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A Generalized Drift-Diffusion Model
for Rectifying Schottky Contact Simulation

Fabio Lorenzo Traversa, Francesco Bertazzi, Fabrizio Bonani, Senior Member, IEEE,
Simona Donati Guerrieri, Member, IEEE, Giovanni Ghione, Fellow, IEEE, Susana Pérez,

Javier Mateos, and Tomás González, Senior Member, IEEE

Abstract—We present a discussion on the modeling of Schottky
barrier rectifying contacts (diodes) within the framework of
partial-differential-equation-based physical simulations. We pro-
pose a physically consistent generalization of the drift-diffusion
model to describe the boundary layer close to the Schottky barrier
where thermionic emission leads to a non-Maxwellian carrier dis-
tribution, including a novel boundary condition at the contact. The
modified drift-diffusion model is validated against Monte Carlo
simulations of a GaAs device. The proposed model is in agreement
with the Monte Carlo simulations not only in the current value but
also in the spatial distributions of microscopic quantities like the
electron velocity and concentration.

Index Terms—Schottky barriers, semiconductor device
modeling.

I. INTRODUCTION

THE PHYSICAL simulation of Schottky barrier contacts
(SBCs) within the framework of partial differential equa-

tion (PDE)-based transport models (and neglecting tunneling
effects) traditionally exploits boundary conditions (b.c.’s) de-
rived from the thermionic emission and diffusion theory orig-
inally developed by Crowell and Sze [1], [2]. In addition to
the jump in the surface potential accounting for the potential
barrier at the Schottky contact [3] (which, if needed, may be
modified to include image-force-lowering effects [4]), current
conduction across the barrier on an n-type semiconductor
is described by a b.c. on the (majority) carrier continuity
equation, i.e.,

J = qvr0(n − n0) (1)

Manuscript received October 9, 2009; revised March 23, 2010; accepted
March 31, 2010. Date of publication May 10, 2010; date of current version
June 23, 2010. This work was supported in part by the Joint Action 2005
“Kinetic and partial differential equations analysis of nonlinear noise in
RF/microwave semiconductor devices” funded by the Italian and Spanish
governments, by the Italian Ministry of University and Research under the
PRIN 2006 project “Nonlinear models and design approaches for low-noise
high dynamic range integrated radio systems,” by the Dirección General
de Investigación (MEC, Spain) and FEDER through the project TEC2007-
61259/MIC, and by the Consejería de Educación of the Junta de Castilla y León
(Spain) under Project SA019A08 and Project GR270. The review of this paper
was arranged by Editor C. McAndrew.

F. L. Traversa is with the Departament d’Enginyeria Electrònica, Universitat
Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.

F. Bertazzi, F. Bonani, S. Donati Guerrieri, and G. Ghione are with the
Dipartimento di Elettronica, Politecnico di Torino, 10129 Torino, Italy.

S. Pérez, J. Mateos, and T. González are with the Departamento de Física
Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TED.2010.2047909

where J is the total current density crossing the SBC, n is
the electron concentration at the barrier, n0 is the equilibrium
electron concentration at the barrier, vr0 is the surface recom-
bination velocity, and q is the absolute value of the electron
charge. Within this treatment, only majority carriers (here,
electrons) contribute to the current across the SBC, while the
minority carrier current is neglected.

The surface recombination velocity vr0 is evaluated in [1] as-
suming a Maxwellian velocity distribution fM (v) at the contact
and shown to be vr0 = vth/4, where vth =

√
8kBT/(πm∗)

is related the mean thermal velocity (m∗ is the electron ef-
fective mass, kB is the Boltzmann constant, and T is the
lattice temperature). The Maxwellian assumption becomes less
accurate under far-from-equilibrium conditions, particularly
in forward bias. Baccarani and Mazzone [5] calculated the
distribution function with a Monte Carlo (MC) simulation in
strong forward bias (near-flatband conditions), finding a semi-
Maxwellian shape, which leads to a surface recombination
velocity equal to 2vr0 = vth/2 but, at the same time, to a carrier
concentration at the barrier half of the value predicted by the
thermionic-diffusion theory; for this reason, (1) for the current
across the barrier still holds.

