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The Wiener-Hopf solution of the isotropic
penetrable wedge problem: diffraction and total field

Vito Daniele, and Guido LombardiMember, IEEE

Abstract—The diffraction of an incident plane wave by an
isotropic penetrable wedge is studied using generalized Wiener-
Hopf equations, and the solution is obtained using analytical
and numerical-analytical approaches that reduce the Wiener-
Hopf factorization to Fredholm integral equations of second kind.
Mathematical aspects are described in a unified and consistent
theory for angular region problems. The formulation is presented
in the general case of skew incidence and several numerical tests
at normal incidence are reported to validate the new technique.

The solutions consider engineering applications in terms of
GTD/UTD diffraction coefficients and total fields.

Index Terms— Wedges, Isotropic media, Wiener-Hopf method, Fig- 1. The isotropic penetrable wedge.

Spectral factorization, Fredholm integral equations, Analytical- o
numerical methods, Geometrical optics, Electromagnetic diffrac- 1N 1995 Budaev proposed the application of the popular and
tion, Geometrical and Uniform theory of diffraction. effective technique known as Sommerfeld-Malyuzhinets (SM)

method (for instance see [19] and [32]), to deal with dielectric
. INTRODUCTION wedge problems [18]. The difference equations that arise from
Nowadays, accurate and efficient solutions of diffraction prokhis formulation are originally reduced to singular integral
lems are of great interest in engineering, mathematical asquations. A regularization method reduces them to Fredholm
physical communities. equations. Budaev focused his monograph on the correct
This paper presents a general solution of the diffractianathematical formulations avoiding engineering speculations
by an isotropic penetrable wedge, see Fig. 1. The diffractigich as the evaluation of the diffraction coefficients.
by a penetrable wedge has constituted in the last centuryin the authors’ opinion, the most significant results obtained
and constitutes an important and challenging problem. Sevef@gd the penetrable wedge geometries arise from works using
attempts to find the solution have been reported in literatu@mulations in the one-dimensional spectral domain as in
[1]-[31], where different formulations and analytical and/o[18]. Some of these works produced very important contri-
numerical approaches have been presented. All the citggtions. In particular, in 1999, the monograph about elastic
papers are of great interest, however some of them proposgstige by Croisille and Lebeau [21] presents a formulation
incorrect methods and/or solutions. of the problem in terms of singular integral equations in the
One of the most interesting attempts to solve the penetraliigurier domain: these equations were successfully solved by
wedge problem was proposed in 1964 by Radlow [1]. Thigsing the Galerkin collocation method. Theoretical and numer-
author provided a solution for the diffraction by the rightical aspects of Budaev’s work were discussed in several papers,
angled dielectric wedge solving a multidimensional Wienesee for example [22] and references therein. In particular the
Hopf equation. In 1969, Kraut et al. ascertained that thigaper by Kamotski et al. [22] has investigated the diffraction
solution was wrong [3]. Moreover the methods proposgshenomena in an elastic wedge.
by Zavadskii [2], and Aleksandrova-Khiznyak [5] were also Formulations in a one-dimensional spectral domain based
wrong, see [7]. on the Kontorovich-Lebedev (KL) transform have been pro-
In 1977 Rawlins [8] provided a solution of the dielectricposed in [9] and [15]. In particular, in 2006, Salem et al.
wedge problem using a general Integral Equation formulatioBstimate the electromagnetic field excited by a line source in
which is based on a standard perturbation technique. {ke presence of an infinite dielectric wedge [29]: the solution
method was generalized in 1991 by Kim et al. These alg given in terms of asymptotic approximations for the near
thors proposed an approximate solution of an arbitrary-anglgfld far fields inside and outside the dielectric wedge.
dielectric wedge, which is obtained by performing physical | this paper we present a new method in the one-
optic approximation to the dual integral equation in the spatigimensional spectral domain based on the Wiener-Hopf (WH)
frequency domain [12]-[13]: the results are presented in ter&hnique. It constitutes an extension of the Wiener-Hopf
of diffraction coefficients and far-field patterns. formulation for impenetrable wedge problems that has been
Manuscript received —; revised —. exhaustively considered in the past by Daniele and Lombardi
The authors are with the Dipartimento di Elettronica, Politecnico di33]-[36]. The central problem of the proposed method is
Torino, Corso Duca degli Abruzzi 24, 10129 Torino, ltaly (emailsthe factorization of matrix kernels in the WH formulation.
vito.daniele@polito.it, guido.lombardi@polito.it, fax: +39-011-5644099). Even though this problem has been considerably studied in

Vito Daniele is also with Istituto Superiore Mario Boella (ISMB), Torino, . ‘ ;
Italy, (web: http://ww.ismb.it/). the past, a general method to analytically factorize an arbitrary




matrix is not known up to now. Since the isotropic penetrabla the free space (permittivity, and permeabilityu,). We
wedge with arbitrary aperture angle is a problem where §@nsider the cylindrical coordinate system ¢, z) and time

} At i ; rmonic electromagnetic fields with a time dependence spec-
closed-form general WH factorization is available, we propogk! by the factorei ¢ which is omitted. The incident field is

optimal gpproximatg factorizations bY usjng the I:mdhom@bnstituted by plane waves having the following longitudinal
method introduced in [37] and [34] (inspired by [38]) thatomponents:

reduces the factorization problem to the solution of Fredholm . e peos(op) v =
integral equations of second kind. By = BeelToPTmeTelemive 1)
For the sake of simplicity, in this work, we first present the H. = HyelTorcoslv=vo)g=ivo=

WH formulation of the isotropic penetrable wedge’s diffractioQVhere_(S and o, (g1 = o, — ) are respectively the zenithal

problem of a plane wave at skew incidence, and then WHd the azimuthal angles which define the direction of the

solve_the diffraction by a dielectric wedge _at normql inciden ane wavek, = w\/fi,, is the wave number andy, —
fpcusmg the paper on all the mathgmatmal/physmal prop r;cosé and 7, = k,sind are respectively the longitudinal
tes Fo get the SOIUU%”' This palper IS Qrgan|zed fas fo"QW&mponent and the transverse component of the wave vector.
Section Il deduces the Generalized Wiener-Hop EquatlonsFig_ 1 shows two media and four angular regions: 1)

(GWHE) of the isotropic penetrable wedge at skew incidenc(v;*.< < 0,2 B < <03) -7<p< b and
After introducing useful mappings, the GWHE are reduce (I)i o < ~ The firit two’ regions ari in freé space
fo two systems of equations with classical WH unknown e second two are in the isotropic penetrable medium that

These Classical Wiener-Hopf Equations (CWHE) are solveé : - iy

) L nstitutes the wedge. To facilitate the readability of the paper,
using the Fredholm factorization method [37] that reduces tWe Willluextensivvgly Sse the SLIJ;)pIementary ané,gs= o pap
factorization problem to the solution of systems of Fredho'@nd ®, = 7 — & for the definition of quantities insideﬁhe
integral equations of second kind. Section lll shows G o0 According to geometrical optics, the field inside the

numerical |mplementat|on of the pro_po_sed methad _for trIg’btropic penetrable medium is characterized by: the wave
case of an E-polarized plane wave incident on a d|elect:‘i)fI

Nimberk; = w./ the longitudinal component and
wedge. In particular we present the numerical solution L= Wy loltrEotr 9 P

. L e transverse component of the wave veetor= k )
the Fredholm equations for the normal incident case and we = kysind, F\)/vhere 5, is determinecétpby ér:jf(())srcilng

provide approximate re_presentations of an analytical elemeyr}t — ~, (the electromagnetic properties of the wedge are
of the WH unknowns in the angular complex plawe The independent of z).

same section addresses the analytical continuation of the aprpe Wiener-Hopf technique for angular regions’ problems
proximate representations. Section IV deals with the evaluatifgs], [35] is based on the Laplace transforms of the longitu-
of the electromagnetic far-field in the whole spatial domain falinal and tangential components of the electromagnetic field:

the normal incident case. In particular this section presents

the solution in term of total field by estimating the field Verlng) = fooo E=(p. @)ej.npdp’
components: the Geometrical Optics (GO) component, the Ls(mg) = Jo Hx(p0)e" dp @)
diffracted component, possible surface and lateral waves. Note Vor(mp) =[5 Eo(ps)e’" dp,
that the geometrical optics contribution can be deduced from L(n,) = [ Hy(p,p)e"*dp

the WH formulation without the necessity of solving the Fred- . . . .
ere the subscript- (—) indicates plus (minus) functions,

holm equations. Finally, numerous significant test cases I€ functions whose regular half-plane is the upper (lower)

presented in section V to validate our technique and practi¢g|f ,-plane. To avoid the presence of singularities on the real
discussions are included. We conclude the paper with threds, we assumé, with a small negative imaginary part. In

Appendices which are fundamental from an implementatidhe following we will use multiple complex planeg plane
point of view. The first is devoted to the evaluation of théNd—m plane) for the definition of Laplace transforms along
source term in the Fredholm equation in the case of a plal |gerent directionsy:

wave incident to the wedge. The second Appendix concerns Fi(n,0) = [ f(p,0)e’"*dp, 3

the speciall mappings.used in the anglytical cpntinuation of Fip(—m, +0) = [ Fp, £®)e™Pdp 3)

the approximate solutions, and the third one is focused on ) )

spectral properties of the solution. For the sake of brevity, we”According to the theory presented in [28], [33], [35], [39]-
have omitted several mathematical proofs that the reader ¢4@l the generalized Wiener-Hopf equations for the diffraction
find in [28], [35], [37], [41]- [42]. We assert that an importantof a plang wave at skew incidence by a penetrable wedge are
advantage of using the GWHE formulation (as well as tH&Ported in (4), (5), (6), and (7) respectively for the angular
spectral method proposed in [21]) is the possibility to sol&dions of Fig. 1 numbered in ascending order. The GWHE
wedge problems immersed in anisotropic or bianisotropic m@€ written in terms of the following quantities (8). Note that,

dia. Apparently this extension is not possible in the framewofR the expressio = /75 —n* (& = /7¢ —n?) we define
of the Sommerfeld-Malyuzhinets formulations. the proper branch of the square root the one that assumes the

valuer, (m) for n = 0.

