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Tuesday, March 22, 2011

New developments in the field of filtering dust separation techniques 
Prof. Dr. Wilhelm Höflinger, Vienna Technical University - Institute of Chemical Engineering, Austria  

International standardization in the field of filtra tion and separation
Prof. Dr. Chikao Kanaoka, Ishikawa National College of Technology, Japan
Dr. Hisao Makino, Central Research Institute of Electric Power Industry, Japan
Takeshi Yoneda, Yoneda Profes  sio nal Engineer Office, Japan

Filter belts for vacuum belt filters – trends and new developments, C. Maurer*, SEFAR AG,
Switzerland 

Innovative low pressure plasma coatings for gas and liquid filter media, F. Legein*,
Europlasma N.V., Belgium

Clean and easy union of filter materials by using ultrasonic, F. Weber, M. Pasternak*,
Herrmann Ultra schall technik GmbH & Co. KG, Germany 

Using numerical flow and particle simulation to predict the separation performance
of a centrifuge, X. Romaní Fernández*; H. Nirschl, Karlsruhe Institute of Technology (KIT),
Germany

Effect of critical process parameters on the operation of a decanter centrifuge, T.
Kinnarinen*, M. Louhi-Kultanen, A. Häkkinen, Lappeenranta University of Tech nology, Finland; E.
Meshcheryakov, Saint Petersburg State Technological University of Plant Polymers, Russia  

Selective separation of magnetic particles by mag ne tic field enhanced centrifugation, J.
Lindner*, K. Wagner, H. Nirschl, Karlsruhe Institute of Technology (KIT), Germany 

Large drop re-entrainment from an oil-mist filter, D. Kampa*, J. Meyer, G. Kasper,
Karlsruhe Institute of Technology (KIT), Germany; B. Mullins, Curtin University of Technology,
Australia

Monitoring and control of particulate matter emit ted by biomass burning using
scrubber ven turi, M.A. Martins Costa*, F.A. Filho, S.P. Morais, B.A. Lima, R.A.D. Ribero,
University Estadual Paulista - UNESP; N.A. G. Puentes, University São Carlos - UFSCAR, Brazil

Portable instrument for real time monitoring of airborne dust and nanoparticles, H.
Grimm*, M. Pesch, F. Schneider, Grimm Aerosol Technik GmbH & Co KG, Germany

Membrane processes for the treatment of wa ter and wastewater,
Dr. Thomas Peters, Consulting for Membrane Technology, Germany

Monolithic melt blown process and applications, R.A. Steele*, Oerlikon Neumag, Germany

Development of innovative fiber materials for technical applications – fine polyviny-
lidene-fluori de filaments and fabrics, S. Walter, W. Steinmann*, G. Seide, T. Gries, G. Roth,
RWTH Aachen University, Germany

L3 Filter Media – New Developments II 15:00 -16:15

S2 Survey Lecture 15:00 -16:15

G1 Measurement Techniques 13:15 -14:30

L2 Centrifugal Sedimentation Technology I 13:15 -14:30

L1 Filter Media - New Developments I 13:15 -14:30

S1 Survey Lecture         13:15 -14:30  

Plenary Talk 10:30 -11:30
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I-130
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I-138
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New lube & fuel media technology increases element lifetime, D. Guimond*, T. Lawson,
G. Jeide, P. Wijns, Hollingsworth & Vose, Germany

Innovative technology for produced water treatment, M.H. Lean*, J. Seo, A. Kole, A.R.
Völkel, N. Chang, B. Hsieh, K. Melde, PARC Palo Alto Research Center, Inc., USA 

Spiral plate technology with soft discharge system, H.A. Boele*, Evodos B.V., Netherlands 

Particles trajectories in a hydrocyclone measured by PEPT, Y.F. Chang*, C.G. Ilea, Ø.L.
Aasen, A.C. Hoffmann, University of Bergen, Norway  

Data analysis of agglomerate filtration measurements for polydisperse diesel chal-
lenging aero sol, J. Wang*, ETH Zurich University, Switzerland; D.Y.H. Pui, University of
Minnesota, USA; S. Haep, H. Fissan, Institute for Energy and Environmental Technology (IUTA),
Germany

Influence of the dust on the filter efficiency and emissions of cleanable filter media,
M. Schmidt*, Palas® GmbH, Germany 

Effects of post-coating by generating a thin secondary particle layer on surface fil-
tration, Q. Zhang*, E. Schmidt, University of Wuppertal, Germany

Particle (size) characterization
Prof. Dr. Bernd Sachweh, BASF SE, Germany

CFD simulations for better filter element design, O. Iliev*, Z. Lakdawala, R. Kirsch, K. Steiner,
E. Toroshchin, Fraun hofer ITWM; M. Dedering*, IBS Filtran, Germany; V. Stariko vicius, Vilnius
Gediminas Technical University, Lithuania

Applications of simulation processes in filter media, P. Jungbecker, T. Klietzing, H. Krieger,
G. Seide*, T. Gries, RWTH Aachen University, Germany

Structure and pressure drop of real and virtual metal wire meshes, E. Glatt, S. Rief, A.
Wiegmann, Fraunhofer Institute for Industrial Mathematics ITWM; M. Knefel*, E. Wegenke, GKD
- Gebr. Kufferath AG, Germany

Analysis of impact parameters on the water/diesel separation process with filter ele-
ments; S. Schütz*, D. Winkler, K. Kissling, University of Stuttgart; P. Trautmann, J. Reyinger, M. Veit,
K. Brodesser, U. Staudacher, MANN+HUMMEL GmbH, Germany 

Nanocoated filter media for oil-in-water emulsion separation, S. Bansal*, V. von Arnim,
T. Stegmaier, H. Planck, Institute for Textile Technology and Process Engineering Denkendorf (ITV),
Germany 

Laboratory scale evaluation of inclined creaming, T. Sobisch*, D. Lerche, LUM GmbH,
Germany 

New device for In situ testing of filter media in pulse jet filter plants concept - Details
and experimental results, F. Popovici, G. Gasparin*, Evonik Fibres, Austria

Test procedure to determine fine dust emissions of dust reduced street sweepers, D.
Renschen*, J. Schamberg, E. Andrae, D. Glätzer, DMT GmbH & Co. KG; B. Schröer, AWISTA Gesellschaft
für Abfallwirtschaft und Stadtreinigung mbH, Germany

L4 Centrifugal Sedimentation Technology II 15:00 -16:15

G3 Filter Test Systems II 16:45 -18:00 

L6 Mechanical Liquid-Liquid Separation 16:45 -18:00

L5 Filter Media - Modelling, Simulation, Design 16:45 -18:00

S3 Survey Lecture 16:45 -18:00  

G2 Filter Test Systems I 15:00 -16:15
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Novel test rig for adsorption of toxic substances, H. Finger*, G. Lauber, W. Mölter-Siemens, S.
Haep, Institute for Energy and Environmental Technology (IUTA); D. Bathen, University Duisburg-
Essen, Germany

Wednesday, March 23, 2011

In situ cake formation and pore structure characterization of filtration media, A. Jena,
K. Gupta*, Porous Materials, Inc., USA

Measuring the maximum pore size of small profile filter elements, G.R. Rideal*, J.
Storey, A. Stewart, Whitehouse Scientific Ltd, UK

How to reduce filtration costs of complex hydraulic systems, C. Peuchot*, IFTS Institute
of Filtration and Techniques of Separation, France

FILTER MEDIA - NEW DEVELOPMENTS
Next generation filter media containing electrospun nanofibers - pathway for impro-
ved filtration proper ties, J. Macak*, P. Popp, M. Vanicek, Elmarco Ltd., Czech Republic

CENTRIFUGAL SEDIMENTATION TECHNOLOGY
Innovative platform technology for selective remo val of suspended particles from
raw waters, M.H. Lean, J. Seo, A. Kole, A.R. Völkel*, N. Chang, B. Hsieh, K. Melde, PARC Palo Alto
Research Center, Inc., USA 

CAKE FILTRATION TECHNOLOGY
Novel BASP biotech filtration system for commercial scale “High density microbial fer-
mentation biomass”- commercial scale, H. Katinger, University of Natural Resources and
Applied Life Sciences, Austria; B. Patil*, V. Patil, BASP Industries, India 

WISY filter for separation of solids from water - Presentation of a new and unique
filter system, J. Maurer*, WISY AG, Germany 

SEPARATION ENHANCEMENT BY CHEMICAL ADDITIVES
Compaction of multiwalled carbon nanotubes at high centrifugal acceleration and in
the presence of a surfactant, N. Lebovka, M. Loginov, E. Vorobiev*, University of Compiègne,
France 

SORTING OF DIFFERENT MATERIALS
Simulation of a liquid fluidized bed classifier for polydisperse suspensions of equal-
density solid particles: design and operation strategies, A.I. Garcia Alvear*, Universidad
Católica del Norte; G. Lopez, Sierra Miranda S.C.M., Chile

A technical interpretation of three-phase system diagrams for KCl separation from
carnallite using MATLAB software, E.R. Borujeny*, S.N. Khorasani, F.T. Esfahani, Isfahan
University of Technology, Iran