In forward bias, where the Maxwellian assumption breaks
down, a modified approach to the definition of the b.c. exploits a
bias-dependent surface recombination velocity. Several models
have been proposed in the literature along this line [6]–[9]. All
of them take the form

J = qv′
r(n − n0) (2)

where v′
r now depends on the SBC bias. All these models are

characterized by a null v′
r in reverse bias, thus leading to an

unrealistically null SBC reverse current.
In this paper, we propose a fully consistent treatment of

an SBC and implement it within the framework of a drift-
diffusion (DD) transport model. For the sake of simplicity,
we neglect in the derivation the tunneling effect across the
barrier: notice, however, that, according to the discussion in [2]
and [10], thermoionic and tunneling b.c.’s can independently
be treated; therefore, the latter effect can readily be included
into our model if necessary. Consistency is obtained in two
steps: first, we derive a general expression of the contact current
density (including the reverse component) based on a piecewise
approximation of the distribution function consistent with the
physics of carriers moving in opposite directions at the SBC,
which, in turn, exhibit a different dependence on the applied
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Fig. 1. Band diagram for an SBC on an n-type semiconductor in forward bias
(metal is on the right, for x > xm). EFn and EFM are the electron quasi-
Fermi levels in the semiconductor and the metal, respectively. Va is the bias
applied to the metal with respect to the semiconductor, xm is the position of
the SBC (metallurgical junction), and xs is the position of the peak value of
the potential in the semiconductor: neglecting IFBL, xs = xm. Finally, qΦb0

is the zero-bias barrier height of the SBC, modified into qΦb(Va) if IFBL is
considered.

bias; as a second step, we define a modified version of the
DD equations in the neighborhood of the SBC to correctly
implement the current derived in the first step, yielding a
model that is valid in both reverse and forward bias. Such a
feature is particularly important whenever the SBC works at
zero dc bias and is therefore alternatively driven in forward and
reverse conditions. Relevant applications are Schottky diodes
for fast-switching power supplies and also RF and microwave
applications such as resistive mixers and frequency multipliers.
The modified DD transport model can easily be implemented
into available simulators, since, with a proper formulation, it
does not impact on the current density expression and therefore
does not require modifications to the Scharfetter and Gum-
mel [3] discretization scheme commonly employed in device
modeling tools. This paper is structured as follows. The model
is derived in Sections II and III and is validated against MC
simulations carried out on a GaAs SBC [12] in Section IV.
Finally, conclusions are drawn is Section V.

II. TREATMENT OF THE SBC CURRENT

Let us consider a Schottky contact on an n-doped semi-
conductor, whose band diagram is shown in Fig. 1, where we
have chosen to put the metal on the right side of the structure
(i.e., for x > xm, where xm is the position of the metallurgical
junction). For the sake of generality, we have also accounted
for image force barrier lowering (IFBL): the position where the
b.c. is to be derived is the abscissa xs(Va) of the peak of the po-
tential distribution inside the semiconductor, where the energy
barrier seen from the metal amounts to qΦb(Va). Expressions
for the applied bias dependence of xs and qΦb can be found,
e.g., in [1] and [4]. Neglecting IFBL amounts to setting xs =
xm and Φb = Φb0 (the zero-bias value of the SBC barrier).

In the absence of tunneling currents, when the only possible
mechanism of current flow through the contact is thermionic

Fig. 2. Assumed piecewise shape of the distribution function at the contact.

emission over the barrier, the development of a physically cor-
rect b.c. at x = xs requires the separate consideration of carriers
moving in opposite directions. Indeed, the flow of electrons
from the metal to the semiconductor at x = xs (vx < 0) is
nearly independent of the applied bias Va, except for IFBL ef-
fects, since it is controlled by the Schottky barrier height Φb. In
contrast, the semiconductor-to-metal flow (electrons with vx >
0 at x = xs) is strongly modulated by Va. As a consequence,
both the density and velocity distribution of electrons moving
in opposite directions exhibit a different dependence on the
applied bias that must be accounted for to develop a proper b.c.

In order to introduce our approach, we first consider the
thermionic-diffusion theory [4] (see also Fig. 1) and, in par-
ticular, the following carrier concentration, to which the metal-
to-semiconductor current is proportional:

n′
0(xs) = Nc exp

(
−Φb(Va)

VT

)
(3)

where Va is the applied bias (measured on the metal with
respect to the semiconductor, and thus, Va > 0 in forward bias),
Nc is the conduction band effective density of states, VT =
kBT/q is the voltage equivalent of temperature. For further
details, see [1] and [4].