Il. THE WIENER-HOPF FORMULATION E=Vmd - &= -n
) ] ) ) m = —ncos® + Esin P
Fig. 1 illustrates the problem of the diffraction of a plane wave m1 = —ncos ®q + &1 sin &4 (8)
at skew incidence by an isotropic penetrable wedge having n=—nsin® — £cos ®

permittivity e, = e,¢,- and permeabilityu; = pop- immersed n1 = —nsin®; — & cos



7‘2 7'2 m
{ §Vit(n,0) — “szoo Ip+(n,0) — ZOEZIZ-F(”:O) =-n Vi (-m, @) — Wé)o pt(—m, @) + 1050 2+ (—m, @) (4)
6 IZ+(777 0) + WT:U P+(777 O) + 30;1 VZ+(7770) =N IZ+(7ma CI)) + wT;U P+(7m7 CI)) - Z,Oi;:’:VZ-F(fma q))
7'2 7‘2 m
{ §Vz+(’fl> O) + 4,_,2500 P+(777 0) + 3050 IZ+(7770) =-n ‘/2+(_m, _q)) + w; P+(_m7 —@) - Z,OEO IZ+(_m7 _q)) (5)
&L+ (n,0)— J;U o+ (1,0) = 222Vei (0,0) = —n Ly (—m, —@) — J;U pt(=m, = @) + LV (—m, — @)
2 2
{ =& Ve (n, —m) + w;ll Loy (n, —m) + Ty (n, —m) = na Vay (=, = @) + JE; Loy (=ma, =®) — BELL (= my, —P) ©)
=& Ly (n,=7) = S5 Vo (n, =) = BV (n, —7) =y Ly (—=ma, —P) — L Vo (—ma, = @) + LV, (—my, — @)
2 2
fl VZ+(777 ﬂ-) + J;lzlp+(n7 ﬂ—) + :/;1571] IZ+(777 ﬂ—) = - ‘/;+(_m17 @) + L:gll IP+(_m17 @) - 'Yuljzl IZ+(_m17 q>) (7)
=& Ly (,m) + 55 Vor (nm) + 22 Vey (0, m) = ma Ly (—ma, @) + 5 Vor (—ma, @) — Vo (—ma, @)
In order to obtain a compact formulation of the problem
we introduce the generalized factorization of the functions Vi (@) = Xy () — E—*X(m),(a)
&1, n andn; reported in [33]: generalized factorization means v, (8) = X (6) + 5—*)’6 3) (14)
that /(n) = f(n)f-(m) and f,(n) = fi(n) f1—(m1). 0+ ()= =) Ty Rern-

The use of these factorizations and mathematical manipu- . .
lations (sum and subtraction) of (4)-(7) yield a new syste#ith i = 1,3,5,7 and where the following notations have
axial SpEctal (1 0) Vo () 0] a0 L () e () e A
. +.n’ ! +\1,T), +\", +7777.T Xz _ :X,L — ,anin :YZ y
are determined in terms ofi- and m;-spectral’ functions X( 1) (a)_ % 1+ m)X (“)*_(ﬁ;( i1+ ()
defined forp = =& (facial spectra). It yields a system of i) (B) = X@y+(=m1), (ifl)*(@ = (z;gr1)+(—m1)-
eight functional equations reported in (9) foe 1,3, 5, 7. In (14) the terms, that combine th&; and X; functions,
. constitute the matrix WH kernel of the system of equations
{ Yy (n) = Xy (=m) — 5= Xy (=m)

whose elements are defined in two complex plamear(d3).

9)

Yiirn+(n) = Xyt (—ma) + %X(le(—ml) TABLE |
) . DEFINITIONS.
ni(r:(r) tr:]es s(;?kg o(;ekf)_r:zggynTZk;Inelsl or;eports all the plus/minus Yis(m) gﬁi Vai(n,0)
u w i i :

( ) Y2+(T]) 2 illi Vz+("7: 7T)
sab-ﬁ-(ic) = ab+(7c7 q)) + ab+(7cv 7¢)) (10) X14(=m) _%szJr(_m)
dab-&-(*c) = ab+(fc, <I>) — ab_,.(—c, 7(I>) (12) Xoip(—m) é {;—%diwr(—m) — et dqszr(—'rn)}

whereag = {V7 [}, b= {z, p} andc = {m, ml}. X14(—=m1) — 7 Svzt(—ma)

Y 7 Yomi
Equations (9) are GWHE since the unknown functions are| Xz+(—m1) o [W—gldw(fml) - o diz+(fm1)]

defined in different complex planese. n andm or m;. Yor(m) N [—ﬁf (n.0)— 211 ( 0)}
This system of equations are the Wiener-Hopf formulation| """ VT | BT e e
of the problem under investigation. Yay(n) wave [%Iw(n, —m) + 22 L+ (0, —w)}
X3+(=m) —%duer(—m)
A. Reduction of GWHE to CWHE Xap(om) | ke [ (om) = B2ai (-m)|
In order to solve the system of GWHE (9) where multiple | Xs+(=m1) — vt (=ma)
complex planes coexist, we introduce the special mapping (12) x,, (—m.) - [%sw(fml) — 2o Siﬁ(fml)]
defined in [33] and used in [36] to solve the equations for v Py 5
impenetrable wedge. This mapping is used to obtain CWHE s+(m) - E +(m0)
in angular regions with aperture angfe, and transverse Yo (m) ~Zapy fer(mm)
component of the wave vector. The mapping is used in each | Xs+(=™) o sizt(om)
. . . . 2
equation of (9) depending on the appropriate angular region.| Xs.(—m) & [%d1,p+(_m) ~ zom dw+(_m)]
_ Xsi (—m1 i Y %)
n=n() = —Ta cos(& arccos(—ﬂ)) 12) +( ) g sk (o)
™ Ta Xog(—m1) ? {%de(—ml) - o dvz+(—m1)}

With reference to Fig. 1, in regions 1 and 2 the correct mapping — » . —
is the first of (13) and is applied to the first equations of (9), | Y+ v [? ot (1,0) + Tt Vat (0, 0)
on the contrary in regions 3 and 4 the mapping is the second s (n) v [JTllvp+(n,w) + 221V, (n, 7)
one of (13) and is applied to the second equations of (9). Xop (—=m) L diy (—m)

n=nla) = -7 COS(% arccos(f%)) 13) Xg4(—m) T [%;Sup-{-(—m/) _ wS;ns,,er(—m)]

n=mn(8) = —11 cos( L arccos(f%)) X7y (=m1) T dizg (—ma)

m
1 Yom™mj] s

. 2
This procedure yields a new system of eight equations Xor(=m) | g [ﬁs’"”(_ml) T e “*“ml)}




Note that from (8) and (13) only if they are located in the proper sheetaafA complete
_a> discussion on the source terms of Fredholm equations is
+ q>>

(15)  reported in Appendix .
Using the Fredholm factorization method we obtain the
mi = 71 CoS (E arccos (;ﬂ) + @1) (16) system of integral equations (19) with= 1,3, 5,7 and where
& 1 the source terms;(«) are described in Appendix |.
We recall that the factorizations of functioisn are studied  1he complete solution of Wiener-Hopf problem is obtained

in [33] and for the sake of readability we report them below? terms of the spectral unknowns by numerically solving the
minus unknowns in (19). We note that the plus unknowns can

[
m = T, Ccos | — arccos
T To

ny =) 2 =@ nuy = [T =B 17) be obtained through (14) or by using the equivalent integral
2 2 representation available from (19):
To + @ 1+ B ’ <
- ==/ —F— §1—- = —\| —5— (18) oo < Zoto =~ Zata >X(i+1)—(a,)
’ ’ Vi (@) = o [ it Ve da’ +71i(a)
In (14) some of the Wiener-Hopf unknowns aren- —oo )
conventional We define non-conventionalor non-standard o ( At /7T12+‘62>X(7:+1>—(6/)
. T *ﬁ, T *ﬁ /

plus (minus) Laplace transform, the functiohis () (F_(n)) | Ya+»+(8) = —%;f ) 7B d
that presents singularities in the standard regularity half plane (20)

Im([n] > 0 (Im[n] < 0). The non-conventional singularities are
typically poles arising from geometrical optics contributions
Since we suppose that there are no sources in the interior of thie
penetrable wedge, the unconventional unknowns are only thiee numerical solution of the Fredholm integral equations (19)
one defined in the exterior regioing. the unknowns defined in is obtained in several steps. Taking inspiration from the scheme
the a complex plane. We can intuitively deduce if a plus/minuglready used in other problems, see [36] and [37], the steps
n Laplace transform (2) of a plane wave is standard or n@te:

by examining the direction and the orientation of its flow. If o formulation of the Fredholm equations in the angular
the Laplace transform is performed along a certain direction complex planew,

(for instancey = 0 i.e. positive z axis) and the plane wave . introduction of contour deformation to enhance the con-
is flowing along the same direction but opposite orientation vergence of the Fredholm equations,

(—x direction) we obtain a spectrum with a pole in the upper o introduction of mapping to relate the unknowns defined
half-plane when the medium is supposed with small losses the inner and the outer of the wedge [41],

Im[k,] < 0. In this case we obtain standard minus functions « numerical discretization of the equation and numerical

Approximate solutions of the Fredholm equations

and non-standard plus functions. representation of the solution in the angular plane
o analytic continuation of the approximate solutions
B. Fredholm factorization through recursive equations in the angular complex plane.

