposedmethods allow for an effective reduction of the computational cost, but introduce several other
disadvantages. The linear combination ofweightsmethod cannot generate certain portions of the Pareto frontwhen its shape
is concave because of itsmathematical formulation (see Section 2.2). The global criterionmethod is particularly efficientwith
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Fig. 3.24. Benchmark 5: reference Pareto front.

Fig. 3.25. Benchmark 5: MOGA method (iterations: 3000).

a non-convex or discontinuous Pareto front whereas it fails in the identification of concave Pareto fronts. The ε-constraint
method is particularly efficient with convex and linear Pareto fronts and is always able to identify the best compromise
solutions belonging to the Pareto front independently of its shape. In addition, the global criterion method is particularly
suitable when the ideal value of the objective functions is known and can be set as target whereas the ε-constraint method
is particularly convenient when the objective function bounds are known.

4. Engineering application

The proposed methods have been used to solve an engineering application problem concerning the engine bracket of
a medium size car shown in Fig. 4.1. Engine brackets link the engine to the car body and have to support the static and
dynamic loads due to the suspended engine mass. Each engine bracket is linked by spot welding to the car body structure
and through threaded fasteners to the engine.

Fig. 4.2 shows the finite element model of the component obtained by using the pre-processor HyperMesh (Altair
Engineering Inc., www.altair.com). Figs. 4.3 and 4.4 show the boundary conditions implemented in the multi-objective
optimization problem proposed. The presence of the spot welds has been simulated by introducing full constraints (white,
Fig. 4.3) and themass of the engine has been applied as a concentrated load. The enginemass is uniformly distributed on the
three threaded fasteners by rigid elements (light blue, Fig. 4.4). Moments acting on the engine bracket due to acceleration
fields have been neglected and a constant velocity of the car has been taken into consideration.
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Fig. 3.26. Benchmark 5: Linear combination method (iterations: 273).

Fig. 3.27. Benchmark 5: Global criterion method (iterations: 405).

The properties of the material the bracket is made of (steel) are:

• material density: ρ = 7850 kg/m3.
• Young’s modulus: E = 205 000 MPa.
• Poisson ratio: ν = 0.3.
• yield stress: σy = 460 MPa.
• ultimate stress: σu = 520 MPa.

The engine bracket is manufactured by forming and bending a sheet metal plate of uniform thickness. As a consequence,
the sheet metal thickness and its initial shape can be modified by taking into account the available space. Shape variables
have been defined by a morphing process by preserving the partial symmetry of the component due to the use of the same
mold for production cost reduction. Figs. 4.5–4.7 show three shape variables that allow tomodify the curvature of the vertical
walls of the component. Fig. 4.8 shows the shape variable that allows to modify the inclination of the vertical walls. Fig. 4.9
shows the shape variables that allows to create a circular edge at the internal radius of the central hole of the component.
Finally Fig. 4.10 shows the shape variable that allows to modify the height of the vertical wall.

Design variable values have been bound by taking into account theworking conditions of the component, the production
technologies and the objectives of the optimization problem, i.e. mass minimization and frequency maximization. The
thickness value ranges between 4 and 7mmas required by the productive process. Shapes variables instead vary in a suitable
range according to component geometry (Table 4.1):
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Fig. 3.28. Benchmark 5: ε-constraint method (iterations: 851).

Fig. 4.1. Engine bracket: CAD model.

Fig. 4.2. Engine bracket: finite element model.

• shape variables 1–3 range between−0.5 and 1 in order to allow a correct variation of the curvature by avoiding irregular
shapes or an ill conditioned mesh;

• shape variable 4 ranges among 0 and 1 in order to avoid the presence of undercuts (inclination angle larger than 90°);
• shape variables 5 and 6 range between −1 and 1 in order to allow the creation of an upward or downward edge and to

increase or decrease the vertical height of the wall.
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Fig. 4.3. Boundary conditions: constraints.

Fig. 4.4. Boundary conditions: applied load.

Fig. 4.5. Shape variable 1.

Table 4.1
Thickness and shape variables constraints.