Our treatment of the SBC is based on the following
assumptions.

1) The electron distribution function at the contact (i.e., for
x = xs) is represented by the piecewise approximation
depicted in Fig. 2. We split the distribution function into
two parts, corresponding to the two possible electron
fluxes at the contact.

• For electrons flowing from the metal to the semicon-
ductor (i.e., for negative carrier velocities vx < 0),
the distribution function is the left part of a centered
Maxwellian fM (vx), normalized to yield an electron
density equal to n′

0(xs)/2. If IFBL is neglected, this
function is also independent of the applied bias Va.

• For electrons flowing from the semiconductor to the
metal (i.e., for positive carrier velocities vx > 0), the
distribution function is the right part of a drifted
Maxwellian fDM(vx) = fM (vx − vd), normalized
to yield an electron density equal to n(xs) −
n′

0(xs)/2. As indicated in Fig. 2, the fraction of
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n(xs) corresponding to carriers with vx > 0 is equal
to/lower than/higher than that of carriers with vx <
0 for equilibrium/reverse/forward bias, respectively.
The peak velocity vd(Va) (negative in reverse bias
and positive for Va > 0) would correspond to the
average velocity of the n(xs) electrons if all of them
were characterized by a drifted Maxwellian distrib-
ution function. Since the approximated distribution
function for this part of the electron concentration is
a drifted Maxwellian (although truncated to positive
velocities) as in [6], the Adams and Tang [6] average
velocity holds (see (8) below).

2) The electron distribution function in any point in the
semiconductor sufficiently far away from the contact (i.e.,
for x < xs − δx, where δx ≈ 40 ∼ 50 nm, as discussed
further on) is a drifted Maxwellian fDM(vx) = fM (vx −
vd) [9].

3) The metal–semiconductor current density component
JMS is associated to free electrons moving from the
metal into the semiconductor due to thermionic emission.
According to [1] and [4], JMS depends on the height of
the barrier only.

In the case of a strong-enough forward bias, the previously
described model reproduces the so-called absorbing b.c. typ-
ically considered in MC simulations [12]. Under these con-
ditions, when n(xs) � n′

0(xs), the extremely low number of
electrons injected by the metal into the semiconductor can be
neglected as compared to those flowing through the SBC in the
opposite direction, and the distribution function at x = xs can
be assumed to be a drifted Maxwellian truncated to positive
velocities (i.e., taking a zero value for vx < 0). Thus, the
contact acts just as an absorber of carriers.

In the general case, the total current density J entering
the contact is expressed as the net sum of the currents due
to electrons flowing from semiconductor to metal and vice
versa, i.e.,

J = JSM − JMS. (4)

A physically consistent definition of the current density corre-
sponding to the electrons moving from the semiconductor to
the metal JSM (i.e., with vx > 0) can be obtained by means of
the following considerations. The probability that an electron
has, in x = xs, a velocity component along the x-axis between
vx and vx + dvx is given by, according to assumption 1, the
following:

fM (vx − vd)dvx∫ +∞
0 fM (vx − vd)dvx

. (5)

This corresponds to a contribution to the current density

dJSM = q

[
n(xs) −

n′
0(xs)
2

]
vx

fM (vx − vd)dvx∫ +∞
0 fM (vx − vd)dvx

(6)

therefore

JSM = q

[
n(xs) −

n′
0(xs)

2

] ∫ +∞
0 vxfM (vx − vd)dvx∫ +∞
0 fM (vx − vd)dvx

. (7)

Notice that the integral ratio is the definition of surface recom-
bination velocity exploited in [6]; thus

JSM = q

[
n(xs) −

n′
0(xs)

2

]
vr,A (8)

where vr,A is the Adams and Tang [6] average velocity, i.e.,

vr,A =

∫ +∞
0 vxfM (vx − vd)dvx∫ +∞
0 fM (vx − vd)dvx

. (9)

Since, in equilibrium, J = 0 and vd = 0, from (8), we find
(notice that, in equilibrium, vr,A = 2vr0; see [6])

JMS|equilibrium = JSM|equilibrium = q
n0(xs)

2
2vr0 (10)

in agreement with [5]. In (10), n0(xs) is the n′
0(xs) calcu-

lated for Va = 0 [see (3)]. This allows estimating JMS since,
according to assumption 3, when out of equilibrium, we still
use (10), apart from the effect of IFBL on the contact electron
concentration [4] (and, therefore, on the reverse saturation
current), i.e.,

JMS = qn′
0(xs)vr0. (11)

If IFBL is neglected, xs = xm and Φb = Φb0 irrespective of
bias (and, therefore, a bias-independent reverse saturation cur-
rent is also obtained).