To obtain approximate solutions of the system of equatiof§€ @ngular complex plane is particulary useful to estimate
(14) we apply the Fredholm factorization method describdp€ far field components (Section 1V) as already shown in
in [34], [37]. This method reduces the WH equations tg36] for the |mpenetrable wedge case. Since the Fredholm
Fredholm integral equations using the contour integration alffiégral equations (19) are written into two complex planes
the Cauchy formula. The integral equations of the Fredholfff @nd ), we need to define two angular complex planes
factorization are written only in terms of conventional plu&nd two modified angular complex planes (the overlined ones)
(minus) unknowns [37]. respecnvely reIatgd to quantmes deflned_ in the free space
We recall that only the unknowns defined in theomplex €gion and in the isotropic penetrable region:
plane can be non-conventional, since there are no sources in Q= —T, €08 Tw = —T, oS T
the interior of the penetrable wedge. The geometrical optic B = —11cos Zwi = —71 cos b (21)
pole isa, = —7, cos (Z,), see [36]. This pole is related to !
three waves: the incident wave, the faceeflected wave and With w = Fw andw; = Fw;.
the faceb reflected wave. The location of, in thea complex ~ The properties and the inverse transformations of the map-
plane depends og,. If ¢, < 2 (¢, > %) the , is located pings are reported in Appendix | of [36]. We recall that in the
in the upper (lower) half of thex complex plane yielding angular complex planesu(or w), all the plus functions are
unconventional plus (minus) unknowns wifn|[k,] < 0. even functions [33], [42]. From (13) and (21) we obtain the
The extraction of non-conventional parts on the nor$nell law in the spectral domain
conventional WH unknowns yields the source terms in the
Fredholm equations, see [37]. The source terms in the Fred-
holm equations are related to incident field and/or reflectéde assert thaty, may represent three different waves (the
fields as the associated poles are located in the proper orincident wave, the face reflected wave and the faéeeflected
improper sheet of ther-plane (see Appendix | of [36]). The wave) that have three different representationviplane: see
associated poles, can be captured by contour integratioppendix I.

7 = —T, COSW = —T1 COS W1 (22)



Tota!  rota <, o
<\/Tgf<u Tgfaz) (1) - (@) i

o0

¢ Toto . _ 1 P

Xy (@) + \/WX“H),(a) 275 _{o o —a da’ = n;(a) 9)
oo < 1—12_”’/ 7 le-Hf 3 ) Xirn— (8"

% T o VTE-82 \J/Z-8 T

Xy (B) — A X (;11)-(B) + 5 1 Z dg' =0

- S BB

Given (8), (17), (18) the following representations hold in Since the integral term in the second equations of (27) is
the w andw, (w andw;) planes: performed along the real axis of theplane (that corresponds
to a curve in the complex-plane), we need to estimate the
quantities@;+1(v) in terms of the functionsP;;(u). This
requirement is achieved through the application of the Cauchy

&= —Tosinw & = —msinwy
m = 1ocos(w+ P) my =71 cos(wi + P1)

n="T,sin(w+ ®) ni =7 sin(ws + P1) (23)

formula:
Na = /ToCos & nis = /71 cos 2L oo
" ? oV o) = L T g1 / fm@) _dm@)
— in ¥ — in Y1 mi1(v = — —_—am = — u
§- = \/Tosin 3 §1- = /Tisin 3 ! 2nj J m —mq(v) 2rj ) m(u') —mi(v) du’
¥ —o0

In the following we will use the notations (24) for the axial (30)
spectral unknown#'(n) defined in different spectral domains: where
outer (inner) axial refers to directiop = 0 (¢ = 7). { (31)

m1(v) = ki cos [% (—% +jv) + @1}

(1) = Fo (—mrcos w1) = By (w1 ) = o (8) = By (—mycos i) (24) The fourth step is efficiently implemented using simple
guadrature rules as demonstrated in [36] for impenetrable

A similar notation is applied to quantities with second afjeqges. Finally the analytic continuation of the solution is

gumenty (spectral unknowns for arbitrary directiop), for - 5chieved using recursive equations obtained from the WH

exampleF(n, p) = F(w, ). formulation (4)-(7) written in the angular domainsand w;.
The second step of the procedure allows a fast convergencgqy the sake of simplicity, in the following, we develop the
of the Fredholm equations by contour deformation. The reglocedure to obtain the numerical solution for the particular

axis contours in the first and second equations of (19) &gse of diffraction of an E-polarized plane wave by a dielectric
warped into straight lines that join th&j7r, and +jm; re- wedge at normal incidence.

spectively in theo and 3 planes. These straight lines, and
Ap correspond to the two lines respectively in taeand w; .
planes parameterized by

m(u) = kcos [2 (=% + ju) + @]
F(n)=F(—1ocosw) = ﬁ'(w) = F(a) = F(TTO Cos W)

N UMERICAL IMPLEMENTATION
E-POLARIZED PLANE WAVE AT NORMAL INCIDENCE

Aa: @ = —g+ju, Ag 1 W = —g—i—jv (25) Since we are dealing with an E-polarized plane wave at
normal incidence on a dielectric wedgél{ = 0, § = 7,
u- =1, ® < w/2 i.e. acute wedge), all the equations reported
a(u) = —7, cos (,g +ju>7 Bv) = —71 cos (7% +jv> (26) above are simplified, although the procedure to derive the
solution remains similar. In particular the equations reported
The system of equations (19) become (27) wits 1,3,5,7 in the previous sections are valid with the simplified explicit

and whereP;(u), Q;(v), M(u,u’), n;(u) are defined in (28). definitions reported in Table II. Note that = k,, 71 = ki,

with real u, v. Therefore we have:

P;(u) = 17X+ (7o cos [% (—g +ju) +<I>]) Yo =71 =0, Z, = 1/Z—;’, Z = 1/E’:—;, g = &, While
Qi(v) = ToXip(T1cos [2L (=Z + ju) + ®1)) Yii (), Xiy(=m), X;4(—my) are null fori = 5,6,7,8 and
Iy N e oy @8)  therefore (27) are not trivial only for= 1, 3.
(w,v) = iy serei1 Let us consider (27) for = 1, 3. Using (28), the definitions
ni(u) = ni(a(u)) of Table I, (23) and (25) we obtain that:
We observe that the second equations in (27) are valid in Q1 (v(w)) = HLL—P () 32)
the whole complexv-plane through analytical continuation. §1— n—

By enforcing the constraint: = m; (third step) we obtain j.e. explicitly

the following complex mapping betweenplane ands-plane: (—jv(w)+ 2@,

cosh(u) sin[— + 4]

. (425 u)® Qi(v(w) = :‘ju - P (u) (33)
v= vl = o (q“ ~ Zarccos wsf) (29) cosh(v(u)) sin[~ ZFDT g
1 tr Lo .
wheree,, = (1, /7,)%. The mapping (29) enforces in (27) theSlmllarly we obtain: 2
same parameterization of the spectral quantities (10)-(11) de- Q2(v(u)) Zysin®[L(—Z + ju)] Pr(u) a4

fined on the faces and in particular the parameterization of the

spectral voltages and currents for= +®: V, (—m, £®) =

Vit (—mq,£®) and I, (—m, £®) = I, (—m1,£P). The Qs(v(u)) =
purpose of this procedure is to obtain a solvable system of
equations whose unknowns are consistent: for example in Zysin[3(—Z + ju)]
terms of theP; (u) avoiding Q; (v). Q) = 2= sin[L(— % + ju(u))] a(w)

" Zosin[3(— % + jo(u))]
cos[3 (5 + ju)]sin[- 20T 4 B

cos[3 (=5 + ju(u))]sin[ 75" + 3]

Ps(u) (35)

(36)



. oo
P;(u) — tan WPhq(u) — 7%] J M (u,w)Pipq1 (v )du' = ni(u)
— 00

Qi(v) + tan TLHLQu 1 (v) + 2 [ M(v,0) Qi1 (V) =0

TABLE Il

DEFINITIONS FORE-POLARIZED PLANE WAVE

AT NORMAL INCIDENCE.

