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Impact of Adverse Network
Conditions on P2P-TV Systems: Experimental

Evidence

Eugenio Alessandria, Massimo Gallo, Emilio Leonardi, Marco Mellia∗,
Michela Meo

Politecnico di Torino
Dipartimento di Elettronica

Corso Duca degli Abruzzi 24, 10129 - Italy

Abstract

In this paper we define an experimental set-up to analyze the behavior of com-
mercial P2P-TV applications under adverse network conditions. Our goal is to
reveal the ability of different P2P-TV applications to adapt to evolving network
conditions, such as delay, loss, available capacity, and presence of background
traffic and to check whether such systems implement some formof congestion
control. We apply our methodology to four popular commercial P2P-TV appli-
cations: PPLive, SOPCast, TVants and TVUPlayer. Our resultsshow that all the
considered applications are in general capable to cope withpacket losses and to
react to congestion arising in the network core. Indeed, allapplications keep try-
ing to download data by avoiding bad paths and carefully selecting good peers.
However, when the bottleneck affects all peers, e.g., it is at the access link, their
behavior results rather aggressive, and potentially harmful for both other applica-
tions and the network.

We then observe the interference between TCP and P2P-TV traffic. As ex-
pected, P2P-TV applications do not perform TCP-friendly congestion control,
causing in some cases problems to TCP traffic and to P2P-TV performance it-
self. Finally, we also verify that the applications are fairtowards clients sharing
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the same access link, even when congestion arises.

Keywords:
Peer-to-Peer, Video Streaming Measurement

1. Introduction and Motivations

A new class of peer-to-peer (P2P) systems providing real-time video streaming
over the Internet is fast emerging and gaining popularity. Several commercial
P2P streaming systems such as PPLive, SOPCast, TVants and TVUPlayer, just to
mention the most popular ones, are already available on Internet.

P2P-TV systems may contribute to revolution the broadcast TV paradigm al-
lowing ubiquitous access to a practically unlimited numberof channels. This
represents an important step forward in the direction of an Anything-Anyone-
Anywhere-Anytime ubiquitous communication paradigm of future Internet appli-
cations [1].

The adoption of a P2P paradigm reduces the network costs, pushing complex-
ity from the network to the users, while helping to relieve the bandwidth cost
burden at the servers. Although from the users’ as well as from the server points
of view this class of P2P applications has useful and interesting characteristics,
the network operators’ have serious concerns about the capability of the Internet
to support large scale P2P-TV systems (mainly due to the potential high band-
width requirements, large number of involved users, and theintrinsic inelasticity
of video traffic). These concerns are confirmed by some news reports, see for in-
stance [2]. It seems, therefore, rather urgent to have a better understanding of the
potential impacts that these applications may entail on theunderlying transport
network. Since the most widely deployed commercial systemsfollow a closed
and proprietary design, only an experimental and black box characterization of
traffic injected by such systems is in general possible; we emphasize, indeed, that
approaches requiring to partially reverse engineering complex P2P-TV systems
are viable at much larger cost, and only in a few cases. Moreover, to develop
new architectures and algorithms that improve the “networkfriendliness” of such
applications [3, 4], it is necessary to understand how current applications react to
different network conditions and scenarios. Do they implement any congestion
control algorithm? How do they react to packet drop? What is the impact of
increased end-to-end delay?

In this paper we propose a testing methodology and test-bed experiments to
assess how these applications react to different network conditions, like available

2



bandwidth, loss probability, delay; both network load, anduser perceived quality
of service, should then be measured. Applying our methodology, we test and
compare four popular P2P-TV applications, namely PPLive, SOPCast, TVants
and TVUPlayer. All selected applications adopt the “mesh-based” approach [1],
in which peers form a generic overlay topology to exchange chunks of data.

Results show that all applications are effective in trying toovercome network
impairment. For example, all applications avoid impaired paths by carefully se-
lecting peers to download from. However, when the bottleneck affects all paths,
e.g., in case the access link is congested, they aggressively download data trying
to receive the video stream. While P2P-TV offers good end-user service even in
presence of adverse network conditions and it is far towardsclients sharing the
same access link, it can become harmful to the network and other applications.
In particular, the coexistence of these applications with elastic background traf-
fic, e.g., TCP connections, can result critical in some cases.We discover then
that all applications implement a memory based algorithm that tracks good and
bad neighbor peers, while no change is observed in the mechanisms to create the
neighbors set and that applications.

The paper is organized as follows. We start by summarizing the related work
in Sec. 2. Then, the measurement setup and methodology are defined in Sec. 3.
Sec. 4 presents the results in which network impairment affects the incoming traf-
fic from all peers, in Sec. 5 scenarios in which “good” and “bad” peers coexist
are analyzed to investigate the ability of the applicationsto correctly handle them;
scenarios in which the P2P-TV applications are sharing the access bandwidth with
TCP connections are instead analyzed in Sec. 6 and the case of two clients sharing
the same access link is made in Sec. 7. Finally, Sec. 8 summarizes our findings.

2. Related Work

To the best of our knowledge, this is the first experimental work on P2P-TV
systems exploring how such systems react to different network conditions. In a
previous paper, we performed a similar characterization considering Skype [5], in
which the focus was on the voice traffic sent/received by a Skype client.

