
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Is My Project’s Truck Factor Low? Theoretical and Empirical Considerations About the Truck Factor Threshold /
Torchiano, Marco; Filippo, Ricca; Alessandro, Marchetto. - STAMPA. - (2011), pp. 12-18. (Intervento presentato al
convegno WETSoM'11:2nd International Workshop on Emerging Trends in Software Metrics tenutosi a Honolulu, Hawaii
(USA) nel 24 May) [10.1145/1985374.1985379].

Original

Is My Project’s Truck Factor Low? Theoretical and Empirical Considerations About the Truck Factor
Threshold

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/1985374.1985379

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2388454 since:

ACM

Is My Project’s Truck Factor Low?
Theoretical and Empirical Considerations About the

Truck Factor Threshold

Marco Torchiano
Politecnico di Torino

Torino, Italy
marco.torchiano@polito.it

Filippo Ricca
DISI, Universitá di Genova

Genova, Italy
filippo.ricca@disi.unige.it

Alessandro Marchetto
FBK-irst

Trento, Italy
marchetto@fbk.eu

ABSTRACT
The Truck Factor is a simple way, proposed by the agile
community, to measure the system’s knowledge distribution
in a team of developers. It can be used to highlight potential
project problems due to the inadequate distribution of the
system knowledge. Notwithstanding its relevance, only few
studies investigated the Truck Factor and proposed ways to
efficiently measure, evaluate and use it. In particular, the
effective use of the Truck Factor is limited by the lack of
reliable thresholds.

In this preliminary paper, we present a theoretical model
concerning the Truck Factor and, in particular, we investi-
gate its use to define the maximum achievable Truck Factor
value in a project. The relevance of such a value concerns the
definition of a reliable threshold for the Truck Factor. Fur-
thermore in the paper, we document an experiment in which
we apply the proposed model to real software projects with
the aim of comparing the maximum achievable value of the
Truck Factor with the unique threshold proposed in litera-
ture. The preliminary outcome we achieved shows that the
existing threshold has some limitations and problems.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms
Management, Theory, Experimentation

Keywords
Truck factor, Code ownership, OSS

1. INTRODUCTION
The “collective code ownership” of a system is the way

proposed by the Extreme Programming (XP) [3] community
to distribute the system knowledge in the team. Distributing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0593-8/11/05 ...$10.00.

such a knowledge is particularly relevant to avoid situations
in which all the knowledge of the system is in the hands of
few developers only. Such contributors, who are the only
ones who know certain critical parts of a system are often
called Heroes [9]. It is well recognized that the presence
of Heroes and, more in general, a low amount of spread
of knowledge within a team can increase the risk of project
failure, especially whether some developers (e.g., the Heroes)
leave the project, e.g., for another company, project or for a
vacation.

The Truck Factor1 (TF) is a simple measurement pro-
posed several years ago to have an idea about the code
knowledge distribution within a team of developers. More
precisely, the TF of a project is defined as “the number of
developers on a team who have to be hit with a truck (i.e.,
to go on vacation, to become ill, or to leave the company for
another) before the project is in serious trouble”. Hence, ide-
ally, to avoid potential problems the TF of a project should
be as high as possible (as supposed by the XP principle of
collective code ownership [3]).

Despite its strong and evident relevance for team leaders
and project managers (a low TF should alert them!), only
few works/studies tried to understand how to measure and
use the TF in practice. In the best of our knowledge, Za-
zworka et al. [11] was the first and only who proposed a
way to compute the TF using information about the code
ownership coming from code repositories.