WASHING AND EXTRACTION
Effective separation of cadmium and iron from phosphoric acid by solvent extraction
with trioctylammine, M.H.H. Mahmoud*1,2, M.M. Al-Qahtani 2, 1 CMRDI Central Metallur -
gical R&D Institute, Helwan, Cairo, Egypt; 2 Chem. Dept. College of Science, Taif University, KSA

Electrically driven back flushing during membrane ultrafiltration of whey, J. Pridal*, J.
Pridal, A. Urban, Mikropur s.r.o.; Z. Bubnik, V. Pour, ICT Institute of Chemical Technology Prague,
Czech Republic

M1 Poster Session I 08:30 -09:45

L8 Poster Session I 08:30 -09:45

L7 Filter Media – Characterization and Porometry 08:30 -09:45

II-78

I-226

I-234

I-242

I-249

I-255
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I-269

I-273

I-278

I-286

I-296

II-469
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II-118

II-126
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II-140

II-147

Membrane filtration of hyaluronic acid solution in constant pressure cell, T.-W.
Cheng*, C.-J. Hsu, Y.-L. Chiu, Tamkang University, Taiwan

Mass transfer of TransMembraneChemieSorption using microporous hollow fiber mem-
brane contactors, M. Ulbricht*, J. Schneider, M. Stasiak, Membrana GmbH, Germany; J. Munoz, B.
Kitteringham, Membrana Charlotte, USA

Drinking water, cryptosporidium, membrane filtration and the "long term 2 enhan-
ced surface water treatment rule", U. Kolbe*, I. Lomax, Dow Water & Process Solutions,
Germany; D.J. Gisch, The Dow Chemical Company Midland, USA 

Effects of membrane pore size on the performance of cross-flow microfiltration of
BSA/Dextran mixtures, K.-J. Hwang*, P.-Y. Sz, Tamkang University, Taiwan

Hollow fibre microfiltration membranes for long term application in aquaculture -
stabilization of performance and comparison with alternatives, B. Gemende*, A.
Gerbeth, M. Schwind, University of Applied Sciences Zwickau; A. von Bresinsky, Fischwirtschafts -
betrieb; R.-P. Busse, Busse GmbH; U. Meyer-Blumenroth, S. Krause, R. Voigt, Microdyn-Nadir GmbH

Extraction of polyphenols from grape seeds by high voltage electrical discharges and
extract concentration by membrane process, D. Liu, E. Vorobiev*, J-L. Lanoisellé, University
of Compiègne; R. Savoire, ESCOM - Ecole Supérieure de Chimie Organique et Minérale, France

Dynamic cross-flow filtration for isolation of extracellulare products, G. Grim*, KMPT
AG, Germany 

High-recovery reverse osmosis desalination using wastewater twice from Tigris river
water, O.A. Mohamed*, The Pilot Project for Co-generation of Water and Electricity Using Solar
Thermal Energy System, Iraq; A.O. Sharif, University of Surrey, Great Britain

Velocity influence on the filtration regeneration of filter media, S.M.S. Rocha*, Federal
University of Espírito Santo; L.G.M Vieira, J.J.R Damasceno, Federal University of Uber lândia; M.L.
Aguiar, Federal University of São Carlos, Brazil

Performance of cellulose filter in gas filtration at high pressure conditions, E.H.
Tanabe*, M.L. Aguiar, J.R. Coury, Federal University of São Carlos, Brazil

Simulation of the dust cake build-up on regenerated surface filters, S.M.S. Rocha*, Federal
University of Espírito Santo; E.R. Nucci, Universidade Federal de São João Del Rei; M.L. Aguiar,
Federal University of São Carlos, Brazil 

Evaluation of the influence of operational conditions on gas filtration cake removal,
P.M. Barros*; A.L.R. Cezar, M.L. Aguiar, Federal University of São Carlos, Brazil 

A study of the compressibility of gas filtration talc cakes on fabric filters, A.G. Fargnoli,
M.L. Aguiar, E.H. Tanabe*, Federal University of São Carlos, Brazil 

Oil repellent nano-coatings for increased filtration performance, S.R. Coulson, M.
McCarthy *, D.R. Evans., P2i Ltd., UK 

New functionalities for textile media with GEA Tex technology, T. Stoffel*, M. Sauer-
Kunze, GEA Air Treatment GmbH, Germany

Filtration of gases using textile filters, V.K. Midha*, National Institute of Technology
Jalandhar, India

Measuring the inline available adsorption capacity of Zorflex® activated carbon
cloth using electro conductive techniques, A. Smith*, Chemviron Carbon Cloth Division, UK

G4 Poster Session I 08:30 -09:45
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Wet particle classification below 1μm Challenge for basic research and technical deve-
lopment, H. Anlauf*, Karlsruhe Institute of Technology (KIT), Germany

Screening of colloidal particles in centrifuges, L.E. Spelter*, H. Nirschl, Karlsruhe Institute
of Technology (KIT), Germany 

Noozle disc stack disc centrifuge use in wet classification in the fine grain range, T.
Hartmann*, GEA Westfalia Separator Process GmbH, Germany 

Downscaling cake-filtration - An investigation of a separation process for crystalli-
zed proteins, B. Cornehl*, H. Nirschl, Karlsruhe Institute of Technology (KIT), Germany

Local filtration properties for hard-to-filter compressible materials, T. Mattsson*, M.
Sedin, H. Theliander, Chalmers University of Technology; M.E. Lindström, Wallenberg Wood Science
Centre - Royal Institute of Technology, Sweden 

Dewatering behaviour of ultrafine particle packings, S. Stein*, W. Hintz, J. Tomas, Otto-
von-Guericke-University Magdeburg, Germany 

Process development, optimization and cycle-time reduction in cross flow filtration by
applying a design of experiments approach, L. Mathe*, K. Kuss, GE Healthcare Europe GmbH,
Germany

Effect of colloidal interaction on the reversibility and structure of the concentration
polarization layers probed by in-situ SAXS during crossflow separation process of
Laponite clay dispersions, M. Abyan, F. Pignon*, A. Magnin, University Joseph Fourier Grenoble;
M. Sztucki, European Synchrotron Radiation Facility, France 

Influence of experimental parameters on (electro) filtration of positively charged partic les,
M. Hakimhashemi*, H. Saveyn, A.Y. Gebreyohannes, P. Van der Meeren, Ghent University, Belgium

Simulation and measurement of dust loading of pleated air filters, P. Hettkamp*, J.
Meyer, G. Kasper, Karlsruhe Institute of Technology (KIT), Germany

Numerical and experimental investigation of soot deposition in wall-flow diesel particu-
late filters, P. Kopf*, T. Deuschle, M. Piesche, University of Stuttgart, Germany 

Deposition-dependent particle collection efficiency of model filter fibers in parallel
arrays, T.K. Müller*, G. Kasper, J. Meyer, Karlsruhe Institute of Technology (KIT), Germany

Nonwovens in filtration,
Dr. Jörg Sievert, Freudenberg Filtration Technologies KG, Germany

The influence of adsorption properties - effects on the filter cake washing, M.
Wilkens*, U.A. Peuker, Technical University Bergakademie Freiberg, Germany 

Filter cake washing of mesoporous particles, S. Noerpel*, H. Nirschl, Karlsruhe Institute of
Technology (KIT), Germany

The non-aqueous filtration of oil sand - recovery of bitumen by organic solvents, E.
Schmidt*, S. Häder-Schmidt, U.A. Peuker, Technical University Bergakademie Freiberg; F. Schmidt,
Siemens AG, Germany 

L11 Cake Filtration – Washing and Extraction 13:15 -14:30

S4 Survey Lecture 13:15 -14:30 

G5 Particle Deposition 11:00 -12:15

M2 Cross Flow Techniques 11:00 -12:15

L10 Cake Filtration – Cake Formation and Consolidation 11:00 -12:15

L9 Wet Particle Classification 11:00 -12:15

I-307

I-315

I-323

I-329

I-336

I-344

II-523

II-530

II-537

II-154

II-162

II-170

I-50

I-352

I-360

I-367
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Investigation of mechanical membrane cleaning for enhanced MBR application, S.
Krause*, A. Rach; W. Lamparter, Microdyn-Nadir GmbH, Germany 

Optimized hydrodynamics for membrane bioreactor with immersed flat sheet mem-
brane modules, L. AL-Shamary*, L. Böhm, M. Kraume, Technical University of Berlin, Germany 

Highly efficient, low-energy membrane method in MBR technology based on Berghof
external tubular membranes, S. Goodwin, G. Catley, Aquabio Limited, Great Britain; E.
Wildeboer*, Berghof Membrane Technology GmbH & Co KG, Netherland

Studies of different numerical models for a turbulent particle flow in a square pipe
with 90° bend, D. Schellander*, D. Kahrimanovic, S. Pirker, Johannes Kepler University Linz,
Austria 

Flow and particle simulations of air cleaner filter media on microscopic scales, C.
Feuchter*, MAHLE Filtersysteme GmbH, Germany 

Fugitive dust suppression by optimized bulk solids moistening, J. Faschingleitner*, W.
Höflinger, Vienna University of Technology, Austria 

Equipment selection and process design for solid/ liquid separation processes 
Dr. Steven Tarleton, Loughborough University, Department of Chemical Engineering, UK

Experimental study of filter cake cracking during deliquoring, A. Barua*, F. Stepanek,
Imperial College London; G. Giorgio, W. Eagles, GlaxoSmithKline Ltd., UK