Considering more general experimental results about P2P-TVsystems, the
research community has given a lot of attention to understand application inter-
nals [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

A few works [6, 7, 8], relying on the implementation of an active crawler,
focus on a single system. These approaches face the dauntingtask of partially
reversing the engine of the P2P-TV system under analysis. Asa consequence, this
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methodology is limited by the ability to break closed and proprietary systems, and
we believe that they can be hardly extended to characterize all the possible P2P-
TV applications. In particular, [6] investigates PPLive, whereas [7] focuses on the
commercial re-engineer of Coolstreaming, and [8] considersUUSee. All these
papers mainly provide a big picture of the considered system, focusing on metrics
such as the number of users, their geographical distribution, the session duration,
the packet size distribution. None of the above mentioned papers considers the
particular aspects we are interested into, i.e., the way thesystem reacts to evolving
network conditions.

Other works, such as [9, 10], instead, study specific aspectsof a P2P streaming
system. For instance, [9] gives some preliminary results onthe node degrees of
popular versus unpopular channels in PPLive. Authors in [10] investigate the
stability of nodes in PPLive, and devise schemes to identifythe most stable nodes.

Quality of service is of concern in [11, 12]. Authors in [11] exploit an analysis
of PPLive buffer maps, collected through protocol reverse engineering, to infer
QoS metrics such as network-wide playback continuity, startup latency, playback
lags among peers, and chunk propagation timing. Authors in [12] focus on similar
metrics but exploit logs made available from an (unspecified) commercial P2P
streaming system.

Authors in [13] analyze and compare PPLive and SOPCast investigating the
time evolution of different metrics, like transmitted/received bytes, number of par-
ents and children, etc. In [14], on the contrary, a comparative evaluation of four
commercial systems (namely PPLive, PPStream, SOPCast and TVAnts) is pro-
posed showing flow-level scatter plots of mean packet size versus flow duration
and data rate of the top-10 contributors versus the overall download rate. In [15]
PPLive, SOPCast and TVAnts systems are analyzed. A systematic exploration of
the mechanisms driving the peer-selection in the differentsystems is performed.
At last, in [16] a simple experimental analysis of PPLive andJoost is presented to
evaluate the characteristics of both data distribution andsignaling process for the
overlay network discovery and maintenance.

A preliminary version of this paper has been presented at Infocom 2009, [17].
In this paper, we extend the analysis of [17] by investigating the transmitted traffic,
the coexistence of P2P-TV and TCP traffic, and fairness towards clients sharing
the same access link. Some results of the previous version are omitted here, to
leave room for the new results.

4



3. Methodology

The aim of this work is to study how P2P-TV applications reactto differ-
ent network scenarios. Given that all successful P2P-TV applications follow a
proprietary and closed design, we have to follow a “black-box” approach. We
therefore setup a testbed, in which clients running the Application Under Test
(AUT) are connected to a Linux router, which is connected to the Internet via our
Fast-Ethernet based campus LAN. The router itself is then used to enforce par-
ticular network conditions. In particular, we used the Linux Network Emulation
functionalitynetem coupled with the Token Bucket FilterTBF. This allows us
to emulate the properties of wide area networks, controlling available bandwidth,
delay, loss, duplication and re-ordering of packets routedthrough the router. Other
PCs are connected to the testbed to inject background traffic.

Note that, since we run real on-field experiments, our control on the experi-
mental set-up is limited to the interface in object only. This implies that the global
network conditions are unknown and that possible effects due to congestion, loss,
delay inside the Internet are superposed to the effects “artificially” introduced at
the router under our control.

Two packet level traces are collected at the router: the firstone logs all packets
sent/received by the network interface that connects the router to the Internet; the
second one logs all packets sent/received by the network interface that connects
the PC running the AUT. Packet level traces are then post-processed to obtain the
desired measurements. In this paper, we report results considering theaverage
received bit-ratemeasured in small time windows (set to 1 minute); the received
bit-rate is denoted byr(t), with t the time at the end of the measurement window,
and it is evaluated at the application layer, i.e., neglecting transport, network and
data-link overheads. Similarly, in some cases we report theaverage transmitted
bit-rates(t), intended as the bit-rate transmitted by the peer interface; s(t) is also
measured in 1 minute long intervals. The numbern(t) of peers that exchanged
packets with the AUT during a time interval, i.e., thenumber of active peers, is
evaluated as well; forn(t) we use shorter time windows of 5 seconds.

Finally, the PC running the AUT is used to capture the video stream that is
received and to dump it on a file by means of a video grabber utility. To evaluate
the video quality of the received stream, we cannot apply anystandard reference-
based technique, since they all rely on the comparison of thereceived and original
video (being impossible to get the latter one). All selectedapplications generate
378 kbps streams encoded using the Microsoft VC-1 encoder; a typical bit-rate of
450-500 kbps is received by the AUT, so that 100-150 kbps of additional overhead
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is required by the applications to successfully deliver thestream (not including
transport, network and data-link headers). Since the codecrelies on proprietary
design, it is difficult to evaluate the quality of the received stream. We are there-
fore forced to estimate the stream quality by simply counting the number of errors
a decoder has to deal with when decoding the stream. In particular, we decoded
each file usingffmpeg utility which reports a detailed list of corrupted video
I-frames. Those are major impairment that will affect the video quality for sev-
eral frames, i.e., up to when a good I-frame is received (usually several seconds
later). Similarly, the audio stream decoding errors are evaluated as reported by
ffmpeg. In the following, we report therefore the number of corrupted I-frames
and audio blocks as quality index. While this allows only a qualitative evaluation
of the stream quality, it allows us to fairly compare different applications.