In particular, the use of the TF is limited also for the ab-
sence of an reliable threshold able to indicate that a project
run the risk to fail because the system knowledge is in the
hands of few developers. In other words, what is almost
completely missing in the literature is a reliable threshold
under which the responsible manager of the project should
be alerted. It is well-recognized by the scientific commu-
nity that the effective use of metrics is limited by the lack of
meaningful and reliable thresholds [1] and this is particularly
true for the TF. Indeed, without a clear and shared thresh-
old (or a way to compute it) is really difficult to interpret
and use a given metric. So far, to the best of our knowledge,
Siddharta Govindaray2 has been the only one that tried to
identify/propose, based on his experience, a threshold able
to identify a low TF. Defining a metric threshold based on
expert opinions and a limited number of observations is a

1
http://www.agileadvice.com/archives/2005/05/truck factor.html

2He is the founder of Silver Stripe Software Pvt Ltd, whose
flagship product Silver Catalyst is a tool for Agile Project
Management

good alternative when no other ways (e.g., empirical or the-
oretical) have been investigated.

In this paper, we present a theoretical model on the TF
including several variables (e.g., Team size) to identify the
maximum achievable TF value. This value concerns the
threshold selection for the TF, thus it is a meaningful value
for this measurement. Moreover, we present an experiment
based on real open-source projects that we performed to
evaluate the model and compare the maximum achievable
TF value with the Govindaray threshold. The achieved re-
sults show that the Govindaray proposal seems to have some
limitations. In particular, it seems to be reasonable only
with particular values of the analyzed variables. This out-
come suggests the need of further investigation and experi-
mentation in this context.

This paper is organized as follows. Section 2 summarizes
relevant notions and related works. Section 3 introduces the
theoretical model for the TF. Section 4 presents the data
used in the experiment and collected from real projects while
Section 5 analyzes these data and uses them to compare the
maximum achievable TF value with the Govindaray thresh-
old. Finally Section 6 discusses the results and Section 7
concludes the paper.

2. BACKGROUND

2.1 Code Ownership
The code ownership [7] identifies the policy used by team

managers to control the responsibility of developers with
respect to the system code development and management.

To monitor, analyze and thus change the code ownership
policy during the software life-cycle, adequate information
and tools are needed. The major source of information for
computing and evaluating code ownership is, often, the code
repository and the activities (i.e., commits) performed by
developers (i.e., committers) on code files that have been
tracked in log files (e.g., SVN, CVS). These log files mainly
contain the list of activities performed by developers on the
code and, for each activity, some additional information,
e.g., the version number of the system in which the activity
has been executed. Different approaches have been proposed
to measure the code ownership by analyzing these reposito-
ries. For instance, Weyuker et al. [10] propose to compute
the ownership at file level while Girba et al. [6] propose a
measure based on the percentage of source code lines modi-
fied by a specific developer.

Several works (e.g., [4]) analyze code ownership and de-
veloper activities tracked by code repositories for automati-
cally identifying experts for a particular portion or aspect of
a system. These recommender systems are often used to as-
sign a developer (i.e., the more suitable) to a change request.
These tools make the implicit assumption that a code change
performed by a developer indicates the knowledge of the in-
volved system portion for that developer. Fritz et al. [4]
perform an analysis of developer activities comparing them
with the actual knowledge of code achieved by developers.
Their analysis confirms that the frequency of the interaction
of developers with the code mainly indicates which portions
of the system/code a given developer known.

The assumption underlying such recommender systems
concerning the connection between code ownership and de-
veloper activities has been also adopted in our work, as well
as by Zazworka et al. [11].

2.2 Computing TF
To the best of our knowledge, the unique approach able to

compute the TF has been proposed by Zazworka et al. [11].
They applied that approach to five small projects written
by students for understanding whether (or not) XP projects
have higher TF than non-XP projects. That preliminary
experiment provides the first evidence that non-XP projects
have significant lower (i.e., worse) TFs than XP projects.

The key idea underlying their approach is that a file in the
repository is considered collectively owned by all the devel-
opers who worked on it. The assumption is that developers
who edited the file have knowledge about it. In this way, for
each file ’f’ of a project, the developer set for ’f’ consists of
the set of developers that did at least one commit on ’f’.