@7

successfully applied for the impenetrable wedge case [36].
The total number of samples I§ = 24/h 4+ 1 . We observe
that asA — 4+oo0 and h — 0, the numerical solution of the

&t
% 2:5V2 1 (0,0 . . .
YH(n) 2;;1 V+(n ) Fredholm integral equation converges to the exact solution
2+ () . g Ve (1) [43]; consequentlyh has to be chosen as small as possible
f{l*(_m) :?ZWZI*(_"”(D;JF VZ;(_"”’ _‘2] and A has to be chosen as large as possible.
, 2+(=m) T%nl:’ o Hot (=m. @) = Ipi (=m, —@)] For instance, according to our experience, we assdme
Xip(=ma) | == Var (mma, @) 4 Vi (mma, =) Ay = 10 andh = hy = 0.05 (4; and h; are related
Xop(=m) | g=kiZi [Lpg (=ma, @) = Loy (=ma, ~2)] to the second and fourth equations in (39)) to get stable
Yau (n) - niEZofw('m 0) solutions which provide very ?ccurate value:s in term&df:) _
NP and Q;(v) samples, voltages’ and currents’ spectra and field
Yat (m) T ot (1, =) components, see Section V.
Xt (=m) — s Vet (5m, @) = Vi (=m, )] The discretized form of equations (39) is reported below:
Xaq(—m) @Za ot (=m, @) + Ipy (—m, —D)] 1P + D12 + K12 P> =1
Xap(—ma) | = :l/lﬁ Vot (ma, @) = Ve (mrma, =) D21 P+ D22P + Ka22Q2 =0
Xay (—m1) }/1?21 ot (=m1, @) + Ipy (—m1, —P)] { IP; + D34Py + K34 Py ;E (41)
. . . DusPs; + DaaPy + K -0
As reported in step 4 of the previous section, in order to i = 4494
obtain a solvable system of equations from (27), we neethere we need to use the discretized form of (37):
to estimate the quantitie§, 1 (v) in terms of the functions Qo4 = W3aPs s (42)

Pi11(u). We recall that this procedure is required for the
evaluation of the integral term in the second equations of (2¥)yith reference to the system of equations (39), in (41):
This requirement is achieved through the application of thees P; is the column vector containing the samplesifu)

Cauchy formula (30), explicitly reported below: function,
. o I is the identity matrix,

Q2,4(v") :/ Uy 4(v', 0" ) Poa(u)du’ (37) « Dj; is the diagonal matrix that represents the function

e multiplying P;(u) in equation numbet,
where » Kj; is a full matrix that represents the kernel in equation

ez sin?— T 400 sin[2 (jut 32)] number: that multipliesP;(u') or Q;(v'),
V2 (v, u) =  2n27Z, sin2[~ T+ 277 cos[Z (jut 3F )] —/Er cos[ T (jut 2F)] o ¥y 4 is a full matrix that represents the operators (38),

sin[3 (= T +jv)] e n; is the column vector containing the samples of the

Uy (v,u) = Ua(v,u) St (2 0]

(38) source in equation number

By substituting (33)-(36) in (27) we obtain, with the useA!l the matrice; and v.ector'quantities are of Qimenan
of (37), two decoupled explicit systems of equations (39§|mple algebraic manipulations allow to obtain two linear

amenable to be solved numerically in termsii) functions. Systems of dimensioV: where the unknowns are onli,
Note that the quantities; (u) andns(u) are related to the and P.
E-polarized incident wave (see Appendix | for details), and The physical plus WH spectral unknowng, . (n,0),
when the plus unknowns are non-standard(y, < %) Vi (n,7), I,4(n,0) and I, (n,7) are reconstructed in the
7 w andw; planes (respectively, (w), Vrs (w1), I;(w) and
= i=1,3 (40) I, (wy)) via the sampling of (20) and using the definitions
of Table Il and (23): see (43)-(46) for the explicit formula
with 7,,; andT,; defined in Appendix . where Q2 4(hi¢) are obtained through (42) and non-standard
Efficient approximate methods for the solution of Fredholmplus unknown are considereie. 0 < ¢, < %. Note that the
equations of second kind are widely available in the literaturdiscretization of kernelM (u,«’) in (39) yields artificial poles
see for example [43]. in (43)-(46) due to the zeros dt“t* + 1) whenw' = hi.
Since the kernel of (39) presents a well suited behavior, Wéese poles correspond to spurious singularities on the axial
use a simple sample and quadrature scheme to obtain accuspeetra forw = —3® — j2hi andw; = —3&; — j 2L hyi.
and stable numerical solutions. We apply uniform sampling Since the solution is obtained via numerical procedure along
f(hi) with i = _%% and modified left-rectangle nu-the lines A, and Az (25), i.e. the vertical linesRe[w] =
Co : oo A/ ' —Z (Re[w] = —2) andRe[w:] = — % (Re[w;] = —21), the
merical integration formulzi{o Fluydu = hi}ZA/hf(hZ) where 5 pairs of equations (43), (45) and (44), (46) provide only
A and h are respectively the truncation parameter and tlmalytical elements of the axial spectra. We definestheting
step parameter for the integrals in This rule has been spectraas the axial spectra respectively in the regularity strips

ni\u) = ——-——= )
(u) (jsinhu — cos % o)



U pyw) — & T M(u, ) Pa(u)du’ = ma(u)

Pi(u) — tan

cosh(u) Sin[%*‘r%]Pl (u)
cosh(v(u)) sin[% +%]

—Z4ju(w) Zisin®[F (-5 +iw)]Pe(w) | 1 F / N
+ tan 5 Zo s L= F +50()] + _{o M (v(u),v")Q2(v")dv' =0

N oo (39)

Ps3(u) — tan —25— Py(u) — T%] | M(u,u)Ps(v)du' = n3(u)

—o0
cos[ 3 (= Z +ju)] sin[ 1221 4 B0y () —Z4ju(u) Zysin[L(—E4+iw)Pa(u) | 4 , Nl —
ok Fe e T g T T T e raey] T w ] M) v)Qa(v)dv" =0
A
A in( %) & . : : T, 43
Vi (w) = Vi (—ko cosw, 0) = — o0 {,f] ZAM [T + %), hi] Pa(hi) — M} “3)
i=—1
Ay
V _ k _ Sin(%lwl) hy b M L Twy LAWY hii
7\'+(w1) = Z+(_ 1COS”LU1,7F)7 4k, sin wy 7 A _.7( 3 + 2)) 12 QQ( 17‘) (44)
it
A
~ cos(Z¥) . . . . Ty
Ly (w) = Ipy (—ko cosw, 0) = — -2 {:] ZAM [—5(%2 + 5), hi] Pa(hi) — M} (45)
=R
Ay
i (1) = T (i coswn,m) = ~ 2B S0 A (5 4 ), ] Qu(hai)
T+ P+ ’ 2koZ1 L Ay Py 27 (46)
==

—® < Re[w] <0 (—7 < Re[w] <0)and—®; < Re[w;] <0 (w) is obtained through the approximate analytical element
(—7 < Relw:] < 0). Note that the starting spectra show only "™ (w,) (V"™ (w)) valid in —®; < Re[w;] < 0

the pole singularity of the incident field. Another importan{—® < Re[w] < 0):

property is that the regularity segmentb < w < 0 (—®; <

(num)
w; < 0) belongs to the proper she&, (P,,) as defined in Ve (w1)  —®1 < Re[un] <0

Appendix | of [36]. Vra(wi) =  =Vza(—w1) Refwi] >0 (51)
To apply the above procedure it is important to study the 2"deq.in(53) Re[w:] < —®,

behavior at infinity of the spectra. This was accomplished in

[41] and for the sake of brevity it is not reported here. v (w)  —& < Re[w] <0
In order to obtain the global spectradinandw, planes we Va(w) = { —Va(—w) Re[w] > 0 (52)

need analytical continuations of the numerically approximated
analytical elements. We note that if the problem were solved
analytically, the closed form solution would be valid in the Note that the recursive formula (53) of theaxial unknowns

entirew andw; complex planes. However this is not possibléy = =) with real argumentw; requires the evaluation of
in the general case of an isotropic penetrable wedge withe axial unknownsy = 0 with complex argumentss, see

arbitrary aperture angle. Appendix Il and test case 1 in Section V.

The analytical continuation of the numerical results is an ; ;
old and cumbersome problem of applied mathematics thatThe use of rotating waves [44] enables us to represent in the

can be approached in various ways. In this work we res@figular complex planess(andw,) the Laplace transforms of
to recursive equations obtained representing the GWHE (9)tbe spectral unknowns for a directignin terms of the axial

the problem in thev andw, planes using Table Il and (22)- spectra

(23). By using the continuity relation (100) and eliminating

the spectral unknowns defined at the interface= £®, we V;(w,¢) =
obtain (53) where we have defined the functions

1%teq.in(53) Relw] < —®

Zo[ L4 (W)~ Iy (wt9) |+ Va(w—9)+Va (w+e)
2

e (w, ) = Zo[f+(w*<P)+f+(w+;9;}o+\74(w*w)*‘7d(w+w)

) Va(w) = s1n(w)Vf(w) (47) o  Zi [l (wiHen) —Ing (w1 — o) Va (w1 401+ Ve (w1 — 1)
Vrea(wr) = sin(w1) Ve (w1) (48) wa(wi, 1) = 2
. _ 5 Z1 [Ty (w1 491)+Hn g (w1 =91 |+ Viea (w1 +01) = Vira (w1 —¢1)
and where we have introduced th@w) andg; (w;) functions +(w1,¢1) = 1l Conton) e (1 Wzlz]l e
derived from (22) and described in Appendix II: _ - N (54)
where we have defined the auxiliary quantities:
cosw ~ N
wy = g(w) = — arccos ( e ) (49) ) Va(w, p) = S%n(w)vf (w, ) (55)
w = g1(w1) = — arccos (y/€, cos wr) (50) Vra(ws, 1) = sin(w) Vi (wi, ¢1)