3.1. Scenario definition

The parameters we consider in this paper are the following:

• c: Capacity limit

• l: Packet loss

• d: Delay

The setL(t) = {c(t), l(t), d(t)} specifies the state of the controlled link during
each instant of the experiment - we restrict to the cases in which only one of the
three above parameters is evolving with time and we denote with p(·) its profile
over time.

As profile p(·) we select a step function, with initial valuep0, incrementsI,
and step duration∆T , so that

p(t) = p0 + I
∑

n=1

H(t − n∆T ) (1)

in whichH(t) is the Heaviside step function

H(t) =

{

0 t < 0
1 t ≥ 0

(2)

If I is positive,p(·) corresponds to anincreasingprofile; negative values ofI, on
the contrary, generatedecreasingprofiles. A null increment,I = 0, finally, leads
to aconstantprofile.
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The impairment defined by a scenario can affect all sent/received packets, so
that global impairment is imposed, or only a subset of sent/received packets, so
thatper peerimpairment is imposed; for example the scenario can affect asingle
peer, a subnet, an Autonomous System, or any generic subset of IP addresses.

3.2. Considered general setup

We performed several experiments considering different scenarios and pro-
files, during various time periods and with clients tuned on different TV channels.
We collected a total of more than 300 hours of experiments. Inthis paper, we
report a subset of the most representative experiments. In particular, we consider
only scenarios in which the download link is controlled, while the upload link
capacity is limited tocu(t) = 200 kbps, unless otherwise specified. This indeed
allows us to evaluate the application behavior when the peerhas not enough capac-
ity to act as an “amplifier”, i.e., to serve many peers; this isthe typical condition
of ADSL users.

4. Global impairment

4.1. Effect of available capacity

In the first set of experiments, the download available capacity c(t) is imposed.
Results are shown in Fig. 1 and are organized in the following way. The two
largest plots in the left part of the figure report the bit-rate r(t) versus time for
profiles with either decreasing or increasing capacity limit (on the top and bottom
plots, respectively). The 8 small plots on the right part of the same figure depict
the number of corrupted audio and video frames for the same experiments; each
plot refers to a specific application.

Let us start by considering the decreasing profile. Every∆T = 5 minutes, the
available bandwidth is decreased by aI = −50 kbps, starting from an initial value
of c0 = 800 kbps. The average bit-rate evaluated using 60 seconds time intervals is
reported for all applications on left top plot of the figure. The experiment lasted 1
hour, after which the available capacity was set back to 800 kbps. All applications
have similar behavior: the bit-rate remains basically constant for all the time the
available capacity is larger than the data rate,c(t) > r(t). When the capacity
bottleneck kicks in, all the applications react by increasing the download data
rate. Consider, for example, TVAnts, which exhibits the largest value of the bit-
rate. The normal data rate is about 600 kbps; when the capacity limit reaches 650
kbps, the receiver starts suffering the bottleneck (due to traffic burstiness), and it
reacts by requesting other peers to send more traffic; the download rate becomes
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Figure 1: Left plots: received bit-rate for decreasing (top) and increasing (bottom) available band-
width. Right plots: percentage of corrupted audio/video frames, one plot for each application.

larger than 800 kbps. As the capacity limitsc(t) decreases, the received rate
decreases too, being always about twice the available capacity, i.e., the offered
load to the congested link is about 2,r(t)/c(t) ≃ 2. Other applications show
similar behavior, with smaller values of the offered load incongested conditions;
in particular, TVUPlayer exhibits the smallest overload factor r(t)/c(t) ≃ 1.3.

Looking at the last 10 minutes of the experiment, when the capacity returns
to high values, an unexpected, strange behavior is observed. Indeed, sincec(t)
is larger then the normally required capacity,r(t) should take again the typical
values that can be observed when traffic is not bottlenecked.While this is true
for PPLive and SopCast, both TVAnts and TVUPlayer keep on receiving at a
rate which is about twice as large as the normal receiver rate. This maintains the
bottleneck offered load higher than 1, so that audio/video impairment is observed
up to the end of the experiment. Indeed, looking at the numberof corrupted
frames reported in the top right part of Fig. 1, audio/video impairment starts to
show up as soon as the bottleneck kicks in, and it does not always disappear
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when the bottleneck capacity is set back to 800 kbps. TVAnts shows the longest
period during which corrupted frames are observed, while, PPLive can cope with
downlink capacity as small as 400 kbps without any audio/video error.