Using (8) and (11), we finally express the contact current as

J = q

{[
n(xs) −

n′
0(xs)

2

]
vr,A − n′

0(xs)vr0

}
. (12)

III. GENERALIZED DD MODEL

At first sight, the current density expression (12) appears to
be directly implementable as a b.c. in moment-based models for
carrier transport. In practice, this would amount to adding to the
equations of the spatially discretized model a discretized ver-
sion of (12), where the left-hand side (the total current density)
is expressed as a function of the model unknowns (including,
of course, n(xs)) according, e.g., to the DD transport model.
Unfortunately, this approach would lead to inconsistent results,
because of a subtle assumption on the carrier distribution
function that is implicitly made in the DD model. As discussed,
e.g., in [13], the DD model is actually compatible with a carrier
distribution function that is a displaced Maxwellian in the entire
device volume; this is, of course, in contrast with the piecewise
shape of the distribution function we propose close to the
Schottky contact. In fact, if the standard DD current expression
was used in the left-hand side of (12), it would implicitly also
include carriers with a negative velocity (i.e., moving from the
metal to the semiconductor), thus resulting, for the same current
level, into an electron density and velocity different from those
actually present as a consequence of the b.c. derived from the
piecewise distribution.

Following the previous remarks and expanding the analysis
in [4], we propose a method to reformulate the DD transport
model (by introducing in the DD equations an artificial electron

Authorized licensed use limited to: Politecnico di Torino. Downloaded on June 22,2010 at 13:52:17 UTC from IEEE Xplore.  Restrictions apply. 



1542 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 7, JULY 2010

density) in such a way to make it compatible, in the neighbor-
hood of the Schottky contact (i.e., for xs − δx < x < xs), with
a piecewise (non-Maxwellian) distribution that is continuously
evolving into a shifted Maxwellian distribution (x → xs − δx);
this will allow (12) to be implemented as a b.c. in a consis-
tent way.

We start by evaluating, at the SBC, the current den-
sity due to electrons flowing toward the metal according
to a shifted Maxwellian approximation; this “modified-DD”
semiconductor–metal current is expressed as

JSM,DD(xs) = qnDD(xs)

∫ +∞
0 vxfM (vx − vd)dvx∫ +∞
−∞ fM (vx − vd)dvx

= qnDD(xs)vr,S (13)

where nDD(xs) is a “modified-DD” SBC electron density, and
vr,S is the surface recombination velocity proposed by Shibkov
et al. [9], i.e.,

vr,S =

∫ +∞
0 vxfM (vx − vd)dvx∫ +∞
−∞ fM (vx − vd)dvx

. (14)

Concerning the MS current, we assume that this is always
given at the SBC by (11); from (4), we obtain the following
“modified-DD” total SBC current expression:

JDD(xs) = qnDD(xs)vr,S − qn′
0(xs)vr0. (15)

Equating (12) and (15), we can readily relate the “modified-
DD” SBC electron density nDD(xs) to the physical SBC elec-
tron density n(xs) as follows. Let us define the coefficients

rn =
n(xs)

nDD(xs)
rvr

=
vr,A

vr,S
. (16)

We have

rn =
1

rvr

+
1
2

n′
0(xs)

nDD(xs)
(17)

therefore

nDD(xs) =
n(xs)

rn
=

[
1

rvr

+
1
2

n′
0(xs)

nDD(xs)

]−1

n(xs)

= r̂vr
(xs)n(xs) (18)

where r̂vr
→ rvr

for nDD(xs) � n′
0(xs), and r̂vr

→ 1 for
nDD(xs) → n′

0(xs).
If we assume that, beyond a boundary layer of thickness δx,

the carrier distribution thermalizes into a shifted Maxwellian,
we can extend (18) to the whole thickness of the boundary
layer as

nDD(x) = r̂vr
(x)n(x) (19)

where the coefficient r̂vr
(x) satisfies (18) for x = xs and tends

to 1 for x → xs − δx (see assumption 2). In other words,
the “modified-DD” current (which continuously evolves into
the standard DD current from the SBC to the boundary-layer
limit) can be expressed by inserting the modified charge density

nDD(x) into the standard DD equations as follows (μn and Dn

are the electron mobility and diffusivity, respectively):