Since plus functions are even functions in the angular planes/Ve observe that the quantities defined inside the dielectric

y > wedge ( < |¢1] < ®1) can be derived using symmetry from
w or wy [42], we assert thatVy(w) and Vrg(wi) are o quantities defined outside the wed@e<(|p| < ®) using
odd. The symmetry properties of plus/minus functions tqpe following substitutions:

gether with (53) ensure the analytical continuatiorVaf(w),
Vg (w1), Iy (w) and Ir4(wy). For instance, let us con- . . . A
sider Vyq(wy) (Va(w)). Its correct evaluation for eachy Vi (w), L+ (w)} — { Vg (w1), Lt (wr) }

90_>_(1017w_>w11(1)_)¢'17ko_>k17Zo_>Zl
(56)



> _ Zysin(w+P)—Z, sin(g(w+P)) v; 27, sin(w+P) >
Vd(w) - Zi sin(w+®)+Z, sin(Z(w«HI))) Vd(w + 2‘1)) + [Z; sin(w+®)+Z, sin(g(w+P))] Vﬂ'd(g(w + (I)) + (bl)

¥, — 27, sin(w; +®;) % Zy sin(g1 (w14®1))—=Z, sin(w;+®;) y;

Vra(W1) = [zramter (un 78101 2, simtwrran)] V(91 (w1 + 1) + @) — e o T 7 sm(wy @) Vrd (Wi + 221) (53)
? _ Zpsin(w+®)—Z, sin(g(w+P)) 7 27 sin(w+®) 2

I+(’LU) - Zi sin(w+®)+Z, sin(g(w+P)) I+ (w + 2(1:‘) + Zy sin(w+£)+Zo sin(g(w+®)) Iﬂ+ (g(w + (P) + (bl)

2Z, sin(w1+®1)

$ Zj sin(g1 (w1 +®1))—Z, sin(w1+P1) 7
Z1 sin(g1 (w1 +P1))+Zo sin(w1+P1) I+ (gl (wl + CI>1) + <I)) 1 Lt L L L ITr+ (wl + 2@1)

I7T+(w1) = + Z1 sin(g1 (w1 4P1))+Zo sin(w1+P1)

IV. FAR-FIELD EVALUATION

This section is devoted to the evaluation of the far-field pattern S :2{2};805 '
inside and outside the wedge. For the sake of simplicity - ImnJ=0.1" E
we refer to a dielectric wedge structure illuminated by an 2f Imn]=0.1* !
E-polarized plane wave at normal incidence, generalization | | "~ mm=0s ]
to skew incidence can be extrapolated from [36] where the = o
impenetrable wedge is discussed. In this section we make E [ ° P
reference to the evaluation of the exact field components in  -If ‘ \
the exterior regiorlp| < ®. Note that the procedure can be 2} |

extended to the evaluation of the field in the interior region

|p1] < @1 through the symmetry relations (56).
The exact total field is given by the following inverse -r
Laplace transforms:

\
5 L L L L L L
L . -2rn  -Tn/4 -3w2 -5m/4  -m  3w4 w2 -m4 0 /4
E.(p,¢) = 5 [, Vet (0, 0)e™"dn Re[w]
I,

» 57
Ho(p,9) = 5= [, Lo+ (n, p)e ™" dn 7

Fig. 2. Horizontal Imn] = cost.) Bromwich contours and SDP contour
where B, is the Bromwich contour fol/, (n, ¢), ]p+(n’ ). in the w-plane with branch points atk andk = 1 — 0.1j. The positive

We recall that the singularities of standard plus functions af&!} direction in B corresponds to the direction o 5,.) towards—r +

. . . arctan(— Re[k]) — joo = —3.042 — joo in the w plane.
Iocgted in the Iowe.rn half-plang. In this caseB, is any  the symbolgD) are geometrical optics poles of the outer axial spectra referred
arbitrary horizontal line located in the upperhalf plane. to the test case 1 of Section V. From the left to the right side(theymbols
By introducing thew-plane ¢ = —k, cosw) we obtain: correspond respectively to the fazeeflected wave, the facereflected wave,

incident wave, see also Fig. 6 of test case 1 in Section V.

E:(p,9) = 52 [y(5,) Vi (w, @)e? P ¥ sinwdw

j CosS W 3 (58)
Hy(p,) = E2 [ ) a0, 0)e ¥ sinwduw

wheregd(z) denotes the Gudermann function:

where \(B,) is the mapping of theB, contour into thew- gd(x) = sgn(x) arccos(1/ cosh(x)) (61)

plane. Fig. 2 reports, in thes-plane, possible choices of Fig 2 reports the SDP contour, too. To integrate (58),
Bromwich contoursj.e. horizontal lineslm[n] = cost. These the contour is deformed to the SDP passing over the saddle

contours are consistent with Figs. 13 and 14 of [36] where th@jnt —r. In order to deform the\(B,) contour to the SDP,

prcIJ:perft_ie% of the two tco(rggiex plagt@$”gw a:e_ defﬁ”b?d- we assumeB, with Im[y] < Im[—k,] where small loss
ar-field components are obtained applying the steep L , . . _
descent path (SDP) method to equations (58): 585umption is considerdih[k,] < 0. This choice also avoids

the influence of the branch line cuts of the functigfm)

E.(p,¢) = EZ(p, ) + EZ(p, ) + E2(p, ) + EL(p,9) ~ (59) (the branch points aretk,) on the approximated numerical
where E¥ is the geometrical optics (GO) contributions (seSCIUtion. see Fig. 14 of [36] for detalls. , .
[12] for details), E¢ the diffracted field,E2 the possible con- _ € contour deformation process can capture singularities
tributions of the surface waveg;! the possible contributions of Vi (w, ») as poles and branch points, located in the region
of the lateral waves. between the two contourg B,.) and the SDP. On the SDP the

Equation (59) introduces the fielf: and E. in the total ©XPonential argument:,p cos w is equal to—jkop(1+;jh(w))
field. These components derive from structural singularitie@herzh(hw) |sda cgntmufom:]s realhfuncnon that goes t@o
respectively poles and branch points of the recursive equati ﬂ‘%’_?]r the an pc])c!nrz of the pat 'h followi ¢ 62
(53). In particular the branch points are singularities of the e total far field assumes t € following, om) (62),
functions g(w) and g (w:). The evaluation ofE* and E! where poles are related to geometrical optics fields’ compo-
as well their interaction with the UTD contribuiion require§‘ents (non—§tructur_§I singularities) and pOSS|_bIe surface waves
further studies. Interesting considerations on the mathematig:séfucltural smgularltles), Whencajas branfch pglnts are relateld to
existence of the branch line contributions as well as on tll%teral waves due to the(w) andg, (wn) functions (structura
radiation conditions in the elastic wedge problems are reporu':-t’agu arities).

in [22]. E.(p,p) = _kge ko J: V. (w )ekf’ph(w> sin wdw-+
The saddle point of the functiofk,p cosw is —m and the P @)= T e Jspp VAP
steepest descendent path is: —52 [, Vi(w, @)t or o sinwdw+ (62)

w = —7 + gd(Im[w]) + jIm[w] 60) ko S ReIVi(w @)l 70 sinwi ()



In (62) w;(p) = we + ¢ are the poles ofV, (w,p), w,; B. Diffracted fields

are the poles of the axial spectral unknolp(w), andb is  The SDP integral in (62) represents the diffracted field:
the contour deformation to consider the possible contribution

e—Jkor ~ coph(w) _
of branch pointsw; originated by theg(w) function in the E(p,0) = — == [ Vie(w, )€™ () sinwdw = (©5)
H : R 5 e~ d(kop+7)
application of recursive equations. = BT o 0)

where D(y,¢,) is the Geometrical Theory of Diffraction
(GTD) coefficient. Ask,p — oo, the major contribution
The contribution of geometrical optics field arises from th# (65) is located near the saddle pointr because of the
residues of the poles;() when the poles are captured byexponential decay of*-*"(*”), therefore the GTD diffraction
the contour deformation from(B,) to the SDP in thev-plane  coefficient is:
(see Fig. 2):

A. Geometrical Optics fields

_kovd(_ﬂ_v @)

Dle,po) = ——1 (66)

EL(p, @) = —jko Y Res[Va(w,@)]w,(p) €7 (63)

7

where Vy(w,9) = V,(w,¢)sin(w). The external GTD
diffraction coefficient [p| < @) assumes the explicit form
(67) whereV,(w) = V (w) sin(w) is an odd function for real

whereV(w, @) = Vi (w, @) sin(w). . L -
The number of GO poles (hon-structural singularities) d?\;_alue of w while the plus functionsl (w) and V; (w) are

pends on the incident angle, and the observation angle. ven. ) ) ) )
For certain ranges of the two angles we can have contribution (¢, ¢,) = k, 22 [I+(_”_“’)_”(_W2f£+vd(_”_“’)+vd(_”+w

from incident plane waves, reflected plane waves, transmitted ] ] ) . ‘ .. (87
plane waves and multiple reflected/trasmitted plane waves. BeEdauation (67) is consistent with the definition in terms of
sides, the poles relevant to the plane waves could be Comp%gg(mmerfelds functions presented in [36]:

in presence of totql reflectiqqs inside the wedge with complex sp(w) = Jko [, sinwV; (w) + Zoj+(w)] (68)
trasmission/reflection coefficients. The GO terms assumes the 2
following form: D, p0) = sp(p—m) —se(p+m) (69)