Results for the case of an increasing capacity profile are reported in bottom
part of Fig. 1. The AUT is started now in scarce bandwidth conditions (b0 = 200
kbps), andI = 40 kbps increments are applied every∆T = 5 minutes. All appli-
cations react to the adverse condition by trying to downloadmuch more data than
the available capacity; also in this caser(t)/c(t) varies from 1.3 (for TVUPlayer)
to 2 (for TVAnts). Only when the available capacity is large enough to sustain
the minimal download rate, all applications but TVUPlayer decreaser(t) to their
typical values. This is reflected by the disappearance of audio/video impairment,
as shown by the right plots. Again, TVUPlayer suffers major impairment, even
when the bandwidth grows to large values.

We can conclude that P2P-TV applications do not correctly perform conges-
tion control, in scenarios in which peer access links get congested. They all try
and react to limited access capacity by increasing the redundancy (by FEC or
ARQ mechanisms) and, thus, the download rate. This may be potentially harmful
for both the network and other applications sharing the congested link. Note that
a single congested link may also be present when the unique peering link between
a stub ISP and the rest of the Internet is congested. If this happens, P2P-TV ap-
plications may react as in the previously presented cases, causing further network
problems and congestion.

4.2. Effect of loss probability

The second set of results we report aims at investigating theimpact of loss
probability on the AUT. Organized in a similar way as the previous figure, Fig. 2
shows the receiver rate for increasing (top plots) and decreasing (bottom plot)
packet loss probability profiles. The right y-axis of the larger plots reports the
percentage of losses,l(t), that varies in time steps of∆T = 5 minutes, with loss
incrementI = 5% (l0 = 0%). In this case also, all the applications react to in-
creasing packet losses by increasing the bit-rater(t). By doubling its received
data rate forl(t) > 35%, TVUPlayer is the most aggressive application, while
PPLive shows the smallest increase. Looking at the corresponding number of au-
dio/video corrupted frames, it is impressive to observe that all applications achieve
very good video quality as far asl(t) < 25%. In particular, it is worth noticing
that SopCast can cope with 25% packet loss probability with only about 100 kbps
of additional data rate. TVUPlayer exhibits similar performance, but at a much
higher cost that accounts to up to 600kbps of additional datarate.
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Figure 2: Left plots: received bit-rate for increasing (top) and decreasing (bottom) loss probability.
Right plots: percentage of corrupted audio/video frames, one plot for each application.

Similar observations can be drawn by looking at the decreasing packet loss
probability scenario reported in bottom plots of Fig. 2. In this scenario,I = −5%,
i0 = 40%, ∆T = 5 minutes.

These results allow us to conclude that all applications react to packet losses
by trying to recover them, using some kind of ARQ mechanism that causes an
increase of the received traffic. While this is very efficient in repairing the au-
dio/video stream, it comes at the expense of an offered load that can be as large
as twice the rate in normal conditions. This definitively confirms that P2P-TV
applications do not perform, in general, any congestion control.

4.3. Effect of delay
We now consider the effect of increasing and decreasing delay profiles. Fig. 3

reports the results for the received bit-rate of the increasing (left plot,I = 200 ms,
d0 = 0 ms,∆T = 5 minutes) and decreasing (right plot,I = −200 ms,d0 = 2000
ms,∆T = 5 minutes) profiles; plots about the number of corrupted frames are not
reported for the sake of brevity.

10



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  10  20  30  40  50
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

B
it
ra

te
 [
k
b

p
s
]

D
e

la
y
 [
m

s
]

Time [m]

TVAnts
TVUplayer

PPLive
SopCast

Limit

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  10  20  30  40  50
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

B
it
ra

te
 [
k
b

p
s
]

D
e

la
y
 [
m

s
]

Time [m]

TVAnts
TVUplayer

PPLive
SopCast

Limit

Figure 3: Received bit-rate for increasing (left plot) and decreasing (right plot) delay.

Results about the increasing delay case show that the applications can manage
quite well slow variations of the delay; they can stand up to 1.5 s of additional de-
lay without any significant variation of the received bit-rate (and any audio/video
error). The applications start suffering the delay when it reaches almost 2 s, which
is quite large; PPLive and TVUPlayer seem the most delay sensitive applications.

Interestingly, the applications suffer more for large values of the delay at the
start up (see right plot Fig. 3). It is probably difficult for the applications to suc-
cessfully create the neighbor list. Indeed, since the additional delay applies also
to packets carrying signaling information, signaling dialogs are probably hardly
completed with large values of the delay. In the decreasing profile, delay has to
decrease below 1.2 s to allow the applications to start receiving the video stream.
Again, PPLive seems the most sensitive application: additional delay should be
smaller than 1 s to allow it to work.

4.4. Number of active peers

Finally, upper plots of Fig. 4 report the number of active peers, n(t), for the
previously described scenarios with increasing and decreasing capacity limit and
loss probability.

The network conditions have no impact on the behavior ofn(t), which repeats
regularly during the whole experiment. On the contrary, different experiments
show different absolute values ofn(t); indeed, the absolute values change with
channel popularity and time of the day so as to reflect the population of available
peers. PPLive, that is an extremely popular application, has always the largest
number of active peers.
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Figure 4: Number of active peers (top) and total contacted peers (bottom) for decreasing or in-
creasing available bandwidth and packet loss probability (from left to right).