Comprehensive characterisation of material properties for dewatering: How much is
enough?, R.G. de Kretser, A. Stickland*, S. Usher, P.J. Scales, University of Melbourne, Australia 

Experimental and numerical investigation of the dewatering process of sewage scre-
enings, H. Gregor*, U. Janoske, University of Wuppertal; W. Rupp, University of Cooperative
Education Mosbach; M. Kuhn, Kuhn GmbH, Germany

Recovery of polyphenols from paper industry effluent using pretreatment assisted
ultrafiltration, D. Trebouet*, S.K. Singh, S. Ghnimi, IPHC University of Strasbourg, France

Clever, economical solutions for process media and wastewater recycling with mem-
brane technology, P. Messerli*, W. Hochstrasser, L. Solinger, VP-Hottinger AG, M. Haller, aqua-
System AG, Switzerland 

Membrane autopsy in paper industry water recyling: An efficient tool for optimising
filtration and cleaning strategies, E. Meabe*, R. Gutiérrez, J. Lopetegui, Likuid Nanotek; J. Ollo,
J. Echeberria, L. Sancho, CEIT, R. Ordóñez, D. Hermosilla, Universidad Complutense de Madrid; F.
Pérez, HOLMEN Paper Madrid, Spain

An L9 orthogonal design methodology to study the impact of operating parameters
on pulse-jet filtration process, A. Mukhopdhaya*, National Institute of Technology Jalandhar,
India

Prediction of cake-structure and pressure-drop evolution during filtration of polydisper-
se nanoparticles, T.D. Elmøe*, Technical University of Denmark, Denmark; D. Werz, A. Tricoli, S.E.
Pratsinis, ETH Zürich University, Switzer land

G7 Surface Filtration 15:00 -16:15

M4 Waste Water Treatment 15:00 -16:15

L12 Cake Filtration – Deliquoring 15:00 -16:15

S5 Survey Lecture 15:00 -16:15  

G6 Modelling and Simulation 13:15 -14:30

M3 Membrane Bio Reactor 13:15 -14:30
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Investigation of filter cake removal with different puff-back cleaning modes in a
panel bed filter, K.P. Gaarder*, L. Wang, O.K. Sønju, J.E. Hustad, Norwegian University of
Science and Technology, Norway 

Simulation in the field of gas filtration and sepa ration,
Prof. Paolo Tronville, Politecnico di Torino, Dipartimento di Energetica, Italy

Pushing the limits - How to continue a success story - The BHS-high performance
rotary pressure filter, D. Steidl*, BHS- Sonthofen, Germany 

Hi-Bar steam pressure filtration of an organic acid-pro cess simplification by a hybrid
separation process, R. Bott*, T. Langeloh, E. Ehrfeld, BOLEKA GmbH, Germany 

Exploring the influence of feed material properties on full cycle optimisation of fill,
squeeze and blow plate and frame pressure filters, R.G. de Kretser, A. Stickland*, P.J.
Scales, University of Melbourne, Australia

Electrokinetic flotation of wastewater in a kinetic model tank, J.Q. Shang*, Y. Xu, The
University of Western Ontario, Canada; F. Yono, Chrysler Group LLC, USA 

Sorpitve deep bed filtrtation by the application of embedded ion exchangers in cellu-
lose filter sheets, S. Lösch*, U.A. Peuker, Technical University Bergakademie Freiberg, Germany

Method of testing metal working fluid mist separators, T. Laminger*, M. Stecher, W.
Höflinger, Vienna University of Technology, Austria 

Temporal evolution of the saturation profile of an oil-mist filter, D. Kampa*, J.
Buzengeiger, J. Meyer, G. Kasper, Karlsruhe Institute of Technology (KIT), Germany; B. Mullins,
Curtin University of Technology, Australia 

The importance of drainage in mechanical fibrous filters, M. Dalemo*, Absolent AB, Sweden 

Thursday, March 24, 2011

On some macroscopic models for depth filtration: Analytical solutions and parame-
ter identification, O. Iliev, R. Kirsch*, Z. Lakdawala , Fraunhofer Institute for Industrial
Mathematics ITWM, Germany; V. Starikovicius, Vilnius Gediminas Technical University, Lithuania 

A novel experimental method to determine dirt particle distribution inside filter
material samples, G. Boiger*, ICE Strömungsforschung GmbH; G. Reiss, W. Brandstätter;
University of Leoben, Austria 

Nonwovens: Effect width fibre size distribution, H.H. Kleizen, Parker Filtration BV & Delft
University of Technology, Netherlands 

Hyperbaric disc filter for dewatering of copper flotation concentrate, R. Raberger, G.
Krammer*, Andritz AG, Austria

Continuous pressure filtration at high temperatures - Fundamentals and process
design, R. Bott*, T. Langeloh, Bokela GmbH, Germany

Benefits of hi-bar filtration in counterpressure design, R. Bott*, T. Langeloh Bokela
GmbH, Germany 

L16 Rotary cake filtration technology 08:30 -09:45

L15 Depth Filtration – Modelling and Simulation I 08:30 -09:45

G8 Mist and Droplet Separation 16:45 -18:00

L14 Electrostatic & Electrokinetic Effects in Separa tion Processes 16:45 -18:00

L13 Cake Filtration Technology 16:45 -18:00

S6 Survey Lecture 16:45 -18:00 
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Innovative coating technologies for membrane media, T. Kolbusch*, C. Dittrich, J. Hanel,
Coatema Coating Machinery GmbH, Germany 

Membranes in conjunction with functional water-soluble polymers to remove pollutant
ions, B.L. Rivas, S.A. Pooley, E. Pereira*, M. Palencia, J. Sanchez, University of Concepción, Chile 

Gas permeation of tubular buckypaper membrane, M.A. Davoodi, J. Towfighi, Tarbiat
Modares University; M. Fotukian, A. Rashidi*, Research Institute of petroleum Indus try RIPI, Iran 

Application of electrostatic precipitators on road sweepers for fine dust reduction,
M. Kaul*, E. Schmidt, University of Wuppertal, Germany 

Study of the electrostatic effect in the filtration of micrometer particles, M.V.
Rodrigues*, Federal Uni ver sity of Alfenas; F.B. Fenara, M.L. Aguiar, University of São Carlos, Brazil 

Measurement and simulation of nanoparticle de po  sition at microstructured filter
media considering especially electrostatic, A. Hellmann*, K. Schmidt, S. Ripperger,
Kaiserslautern University of Technology; S. Rief, A. Wiegmann, Fraunhofer Institute for Industrial
Mathe ma tics ITWM, Germany

Validating the simulation of diesel soot agglomerate deposition in microstructured
filter media by means of microsieve examinations, K. Schmidt*, S. Ripperger,
Kaiserslautern University of Technology; *formerly Fraunhofer ITWM, Germany 

Comparison of loaded DPF backpressure from different engine cycles and the cam-
bustion DPF testing system, K. StJ Reavell*, G.I. Inman, T. Hands, M.G. Rushton, A.H. Bown,
C. Nickolaus, Cambustion Ltd., Great Britain 

Reduction of NOX, SO2 & mercury emission from coal fired fluidized bed boilers, M.
Jedrusik*, M.A. Gostomczyk, A. Swierczok, Wroclaw University of Technology, Poland

Industrial sampling and gas emission monitoring in stationary source, F. de Almeida
Filho, M. A. Martins Costa, UNESP - São Paulo State University; M.L. Aguiar*, E.H. Tanabe, F.
Hiromitus, UFSCAR - Federal University of São Carlos, Brazil 

Investigations into the collection of fine dust by facade greenery, D. Bracke*, G. Reznik,
E. Schmidt; University of Wuppertal, Germany 

A new approach to deriving particle size fractions from a laser optical dust cloud
measurement, S. Bach*, E. Schmidt, University of Wuppertal; M. Weiß, Palas® GmbH, Germany

Modelling and simulation of filter media loading and of pleats deflection, H. Andrä,
O. Iliev, M. Kabel*, Z. Lakdawala, R. Kirsch, Fraunhofer Institute for Industrial Mathematics ITWM,
V. Starikovicius, Vilnius Gediminas Technical University, Lithuania 

The influence of filter material deformation on permeability and pressure loss, M.
Mataln*, G. Boiger, ICE Strömungsforschung GmbH; W. Brandstätter, University of Leoben, Austria 

Modelling of non-spherical dirt particle motion and deposition in fluid filtration pro-
cesses, G. Boiger*, M. Mataln, ICE Strömungsforschung GmbH; W. Brandstätter, University of
Leoben, Austria 

Experimental studies of the superposed filtration mechanisms in a candle filter, X.
Romaní Fernández*; H. Anlauf; H. Nirschl, Karlsruhe Institute of Technology (KIT), Germany 

L18 Regenerable and Non-Regenerable Filters for Cleaning of low 
concentrated Liquids I 11:00 -12:15  

L17 Depth Filtration – Modelling and Simulation II 11:00 -12:15

G9 Poster Session II 08:30 -09:45

M5 New Membranes 08:30 -09:45
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New methods of boiler- and process water microfil tration form an economical alter-
native to replace traditional sand filters, S. Strasser*, J. Baumgartinger, R. Größwang,
Lenzing Technik GmbH; Austria 

Selection and Design a multi-purpose filter with existing resources and technology
for cost effective utility and operation, K. Roy*, Suzikline Group, India 