E,
eTIkopcos(wi(@)) _ jikopcos(woite) _ ,—iko T koi (64) Uniform expressions of the diffraction component are obtained
using the Uniform Theory of Diffraction (UTD) [45]-[48]:

i(kor+%)

wherek,; = —& cosw,; & §sinw,; is the unit vector of the o
o1 ot Y o1 Eg(p’ Lp) = EOWC(S@ 900) (70)

associated plane wave.
Let us suppose real poles () = w,; + ¢. When we vary Clp,py) = 2Ele=m splptm) |

the observation angle, some of the poles); () of V. (w, ¢) e WEO_Q@ 2 cos *’*Tf:w o

can cross to the left the SDP contour centered-in In this +Ra1—F(2’“oPCOSQ =) *_Rbl—F("”"oPCOS2 5 )+ (71)

context these poles are not anymore captured by the contour 2cos £1E—22 - _”COSM

deformation and their contributions disappear in the total field +3T, 1’F<2’““”;‘iq_w+)

creating shadow regions for the corresponding GO waves. We a ST

recall that thew,; are the poles of the axial spectru (w) whereR,, R, andT', are the Fresnel’s reflection coefficients

for ¢ = 0 and —= is the saddle point in SDP. The shadowespectively due to the first reflection on faceand b, and

regions are generated by the poles located in the interval the ¢ multiple trasmissions/reflections through the wedge (see

—T—®<w<-—m1+Pas—® < p < —P. Shadow regions also [12] for the evaluation of the coefficients). Uniform

are related to diffraction component to obtain continuous fielkpressions are required when GO pole$y) are near the

passing through the shadow boundaries. saddle point—. In particular we recall that shadow regions
Since the Fredholm factorization provides the approximagse possible for singularities of the axial spectra located in

solution of the spectra only in the strip® < Re[w] < 0, —7—® <w < —m+ ®. The uniform expressio®? (p, p) +

we must resort to the recursive equations (53) in order f&(p, ») ensures the continuity when the observation aggle

obtain the requested spectra. We observe that the integraisses the shadow boundaries.

term in Fredholm integral equations contributes only to the The function F'(z) is the Kouyoumjian-Pathak transition

diffracted fields since it does not contain any poles. Therefdiénction defined in [47] and its application in the framework

we can obtain the poles and the relevant residues for the rifrWiener-Hopf formulations is reported in eq. (63) of [36].

structural poles by ignoring the integral term in the Fredhol gﬁ%cﬁ{g('ﬂ% ttﬁg eigtjear{%n;egri]%nlﬁé |q§arﬁi1ti)ésmilrelvcr)1ls/gg iaothe
factorization, hence it is not necessary to solve the integiglsiion of the diffracted field. Using the symmetry relations
equations to estimate the GO components. This property() it yields:

well known in the literature as reported in [18], [21], [23].

1—F(2k(,pcos2 %)

+

CO:

Similar considerations can be applied for the interior region.  s&*(w:) = ‘771 —sinw; Vay (w1) + leﬂ(wl)] (72)
An excellent discussion of geometrical optics’ contributions ‘ it N nty
is reported in [12] where multiple reflected and transmitted D™ (1, p,) = 2E (=1 —7m) — s (=p1 + ) (73)

E
waves are treated. ¢
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with explicit expression reported in (74).

int o Zalp g (p1—m) I (—m—p1) |+ V(1 —m)+ Ve (-7 —01)
D (9017900)*]“ 25E, (74) _'_@
As for the exterior region, uniform expressions
C"(p1,¢,) are required when GO poles;(p1) =
—p1 + w4 (With wy,, poles of the axial spectrﬁ(ﬂ+(w1)
and fﬂ(wl)) are near the saddle poirtr: shadow region
are possible for poles in-m — ®; < w; < —7w + 1. 180°
Consequently uniform expressions of the diffracted field (75)
are of the same kind of the one for exterior region (70)
and EY(p,p) + E4(p,¢) is continuous when it crosses the

shadow boundaries inside (as outside) the dielectric wedge.

TAHTE A~

i(k1p+ %)

EL(p, p1) = Eo 50" (101, 00)

(75) :
The complete GTD diffraction coefficient is defined by: e

D(p, o) lp| < @ Fig. 3. Test case 1: the GO field, the UTD component and, the total far-field
int pattern atkp = 10.
Dtot(% 0o) = D™ (1 — ¢, ¢0) dP<p<m (76)
D"~ — . p,) —m<p<—B problem are:® = 37/4, &, = 3, v, = 7/8, § = w/2 and
|| = 1V/m.
Note that the complete UTD diffraction coefficiefit® (¢, p,) ~ According to GO, the E-polarized incident plane wave
assumes the same form B6f°(p, p,). impinges on the dielectric wedge and generates two reflected

waves and two transmitted waves. The two transmitted wave
are not reflected in the interior region.

. o This configuration allows to define four geometrical optics
The efficiency, the convergence and the validation of thg,,qoy houndaries: facereflected shadow boundary, fabe

proposed approximate solutions is illustrated through sevefghacted shadow boundary, faceransmitted shadow bound-
test problems. The quantities used in this section are expliciHyy and, faceb transmitted shadow boundary. No incident
defined in the previous section: Far-field evaluation. Some Qﬁadow,boundary exists. As shown in Fig. 3.with different
the following numerical results and figures show the compaa—ray color backgrounds, there are six GO regions: incident
son between the solution of the dielectric wedge test case %e regionprs < © < wra (), incident and facea
the solution of the perfect conducting (PEC) wedge with theacted waves regiompa < ¢ < ® (I+RA), incident and
rest of physical parameters unchanged. , _face b reflected waves region-® < ¢ < ¢gp (I+RB),
The first test case is investigated in detail, reporting thg.a ,, transmitted wave regio® < ¢ < ora (TA), face
whole procedure to solve the problem: from the definition of ;.o nsmitted wave regioprp < ¢ < —® (TB) and faceq

Wiener-Hopf spectral unknowns to the evaluation of the tota}, 4 transmitted waves regiof-m < ¢ < 1) U(pra <
field. Moreover, the test cases show the convergence proper 'e§ ) (TA+TB).

O,f the proposed methoq and some physical properties of @ 3 reports the GO field, the UTD component and, the total
diffraction by a dielectric wedge. The last test compares oH[ fia|d at the distancép = 10 from the edge of the wedge.

solution with the one of [12]-[13] and shows the computationg[ccording to GO, the problem under examination shows:
efficiency of our method. The first three tests consider non- a facea reflected wave angle

standard plus unknowns while the fourth non-standard minus
UNKNOWNS. PYRA = —T — o+ 20 = 37/8 >~ 1.18,4q = 67.6°

All the test cases make reference to Fig. 1. In particular, * a faceb reflected wave angle Y
the wedge is illuminated by a plane wave impinging from a  ¥72 =7~ o — 20 = =5m/8 = ~1.96r0a = —112.3
direction, (leaving the wedge with directiop; = ¢, — 7), ks fa(iea tran;mnted Wajiiiﬂ%'ﬁ N 14780
see (77). In this paper we denote the azimuthal direction of Zﬁgc;ﬁ:a:sm}rt?éaczséve s le)__2'58”d__14 8
the GO waves withp;,, where the subscriptab are in upper ~ ° o or— & ‘(COS<_¢9+¢1)) ~ 202 = 167.8°
case (lower case) if referred to a wave that leaves (approaches_? $rE = AT B T Aot A = £98rad = 201

the wedge: for instance, the facereflected wave propagates | he solution of the problem is obtained applying the dis-
as eikopcos(e—¢ra) — e—ikopcos(e—¢nra) with o, = 20 — cretization method reported in Section 11l where the Fredholm

factorization method is applied to the GWHE with discretiza-
tion parametersA = 10, h = 0.05.