The same observations can be made by considering the evolution of the num-
ber of total contacted peers, which is independent from the network conditions;
the associated plots are reported in the bottom part of Fig. 4. Notice also that
the periodic peaks clearly visible in most of the applications are due to periodic
keep-alive messages used to exchange signaling information.

These results allow us to conclude that the internal algorithms each application
implements to discover, create and maintain the overlay, are insensitive and do not
adapt to network conditions; network conditions influence only the video stream
distribution mechanisms.

5. Per peer impairment

5.1. Effect of available capacity

We now investigate the capability of the AUT to cope with scenarios in which
only a subset of peers is affected by network impairment, so that “good” and “bad”
peers coexist. The goal is to verify if the AUT can identify the set of “good” peers
to download from. In particular, for the results reported here, the imposed network
impairment affects only peers having an odd IP address. The rationale behind this
choice is to have the peer population split into two equally large subsets: odd
peers, affected by network impairment, and even peers, not affected.
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Figure 5: Received bit-rate for decreasing capacity limit.Odd peers only are affected by the
impairment.
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Figure 6: Received bit-rate for increasing capacity limit.Odd peers only are affected by the
impairment.
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Figure 7: Received bit-rate for increasing loss probability. Odd peers only are affected by the
impairment.
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Figure 8: Received bit-rate for decreasing loss probability. Odd peers only are affected by the
impairment.
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The plots of Fig. 5 report results considering a decreasing capacity limit pro-
file. In particular, the profilec(t), that is imposed to odd peers only, starts from
c0 = 400 kbps, and every∆T = 5 minutes a further bandwidth decrease of
I = −25 kbps is applied. After 60 minutes, the available bandwidth is again set
to the initial value. Each plot reports, for a given application, the bit-rate received
from even and odd peers and the total received bit-rate. The imposed profile is also
given for completeness. Again, all applications exhibit similar behavior: during
the initial phase there is no preference in receiving data from even or odd peers:
they equally contribute to the total download rate. As soon as the bandwidth limit
kicks in, reducing the performance of odd peers, the applications preferentially
download data from even peers. The preference is stronger for SopCast (right-
most plots) for which even peers contribute to 80-90% of download rate. TVAnts,
on the contrary, adapts less than the other applications to these network conditions.

Fig. 6 reports results for an increasing bandwidth profile applied to odd peers
only; the profile has parameters:c0 = 125 kbps,I = 25 kbps,∆T = 5 minutes.
Similar considerations hold: All applications quickly identify the adverse capacity
constraints affecting odd peers, so that even peers providelarger contribution to
the total download bit-rate. In particular, TVUPlayer (topright plot) has a very
accurate control mechanism that allows it to quickly identify the changing network
conditions. PPLive and SopCast also exploit the additional bandwidth of odd
peers that becomes gradually available, but a longer transient phase is required.
Finally, TVAnts ignores the additional bandwidth, since about 70% of traffic is
received from even nodes during the whole experiment.

In all cases, all the applications receive the minimum required amount of data
that guarantees them to decode the audio/video streams without suffering any er-
ror.

5.2. Effect of loss probability

Figs. 7 and 8 report results considering increasing and decreasing profiles of
l(t), respectively. Let us start by considering increasing lossprobability; plots on
top row of the figure refer to a profile withl0 = 0%, I = 5%, ∆T = 5 minutes.
In this case, different reactions are observed. TVAnts has astrong preference to
receive from even peers starting froml(t) ≥ 5%. TVUPlayer has an on/off be-
havior, so that no preference is shown up tol(t) = 10%, and, then, 95% of data
is received from even nodes only. PPLive is ignoring the lossimpairment up to
l(t) ≥ 20%, after which data are preferentially received from even nodes (but still
20% of traffic is received from odd peers whenl(t) = 40%). Finally, SopCast
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shows a more irregular and uncontrolled behavior which causes a preference to-
ward odd peers untill(t) = 15%, after which about 90% of data is received from
even nodes only.

Consider now Fig. 8, which reports results for a decreasing profile of l(t)
(with l0 = 40%, I = −5%, ∆T = 5 minutes). Since all applications start
in very unfavorable conditions for odd nodes, most of the traffic is received from
even nodes. In particular, TVUPlayer constantly receives 98% of traffic from even
nodes only, even whenl(t) becomes small. Similarly, TVAnts and SopCast exhibit
a very stable preference during the whole experiment duration, with TVAnts trying
to received 15-20% of traffic from impaired peers. PPLive, onthe contrary, keeps
on receiving 20% of traffic from odd nodes, percentage that goes up to 50% when
l(t) ≤ 10%. This confirms that PPLive is capable of coping with high packet loss
rates (as already noticed in Fig. 2), hinting to an effectiveFEC algorithm.

5.3. Other results

We performed other similar tests, targeting with impairment: a particular peer,
IP subnetworks, and Autonomous Systems. All the experiments showed consis-
tent results, so that preference is given to good peers. We, thus, conclude that
all applications implement a per-peer preference mechanism that is used to select
the subset of good performing peers. While internal algorithms are unknown, the
presented results suggest that the applications are using different algorithms. Due
to space constraint, we do not report the figures referring toother scenarios we
tested, and refer the reader to [17, 18] for more details.