To better explain their proposal we consider some files
of Jfreechart (one of the projects used in our experimental
study) as an example. Table 1 and Table 2 show respectively
details about the four considered files (i.e., SWTUtils.java,
DefaultKeyedValues.java, ChartColor.java and PolarChart-
Panel.java) and their TF computation.

File (.java) Dev.Set
SWTUtils {mungady, nenry}

DefaultKeyedValues {mungady, taqua}
ChartColor {mungady}

PolarChartPanel {mungady}

Table 1: Jfreechart example

For example, columns“File”and“Dev.Set”of Table 1 show
that the set of developers that did at least one commit on
the file “SWTUtils” is {mungady, nenry}. The first rows of
Table 2 present the possible sets of developers potentially
“hit by a truck”. In particular, the second row of that Table
indicates how many developers would be missing (from 0 to
3), while the third row details exactly who. In each Table
cell, the sign “+” means that the remaining developers (i.e.,
those developers in the Dev.Set that have not been “hit by
a truck”) have the knowledge of the corresponding file re-
ported in the first column. Instead, the sign “-” means that
the developers “hit by a truck” were the only to know that
file. The penultimate row of the Table reports the preserved
file coverage (or residual knowledge) measured as percent-
age, precisely, the number of files known by the remaining
developers divided by the total number of files in the project
* 100. Finally, the last row reports the minimum file cov-
erage per number of missing developers. Let us consider,
for example, the scenario in which the developer mungady
leaves the project (see the third column of Table 2). When
losing mungady the knowledge of “ChartColor” and “Polar-
ChartPanel” is lost. This implies that in such a case the
remaining file coverage corresponds to 50% (i.e., 2/4*100).

To identify the TF, a target threshold (e.g., 50%) that
represents the critical file coverage for a project has to be
defined. Then, considering the minimum3 file coverage (i.e.,
the worst case, where the set of developers with the most
exclusive knowledge leaves) computed for set of missing de-
velopers, it is possible to plot a curve and identify the actual
TF for the project. Indeed, the TF can be deduced from this
plot by finding the intersection of the selected threshold with
the curve; if the obtained value is not an integer the point on

3Authors in [11] have also considered the best case and the
average.

TF: number of missing developers
File (.java) 0 1 1 1 2 2 2 3

{mungady} {taqua} {nenry} {mungady, {mungady, {nenry, {mungady,
taqua} nenry} taqua} taqua,

nenry}
SWTUtils + + + + + - + -
DefaultKeyedValues + + + + - + + -
ChartColor + - + + - - + -
PolarChartPanel + - + + - - + -

File Coverage % 100 50 100 100 25 25 100 0
Min. File Coverage % 100 50 25 0

Table 2: Truck Factor example

the left must be selected. Figure 1 shows, for instance, the
plot obtained for the Jfreechart example. In the example,
considering a file coverage threshold of 50%, the TF is 1.

0 1 2 3

0
20

40
60

80
10
0

Missing developers

R
em

ai
ni

ng
 fi

le
 c

ov
er

ag
e

(%
)

Truck Factor

Figure 1: Truck factor chart

2.3 Thresholds
In the TF computation thresholds are fundamental. As we

have seen in the approach proposed by Zazworka et al., the
TF strictly depend on a threshold that represents the critical
file coverage for the target project. To compute the TF such
a threshold, given in percentage, has to be defined. In other
words, the TF is a parametric measurement depending on a
threshold X (i.e., TFX%).

Moreover, to establish whether the TF is high or low we
need another fundamental threshold. Without it, we can
not infer/understand whether or not the target project has
low TF and thus the risk to get in trouble.

Siddharta Govindaray on his blog4 proposed some thresh-
olds. He claims that: “Small teams of under 10 people usu-
ally target a TF of 4-5 for most parts of the system (that
is around 40-50% of the team). Larger teams will probably
target a TF of around 8 (which would probably be around 20-
25% of the team). This means that should a couple of critical
people go on vacation or leave the company, there are enough
people in the team who can cover for them.” Therefore, one
can make the assumption that for a small team (i.e., ≤ 10
developers) the TF can be considered low if it is ≤ 40% of
the team size. Instead, for a large team (i.e., > 10 develop-
ers) the TF can be considered low if it is ≤ 20% of the team
size.