Fig. 4 shows the behavior of the numerical solution in terms
A. Test case 1 of the spectral unknown¥, (w) and I, (w) in the regularity
The first test case analyzes all the properties of our solutisegment—® < w < 0: the outer axial starting spectra (as
in terms of spectral quantities, diffraction coefficients, totalefined in Section 1ll) is purely imaginary (Appendix IlI).
fields. With reference to Fig. 1 the physical parameters of tielative errors are reported Ing,, scale by considering as

V. VALIDATION AND NUMERICAL RESULTS

andpra = ¢, — 7, See Fig. 1.
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reference solution the one obtained for discretization paramesing equations (67) and (74) and, considering that the spectral
ters A = 12, h = 0.015. For the numerical solution we haveunknowns are even function in (w;), we obtain thatop4 =
chosen different values of the integration paramétendh in  —wgrs — © ~ 1.18rad and o7 = —wrp =~ 2.92rad (since
order to confirm the convergence of our technique. However; = © — ). Similar considerations hold for the other GO
an excessive value offi (A > 15) yields ill-conditioned poles. The GO components can be obtained by using standard
matrices in the discretization process. techniques or by applying (63). Notice that the study of the
Fig. 5 shows the behavior of the numerical solution iaxial spectra is fundamental. In fact,f,; is a singularity of
terms of the spectral unknown4. (w;) and I, (w:) in the Vi (w) (I (w)), the spectrum oV, (w, ) (I (w, ¢)) presents
regularity segment-®; < w; < 0. the singularitiesv,; + ¢ that can be captured by the integration
As reported in Section IV the evaluation of the GTrFontour deformation fromb, to SDP, see subsection IV-A.

coefficients requires the analytic continuation of the spectrbiie singularities ofV. (w) (I (w)) are reported in Fig. 2
unknowns{ V. (w), I (w)} and{V,, (w1), I+ (w;)} respec- together with different integration contours. Whikd/, (w)
tively in the interval—m — ® < w < —7+® and—7 — ®, < andkl(w) are almost purely imaginary functions (a2, 0)
w; < —m + ®;. The required analytical continuation is(Purely imaginary in(—®,0), see Appendix 1l1);k1 Vr (w1)
obtained through the recursive equations reported in (53). @nd k1 /1 (w1)) are complex functions as shown in Fig. 7,
Fig. 6 shows the behavior of the absolute value of the spaihere for the sake of simplicity we have reported only the
tral unknowns {V (w), I (w)} and {Vi4 (w1), fri(w1)}. voltagr-_,\ spectra. _The approximate total GTD _dlffractlon
The figure highlights the spectral regions necessary to evaluggéfficients are estimated substituting the approximations of
the GTD diffraction coefficients (67) and (74)e. -1 — & < the spectral unknowns in (67) and (74_1). Fig. 8a reports the
w< —m+®and -7 — ®; < wy; < —7 + ®,. The figure absolute value of.the total GTD diffraction coefﬁuept (mldB)
shows also the GO poles relevant to the GTD for test casef@! €ach observation angle The peaks of the GTD diffraction
In particular {V+(w),f+(w)} show peaks for the reflectedcoeﬁ'c'ents occur for the GO angles: reflected and transmitted

waves, while{Vy, (w1), I+ (w1)} for the transmitted waves. waves. The convergence is shown in Fig.8.b for different

The location of the poles agrees with the standard GO theoiln ,egration parameters through the evaluation of the relative

for instance considempy ~ —4.32 and wyp ~ —2.92: ©MOr in log,, scale with respect to the reference solution
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obtained forA = 12, h = 0.015. Thelog,, scale measures B — e
the level of precision in term of digits for each observation SN i1
angley. Fig. 8.c reports the phase of the total GTD diffraction N e i
coefficient (in dB) for each observation ange Figs. 8.a and s
8.c show also the plots for the PEC wedge.
The complete solution is reported in Figs. 9 and 10. The "
first figure reports the total field, GO field component, UTD w4
field component at the distande = 10. Gray regions are 0 , . . . ,
inside the wedge. The second figure shows the comparison wog o
between the total field of the dielectric wedge with the one of (c)

the PEC wedge. We notice that Fig. 9 shows a small loss of

convergence forp ~ +2.97 and ¢ ~ —2.36: the reasons for Fig. 8. Testcase 1: a) absolute value of the total GTD diffraction coefficient
(dB), b) GTD diffraction’s relative error iflog,, scale using different set of
) . integration parameters (reference solutién= 12, h = 0.015), c) phase of
In the first case, wherp ~ 42.97, the problem is due to the total GTD diffraction coefficient.

the spectral reconstruction of the Wiener-Hapfunknowns

the corner behavior are different.

in wy, i.e. Vey(wr) and I, (wy). In fact, for o

~ +2.97

into w = —®; + arccos(,/g,) ~

13

—m/4 + 91.1462. Uniform

the UTD/GTD field component is related to the evaluation g@mpling for reakv; is mapped into non-uniform sampling in
Vo (w1) and [, (w,) in w, = —2.97, see (76) and (74). complexw. In particular the significant point; = —2.97 is

We recall that the recursive equations are used to estimate #@pped intow = —®; where the mapping shows a change in
spectral unknowns out of the regularity strips® < Re[w] < slope and highly non uniform sampling. This is the cause for
0 and —®; < Re[w;] < 0) in particular in the GTD intervals the loss of convergence in UTD/GTD for ~ +2.97.
(—r—P<w< —7m+Pand—r—&; < wy; < —w+P,). Fig. The second direction where we experience loss of con-
11 shows the mapping used in the estimation iinctions out vergence isp ~ —2.36 and it is due to the UTD uniform
of the regularity segment®; < w; < 0 for real value ofw; expression of the GTD field component. Singe~ —2.36 is
(see (53))i.e.w = P+g; (w1 +P1). The map starts from; = very close to the interface between the two materials=
—&, that yieldsw = ® —arccos(,/g,) ~ 37/4—71.1462 and —®), the Kouyoumjian-Pathak (KP) transition function [47]
goes all over the gray line as longas = —7—®; is mapped is not adequate to model the problem: the uniform diffraction



14

|E w, mapping used in Vi,

totl

2 _
w1< cI>1
18 = GO 114621 i « @ <, <1 ]
1.6] B a UTD H
8
H i
4 : ——T0T l
¥ ;B
12 AW
/\ E 0 x LT
! \VARZ A/ -

0.8

0.6,

0.4,

0.2

é —1.1462F —arccos(y/€;)
-2 +0
n L 5 L C

15 L N L L L L L L L
0 ; ; ; -m2 38 -m/4 -m8 0 w8 w4 3m8 w2 5m8 3mw4 Tmi8 wm
- —3n/4 -2 —m/4 0 /4 /2 3n/4 T Re

®

Rig. 11. Test case . = ® + g1 (w1 +P1) mapping used in the estimation
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starts fromw; = —®; that yieldsw = ® — arccos(,/€r) (arccos(y/er) =~

71.1462) and goes all over the gray line as longuas = —7 — ®; is mapped

Fig. 9. Test case 1: Total field (solid line), GO field component (square
UTD field component (triangles) atp = 10.

90° into w = —®1 +arccos(,/&r). Uniform sampling for reals; corresponds to
: ° — Dielectric non-uniform sampling in complexw. The symbols(>, O, A, [ respectively
are the mapped value af; = —®1, & — 7w, — P —arccos(—\/%), —r—
P;.
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Fig. 10. Test case 1: comparison between the total field of the dielectric )
(gray line) and the PEC wedge (black linejai = 10. [y —

—n/4 0 /4 /2 3n/4 ]

component is a cylindrical wave whose intensity should vaniéfy. 12. Test case 2: the GTD diffraction coefficient (dB).
at the interface, on the contrary, at first sight, the KP transition

function’s slope does not consider the change of materials. . L. _ .
P g The E-polarized incident plane wave impinges on the di-

electric wedge and generates one faceeflected wave and

) one facea transmitted wave. The transmitted wave is totally
The second test case shows the convergence properties of @gEcted inside the wedge for two times and generates two
solution in terms of GTD diffraction coefficient. The closeq, anescent transmitted waves through the two interfaces. This
form solution of the PEC wedge, see for example [36], allowg)nfiguration allows to define three geometrical optics shadow
to compare the dielectric wedge solution when the relatiyg, ngaries (omitting the ones for the evanescent waves): inci-
permittivity is with high imaginary part and real part equal tQent shadow boundary, faeereflected shadow boundary, face

1. Fig. 12 shows the GTD diffraction coefficient (in dB) when, {ransmitted and double totally reflected shadow boundary. As

¢ = 3”/,4’ er = 1—Jei o = m/8, 6 = /2 and [E'| = 4 consequence, there are five GO regions:
1V/m with discretization parameterd = 10, h = 0.05. By

increasinge; the solution converges to the PEC wedge.

B. Test case 2

« region 1: incident wave

« region 2: incident wave, facereflected wave, evanescent
wave through face

« region 3: facea transmitted wave, faceé reflected wave

The third test case highlights the capabilities of our method from facea transmitted wave, double reflected wave from

to model the scattering and diffraction by a dielectric wedge facea transmitted wave

in presence of multiple reflections and transmissions. Withe region 4: faceu transmitted wave, facé reflected wave

reference to Fig. 1 the physical parameters of the problem are: from facea transmitted wave

O =17r/8, ¢ =3, p, = 137/32,6 = /2 and|E!| = 1V/m. « region 5: evanescent wave through face

C. Test case 3
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to evaluate the GTD coefficients.

Dielectric lights the spectral regions necessary to evaluate the GTD
] ——co diffraction coefficients (67) and (74),e. -7 — ® < w <
—— 10T —m+®and -7 — P, < wy < —7 + ®,. The figure shows

also the GO poles relevant to the GTD for test case 3. In
particular(V, (w), I, (w)) show peaks for the face reflected
wave (RA) and incident wave (1), whil&V, , (w;), Iy (w1))
for the transmitted and double reflected wave (TARR). Notice
G that the lobes reported in Figs. 14.a and 14.b are related to
evanescent waves (complex polesuih

The complete solution is reported in Figs. 15 where the total
field, GO field component, UTD field component are evaluated
at the distancép = 10. Gray regions are inside the wedge.
Comparison between the complete solution of the dielectric
wedge with the one obtained with PEC wedge is also shown.