Considering other possible impairment, experimental results shows that:

• Delay preference: All applications are very sensitive to additional delay,
so that content was almost exclusively retrieved from good peers as soon as
the additional delay increased.

• Hop distance: When we artificially decreased the IP TTL value to artifi-
cially inflate the path hop distance, no application showed appreciable bias.
This clearly indicates that hop-count information is not exploited by the
peer selection algorithm.

• Number of active peers:Results show that the AUT keeps contacting odd
peers, sincen(t) is not correlated withc(t), l(t) or d(t). This hints to con-
trol algorithms that react to different network scenarios by carefully select-
ing the good peers to exchange data with. However, signalingis exchanged
with all peers (including “bad” peers) independently from the instantaneous
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Figure 9: Transmitted bit-rate for decreasing bandwidth limitation.

end-to-end network quality. We also verified that all AUTs keep exchang-
ing data with and probing “bad” peers even during very unfavorable con-
ditions. In these cases only few, small packets are sent and (possibly) re-
ceived. This suggests that only signaling information is exchanged between
any two peers that are experiencing adverse network conditions, but the bad
peers are not dropped in favor of the good ones.

5.4. Impact on the upstream traffic

In this section, we consider the impact of downlink impairment on uplink traf-
fic. As before, we consider an ADSL-like scenario in which thepeer has upstream
capacity equal tocu = 200kbps, i.e., the peer contribution to video distribution is
low.

Figure 9 shows the total bitrate in the upstream for the considered applications
when the downlink undergoes the same bandwidth decreasing profile previously
presented. When the impairment on the downlink becomes severe, the peer re-
duces the number of chunk transmissions, that is, it reducesits contribution to
the video content distribution. The transmitted information on the uplink is then
basically limited to the signaling information.

To further investigate this phenomenon, we separately consider signaling and
data information. Similar to what is done in [6, 16], signaling and data infor-
mation is distinguished based on the packet size: packets whose size is smaller
than 400 B are assumed to carry signaling information, larger packets carry data.
Fig. 10 reports the size of the observed packets for the four applications; red and
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Figure 10: Packet size for decreasing bandwidth: signalingand data information.
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Figure 11: Transmitted bit-rate for decreasing bandwidth:signaling and data information.
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black points refer to signaling and data packets, respectively. Information packets
are transmitted in the first part of the experiment, when the downlink bandwidth
limitation is not severe, so that the peer can retransmit video chunks to its neigh-
bors. When downlink limitation becomes so strong that the peer is perceived by
its neighbors as poor performing, the peer reduces its contribution to video dis-
tribution (in the figure, few data packets are transmitted when severe downlink
limitation applies). On the contrary, the bandwidth limitation profile marginally
affects signaling information, whose pattern is basicallyunchanged for the whole
duration of the experiment. Indeed, the signaling information that is needed by the
peer to guarantee the correct reception of the video is continuously transmitted,
regardless the peer performance. The same observations canbe derived by fo-
cusing on the signaling and data information bit-rate, reported in Fig. 11. For all
the applications, signaling information requires more or less the same amount of
bandwidth during the whole experiment, while data information diffusion depends
on the network conditions (i.e., downlink bandwidth limitation). It is interesting
that all the applications require roughly the same amount ofsignaling information,
between 50 and 100 kbps, Sopcast being the application with the lowest signaling
overhead.

6. Sharing the access bandwidth with TCP flows

In this section we analyze the effects of possible access bandwidth competition
between persistent downstream TCP flows and P2P-TV applications. We consider
a static setup in which the downstream access capacity is constant and equal to
2 Mbit/s, while the upstream bandwidth is, as usual, limited to 200 kbit/s. The
P2P-TV application is running fromt = 0, while a total of 5 TCP flows are started,
one every∆T = 300 s. In particular, a PC connected on the same subnet of the
P2P-TV client starts downloading a 5 GB long file from a Web server connected
immediately after the Linux router.

Fig. 12 shows the results for the four considered applications, reporting both
the average download and upload bitrate for the P2P-TV application, and the total
TCP throughput. First observe that the received bit rater(t) is mainly insensitive
to the presence of concurrent traffic for all the four applications. This behavior
is expected in light of the fact that P2P-TV applications arenon-elastic. More
surprisingly, TCP connections fail to efficiently exploit the available bandwidth.
In the case of TVAnts and PPlive, in particular, the TCP connections are severely
impacted by the presence of P2P-TV traffic, so that the available downlink band-
width cannot be successfully exploited.
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This phenomenon is explained by observing the upstream channel, where con-
gestion arises. Indeed, the P2P-TV application keeps uploading traffic, so that the
narrow 200 kbit/s channel becomes congested, impairing TCP ACKs sent by re-
ceivers. Congestion on the upstream channel therefore induces ACK losses, pre-
venting TCP from effectively exploiting available capacityon the downlink path.
Notice indeed that the average loss probability in the link is about10%.