Dynamic washing of highly concentrated suspensions of finest particles by means of
rotating disc filters, D. Goldnik*, R. Weiler, S. Ripperger, Kaiserslautern University of
Technology, Germany 

Reduction of membrane biofouling through effective removal of primary biofouling
contaminant: Trans parent exopolymer particles (TEP), H. Mowers, R. Komlenic*, Ahlstrom
Filtration LLC, USA 

Resuspensions' charaterisation of membrane filter cake particles in liquid media via
particle counter during a regeneration process, T. Quadt*, E. Schmidt, University of
Wuppertal, Germany

The effect face velocity, pleat density and pleat orientation on the most penetrating
particle size, pressure drop and fractional efficiency of HEPA filters, I.S. Al-Attar*, R.J.
Wakeman, E.S. Tarleton, Loughborough University, UK; A. Husain, Kuwait Institute for Scientific
Research, Kuwait 

Determination of integral and local efficiency of HEPA and ULPA filters by applicati-
on of an automated scanning technique, S. Große*, C. Peters, A. Rudolph, Topas GmbH,
Germany 

Improvements in the quick and reliable determination of HEPA and ULPA filter clas-
ses, S. Schütz*, M. Schmidt; Palas® GmbH, Karlsruhe, Germany 

On the recent progress in predicting filtration efficiency for filter elements, Z.
Lakdawala*, O. Iliev, Fraunhofer Institute for Industrial Mathematics (ITWM); M. Dedering*, IBS
Filtran, Germany; V. Starikovicius, Vilnius Gediminas Technical University, Lithuania 

Analysis of the filtration and dust retention process of a fuel filter simulated with a
3D model using an open source code, L. Valino, R. Mustata, J. Hierro, Labora torio de
Investigación en Tecnologias de la Combustión; J.L. Hernandez*, M. Busack, C. Blasco, M.J. Garcia,
Robert Bosch España Gasoline Systems S.A., Spain 

Fast media-scale multipass simulations, J. Becker, S. Rief*, A. Wiegmann, Fraunhofer
Institute for Industrial Mathematics (ITWM); M. Lehmann, S. Pfannkuch, MANN+HUMMEL GmbH,
Germany 

Treatment of highly viscous lubricants by high gradient magnetic separation techni-
que, K. Menzel*, J. Lindner, H. Nirschl, Karlsruhe Institute of Technology (KIT), Germany

Modeling and predicting clogging behavior of the filtration process with fibrous fil-
ter media for used engine lube oils, F. Gruschwitz*, M. Förster, N. König, MAN Diesel & Turbo
SE; H. Nirschl, H. Anlauf, Karlsruhe Institute of Technology (KIT), Germany

New tools to manage and optimize management of cleanliness requirement of fluid
systems, C. Peuchot*, IFTS Institute of Filtration and Techniques of Separation, France 

L20 Regenerable and Non-Regenerable Filters for Cleaning of 
Low concentrated Liquids II 13:15-14:30

L19 Depth Filtration – Modelling and Simulation II 13:15-14:30

G10 HEPA/ULPA Filters 11:00 -12:15

M6 Special Applications 11:00 -12:15
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Cabin air filter media with bicomponent spunbond support layer, A. Maltha*, E.
Berkhout, P. Zuuring, M. Koerntjes, Colbond B.V., Netherlands 

Efficiency of electret cabin air filters using different test aerosols, A. Breidenbach*; F.
Schmidt, University of Duisburg-Essen, Germany 

Loaded adsorption filter - a solution for purgeable, volatile components and odours
in automotive interiors?, F. Diederich*, TAG COMPOSITES & CARPETS GmbH, Germany

Comparing the operating behaviour of pulse cleaned filter bags with that of flat media
in a VDI tester, O. Kurtz*, J. Meyer, G. Kasper, Karlsruhe Institute of Technologie (KIT), Germany 

Novel test rig for compressed air filters: background, layout, first results, W. Moelter-
Siemens*, G. Lauber, H. Finger, S. Haep, Institute for Energy and Environmental Technology IUTA; D.
Bathen, University Duisburg-Essen, Germany 

Optimising life cycle costs - Sandler AG's new synthetic pocket filter media, U.
Hornfeck*, Sandler AG, Germany

Numerical simulation of agglomeration and filtration of colloidal suspensions, H.
Nirschl*, F. Keller, C. Eichholz, B. Schäfer, Karlsruhe Institute of Technology (KIT), Germany

Effect of some additives on enhancing filtration rate of new valley oxidized phos-
phate concentrate, E.A. Abdel-Aal*, Central Metallurgical R&D Institute; E.A. Abdel Rahman,
Egypt Phosphate Company; A.T. Kandil, Helwan University, Egypt 

Metal (Al, Fe)-hydroxide sols formation in the coagu lation, I. Licsko*, Budapest University
of Technology and Economics, Hungary

Removal of calcium scales from the surface of a ceramic filter medium, R. Salmimies*,
A. Häkkinen, Lappeenranta University of Technology; B. Ekberg, Outotec (Filters) Oy; Finland; J.
Kallas, Tallinn University of Technology, Estonia; J.-P. Andreassen, R. Beck, Norwegian University of
Science and Technology, Norway 

Investigations on the cleaning behaviour of polymer woven filter media in solid liquid
separation, C. Leipert*, H. Nirschl, Karlsruhe Institute of Technology (KIT), Germany 

Cross-flow filtration: Influences on the cleanability of woven polymer filter media, M.
Ulmer*, K. Sommer, Technical University Munich (TUM), Germany 

Maximize turbine efficiency while minimizing service costs using innovative air inta-
ke systems, M. Sauer-Kunze*, M. Grochowski, GEA Air Treatment GmbH - Branch GEA Delbag
Lufttechnik, Germany

Air Filtration System at the M5 East Tunnel Sydney, E. Deux*, B. Markmann, FILTRONtec
GmbH, J. Chapman, FILTRONtec Pty Ltd., Australia

Influence of gas distribution and field velocity on separation efficiency at ESP's with
regards to different power supply techniques, D. Steiner*, M. Lisberger, M. Lengauer,
Scheuch GmbH; W. Höflinger, Vienna University of Technology, Austria 

G11 Cabin Air Filters 13:15-14:30 

G13 Industrial Gas/Air Cleaning I 15:00 -16:15

L22 Removal of Particles and Scales from Surfaces 15:00 -16:15

L21 Separation Enhancement by Coagulation 15:00 -16:15 

G12 Filter Media Characterization 13:15-14:30 

II-343

II-349

II-357

II-364

II-372

II-379

I-570

I-578

I-590

I-599

I-607

I-615

II-384

II-392

II-398

FILTECH 2011 Page I - 13

Band_I_v07_A5.pdf   13   10.03.2011   00:09:53Band_I_v07_A5.pdf   13   10.03.2011   00:09:53



Comparision of the various filter media used in bag filters, M. Sikka*, National Institute
of Technology Jalandhar, India 

Material for high temperature gas filtration, A.K. Choudhary*, A. Mukhopadhyay, National
Institute of Technology Jalandhar, India 

Investigating the effect of degree of crystallinity on the charge retention behavior
on electrostatically-charging polyester nonwovens, P. P. Tsai*, The University of Tennessee,
USA; Y. Yan, South China University of Technology, P.R. China

FlocFormer technique - best conditioning for best dewatering and separation results,
C. Schroeder*, aquen aqua-engineering GmbH, Germany; D. Takao, Tsukishima Kikai Co., Ltd
(TSK), Japan

New laboratory developments for belt thickener optimization, P. Ginisty*, C. Peuchot,
IFTS Institute of Filtration and Techniques of Separation, France

Relation between particle size distribution and filtration performance in biomass
separation, P. van Hee, A.M.C. Janse*, J. Vente, H. Robers, T. Verkaik, DSM Biotechnology Center,
Netherlands

Catalytic manganese removal in the neutral pH range, U. Fischer*, C. Höfer, Rheinkalk
Akdolit GmbH & Co. KG; H. Vedder, AWA-Institut, Gesellschaft für Angewandte Wasserchemie mbH 

Removal of ammonia from vacuum-II stripper wastewater in Jordan Petroleum
Refinery (JPR), S. Emeish*, M. Tal, A. Khalil, S. AL-Muhteseb, Al-Balqa' Applied University, Jordan 

The effect of petrolium oil content on the enzymatic treatment of produced water,
K.F. Mossallam, N. A. Salimova, Azerbaijan State Oil Academy, Azerbaijan 

Optimized cleaning systems for industrial baghouse filters, P. Bai*, T. Neuhaus, T.
Schrooten, G.-M. Klein, Intensiv-Filter GmbH & Co. KG, Germany 

New filter lines for bulk solid handling in plastic, petrochemical and alumina indu-
stry, C. Soretz*, P.J. Erasmus, Coperion GmbH, Germany 

The Hybrid ESP-BF dust collector in China - Can be a substitute for ESP and BF?, L.
Wang*, G. Fengnian, Chindias Environment & Energy Technologies, Ltd., P.R. China 

Investigation of the filtration properties of on-line laminated meltblown
fibers/membrane, P.P. Tsai*, C. Woods, J. Wyrick, The University of Tennessee, USA 