Design variable Initial value Lower bound Upper bound

THICK 5.0 4.0 7.0
SHAPE 01 0.0 −0.5 1.0
SHAPE 02 0.0 −0.5 1.0
SHAPE 03 0.0 −0.5 1.0
SHAPE 04 0.0 0.0 1.0
SHAPE 05 0.0 −1.0 1.0
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Fig. 4.6. Shape variable 2.

Fig. 4.7. Shape variable 3.

Fig. 4.8. Shape variable 4.

The structural responses have been obtained by using the solver Abaqus (Dassault Systèmes, www.simulia.com). They
are:

• the maximum von Mises stress on the component;
• the maximum displacement in correspondence of the threaded fasteners;
• the first natural frequency of the component;
• the total mass of the component.

4.1. Single-objective problems

Two single-objective optimization problems have been defined first as the maximization of the first natural frequency
and the minimization of the component mass by imposing a constraint on the component mass and the first natural
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Fig. 4.9. Shape variable 5.

Fig. 4.10. Shape variable 6.

Table 4.2
Design variable, objective function and constraint values: first natural frequency maximization problem optimal solution.

Design variable Optimal value Objective function Optimal value

THICK 6.89 FREQ 01 1051 Hz
SHAPE 01 −0.27
SHAPE 02 −0.49 Design constraint Value
SHAPE 03 −0.33 MAX STRESS 204 MPa
SHAPE 04 0.36 MAX DISPL 0.08 mm
SHAPE 05 0.67 MASS 1.89 kg
SHAPE 06 −0.88

frequency, respectively. Then a multi-objective optimization problem looking for the first natural frequency maximization
and the component mass minimization has been defined and solved.

4.1.1. First natural frequency maximization
The first single-objective optimization problem has been defined as the maximization of the first natural frequency of

the component with constraints on the global mass, the maximum Von Mises stress and the maximum displacement of the
connection points with the engine:

maximize: I natural frequency (FREQ 01)
subject to: Von Mises stress (MAX STRESS) < 368 MPa

displacement (MAX DISPL) < 0.4 mm
mass (MASS) < 1.9 kg

The optimal solution is shown in Fig. 4.11 and the value of the design variables, of the objective function and of the
constraints is summarized in Table 4.2.

The sheet metal thickness approaches the upper bound of 7 mm, shape variables 1–3 provide for a small modification of
the side wall geometry while the fourth shape variable provides for a small inclination. The fifth shape variable controlling
the height of a possible edge surrounding the central hole of the component shows a meaningful change due to its positive
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Fig. 4.11. Optimal solution for the first natural frequency maximization problem.

Fig. 4.12. Optimal solution for the mass minimization problem.

effect in increasing the natural frequencies. The sixth design variable controlling the height of the sidewalls increases leading
to an increase of the component global mass. The first natural frequency maximization process has been controlled by the
constraint on the maximum component mass that reaches the maximum allowable value.

4.1.2. Mass minimization
The second single-objective optimization problem has been defined as the minimization of the component mass with

constraints on the first natural frequency, themaximumVonMises stress and themaximumdisplacement of the connection
points with the engine:

minimize: mass (MASS)
subject to: Von Mises stress (MAX STRESS) < 368 MPa

maximum displacement (MAX DISPL) < 0.4 mm
I natural frequency (FREQ 01) > 800 Hz

The optimal solution is shown in Fig. 4.12 and the corresponding value of the design variables is summarized in Table 4.3.

The optimization process searches for a minimum mass by decreasing the sheet metal thickness that reaches its lower
bound and by reducing the height of the side walls of the component. The curvature of the side walls has not been changed
significantly whereas an edge surrounding the central hole has been created in order to fulfill the constraints concerning the
maximum allowable displacement and the minimum first natural frequency constraints. The mass minimization process
has been controlled by the constraints on the maximum displacement and the minimum first natural frequency of the
component that reach their limit values.
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Table 4.3
Design variable, objective function and constraint values: mass minimization problem optimal solution.

Design variable Optimal value Objective function Optimal value

THICK 5.11 MASS 1.34 kg
SHAPE 01 −0.37
SHAPE 02 −0.47 Design constraint Value
SHAPE 03 0.03 MAX STRESS 333 MPa
SHAPE 04 0.11 MAX DISPL 0.18 mm
SHAPE 05 0.50 FREQ 01 823 Hz
SHAPE 06 0.74

Fig. 4.13. MOGA method (iterations: 1000).