To better understand the interaction between TCP flows and P2P-TV systems,
in Fig. 13 we also consider a second scenario in which the upload bandwidth
has been increased to 10 Mbit/s. The figure shows that TCP flows succeed in
efficiently exploiting the available bandwidth, since no congestion is present on
the backward path. However, this time the P2P-TV application suffers for the
presence of TCP traffic; note indeed, that the upload bit rates(t) significantly
decreases at aboutt = 300 s, when the first TCP flow starts. In this case, conges-
tion arises in the downstream link. Indeed, since TCP flows useall the available
bandwidth, some packet loss and significant queuing delay occur. This makes the
peer appear less performing to other peers, that might decide not to select it to
download the content. While losses do not significantly affect the video quality
(being the application capable of copying with packet loss and additional delay,
as seen in the previous section), the large delay prevents the peer from effectively
redistributing the chunks it gets.

As a conclusion, the coexistence of P2P-TV and background traffic can be
rather critical. On the one hand, peers are still capable of correctly receiving
the stream, but they cannot significantly contribute to its re-distribution. As a
result upload bandwidth of peers, which is a very precious resource for P2P-TV
applications, is wasted. On the other hand, not being elastic, P2P-TV traffic can
prevent TCP from properly working, especially in presence ofscarce bandwidth,
as it is typical of today ADSL setups.

7. Fairness between clients

Finally, in this section, we consider the interaction between two clients of
the same application sharing the same access link. The objective is to assess
fairness. We therefore perform experiments in which two clients are started at the
same time and tuned on the same channel. We then apply a downlink bandwidth
limitation profile as the one reported in dashed line of Fig. 14: the bandwidth
is progressively reduced to 400 kbps and then progressivelyincreased again. The

20



 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

B
it
ra

te
 [
K

b
p
s
]

N
u
m

b
e
r 

o
f 
T

C
P

 f
lo

w
s

Time [m]

RX TCP
RX TVAnts
TX TVAnts
TCP Flows

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

B
it
ra

te
 [
K

b
p
s
]

N
u
m

b
e
r 

o
f 
T

C
P

 f
lo

w
s

Time [m]

RX TCP
RX TVUPlayer
TX TVUPlayer

TCP Flows

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

B
it
ra

te
 [
K

b
p
s
]

N
u
m

b
e
r 

o
f 
T

C
P

 f
lo

w
s

Time [m]

RX TCP
RX PPLive
TX PPLive
TCP Flows

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

B
it
ra

te
 [
K

b
p
s
]

N
u
m

b
e
r 

o
f 
T

C
P

 f
lo

w
s

Time [m]

RX TCP
RX SopCast
TX SopCast
TCP Flows

Figure 12: Received and transmitted bit-rate in presence ofTCP background traffic. Access link
bandwidth parameters:c(t) = 2 Mbit/2, cu(t) = 200 kbit/s.
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Figure 13: Received and Transmitted bit-rate in presence ofTCP background traffic. Access link
bandwidth parameters:c(t) = 2 Mbit/s, cu(t) = 10 Mbit/s.
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Figure 14: Received bit-rate for two clients concurrently running the same application and sharing
the access link (top plot), video and audio impairment for the two clients (bottom plots). TVU-
Player and downstream bandwidth limitation.

top plot of the figure refers to TVUPlayer, the red and green lines report the bitrate
received by the two clients; the aggregate is reported also,for completeness. A
substantial fairness is provided to users, even under severe bandwidth limitation.
In these conditions, the video quality degrades (as reported by video and audio
impairment on the bottom plots of the same figure) but both theclients undergo
the same kind of quality degradation. No real unfairness wasobserved, even for
other kinds of limitation applied through losses or delay, and by starting the clients
at different times.

Similar performance and fairness was observed for the otherapplications too;
plots are not reported here for the sake of brevity.

8. Conclusions

In this paper, we propose an experimental methodology to investigate the be-
havior of P2P-TV applications under adverse network conditions. Since most of
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the successful P2P-TV applications rely on a closed and proprietary design, it is
indeed important to understand if these applications implement algorithms to cope
with different and variable network scenarios. In particular, available bandwidth,
delay, packet loss probability and presence of background traffic are the most im-
portant impairment today applications face in the Internet. We therefore explored
how P2P-TV applications react to those parameters, by setting up real test-bed
experiments.

We applied this methodology to four P2P-TV applications, namely, PPLive,
SopCast, TVAnts and TVUPlayer. By observing the received bit-rate and the
number of contacted peers, we have shown that all applications effectively react
to impairment caused by: i) lack of bandwidth, ii) packet loss probability, or iii)
large delay. Applications indeed successfully select the subset of peers that offer
the best performance, disregarding peers on impaired paths. However, in case the
bottleneck affects all peers, e.g., it is at the access link,their behavior results rather
aggressive, and potentially harmful for both other applications and the network.
Interestingly, the control algorithm preferentially operates by selecting the active
peers among the neighbors on the overlay, but it does not affect the neighborhood
selection, i.e., the overlay topology discovery and setup.The analysis of the up-
stream traffic has revealed that the peer tries to contributeto the video distribution
as far as the network conditions allow it; when the network conditions are bad, the
peer acts as a receiver only.