The problem with that threshold is that we can not trust
it. It appeared on a non reliable source of information (a
blog post) and it is not clear how it has been deduced by

4http://siddhi.blogspot.com/2005/06/truck-factor.html

Govindaray (expert opinion or by measurement data from a
representative set of projects?). As a consequence, we have
no guarantee that that threshold can be safely used.

3. THEORETICAL MODEL
In this section we present a theoretical model with the

goal of identifying the maximum possible TF (i.e., the
upper limit for TF) in function of an identified set of relevant
variables (e.g., Team size). In this paper, our model will be
mainly used to reason about the validity of the Govindaray
threshold but it is important to highlight that it is more
general and useful. For example, it could be used with any
proposed threshold.

For the model construction, we use the following variables:

• T: remaining file coverage (or residual knowledge) thresh-
old for the TF

• N: number of source files

• n: number of developers (or Team size)

• C: developer’s coverage, the average number of files
known by one developer

• x: number of missing developers (i.e., developers hit
with a truck)

An important factor in computing the TF is represented
by the distribution of Ci, i.e., the amount of knowledge of
each individual developer. The most favourable condition
can be found when all developers have the same amount (i.e.,
same number of known files not same files!) of knowledge
as we can deduce from the following reductio ad absurdum:
let us suppose, keeping constant the average knowledge, that
one developer has a larger knowledge than others; when such
a developer is removed from the team, the ensuing knowl-
edge reduction is larger than removing an average developer,
therefore her contribution to achieving the TF is greater, i.e.,
the TF is lower.

In the following, with the goal of identifying the maxi-
mum possible TF, we assume that all developers have equal
knowledge, that correspond to the average C̄, which will be
simply denoted as C. In addition we assume the knowledge
of the files to be uniformly distributed among the developers.

Given the above assumptions, we can compute the prob-
ability that a given file (f) is known by a specific developer
(d) as:

P (d, f) =
C

N

since the distribution of knowledge is uniform both for de-
velopers and files, such probability is independent of both.

In order to keep the considerations more general and inde-
pendent of the absolute number of files in the system, we in-
troduce the derived measure knowledge ratio KR = C/N ,
being the (average) proportion of system files known by a
single developer. Therefore the average number of develop-
ers that has a knowledge of a given file is:

K = n ·KR (1)

When K ≥ 1 (assuming a uniform distribution of knowl-
edge across files) each file is known by at least one developer.
When K is smaller than one, K · N is the number of files
known by the developers, the proportion of files known by
the development team can be obtained dividing by the total
number of files (N) that gives K.

We expect in a realistic and consistent case to have a
condition where each file is known to at least one developer;
such condition can be expressed as:

KR · n ≥ 1 (2)

For instance considering KR = 10% (i.e., each developer
knows on average 10% of the system’s files) a realistic case
would require a team sizes of at least 10 developers: if each
developer knows a different 10% of the system’s files, then
ten developers together know the whole system.

Now, let us bring into the equation the TF, which hypoth-
esizes a certain number of developers to be removed from the
project. If we remove x developers from the team then the
proportion of files known to some developer becomes:

K−x = (n− x) ·KR

When the number of developers removed from the team is
equal to the TF, i.e. x = TF , by definition we have that
K−TF ≤ T , that is:

(n− TF) ·KR ≤ T

Since the TF must be an integer value:

TF = floor5
„
n− T

KR

«
(3)

Let us now consider the case when not all developers
posses the same amount of knowledge about the system,
in particular we focus on the case when one developer has a
higher knowledge than the average an one as a lower knowl-
edge, more in detail

• one developer has knowledge ratio: KR+ = KR·(1+β)

• one developer has knowledge ratio: KR− = KR·(1−β)

• the remaining ones have the average knowledge KR.