Layers of submicron fibers produced by melt electrospinning, C. Hacker*, P. Jungbecker,
G. Seide, T. Gries, H. Thomas, RWTH Aachen University, Germany 

Energy efficiency vs. electrostatics - requirements for new synthetic filter media, A.
Seeberger*, A. Jung, T. Ertl, W. Rupertseder, IREMA-Filter GmbH, Germany 

G16 Special Filter Media II 16:45 -18:00

G14 Special Filter Media I 15:00 -16:15

G15 Industrial Gas/Air Cleaning II 16:45 -18:00

L24 Removal of Pollutants from Water by Catalytic, Biological 
and Encymatic Treatment 16:45 -18:00 

L23 Separation Enhancement by Flocculation 16:45 -18:00
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Activated Carbon; G04-09,
G11-3, G13-2
Adhesive Forces; G04-04, M06-3
Adsorption; G03-3, G04-09,
G09-06, G11-3, L04-1, L11-2
Aerosol; G08-3, G09-04
Aerosol Spectrometer; G02-2,
G10-3
Agglomerates; G02-1, L21-1
Air Cleaning; G03-3
Air Filters; SL - 6, G03-3, G10-1,
G11-3, G13-2
Air Intake Systems; G13-1
Air Pollution; G09-07
Air Pollution Control; G03-2
Alumina; G15-2
Ammonia; L24-2
Anodizing Plant; M04-2
Antibiotics; L13-1, M01-08
Aquaculture; M01-06
Automatic Filter; L18-2
Automotive; G11-3, L03-3
Autopsy; M04-3

Backflushing; L18-3, L22-2, 
M01-01, M06-3
Backwash filter; L18-2
Baffle plate; G07-1
Bag Filter; SL - 1, G03-1, G14-1,
G14-2
Baghouse Filter; G12-1, G14-1,
G15-3
Belt Closure; L01-1
Belt Filter; L01-1
Bicomponent Spunbond
Nonwoven; G11-1
Biodiesel; L03-3, L06-1
Biofouling; M06-2
Biomass; G01-2, G13-3, L23-3
Biomass Separation; L08-04,
M01-06
Bioseparation; M01-05
Biotechnology; L08-04
Blocking Filtration; L18-1
Boiler Feed Water; L18-2
Boycott Effect; L06-3
Buckypaper; M05-3
Bulk Material; G09-09

CFD; SL - 6, G07-2, G16-2, L05-2,
L19-3
CFD-Simulation; G04-01, G05-1,
G06-2, G09-04, G13-3, L02-1, L05-
3
CIP; L08-04
CMC; L13-1
Cabin Air; G11-2, G11-3
Cake Filtration; L10-1, L10-2,
L18-1, L18-2
Cake Formation; L07-1, L10-2
Cake Press Device; L13-1
Cake Resistance; G15-1, L23-3
Cake Structure; L07-1
Cake Wash; L11-3, L13-1
Calcium; L22-1
Candle Filter; L18-1
Carbon Nanotube; L08-06,M05-3
Carnallite; L08-08
Catalytic Manganese
Removal; L24-1

Cellulose Filter; L14-2
Centrifugal Separator; L02-2,
L04-2, L04-3
Centrifugation; L02-3, L08-04,
L08-06
Ceramic Filter Media; L22-1
Ceramic Membrane; M04-3,
M06-3

Challenge Test; L07-2
Charged Particles; G09-02
Charging; L03-1
Chemical-free Separation;
L04-2
Chemicals; G15-2
Clarification; M02-1
Classification; L08-07, L09-1,
L09-2, L09-3
Cleanability; L22-2, L22-3
Cleaning; M03-1, M04-3
Clogging; L18-1
Coagulation; L21-3
Coalescence; L06-2
Coalescence Filter; G01-1, 
G08-2, L06-1
Coating; G02-3, M05-1
Colloid; L21-1
Colloidal Particles; M04-1
Colloidal Systems; M02-2
Compaction; L08-06
Composite Membrane; M05-3
Compressed Air Filters; G12-2
Compressibility; G04-05
Compressible Filter Cakes;
L10-2
Compressive Yield Stress;
L12-2

Computational Fluid
Dynamics; G16-2, L05-1

Computer Simulation; L15-1,
L17-1
Computer Software; L05-1
Concentration; M01-07, M02-1
Concentration Polarization;
M01-02
Concentration Profile; L11-1
Conditioning; G02-3, G09-06,
L23-1, L23-2
Consolidation; L10-3
Constant Pressure Cell; M01-02
Constant Pressure Filtration;
L11-1

Copper Flotation
Concentrate; L16-1

Counter Current Washing; L13-1
Creaming Velocity; L06-3
Cross-Flow Filtration; L22-3,
M01-05, M01-08, M02-1, M02-3,
M06-3
Cross-Flow Separation; M02-2
Cryptosporidium; M01-04
Cut Off Size; L09-1
Cycle Time; G07-1

DEHS; G11-2
DEM simulation; L17-3
DI Water; L18-2
DLVO Theory; L10-3
Dead-End Filtration; L10-2, 
L23-3
Deep Bed Filtration; L14-2
Deliquoring; L12-1
Deposition; G09-03
Depth Filtration; G09-02
Desalination; L08-02, M01-09
Desaturation; L13-3
Design; L08-07
Dewatering; L02-2, L12-3, 
L16-1, L23-1
Diafiltration; M01-02, M06-1
Diesel Oil; L06-1
Diesel Particulate Filter; G05-2,
G09-05
Diesel Soot; G09-04
Disc Filter; L22-1, M06-1
Disc Separators; M06-1 

Dissolved Substances; L04-1
DoE; M02-1
Downscaling; L10-1
Drainage; G08-3, G12-2
Drinking Water; M01-04
Drop Re-Entrainment; G01-1
Dust Cake; G05-1
Dust Emission; G02-2, G03-2,
G12-1
Dust Filtration; G03-1, G05-1
Dust Loading; G05-3
Dust Separation; Plenary, 
G06-3, G09-08

Dust Suppression; G03-2, G06-3
Dye; L11-2
Dynamic Washing; M06-1

EN 1822; G10-3
Efficiency Tests; G03-2, L15-1
Effluent Treatment; M04-2
Electret; G11-2, G14-3
Electro-Hydrodynamic Flow;
G13-3

Electroadhesion; M06-2
Electrofiltration; M02-3
Electrokinetic Flotation; L14-1
Electrophoresis; L14-1
Electrospinning; G16-2, L08-01
Electrostatic; G09-03, G16-3, 
L03-1
Electrostatic Charges; G14-3
Electrostatic Discharge; 
M01-07

Electrostatic Effects; G09-01,
G09-02
Electrostatic Precipitation;
G09-01, G09-06, G13-2, G13-3,
G15-3
Emission; G07-1
Emission Control; G01-2
Emission Measurement; G02-2
Emulsion; G08-1, L06-1, L06-2, 
L18-3

Emulsion Stability; L06-1, L06-3
Energy Efficiency; G12-3, 
G15-1, G16-3, M03-2
Energy Reduction; M03-1
Energy Saving; L01-3
Environmental Protection;
G01-2

Enzymatic Treatment; L24-3
Expression; L13-3

Fabric Filter; G04-01, G04-05, 
G14-1
Fermentation; L08-04, M01-08
Fibre Size Distribution; L15-3
Fibrous Filter; SL - 6, G08-3,
G09-02
Fibrous Media; G05-3, L03-3,
L20-2
Filter Cake; G04-04, L05-3
Filter Cake Discharge; G02-3
Filter Cake Structure; G07-2
Filter Cake Wash; L11-1, L11-2,
L11-3
Filter Cleaning; G02-3
Filter Clogging; L20-2
Filter Control; G03-3
Filter Design; L05-3, L15-2, 
L17-3
Filter Efficiency; G03-3, G08-1,
G10-2
Filter Layout; G13-2
Filter Loading; L17-1
Filter Media; G04-02, G04-08,
G06-2, G11-1, G11-3, G12-3, G16-

1, L01-2, L03-3, L05-3, L17-1,

L22-3, M05-1
Filter Performance; G09-02,
G13-2
Filter Scanning Test Rig; G10-2
Filter Sheet; L14-2
Filter Test; G08-1, L07-2
Filter Test Equipment; G02-2,
G10-3, L07-1
Filter Test Rig; G02-2, G03-1,
G03-3

Filtration; SL - 4, G04-06, G04-07,  
G04-09, G05-2, G08-3, G09-03,  
L03-1, L08-01, L12-1, L13-3, 
L17-2, L18-3, L19-2, L21-1, M05-2
Filtration Efficiency; G16-1,
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SIMULATION IN THE FIELD OF GAS FILTRATION AND
SEPARATION

Paolo Tronville
Department of Energetics, Politecnico di Torino 
Corso Duca degli Abruzzi 24, 10129 Turin, Italy

ABSTRACT
The paper surveys the history and present status of simulation of equipment to 
capture aerosols and gaseous air contaminants. Simulation of both industrial and 
effluent separation devices and fibrous filters are reviewed. Problems involved in 
simulating actual operating conditions, unusual atmospheres, turbulence and nano-
scale filter structures are discussed, along with the computational limits of current 
CFD schemes. Suggestions are made for further refinement of simulation models to 
obtain better agreement between simulations and experimental data.