JDD(x) = q

[
μnr̂vr

nE + Dn
∂(r̂vr

n)
∂x

]
. (20)

In (20), E denotes the electric field that depends, through Pois-
son’s equation, on n. Notice, however, that r̂vr

(xs) is actually
a model unknown, since it depends on the solution nDD(xs),
and thus, it has to be determined through the self-consistent
numerical solution of the entire model.

The last step is the introduction of a suitable parameterization
and approximation of the unknown function r̂vr

(x). We exploit
a third-order power series expansion, i.e.,

r̂vr
(x)=

{
1, if x < xs−δx

1 + r̂vr (xs)−1
δx3 (x−xs−δx)3, if xs−δx≤x≤xs

(21)

where the coefficients are derived by imposing the value of
r̂vr

(x) in xs and xs − δx and the continuity of the electric field
and of the first and second derivatives of n in xs − δx.

In summary, to describe, within the DD model, the SBC so
that a current consistent with the b.c. derived from the piecewise
distribution is obtained in both forward and reverse bias, the
following modified DD model (from now on referred to as the
“generalized DD model”) should be employed1:

∂E
∂x

=
q

εS

[
N+

D (x) − n(x)
]

(22a)

∂

∂t
n(x) =

1
q

∂JDD

∂x
− Un (22b)

where the symbols have the usual meaning, the current density
is given by the constitutive relation (20), the SBC b.c. for the
current is (12), and the r̂vr

(x) parameter is given by (21).
From an implementation standpoint, the generalized DD

model (22) can conveniently be rephrased in terms of the
unknown n∗(x) = r̂vr

(x)n(x), since, in this case, we have

∂ε

∂x
=

q

εs

[
N+

D (x) − n∗(x)
r̂vr

(x)

]
(23a)

∂

∂t

[
n∗(x)
r̂vr

(x)

]
=

1
q

∂JDD

∂x
− Un (23b)

where

JDD(x) = q

[
μnn∗E + Dn

∂n∗

∂x

]
. (23c)

The b.c. becomes

J = q [n∗(xs)vr,S − n′
0(xs)vr0] . (23d)

A. Evaluating vd

The surface recombination velocity vr,S used in (23) was
originally proposed by Shibkov et al. [9], i.e.,

vr,S =
1
2
vd

[
1 + erf

(
vd

2
√

πvr0

)]
+ vr0 exp

(
− v2

d

4πv2
r0

)
.

(24)

1We consider here the 1-D monopolar case. The extension to a bipolar
transport model is straightforward.
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Fig. 3. Comparison between the distribution function calculated with Monte
Carlo (symbols) and its approximation with a drifted Maxwellian (full line) in
several positions near the SBC for a forward bias Va = 0.6 V. The distances
of the distribution functions from the contact are given as follows: 1: 4.125, 2:
12.375, 3: 20.625, 4: 28.875, 5: 37.125, 6: 45.375, 7: 53.625, and 8: 61.875 nm.

Notice that, in equilibrium conditions, vd = 0, and (24) reduces
to vr = vr0. The main difficulty in applying (24) in the presence
of bias is the determination of the average drift velocity vd,
which is quite generically defined as given by J(x)/(qn(x))
for some x “near” the contact [9]. According to the previous
discussion, in principle, vd should correspond to the peak of
the drifted Maxwellian representing the distribution function in
xs − δx. Examining the MC distribution function (see Fig. 3),
we conclude that the distribution function is reasonably ap-
proximated by a drifted Maxwellian for δx ≈ 40 ∼ 50 nm.
Therefore, we estimate vd by calculating

vd(xi) =
J(xi)
qn(xi)

, i = 1, 2 (25)

where xi are the two mesh points nearest to xs − δx, and
we use these values to calculate vd(xs − δx) through linear
extrapolation.