Therefore we can rewrite equation 1 for the knowledge of
the system with one pair of developers deviating by β from
the average as:

Kβ1 = (n− 2) ·KR+KR+ +KR−

= (n− 2) ·KR+ (1 + β) ·KR+ (1− β) ·KR
(4)

5floor(x) is the largest integer not greater than x

Where the first term corresponds to the average develop-
ers, the second term to the above-the-average developer and
the latter to the below-the-average developer.

When considering the removal of one developer from the
team, the worst case (i.e., the case with the highest loss of
knowledge) correspond to removing the above-the-average
developer. Since when computing the TF, we always have to
consider the worst case, the corresponding knowledge after
removing a developer is:

Kβ,1
−1 = (n− 2) ·KR+ (1− β) ·KR

= (n− 1) ·KR− β ·KR
= K−1 − β ·KR

(5)

The general formula for the knowledge level with one deviant
pair of developers is thus:

Kβ,1
−x = K−x − β ·KR

By induction, we know that in the case of dd ≥ x deviant
developers pairs we have

K
β,dd
−x = K−x − x · β ·KR

If we assume the case of half developers knowing (1 −
β)KR and the other half knowing (1 +β)KR of the system,
the corresponding standard deviation is σ = β ·KR6. It is
also easy to deduce how the above configuration of develop-
ers’ knowledge is the most favorable case among those with
the same standard deviation.

The most general formula for the upper limit of the TF
given a developer knowledge ratio with mean value KR and
normalized deviation σKR is:

TF (KR,σKR) = floor

„
KR

KR+ σKR
·

„
n− T

KR

««
(6)

By comparison with equation 3 we can observe that with
respect to the ideal case (with null standard deviation) the
real case is reduced by a factor of :

KR

KR+ σKR

For instance, in a concrete case with 10 developers with
an average knowledge KR = 10% and standard deviation
σKR = 5%, assuming a residual knowledge threshold of 50%,
the upper limit for TF is 3. Compared to a TF of 5 yield by
equation 3 we have a reduction of 2 (closest approximation
of 1/3).

4. COLLECTED DATA
In order to validate our findings we collected data from a

series of 20 open-source projects published in different repos-
itories. The features of the analyzed projects are presented
in Table 3. The projects are the same used in [8] for different
purposes.

The projects come from two different repositories: Source-
forge and Google Code. The smallest software (testability)
counts 7 KLOC of code, while the largest (mantisbt) is made
up of 3.3 MLOC. The number of files of the project range
from 69 to 3097. Projects team sizes range from 2 to 38
developers.

6Therefore the normalized standard deviation is simply β

Repository Software Files LOCs Developers Revisions TF60% KR σKR Gov.Threshold
1 Google EC-fantastici4 141 15460 4 203 1 0.48 0.26 1*
2 Google closure-compiler 536 123660 4 200 1 0.41 0.41 1*
3 Google v8 982 324042 32 4556 5 0.13 0.18 8
4 Google testability 126 7282 4 151 1 0.54 0.31 1*
5 Google qsbmac 431 177440 2 1027 0 0.65 0.20 0
6 Google jpcsp 672 355728 20 1504 0 0.09 0.14 5
7 Google choscommerce 69 11016 4 224 0 0.48 0.33 1
8 Google keycar 669 83936 4 465 0 0.29 0.33 1
9 Sourceforge cppunit 378 22646 6 582 0 0.23 0.33 2

10 Sourceforge gtk-gnutella 723 248697 15 17424 1 0.17 0.29 4
11 Sourceforge httpunit 354 39232 3 1062 1 0.61 0.43 1*
12 Sourceforge jfreechart 1063 149727 3 2272 0 0.34 0.47 1
13 Sourceforge mantisbt 641 3399759 38 5752 7 0.18 0.26 10
14 Sourceforge openvrml 476 74004 2 4141 0 0.56 0.44 0
15 Sourceforge pdfcreator 193 49834 2 676 0 0.55 0.44 0
16 Sourceforge phpwiki 537 118815 15 7370 1 0.17 0.29 4
17 Sourceforge tora 703 198512 17 3523 2 0.20 0.26 4
18 Sourceforge winmerge 862 172366 16 7149 1 0.15 0.18 4
19 Sourceforge wvware 93 32258 2 45 0 0.55 0.44 0
20 Sourceforge kompozer 3097 3287803 2 225 0 0.50 0.50 0