KEYWORDS
Air Filters, CFD, Fibrous Filters, Filtration Performance, Gas Cyclone, Modelling, 

Simulation, Venturi Scrubber

1. Introduction

Detailed calculation of the performance of gas phase separation equipment involves 
solutions of sets of differential equations which describe flow through the separation 
devices. The strength of computational fluid dynamics (CFD) in solving such 
equations has created a mindset which equates CFD with simulation. However, in
gas filtration and separation technology, we find useful simulations which do not use 
CFD.
In the broadest sense, simulation includes all laboratory tests, where the tested 
device may be only part of an actual device, or a small-scale model of it. Tests try to 
mimic field conditions, but often use conditions far from those in actual applications. 
A second type of simulation occurs when analyzing data from experiments. Before 
any mathematical description of a gas cleaning device can be made, some model for 
the performance of the device must be assumed. Indeed, one can devise 
mathematical models without any experimentation, or use them to guide 
experiments. The extent to which the mathematical model reflects the actual 
geometry of the device simulated, and the physics of its behavior, can determine how 
accurate its predictive equations will be.
Often the search for descriptive equations requires gross simplifications of the actual 
shapes and operating conditions to allow mathematical analysis. These results may 
be useful for selection of equipment or improving its design. But in many cases, the 
geometry of a device is too complicated for classic mathematical analysis. In CFD we 
have a means to overcome this barrier. It breaks our models into thousands of little 
pieces that can be digested by computer codes, and produces performance 
descriptions whose accuracy can a least be quantified. If CFD analysis gives 
performance predictions close enough to measured data, the model used for the
verified CFD calculation can be extended to predict performance at other conditions, 
and for equipment optimization. If CFD fails, we revise the model, and try again.
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We have some guidance in the simulation process, or at least warnings of troubles 
ahead, attributed to some great thinkers:
“A scientific theory should be as simple as possible, but no simpler” (A. Einstein); 
“All models are wrong, but some are useful” (Statistician George Box); 
“Correlation does not imply causation” (Somebody long before Aristotle). 
With these understandings of the nature of simulations, let us examine how they 
have assisted the development of filtration and separation technology.

2. Venturi scrubbers

Figure 1 - Venturi Scrubber Schematic [adapted from Economopoulou (2007)] 

Figure 1 shows a longitudinal section of a venturi. Although the geometry of the 
venturi is simple, analysis of its performance is not. At least the following parameters 
must be considered in to determine the pressure drop and efficiency of the venturi: 
Gas flow volume  Liquid injection position  Particle concentration, 
Liquid-flow rate  Gas and liquid properties  density, morphology
Venturi geometry  Droplet characteristics  and diameter

The venturi must be followed by a cyclone to capture the droplets bearing particles
captured in the venturi. The efficiency and pressure drop of this cyclone are 
parameters in the overall system performance. The simulation of the cyclone portion 
of such a system is considered in the next section.
The equations listed below show the level of complexity involved in various analyses. 
Subscripts G and L refer to gas and liquid; subscripts p and d to particle and droplet. 

2.1 Venturi Pressure Drop
There are many reports of test results on venturi scrubbers with wide ranges of the 
above parameters. Some of these test sets were used to develop predictive
performance equations incorporating the physical phenomena considered pertinent 
by the authors. Examples of equations predicting venturi pressure drop are contained 
in Calvert (1970 and later), Boll (1973), Hesketh (1974), Yung (1977), and Leith et al. 
(1985). In spite of these years of study, the prediction of pressure drop by these 
analytical methods is poor. Figure 2 gives the agreement between the pressure drop 
predictions of Leith and measurements for a wide range of venturi sizes and 
operating conditions. At 0.59 kPa, the agreement ranges from -28% to +80%. If the 
velocity pattern, which determines pressure drops in a gas cleaning device, is based 
on an unreliable model, then modeling particle capture using that model is futile. 

LC LD
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Clearly, something is needed beyond correlations of empirical data, even if the 
correlations are guided by what seem to be reasonable physical concepts. CFD 
might be that something.

Figure 2 - Comparison, measured values of pressure drop to analytical 
predictions [from Leith et al. (1985)] 

2.2 Venturi Particle Efficiency and Penetration
The analysis of particle capture is far more complicated, and the accuracy of 
prediction less reliable. In this discussion, we will list expressions for penetration, 
which measures the fraction of pollutant that passes a separator. [Penetration = (1- 
Efficiency), both fractions]. 
An example of the limited use of predictive equations is shown in Hesketh (1973): 

Penetration = 12.119.043.186.2

95200/
LGtGt

io RAv
CC (1) 

Unfortunately, this expression contains nothing related to dust properties, so is 
merely a correlation built on the data set Hesketh used.
A later example is from Costa et al. (2005), a correlation including both inertial and 
diffusion collection on water droplets in a venturi: 

Penetration = 581.0169.0
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These expressions gave remarkably good fits to experimental data when only a 
single variable was considered (e.g. particle diameter), but penetration by Equation 2 
including all variables gave predictions of penetrations of 1% to 7% for measured 
values in the range of 0.1% to 9%. Penetration is, admittedly, a demanding criterion 
for judging predictive equations.
Yung et al. (1977) and Boll (1973) both modified an earlier analysis by Calvert,
eliminating some of the assumptions, which also eliminated some empirical 
constants. To display Yung’s efficiency equation set takes almost a whole page; 
Boll’s expression is in differential form, and must be solved by numerical methods.
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Rudnick et al (1986) applied the expressions developed by Yung and Boll to 
efficiency test data on three venturis. Plots of predicted vs. measured penetration 
results are shown in Figure 3 which shows that these regression equations for 
penetration, hence efficiency, essentially predict nothing, in spite of their complexity.

Results using Yung (1978)                        Results using Boll (1973) 
Figure 3 - Comparison of venturi penetrations predicted by Yung and Boll

equations to measured data [from Rudnick et al. (1986)] 

2.3 Venturi CFD Simulations
CFD analyses of various aspects of venturi performance include studies by: 
Anathanarayanan and Viswanathan (1999); Ravi et al. (2003); Ahmadvand and 
Talaie (2009); Pak and Chang (2006).
Analysis of particle capture by venturis must include, in addition to the above list of 
items needed for pressure drop calculation, particle wettability. A great deal of 
attention has been given to the particle size distribution of the droplets created in the 
venturi throat, and to their spreading across the throat area. Each of the authors of 
these CFD studies assures us that the agreement between measurement and CFD 
simulation was excellent. It would be interesting to have the kind of comparison made 
by Rudnick et al. on a wide array of venturi scrubber designs. The labor involved 
would, however, be immense.
What we do know is that every CFD analysis needs to include verification studies. 
The ideal CFD solution to its sets of differential equations would use infinitesimal
steps of time and space coordinates. We must do with finite steps, but there are 
techniques for extrapolating the results to “zero” scale of the computational mesh 
used. A reliable CFD analysis requires at least three runs using successively smaller 
mesh scales in order to perform the extrapolation to zero scale. The paper of Herman 
et al. (2006) illustrates this process. The internet site of the US space agency NASA 
offers an extensive tutorial on this and other recommended procedures for 
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verification and validation of CFD calculations. (See www.grc.nasa.gov/www/ 
wind/valid/homepage.html)

3. Cyclones

The first patent for a dust-collecting cyclone was apparently issued to J.M. Finch in 
1885. Although his cyclone little resembles present-day designs, the germ of the 
cyclone concept was there. Dirty gas entered a cylinder tangentially at high velocity, 
and the bulk of the flow exited axially. In Finch’s design, dust was expelled by 
centrifugal force through slots in the wall of the cylinder, a more complicated and less 
effective scheme than the flow reversal and bottom dust drop-out of current cyclone 
designs. The configuration of Figure 4 uses Finch’s tangential entry, but the swirling 
flow reverses at the bottom of the cyclone cone, and dust drops out of the cyclone 
cone into a hopper. This design was widely used by the early 1900s, and is still 
important. 

Figure 4 - Tangential-inlet cyclone and defining dimensions
[from Gronald (2011)] 

Efforts toward improved performance produced many modifications to the basic 
cyclone concept, with elements inserted into the cyclone to channel flows and 
counter-flows of gas and dust. The cyclonic, centrifugal concept is available in a wide 
array of sizes, from tiny sampling instruments to units a meter or more in diameter. In 
addition, there are designs which substitute a spin-generating helix in the inlet air flow 
for the tangential inlet. These are called axial-flow cyclones.
Mathematical analysis of what was happening inside cyclones was rather limited in 
the 19th century. Some pieces of the puzzle were available then. We speak of 
“Newtonian fluids” because the great polymath produced the first serious 
understanding of viscosity, in the mid-17th century. (Most analysis of the motion of 
small particles in cyclones is pure Newtonian mechanics, and there is a lot of use of 
Newton’s calculus, also). Bernoulli, Euler, d’Alembert, Lagrange, and Laplace all 
made significant contributions to the necessary mathematics, still used in our CFD 
codes. Navier made his contribution to the laws governing fluid flows in 1822, and 
Stokes his in 1842. By 1851 Stokes had also derived the expression for the 
aerodynamic drag on a small particle, fundamental to the simulation of particle 
motion in a cyclone. Other early advances came from: Hagen and Poiseuille (laminar 
pipe flow, 1839); Darcy (porous-bed flow, 1856); Rayleigh (convection, 1880s).
Most of the great advances in fluid mechanics which form the basis of our present 
simulations took place after 1900. Reynolds published his first work shedding some 
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light on turbulent flow a little earlier, in 1895. To name a few other contributors: 
Prandtl (boundary-layer theory, 1904); Buckingham (dimensional analysis, 1914); G.
I. Taylor (turbulence, 1923); von Karman (turbulence, boundary layer theory, 
supersonic flow, 1930s); Kolmogorov (turbulence, 1940); Spalding (turbulence, CFD, 
1970s). 
The parameters defining cyclone operation include those in the venturi list above,
including parameters related to liquids when the cyclone collects liquid particles. The
cyclone geometry must of course be defined, along with any “bleed air” flow 
withdrawing the separated dusty portion of the flow. The more sophisticated studies 
include the effects of boundary layer conditions at the surface of the cyclone cone. 