B. Including Velocity Saturation Effects

The generalized DD model calls for a consistent modification
of the mobility model exploited to account for velocity satu-
ration. This is due to the fact that, at the contact, the average
carrier velocity derived from the approximated distribution
function should be equal to the value dictated by the inclusion
of the saturation velocity effect. Having in mind the simulation
of Schottky contacts on III–V compound semiconductors, we
use the standard GaAs mobility model [3], i.e.,

μn(x) =
μn0 + v′

sat(x)
[
E(x)3/E4

0

]
1 + [E(x)/E0]

4 (26)

where the coefficients μn0 and E0 are determined from MC
simulations. The spatial dependence of the modified saturation
velocity is derived similar to (21), as given in (27), shown at
the bottom of the page. Finally, the contact saturation velocity
is approximated as

v′
sat(xs) = vsat

[
1 − |n(xs) − n′

0(xs)|
n(xs)

]

+
max(2vr0, vr,A)

r̂vr
(xs)

|n(xs) − n′
0(xs)|

n(xs)
. (28)

For Va = 0, n(xs) = n′
0(xs) and r̂vr

(xs) = 1 so that, accord-
ing to the Maxwellian electron distribution function at the
contact, v′

sat(xs) = vsat. Furthermore, 2vr0 > vr,A for Va < 0,
and 2vr0 < vr,A for Va > 0. Therefore, we have the following.

1) If Va � 0 and vsat > vth/2, n(xs) → n′
0(xs)/2, and

thus, v′
sat(xs) → 2vr0/r̂vr

(xs). Taking into account (26),
the current density expression of the generalized DD
model yields JDD(xs) → −qvr0n

′
0(xs). Notice that if

vsat < vth/2, the contact electron concentration cannot
reach the limit n′

0(xs)/2 value.
2) For Va � 0, n(xs) � n′

0(xs), and thus, v′
sat(xs) →

vr,A/r̂vr
(xs). The current density becomes JDD(xs) →

qvr,An(xs).
Both asymptotic current expressions are consistent with (12).

IV. COMPARISON WITH MC SIMULATIONS

To validate the generalized DD model discussed in
Section III, we have simulated a 1-D GaAs SBC [12] made of a
Schottky contact (with barrier height Φb0 = 0.737 V and IFBL
not included in all simulations) on an n region (with doping
level ND = 1016 cm−3 and a length of 350 nm), an n+ region
(with doping level N+

D = 1017 cm−3 and a length of 350 nm),
and an ohmic contact. The Schottky contact is placed on the
right side of the structure, while the x-axis origin used in the
following figures is at the left ohmic contact. Since we neglect
IFBL here, the SBC position is therefore xs = xm = 700 nm.
According to the model developed, we also neglect, in this case,
tunnel effects. In order to substantiate this approximation, we

v′
sat(x) =

{
vsat, if x < xs − δx

vsat + v′
sat(xs)−vsat

δx3 (x − xs − δx)3, if xs − δx ≤ x ≤ xs
(27)
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Fig. 4. DC characteristics of the GaAs Schottky barrier diode. Comparison
among MC, the DD model for different vr models, and the generalized DD
model. The reverse-bias characteristic is shown in the inset.

consider the theory developed in [11] where it is shown that
thermionic emission is the dominating transport mechanism for
those SBCs where

E00 =
�

2

√
ND

m∗εS
� VT (29)

where � is the reduced Planck’s constant. Since, in our case,
E00 = 1.95 mV � VT = 25.85 mV, we can safely neglect
tunneling effects.

The reference solution is provided by an ensemble MC sim-
ulator self-consistently coupled with a 1-D Poisson solver. The
conduction band consists of three nonparabolic spherical val-
leys Γ, L, and X. The structure is divided into a uniform mesh
of step equal to 100 Å, with the electric field updated every 2 fs.
More details about the MC model can be found in [12].

The generalized DD model described in Section III has been
implemented in an in-house simulator. We solve the unipo-
lar model (i.e., neglecting holes), with material parameters
estimated from bulk MC simulations: the electron mobility
is μn0 = 7480 cm2V−1s−1 for the lightly doped region and
μn0 = 4960 cm2V−1s−1 in the n+ region. The other parameters
of the mobility model are estimated as E0 = 4.37 kV/cm and
vsat = 1.01 × 107 cm/s. For the sake of comparison, we have
also implemented the surface recombination velocity models
proposed in [1], [6], and [9].