Table 3: Sampled open source projects

The TF for each project has been computed using an im-
plementation of the algorithm presented in Section 2.2. We
have adopted T = 60% (a reasonable value). The last col-
umn of Table 3 reports the threshold computed according
to Govindaray: a “*” indicates projects where the computed
TF is greater or equal to the Govindaray threshold. It hap-
pens in only four cases out of 20 (i.e., 20%). More precisely,
in four cases the TF is equal to the threshold and in none
the TF is greater to the threshold. That means that all the
considered projects have low TF.

Moreover, for each project, we analyzed the number of
files known to each individual developer and computed the
average knowledge ratio (KR) and the corresponding disper-
sion in terms of standard deviation (σKR). The relationship
between average knowledge ratio and standard deviation is
presented in Figure 2. Projects are represented by bubbles
whose size is (log-)proportional to the relative team sizes.

We can observe that the two “clouds” of points seem to
be separated. In particular, large projects exhibit smaller
average developers knowledge while small projects typically
show larger knowledge ratios. We actually expected this
kind of distribution, whose cause can be explained easily:
in large teams the knowledge of the system can be divided
among a larger number of developers, thus each developer
knows a smaller proportion of files. The opposite happens
for small teams: the few developers must know a larger share
of the system.

As far as the dispersion of knowledge is concerned, we
observe smaller standard deviation values for large projects
and larger dispersion for small projects. Also this experi-
mental result is reasonable because in small projects Heroes
are more common in percentage [9].

5. ANALYSIS
In this section we compare the theoretical maximum TF

with the Govindaray threshold. We conduct the comparison
in two different ways:

• first considering a very favourable condition, i.e. when
all developers know almost the same proportion of the
system files (σKR = 0.1)

• second analyzing how the maximum threshold is influ-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

KR

σ
K
R 2

4

8

16

32

Te
am

 s
iz

e

Figure 2: Developer average knowledge and disper-
sion

enced by varying dispersion of developers’ knowledge

All the values of TF are computed with reference to a
minimum system knowledge threshold T = 60%.

5.1 Maximum Threshold
We can observe in Figure 3 how the maximum TF varies as

a function of team size according to equation 6. We assumed
a small dispersion of knowledge, in particular σKR = 0.1,
which is smaller than any value we found in real software
projects, as can be observed in Figure 2.

Each oblique dashed line represents a different average
knowledge ratio (KR) of developers, where the actual values
are represented by the different markers. While lines cross
the whole diagram, points are reported only for consistently
realistic values, i.e. when the average knowledge allows the
whole system to be known, according to the condition ex-
pressed in equation 2. For instance considering KR = 10%
(the “×” symbols) we have a consistent case for team sizes
of 10 or more developers.

The Govindaray threshold is represented by the continu-
ous line; since the threshold must be compared to an integer
value, its value has been rounded to the closest integer, as a
consequence the line appears stepped.

We can observe how, in many cases, the threshold is very
close to, if not even above, the maximum achievable TF. For
instance, considering the case of KR = 5% (the“4”symbol)
we can notice that for teams of 20 developers, the maximum
TF is 2, which is considerably smaller than the Govindaray
threshold (i.e., 5). Even for large values the maximum TF
remains below the threshold. To reach the TF threshold
value, each of the 20 developers should known 7.5% of the
system on average (the “+” symbols). To understand the
practical implication of this, we could consider a system with
400 K files (similar to jpcsp in Table 3), KR = 5% means
that each of the 20 developers knows on average 20 K files,
while KR = 7.5% corresponds to 30 K files. In practice to
achieve a sufficient TF each developers would need to get
acquainted with additional 10 K files.