3.1 Empirical Correlations of Cyclone Performance
An excellent review of cyclone modeling is given by Zhao (2007). He identifies three
model forms: “equilibrium orbit”; “timed flight”; and hybrids of these. He then notes
that there are three approaches to obtaining expressions for cyclone pressure drop 
and efficiency/penetration from these models. 
The first method uses detailed definition of the physical mechanisms present in the 
model, and mathematical description of these. The second method uses
dimensionless groups, and seeks the combinations of these groups and exponents 
applied to them which best fit measured performance data. Finally, there is CFD.
Zhao’s paper describes rigorous means to optimize predictive equation parameters 
using the dimensionless group method. His results appear to provide a substantial 
improvement over earlier attempts to correlate empirical data obtained on cyclones.
The regression equations compared in Zhao’s paper are representative of the work 
on cyclone performance that has appeared in the literature: Barth (1956); Leith and 
Licht (1971); Dietz (1981); Mothes and Löffler (1988); Li and Wang (1989); Iozia and 
Leith (1990); Clift et al. (1991). Citations for these studies are given by Zhao.

3.2 CFD Predictions of Cyclone Performance
In most cases, cyclone flow will be turbulent, and a turbulence model with its 
parameters must be chosen. The Reynolds stress model for turbulence (RSM) has 
proved to be the most reliable. Equations calculating the level of gas “slip” at the 
cyclone walls and at the surface of particles must be supplied. 
Boysan et al. (1982); Zhou et al. (1990); Ogawa (1997); Meier and Mori (1999); Witt 
et al.(1999); Zhao et al. (2004); Martignoni et al. (2007); Bernardo et al. (2006) 
present analyses of cyclone performance using CFD. Shalaby (2007) is essentially a 
tutorial on the application of CFD to cyclones, with explanations of many CFD
problems. Figure 5 is an example of the velocity patterns obtained in his study. The 
tangential inlet flow is not shown, but the velocity differences between outer (blue) 
and inner (red) vortices are shown. The boundary layer on the inside the discharge 
pipe appears, graded from blue (low velocity) through green and yellow to red (high 
velocity).The color image appears in the thesis.
Comparisons between CFD predicted and measured values of cyclone performance 
are rare in published literature. Figure 6 is one example, from Crosby and Frye 
(2008). The results from Shepherd and Lapple (1940), long before CFD, are closer to 
measured values than Crosby and Frye’s CFD results. The measurements of 
efficiency at 1/6 normal gravity were made on an aircraft on a parabolic flight path, 
which simulates zero gravity for about 30 seconds. Validating CFD can be difficult.
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Figure 5 - CFD-generated pattern of 
velocity vectors for tangential-inlet 

cyclone [from Shalaby (2007)] 

Figure 6 - Cyclone Efficiency
Dependence on Particle Diameter

[from Crosby and Frye (2008)] 
Predicted:

sby & Frye (CFD, normal gravity)
x Crosby & Frye (CFD, zero gravity)
Measured:

Crosby & Frye (normal gravity)
ormal 

gravity)

4. Louvers

We have found a limited number of references for simulations of this form of inertial 
separator. Figure 7 shows the geometry of a flat-blade louver separator.

Figure 7 - Geometry Used for CFD Simulations of Louver Performance
[from Hiyoshi (1988)] 

this simulation of a louver cross-section, using CFD methods. They obtained the 
results shown in Figure 8. By positioning a plate splitting the central chamber in half 
the performance was greatly improved, apparently holding impacting particles. At 
high inlet velocities, without a center plate, the CFD- calculated paths sometimes 
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showed particles bouncing back and forth between the opposite sets of louver 
blades. Enikeev (1995) modeled the paths of water droplets by CFD in similar 
structures. 

Figure 8 - CFD Simulations of Louver Efficiency [from Hiyoshi (1988)] 

5. Electrostatic Precipitators

Electrostatic precipitators (ESP) have three quite different geometries: wire-tube, two-
stage, and single-stage. The application of the wire-tube design is today largely 
limited to the capture of liquid particles, or those with other properties (such as very 
high electrical resistivity). These make wet operation of the units desirable. Two-
stage precipitators, with a short ionizer section followed by a set of charged parallel 
plates, are used in ventilation systems, including residential applications. The single-
stage design, with a row of discharge electrodes between parallel collector plates, is 
used in large-scale industrial applications, especially for capture of fly-ash from coal-
fired power plants. The physical phenomena are similar in all three forms; we will 
discuss only the single stage form. A schematic section of this is shown in Figure 9. 

Figure 9 - Schematic Cross-Section of a Single-Stage Electrostatic Precipitator 
[from Parker and Plaks (2004)] 
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The figure is actually far simpler than reality, for the electric field lines actually fill the 
entire interior space. Discharge electrodes may be cylindrical wires as shown, or they 
may be complicated fluted or scalloped structures, or even carry rows of sharp 
points. The collector plates are not usually continuous as shown, but are divided into 
sections to allow motion when rapped. These collector plate sections are also formed 
into shapes which provide rigidity and spaces where collected particles are 
somewhat protected from being blown back into the passing gas stream.
The discharge electrodes are held at high negative voltage, either steady DC or 
pulsing, relative to the grounded collector plates. Excitation is typically 70 kV, which 
is sufficient to ionize the gas in a small diameter “corona” surrounding the discharge 
electrodes. Both (+) and (-) ions are present within the corona zone, but beyond it
only (-) ions are found. Passing particles accumulate the (-) ion charges, and are 
driven toward the collector plates. These particles may adhere to the collector plates 
or to particles previously deposited on the plates, or they may rebound from the 
plates. If the particles are poor electrical conductors - if they have high resistivity - 
areas may form in the collected deposits which produce (+) ions. This is called “back 
ionization”, and causes some particles to be driven back into the passing gas flow.
A realistic model of a single-stage ESP must simulate all of the phenomena just 
described, plus the flow of gas in the space between the collector plates. Fortunately, 
the electrostatic fields and ion creation and flow are little influenced by the gas flow 
velocity pattern (but are dependent in predictable ways on the thermo-physical 
properties of the gas). Hence the ion density pattern, and the charging rate of 
particles, can be defined. Less fortunately, the behavior of the gas is modified by the 
presence of ions in an electric field. And of course, the usual problems of modeling 
flow that may be viscous or turbulent are present. In addition, the flow is actually 3-
dimensional, with some of what is called “sneakage” of dusty gas escaping treatment 
at the top and bottom of the collector plates.
The development of models has progressed from the very simple one-dimensional 
expression of Deutsch (1922), here shown in a general form applicable to both wire-
in-tube and single-stage plate precipitators:

Q
wAnPenetratio PPexp (5) 

Where
AP = area of the collector plates; wP = particle migration velocity near the plates;
Q = gas volumetric flow.

Through the years, the pieces of the ESP puzzle have been added to the Deutsch 
equation, with many laboratory and field studies providing the data to back up 
concepts. An understanding of ESP problems can be gained by browsing the 154-
page training manual (Parker and Plaks, 2004) for the computer program ESPVI 4.0. 
Additional material on the concepts used in this code is available in chapters by 
Lawless and Altman and Lawless and Plaks in EPRI (1990a). ESPVI 4.0 includes a 
database defining particle properties based on field tests. The agreement between its 
predictions of efficiency and energy use are apparently sufficient for the US 
Environmental Protection Agency to approve its use in licensing electrical utilities.
Although ESPVI 4.0 is very detailed, it contains many simplifications not necessary 
with CFD modeling. There have been numerous applications of CFD to ESP
modeling. Examples include: Soldati (2003); Talaie (2005); Lin and Tsai (2010).
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6. Filters with Cleanable Surface-Loading Media

Cleanable media filters using tubular fabric bags and cartridge filters are widely 
applied in industrial exhaust pollution control. These devices rely for efficiency on the 
buildup of collected dust on the filter media surface, and intermittent removal of this 
dust “cake”. The most popular method of cleaning is the pulsejet, which uses pulses 
of compressed air to induce a reverse airflow through the filter media. This is 
applicable to both baghouses and cartridge type filters. For baghouses, however, 
cleaning can also be accomplished by flow reversing dampers, and by shaking the 
bags. Realistic simulation of cleanable-media performance needs to consider the
parameters and processes listed below.