Fig. 4.14. Linear combination method (iterations: 612).

4.2. Multi-objective problem

The results of the single-objective optimization problems previously presented show that the maximization of the first
natural frequency and the minimization of the mass of the engine bracket are competing objectives and that a multi-
objective optimization problem is worth to be implemented in order to identify the complete set of optimal compromise
solutions represented by the Pareto front.

The multi-objective optimization problem has been set up as:

minimize: mass (MASS)
maximize: I natural frequency (FREQ 01)
subject to: Von Mises stress (MAX STRESS) < 368 MPa

displacement (MAX DISPL) < 0.4 mm

It is a bound problem with two polynomial objective functions, two constraints on structural responses and 7 design
variables. The problem has been solved through the methods described in previous sections and the results are shown in
Fig. 4.13 (MOGA method), in Fig. 4.14 (linear combination of weights), in Fig. 4.15 (global criterion method) and in Fig. 4.16
(ε-constraint method).
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Fig. 4.15. Global criterion method (iterations: 556).

Fig. 4.16. ε-constraint method (iterations: 440).

TheMOGAmethod describes a detailed and accurate Pareto front but its computational cost is inevitably large (limited to
1000 iterations). As already pointed out, theMOGAmethod cannot be stoppedbefore the conclusion of the process otherwise
any optimal solution would be available for the decision maker. The Pareto front as identified by using the MOGA method
is non-convex and justifies the poor results obtained by using the linear combination method that is able to identify only
its extremity points. The more convenient methods are the ε-constraint and the global criterion. The number of iterations
required in order to identify the Pareto front with enough details is limited even if the global criterion method introduces
some errors in its evaluation as can be seen comparing the results shown in Figs. 4.13–4.16. The ε-constraint and the global
criterion methods are more useful in practice with respect to the MOGA method since the multi-objective optimization
process is characterized by the solution of a sequence of different single-objective optimization problems and provides for
a point of the front at the convergence as a result of the solution of each of them.

5. Conclusions

Computationalmodels describing the behavior of complex physical systems are often used in the engineering design field
to identify better or optimal solutions with respect to previously defined performance criteria. Multi-objective optimization
problems arise and the set of optimal compromise solutions (Pareto front) has to be identified by an effective and complete
search procedure in order to let the designer to carry out the best choice.

Four multi-objective optimization techniques have been analyzed by describing their formulation, advantages and
disadvantages: the MOGA method, the linear combination of weights method, the global criterion method and the ε-
constraintmethod. The evaluation of thesemethods has been carried out by solving five selected benchmarks representative
of the different possible Pareto fronts (concave, convex, linear, discontinuous) and particular attention has been paid to their
effectiveness in terms of number of evaluations required.

The MOGA method leads always to a correct and accurate identification of the whole Pareto front. The results obtained
by implementing the MOGA method do not depend on the analyzed objective and constraint functions. The drawback of
the MOGA method is the large number of iterations required and, consequently, the large computational effort required to
identify the Pareto front. The large computational effort makes this method generally not acceptable in usual engineering
problems where, e.g., the Finite Element Method is used and models with a large number of degrees of freedom are
implemented.
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The linear combination of weights and the global criterionmethods allow for an effective reduction of the computational
cost, but introduce several other advantages and disadvantages. The linear combination of weights method cannot generate
certain portions of the Pareto front when its shape is concave because of its mathematical formulation. The global criterion
method is particularly suitable when the ideal value of the objective functions is known and can be set as target, it is
particularly efficient in the identification of non-convex or discontinuous Pareto fronts, but it fails in the identification of
concave Pareto fronts.

The ε-constraint method allows for an effective reduction of the computational cost. It is particularly convenient when
the objective function bounds are known and it is particularly efficientwith convex and linear Pareto fronts. The ε-constraint
method is always able to identify the best compromise solutions belonging to the Pareto front independently of its shape.

The Pareto front of common multi-objective engineering optimization problems is usually unknown a priori. If the
evaluation of the objective and constraint functions is computationally expensive, it is necessary to implement optimization
methods able to identify the shape of the Pareto front with a reduced number of evaluations. The ε-constraint method
showed the best results and, as a consequence, has to be preferred in this kind of applications.
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