We observe, on the other side, that for large team sizes
and greater knowledge ratios the threshold is lower than
the maximum possible value. For instance, considering a
KR=20% and σKR = 0.1, for a team size of n = 16 the
maximum TF is 8 and the threshold is 4. Such a positive case
implies that each file is know, on average, by 3.2 (= KR ·n)
developers. Unfortunately, at least in our sample, this is an
uncommon condition.

0 5 10 15 20 25 30

0
5

10
15

Team size

Tr
uc

k
Fa

ct
or

KR= 0.04
KR= 0.05
KR= 0.075
KR= 0.1
KR= 0.2
KR= 0.3
KR= 0.5

Figure 3: Variation of TF as function of team size
for different KR (@ σKR = 0.1).

5.2 Knowledge Dispersion
The previous comparison considered only a fixed and rel-

atively small dispersion of the developers knowledge distri-
bution (σKR = 0.1). In practical cases we face teams where
a wide range of knowledge is present as can be observed in
Figure 2.

Figure 4 presents the maximum TF limits for different
team sizes considering different dispersion levels of the devel-
oper knowledge (σKR). We consider in this example a fixed
average knowledge ratio KR = 20%. As in the previous sec-
tion’s diagram only the points corresponding to consistent
cases (see equation 2) are reported.

The topmost line represents the case of σKR = 0, which
correspond the ideal and most favorable case when all devel-
opers know exactly the same amount of files. The bottom-
most line corresponds to a case with σKR = 0.5; in practice
this latter case could happen in a ten developers team when
we have: two developers knowing just 1% of the system, five
2%, one 5%, one 35%, and one 60%. Such significant vari-

0 5 10 15 20 25 30

0
5

10
15

20
25

Team size

Tr
uc

k
Fa

ct
or

σKR = 0.5
σKR = 0.3
σKR = 0.2
σKR = 0.1
σKR = 0

Figure 4: Variation of TF as function of team size
for different KR dispersion (@ KR = 20%).

ability although striking is quite common in actual projects
(see Table 3). The Govindaray threshold is represented by
the continuous line.

We can observe a condition close to that of an actual
project (see e.g., project gtk-knutella in Table 3 having
KR = 0.17, σKR = 0.29, and 15 developers): the “4” sym-
bol for team size 15 represents the maximum possible TF
(i.e., 4) and is just one unit greater than the Govindaray
threshold (i.e., 3). To be in a safe zone, where the maxi-
mum TF is twice the threshold, the team ought to reduce
the dispersion by 1/3, thus achieving a σKR = 0.2 (the “+”
symbol) that would grants a maximum TF of 6.

6. DISCUSSION
From our analysis we can summarize two main findings:

• comparing the Govindaray threshold to the theoreti-
cal maximum TF at different level of system knowledge
(Figure 3) we observe that in several cases – very close
to real projects conditions – the threshold appears ei-
ther above the maximum or just barely below

• the same conclusions can be drawn comparing the thresh-
old with the maximum TF at varying knowledge dis-
persion values (Figure 4)

The two findings consistently indicate that most real projects
have too low a TF, which means they are exposed to a high
risk of failure in case some developers abandon the team.
The threshold appears to be applicable consistently only for
projects where the typical developer knows at least half of
the system. This appears to be close to having all developers
in the project being Heroes.

In addition it appears that the effort required to achieve
a sufficient threshold, by distributing the knowledge among
the developers, is very high (e.g. each developer acquiring
some kind of knowledge of 10.000 new files!).

From the above premises we draw the conclusion that the
TF threshold proposed by Govindaray (the only one formu-
lated with sufficient precision) is too high both compared to
real projects and to theoretical thresholds.

An alternative interpretation is that, assuming the thresh-
old is substantially correct, most open source project are

very fragile and particularly sensitive to developers aban-
doning the team. Although, we personally believe less this
later explanation.