Even if all applications show similar behaviors, some differences arise: TVU-
Player is the fastest and most prompt to react to changing conditions, but some-
times its control algorithm overreacts to dynamic situations; TVAnts, on the con-
trary, shows a less controlled behavior, which causes the highest overload when
resources are scarce, and forces the client to keep downloading from impaired
peers.

We have also analyzed scenarios in which P2P-TV applications share the ac-
cess bandwidth with long lived TCP connections and we have investigated their
interaction. In some cases the presence of inelastic P2P-TVtraffic may have a
negative effect on TCP preventing connections from fully exploiting the available
capacity, while in other cases it is the P2P-TV application that suffers the presence
of TCP traffic, becoming unable to redistribute the video stream. At last, we have
considered clients sharing the same access link and verifiedthat the applications
are fair towards these clients even under adverse conditions.

23



Acknowledgement

This work was funded by the European Commission under the 7th Framework
Programme Strep Project “NAPA-WINE” (Network Aware Peer-to-Peer Applica-
tion under WIse Network).

References

[1] J. Liu, S.G. Rao, B. Li; H. Zhang, “Opportunities and Challenges of Peer-
to-Peer Internet Video Broadcast,”Proceedings of the IEEE, Vol.96, no.1,
pp.11-24, Jan. 2008.

[2] A. Murray-Watson, “Internet groups warn BBC over iPlayer plans,”The In-
dependent, 12 August 2007.

[3] E.Leonardi, M.Mellia, A.Horvart, L.Muscariello, S.Niccolini, D.Rossi,
“Building a Cooperative P2P-TV Application over a Wise Network: the Ap-
proach of the European FP-7 STREP NAPA-WINE”,IEEE Communications
Magazine, Vol. 46, pp. 20-211, April 2008.

[4] H. Xie, Y. . Yang, A. Krishnamurthy, Y. Liu, A. Silberschatz, “P4P: Provider
Portal for Applications”,ACM Sigcomm 2008, Seattle, WA, August 2008.

[5] D.Bonfiglio, M.Mellia, M.Meo, N.Ritacca, D.Rossi, “Tracking Down Skype
Traffic”, IEEE Infocom, Phoenix, AZ, April 2008.

[6] X. Hei, C. Liang, J. Liang, Y. Liu, K.W. Ross, “A MeasurementStudy of a
Large-Scale P2P IPTV System,”IEEE Transactions on Multimedia, Vol.9,
No.8, pp.1672-1687, Dec. 2007.

[7] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, X. Zhang, “Inside the New
Coolstreaming: Principles, Measurements and Performance Implications”,
IEEE INFOCOM’08, Phoenix, AZ, Apr. 2008.

[8] C. Wu, B. Li, S. Zhao, “Multi-channel Live P2P Streaming: Refocusing on
Servers”IEEE INFOCOM’08, Phoenix, AZ, Apr. 2008.

[9] L. Vu, I. Gupta, J. Liang, K. Nahrstedt, “Measurement of alarge-scale over-
lay for multimedia streaming”Proc. of the 16th International Symposium on
High Performance Distributed Computing,, Monterey, CA, June 2007.

24



[10] F. Wang, J. Liu, Y. Xiong, “Stable Peers: Existence, Importance, and Ap-
plication in Peer-to-Peer Live Video Streaming”IEEE Infocom’08, Phoenix,
AZ, Apr. 2008.

[11] X. Hei, Y. Liu, K.W. Ross, “Inferring Network-Wide Quality in P2P Live
Streaming Systems,” IEEE JSAC, special issue on P2P Streaming, Vol.25,
No.9, pp.1640-1654, Dec. 2007.

[12] S. Agarwal, J. P. Singh, A. Mavlankar, P. Baccichet, B. Girod, “Performance
and Quality-of-Service Analysis of a Live P2P Video Multicast Session on
the Internet,”IEEE IwQoS, Enschede, NL, June 2008.

[13] S.Ali, A.Mathur, H.Zhang, “Measurements of CommercialPeer-To-Peer
Live Video Streaming,”In Proc. of Workshop on Recent Advances in Peer-
to-Peer Streaming,Waterloo, ON, Aug. 2006.

[14] T. Silverston, O. Fourmaux, “Measuring P2P IPTV Systems,” ACM NOSS-
DAV’07, Urbana-Champaign, IL, June 2007.

[15] A. Horvath, M. Telek, D. Rossi, P. Veglia, D. Ciullo, M. A. Garcia, E.
Leonardi, M. Mellia, “Network Awareness of P2P Live Streaming Appli-
cations”,IEEE Hot-P2P 2009, Rome, May 2009.

[16] D.Ciullo, M.Mellia, M.Meo, E.Leonardi, “Understanding P2P-TV Systems
Through Real Measurements”,IEEE GLOBECOM 2008, New Orleans, FL,
30 November 2008.

[17] E. Alessandria, M. Gallo, E. Leonardi, M. Mellia, M. Meo, “P2P-TV sys-
tems under Adverse Network Conditions: a Measurement Study”, IEEE In-
focom 2009, Rio de Jainero, Brasil, April 2009.

[18] E. Alessandria, M. Gallo, “P2P-TV Systems Measurements”, Master Thesis,
Politecnico di Torino, 2008.

25