Media Type: Woven, nonwoven Gas properties  Particle concentration,
felted and laminated fabrics; Gas humidity   density, morphology
pleated filter cartridges  Flow volume   and diameter

distribution
Cleaning method: shaking,  Pulse-jet pressure,  Particle adhesion

collapse, pulse-jet     frequency, duration and release behavior
Media area    Pulse-jet venturi  Particle load on fabric
Shaker acceleration     design & position  or cartridge media

Figure 11 - Pulse-Jet Bag Filter Tester [from Schmidt and Löffler (1990)]
1: Dust Feeder; 2: Filter Bag; 3: Hopper; 4: Compressed Air Pulse System; 

7: Flow Control; 8: Particle Counter; 9: Radioisotope Dust Cake Mass Scanner.

Most literature on cleanable media filters consists of reports of field experience, with 
almost no quantitative determination of the impact of the above factors, or use of 
mathematical models. Schmidt and Löffler (1990) describe a single-tube fabric
collector with pulse-jet cleaning, with simultaneous measurement of the pulse 
waveform and fabric acceleration. The thickness of deposited dust was measured by 
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adsorption of radioisotope emissions. They also report attempts to define the internal 
structure of the dust cake. Cleanable filter behavior is a topic ripe for study.

Figure 10 - Peak excess pressure inside bag during cleaning pulses, as a 
function of position above lower end of bag [from Schmidt and Löffler (1990)]

7. Simulation of Fibrous Air Filters

In a few forms of fibrous air filters the air flow approaches the filter medium at full 
duct velocity, perpendicular to the medium. In most filter designs filter medium is 
pleated; to increase media area and lower media velocity. In another design, filter 
medium is formed into pleated panels which are also arranged in larger-scale 
“pleats”. Analysis of flow through filters with pleats must consider the flow through the 
filter medium per se, and also through the inlet and outlet regions upstream and 
downstream of the filter medium. Let us first examine the modeling of filter media.

Figure 12 - SEM image of a typical air filter medium, showing a wide range of 
fiber diameters, random structure, and binder bridges

7.1 Classic Models for Filter Media
Figure 12 is a SEM image of a typical air filter medium. We repeat this familiar image 
because it shows the randomness of fibers in most media, and also the web-like 
binder bridges joining the fibers. Few simulations of fibrous filter media have 
simulated this element of fibrous media, which sometimes makes up as much as 
15% of the solids volume of filter media. Binder needs to be added to simulations, 
just as it must be added to real media.
Early attempts modeling fibrous filtration had to use very simple, orderly models. One 
was by Langmuir (1942). His model represented a filter by a single fiber sitting in
lonely splendor, with gas flow at uniform velocity distant from the fiber. One might say 
that this model meets Einstein’s criterion for simplicity, and the remarkable thing is 
that it provided some useful information. Oseen and Lamb had solved the pattern of 
gas flow for this model in 1910-1911. Langmuir treated the case of viscous flow, and 
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included two particle-capture “mechanisms”: “direct interception” and “diffusion”. He 
also dealt with the problem of the effect of nearby fibers by introducing an empirical 
coefficient related to the fractional solids of the filter medium. He showed that for a 
given fiber diameter and fractional solids, there is a particle diameter which is 
removed with least efficiency. This particle diameter is what we refer to as the 
maximum penetrating particle size (MPPS). It the reason that HEPA filters are usually 
specified as having “> X
suggested the 0.3 the appropriate MPPS for the HEPA filters then in 
use, at their usual operating conditions.
Problems arise in modeling filter media with a range of fiber diameters. The model 
requires that one determines an “effective fiber diameter” experimentally, along with 
the empirical correction for fractional solids. Such approach tells very little about how 
to design a sheet of filter media.
Numerous investigators developed the theoretical behavior of various regular arrays 
of uniform-diameter fibers. Geometries analyzed included rectangular and staggered 
rows of fibers, and a few with more than one fiber diameters. Brown’s book (1993) 
describes these studies in great detail. Kuwabara made a major contribution in 1959 
with a way around the problem of nearby fibers. His concept (expressed for a 2D 
section cut through the filter medium) was that each fiber was at the center of an 
imaginary circle, now called a “Kuwabara Cell”. The outer diameter of the cell was set 
so that the ratio of the fiber cross-section to the cell cross-section equals the 
fractional solids for the filter medium. Boundary conditions for the fiber and the outer 
cell were adjusted to allow analytical solutions, avoiding the need for finite-difference
calculations not readily available in 1959.
The Kuwabara cell is a fine example of a model which is completely wrong, but 
produces some useful results. Kuwabara cells joined together to simulate a 
significant piece of filter media must overlap. Simulations closer to actual filter media 
geometries had to await the development of computational fluid dynamics.

7.2 CFD Simulations of Fibrous Filter Media
It is possible to analyze models simulating filter media performance in 3 dimensions 
(3D) even using something less than a supercomputer. The group at the Fraunhofer 
Institute, e.g. Cheng et al. (2009) and others investigating woven and nonwoven 
fabrics, see Wang et al. (2006), have modeled media with random fiber diameters 
located randomly in 3D spaces. Other studies have been satisfied with 2D sections
through media. This allows random fiber diameters and full media depth to be 
simulated without heavy computational burdens, see Tronville and Rivers (2005), 
Herman et al. (2006). These studies allow evaluation of the proper boundary 
conditions at the surface of both the fibers and particles, which may have diameters 
as low as a few hundred nanometers. At those boundaries, gas may have zero 
velocity, or different levels of “slip”. For filter media with fiber diameters still smaller, 
the usual Navier-Stokes equations describing the flow may need to be replaced with 
the Burnett equations, or entirely different computational procedures, such as the 
Lattice Boltzmann method and Direct Monte Carlo Simulation (DMCS). DMCS 
mimics the detailed molecular motions of gases.
Predicting particle capture from physical fundamentals, whether by classic analysis or 
CFD, is more difficult than just predicting pressure drop caused by the air flow 
resistance. One must first get a reliable flow model to get reliable solutions of particle 
motion. Including electrostatic effects adds complexity. The buildup of particles on 
filter fibers has been simulated in 2D and 3D, but with inevitable simplification of 
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models, more so in 2D than 3D. There is always a trade-off between realistic 
modeling and computation time.

7.3 CFD Simulations of Complete Filters
For CFD determination of the gas velocity pattern, pressure drop and particle capture 
in a pleated filter, the filter medium may be replaced with a region of the same 
thickness and uniform, isotropic permeability KM. The assumptions here are that the 
filter medium is uniform, with thickness sM and pressure drop pM proportional to 
velocity vM: 

M

MM
M p

svK (6) 

In similar fashion, for these determinations on multi-panel filters the panels may be 
represented by regions of the panel thickness sP and uniform and isotropic 
permeability KP. In this case, the panel pressure drop is not linear with panel velocity 
vP, but a function of vP. Usually, a quadratic in vP is adequate, hence panel
permeability KP is: 

) ( 2

P

PPP
P p

sbvavK (7) 

The simplest way to determine a and b in Eq. (7) is to measure the pressure drop 
across a single panel for a range of velocities vP, with flow perpendicular to the panel 
face. Existing CFD codes allow the insertion of this information into flow analysis 
where some zones in the calculation domain are identified as porous media.

8. Devices for Gaseous Contaminant Capture

Adsorption is the separation of unwanted gaseous components (pollutants) from a 
gas stream by trapping on the surface of a solid. Adsorption is the dissolving of such 
components within the body of a solid or liquid. Adsorption is greatly intensified when 
the surface of the solid is expanded by pores of microscopic size. Both adsorption 
and absorption have been studied in great detail by chemical engineers, and are 
described in established texts like Bird et al (2002). With some simplifying 
assumptions, sorption processes are often well described by analytical solutions to 
differential equations, so that numerical approaches are not needed.
There are, however, complexities. The speed of a sorption process is dependent on 
the thermo-physical properties of each gas molecular species involved, and 
especially on the concentrations of each in the carrier gas. If more than one 
contaminant species (including water vapor) is present, each may interfere with the 
separation of others from the carrier gas. Captured contaminant molecules may be
released from the sorptive material by temperature changes, adsorption of other 
species, or the continued passage of unpolluted carrier gas. As contaminant
molecules accumulate on or within the sorptive material, the rate of molecular 
transfer from the carrier gas decreases.
The literature on sorption is immense. Of special value in the separation of 
contaminants from breathable air is the series by Nelson et al. (1976) which applies 
to gas masks and building ventilation. CFD is not much needed in studies of deep 
granular beds. However, the flow characteristics of so-called tray adsorbers and 
pleated media containing adsorptive material can be treated as described above for 
particulate filters of multi-panel mini-pleat and pleated forms. Venturi scrubbers and 
baghouses are sometimes used as contactors for absorption and chemisorption. 
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Chemisorbers incorporate reactive chemicals on the surfaces of their carrier bodies 
or in scrubbing liquids. There are no universally reactive substances, so specific 
pollutants must be targeted, and reaction rates added to the parameter list. The 
literature on chemisorption is, therefore, much devoted to specified pollutants.

9. Conclusions

Empirical, analytical, and numerical means exist to simulate the performance of gas 
flow separation equipment, with CFD being the most recent development.
Meaningful predictions can only be made when all significant phenomena are 
incorporated in the models assumed for analysis. When a predictive method is 
developed, its accuracy should be tested on a broad array of measured data before it 
is used to design or optimize separation systems.
A validated database of fully defined systems and their performance results would be 
useful to verify the accuracy of future predictive methods.
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