6.1 Threats to validity
We know that the reliability version control systems’ logs

can be varying, e.g. the recall of traceability links can be as
low as 40% [2]. Therefore it is possible that the file knowl-
edge measures we collected from the analyzed projects are
underestimated. Although this might compromise our ob-
servation concerning the actual data, all our considerations
about the theoretical model remain valid.

We assumed the knowledge relationship between a devel-
oper and a file both assumes a binary value and remains
constant over time. There have been proposed more sophis-
ticate model taking into consideration interactions in time
to compute a degree of knowledge [5]. We believe the dis-
cussion presented in this paper may be considered valid as
a snapshot of the project in a specific instant in time.

It is possible that the idea of TF is valid only for projects
adopting an Agile approach, or more specifically projects
enacting the XP practice of collective code ownership. Since
no detailed information is available about the development
process adopted in the analyzed open source projects, it is
very likely none of them strictly adopted Agile principles,
and therefore our findings lack construct validity. Although
the idea of TF originated in the Agile communities, no one
ever explicitly limited its applicability to projects adopting
collective code ownership.

7. CONCLUSION
In this preliminary work, we presented the first theoretical

model able to infer the maximum possible Truck Factor of
a project (i.e., the upper limit for the Truck Factor). We
validated it against some data collected from a set of open
source projects.

In this paper, the proposed model has been mainly used
to reason about the validity and applicability of the Govin-
daray threshold (in the best of our knowledge, the only one
formulated with an adequate precision) but we have to point
out that it is more general and has a wider use.

The main outcome of this work is that the Govindaray
threshold appears to be practically inconsistent and inappli-
cable in several cases: it is too high both compared to real
projects and to theoretical thresholds. We believe that this
preliminary outcome could represent a new starting point
for stimulating researchers and developers to work on the
Truck Factor and on a new and more reliable threshold.

For the future, we plan to improve the theoretical model
making it stronger and precise.

Furthermore, we also plan to perform a larger and sys-
tematic experiment for validating our model.

8. REFERENCES
[1] T. Alves, C. Ypma, and J. Visser. Deriving metric

thresholds from benchmark data. In 26th IEEE
International Conference on Software Maintenance.
IEEE, 2010.

[2] K. Ayari, P. Meshkinfam, G. Antoniol, and
M. Di Penta. Threats on building models from cvs and
bugzilla repositories: the mozilla case study. In
Proceedings of the 2007 conference of the center for
advanced studies on Collaborative research, CASCON
’07, pages 215–228, New York, NY, USA, 2007. ACM.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[4] T. Fritz, G. Murphy, and E.Hill. Does a programmer’s
activity indicate knowledge of code? In Joint meeting
of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC/FSE), pages 341–350,
2007.

[5] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A
degree-of-knowledge model to capture source code
familiarity. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1, ICSE ’10, pages 385–394, New York, NY,
USA, 2010. ACM.

[6] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse.
How developers drive software evolution. In
International Workshop on Principles of Software
Evolution (IWPSE), pages 113–122, 2005.

[7] M. Nordberg III. Managing code ownership. IEEE
Software, pages 26–33, 2003.

[8] F. Ricca and A. Marchetto. Are heroes common in
floss projects? In International Symposium on
Empirical Software Engineering and Measurement.
IEEE, 2010.

[9] F. Ricca and A. Marchetto. Heroes in FLOSS
projects: an explorative study. In International
Working Conference on Reverse Engineering
(WCRE), pages 155–159. IEEE, 2010.

[10] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too
many cooks spoil the broth? using the number of
developers to enhance defect prediction models.
Empirical Software Engineering, 13(5):539–559, 2008.

[11] N. Zazworka, K. Stapel, F. Shull, V. Basili, and
K. Schneider. Are developers complying with the
process: an xp study. In Symposium on Empirical
Software Engineering and Measurement. IEEE, 2010.