The comparison of the dc characteristics in forward bias is
shown in Fig. 4. Consistently with the discussion in [9], the
DD simulation with the Adams et al. model for v′

r [6] does
not correctly reproduce the SBC current in low forward bias,
although the comparison in stronger forward bias is favorable.
The generalized DD model we propose gives results in very
good agreement with the reference MC solution, as well as
the Shibkov et al. model [9], at least if the forward bias is
low enough to induce negligible nonstationary transport effects.
Notice, however, that, as discussed in the previous section, the
model in [9] guarantees the same current value of the novel
b.c. but at the price of a different value of the electron concen-
tration and velocity. The inset in Fig. 4 shows the reverse-bias
characteristic, calculated with our approach and with the model

Fig. 5. Bias dependence of r̂vr (xs). The inset shows the spatial dependence
of r̂vr (x) near the SBC for Va = 0.2 V.

Fig. 6. Position dependence of the electric field and electron concentration
near the SBC for Va = 0.6 V.

in [1] since only this can be used in such conditions: only the
generalized DD model provides the expected limit value of the
reverse saturation current (i.e., qn′

0(xs)vr0).
To gain further insight, we discuss the behavior of the mi-

croscopic variables into the simulated device. Fig. 5 shows the
bias dependence of the coefficient r̂vr

(xs). In forward bias, the
coefficient reaches a value of 2 in the voltage range in which
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Fig. 7. Position dependence of the electron velocity and mobility near the
SBC for Va = 0.6 V.

vd is so small that carriers with vx > 0 essentially obey a semi-
Maxwellian distribution. For higher voltages, when vd becomes
significant, an increasing portion of the drifted Maxwellian
describing carriers in the semiconductor corresponds to positive
velocities, so that r̂vr

(xs) decreases and finally approaches 1.
A minimum value of 0.58 is attained in reverse bias. The inset
in the same figure represents the spatial dependence of r̂vr

(x)
in moderate forward bias: as the observation position is moved
of around 50 nm away from the SBC, the coefficient becomes
equal to 1.

Figs. 6 and 7 report the spatial dependence of the micro-
scopic variables near the SBC for a forward bias Va = 0.6 V,
as compared with MC simulations. As previously discussed, the
results clearly show that only the generalized DD model allows
to reproduce the behavior imposed by the b.c. derived from
the piecewise distribution, thus providing profiles in agreement
with the MC results. Near the SBC, the Shibkov et al. [9] model
exhibits a higher carrier concentration and a lower electron
velocity than the generalized DD model, but the same current
values are obtained in both cases (see Fig. 4). Notice also
that the n∗ concentration, calculated with the generalized DD
model, is practically coincident with the results of the standard
DD model with the b.c. in [9]: this is due to the fact that, for this
static analysis, the only difference between these two models is

Fig. 8. Spatial and reverse-bias dependence of (from top to bottom) electron
concentration and carrier velocity calculated with the generalized DD model.

in the right-hand side of Poisson’s equation. The mobility near
the SBC corresponding to the generalized model exhibits the
influence of the modified technique used to consistently include
velocity saturation effects.

Finally, we discuss the reverse-bias behavior, where MC
simulations are extremely difficult because of the very low
current level. We compare in Figs. 8 and 9 the spatial and
(reverse) bias dependence of two microscopic variables cal-
culated with the generalized and standard (using the b.c. in
[1], the only one available in such conditions) DD models,
respectively. The standard model shows the foreseen unphysical
values of electron concentration and carrier velocity at the
contact (notice in particular that n(xs) becomes lower than
n′

0(xs)/2), while the generalized DD simulations yield results
in agreement with the expected value. Notice that the limit
values for carrier concentration (i.e., n′

0(xs)/2) and carrier
velocity (i.e., 2vr0 = vth/2) are not reached because of the
effect of velocity saturation.

V. CONCLUSION

We have investigated the DD analysis of an SBC in the whole
bias range (from reverse to strong forward bias). By introducing
a physically sound and consistent generalization of the DD
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Fig. 9. Spatial and reverse-bias dependence of (from top to bottom) electron
concentration and carrier velocity calculated with the DD model and the b.c.
in [1].

model, we have been able to correctly implement a b.c. (in
the absence of tunneling currents) accounting for the different
bias dependence of carrier motion in opposite directions at the
SBC. The results of the new model are in good agreement
with MC simulations not only for the current value but also
for the spatial distribution of the microscopic DD variables (not
achieved by previous models). The generalized DD model is
easily implementable into already-existing simulators.
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