Note that Fig. 15.a shows loss of convergence in the
diffracted component fop ~ +1.475rad. This spurious local
Fig. 13. Test case 3: the GO field, the UTD component and, the total far-fidt@rner behavior of the solution is due to the effect of the
pattern atkp = 10. mappingw = ® + g;(w; + ®1) in the spectral reconstruction
of the WH unknowns Y, (w), I, (w)) through the recursive

equations (53) as already discussed for the WkHnknowns
The GO field, the UTD component and, the total far-fielgy, , (w,), I, (w:)) at the end of test case 1.

pattern are reported in Fig. 13 at the distaige= 10 from
the edge of the wedge. D. Test case 4

The solution of the problem is obtained applying th&he fourth test case shows the validation of our method
discretized method reported in Section Il where the Frethrough the comparison of our solution with the one proposed
holm factorization method is applied to the GWHE within [12]-[13]. In this test case we shows the capabilities of our
discretization parameterd = 10, h = 0.05. Fig. 14 shows method to model the scattering and diffraction by a dielectric
the behavior of the absolute value of the spectral unknownwgdge in presence of multiple reflections and transmissions
(Vi (w), I (w)) and (Vey (w1), Ir4 (w1)). The figure high- and, the performance in terms of computational time. With
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Fig. 15. Test case 3: a) Total field (solid line), GO field component (squareb)g. 16. Test case 4: a) the GO field, the UTD component and, the total
UTD field component (triangles) dtp = 10, b) total field for the dielectric far-field pattern akp = 107, b) the UTD component ap = 107.
and PEC wedge.

Fredholm factorization method with discretization parameters

reference to Fig. 1 the physical parameters of the problem— 10, 1, = 0.05 and the results can easily be compared with
are:® = 7m/8, &, =2, po, = 177/24, § = 7/2 and |[E'| = the figures reported in [12]-[13].

1V/m. The E-polarized incident plane wave impinges on the Note that nearp = 7/3 the Fig. 16.b shows &orner
dielectric wedge and generates one faceflected wave and pehavior due to the use gf in the recursive equations (53).
one faces transmitted wave. The transmitted wave is reflected Taple 11l shows the computational speed of our im-
and transmitted through faéeThe reflected partis then totally plementation in Mathemati@on an Inte®Core" 2 Duo
reflected on face: and generates an evanescent transmittefby (P8400@2.26GHz 3GB RAM). Note that the use of
wave. This configuration allows to define four geometricajathematic&) let us handle and verify all the mathematical
optics shadow boundaries (omitting the one for the evanescggtails of the procedure. The use of a full numerical imple-
wave): incident shadow boundary, facereflected shadow mentation of our method would speed up the entire evaluation.

boundary, double transmitted shadow boundary, transmitted- TABLE Il
double reflected shadow boundary. As a consequence, there COMPUTATIONAL SPEED
are six GO regions: [_Time | Action |
« region 1: incident wave <1:3L’?Js Mathgirzcart;igt?;':mons
« region 2: incident wave, facereflected wave, evanescent < 2s Linear system generation
wave through face <5s Linear system solution
« region 3: faceq transmitted wave, face reflected wave 0.01-0.03s| Spectral sample in regularity segment
. 0.1-0.5s Sample of total field
from facea transmitted wave, double-reflected wave from
face a transmitted wave VI. CONCLUSION
« region 4: facen transmitted wave, face reflected wave  |n this paper we present a new method to study the
from facea transmitted wave diffraction by an isotropic penetrable wedge using the WH
« region 5: double transmitted wave through facandb  technique. The solution is presented in terms of GTD diffrac-
« region 6: no GO components tion coefficients, UTD diffraction coefficients and total fields.

The GO field, the UTD component and, the total far-field Further work will be focused on the study of the contribu-
pattern are reported in Fig. 16 at the distarige = 107 tion of the structural singularities and on the computational
from the edge of the wedge. The figure is obtained using thepects for the general skew incidence case.
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APPENDIXI first threem(—®) poles have the same representation =
SOURCE TERM —7oc0s (F¢o).

This appendix is devoted to study the source t@fia) (first- We denote Witmgﬁ) the poles of the re-transmitted waves in

order pole function) of the Fredholm integral equation formuhe o complex planes for observation angles= 0, +®, —®.

lation (19) when the isotropic penetrable wedge is illuminatethese poles are obtained using the first relation of (13) for

by a general plane wave at skew incidence from the outer= 0 and (15) foro = +®, —®.

region. We assert that the source tefiy(«) is obtained through the
Without loss of generality, let us consider an E-poIarize@Sidue theorem applied to the non-standard spectral unknowns

plane wave. The GO field of the outer region can be evaluate@ly for the singularities located in the proper sheet of dhe

by solving the simple problem of reflection/transmission ¢fomplex plane that contains the segmerit < w < 0 [36].
plane waves at skew incidence: Although the spectral unknowns in the complex plane

present the poles, andaif), we consider only the contribu-
tion of o, since: either 1))4““3) is associated to a re-transmitted
wave with existence domain that excludes= 0,+®,—®

directions or 2)04%) is located in the improper sheet of

whereu(z) is the unit step functionE{*" are the reflection the « plane fory = 0,+®,—® or 3) both the previous
coefficient of the two faces: and b and, EY, is the field conditions are simultaneously satisfied. The second condition
! zt

re-transmitted from inside the wedge (see [12] for a dedp €asily verified using thev-plane: the condition becomes

discussion), when it is present. “® < wif) < 0 with real w(? for ¢ = 0,+®, ~® where

In order to establish the source term(a) we have ?Ut(f) corresponds tay?’ using the expressions of and m
identified the following strategy based on engineering afd w, see (22)-(23).

EY = eI Z[Eou(w — o — Lpo\)ej”’ 0005(¢7%)+
Fu(m — |+ 0y — 2B|) ESP eI70 peosleteo=22) (77)
Fu(r — | + @, + 20| B eI peosleteo+2®)] 4 g,

mathematical considerations: Starting from (14) we extract the source term related to
A) assuming that the GO is validy;(a) derives from the the source polev, = —7,cos (§¢,) from the non-standard
Laplace transform of the known GO field fgr= 0, +®, —® unknowns. The location af, in the o complex plane depends
respectively in the complex planes —m and —m, on ¢,. With small loss assumption/{:[k,] < 0), if 0 <

B) we evaluate the source term;(a) using the residue ¥o < 3 (5 <o < ®), a, is located in the lower (upper)
theorem applied to the non-standard spectral unknowns (§& o complex plane yielding unconventional plus (minus)
Section Il for definitions)only for the singularities located UnknownsY;. (o) (X;—(«)). The polea, can be captured by

in the proper sheet of the complex plane that contains thecontour integration only if it is located in the proper sheet of
segment—® < w < 0, see [36]. a. This property is well illustrated in the-plane: the poley,

In the following we consider the case of incidenge< IS associated to three different waves with same representation

v, < +®, the opposite case® < ¢, < 0 is obtained using N a-plane but different in other complex planes suchas
andw [36].

symmetry. Usingn(w) (22) andm(w) (23), we obtain that the incident
By ignoring in a first moment the PTX'Stence domain 0\;vave, the face reflected wave, the fadereflected wave show

the GO components (77), the application of theLaplace respectively the following poles in the-plane

transform (3) to (77) fory = 0 yields several first-order ., for0<g,<2:wy = —po, wao = —2®+p0, Who = —2P—,

pole terms with polesn, = —7,cos¢p, for the incident , for 2 <o, <d: wS™™ = W™ = —¢,, w(F® = —20— ¢,

wave, ., = —7, cos(2® — ¢,) for the facea reflected wave, andwl™ = ws® = 28 — o, i, = —4d + o,

Tho = —To c08(2® + ¢, for the faceb reflected wave and.,  Note that the reader can extrapolate the following other cases

for the n re-transmitted waves. The first three poles have thing a similar procedure: 2 < ¢, < 0 and —® < ¢, <

same representation in theplane:a, = —7, cos (§¢,). —2. Only some of the above poles are locate in the proper

By ignoring in a first moment '_[he_existence domain ofpeet £® < w < 0, seew-plane properties in Appendix
the GO components (77), the application of the: Laplace | of [36]) and they correspond to existing waves along the
transform (3) to (77) fop = +@ yields several first-order pole gssociated directiop = 0, +&, —®.

terms V\/(IE_hq))pOlGS.méJr ) = 7,co8(® — o) for the incident [ et us, now, suppose < ¢, < 2, the unconventional plus

wave,mgo = = T, cos(®— (2@ —p,)) = 7, cos(—P+¢,) for  functionY;, () for i = 1,3,5,7 can be decomposed in:

the faceu reflected wavem, ™ = 7, cos(®— (—20—,)) = ) . 7

7, cos(3® + ¢,) for the faceb reflected wave anah!® for Yir(a) =Yir(e) + 2 :”ao (78)
the n re-transmitted waves. Note that the ql‘irst two goles hayehere Y, (e) are standard plus functions representing the
the same representation in theplanemi'™ = m{S™ and  ayiq) spectra without the GO components (in this case the

through (15) we obtain that the first three*®) poles have jncident wave). Sincd < ¢, < £ only the GO polew,

the same representation in theplane:a, = —, cos (%20)- s located in the proper sheet-(¢ < w < 0), therefore the
Similar cc()pggderatlons hold for the (tbggj case, the faceb incident wave is the only one that contributes to the residue
p=—0:imy " =7,008(=P o), Mao = T, C0s(—3P+ T,;. According to (14) and the procedure described in [37] we

—® —® .
o) my, *) = 7, cos(D+p,), andmy, ™ respectively for the define the source term:
incident, the facex reflected, the facé reflected and the: B T,
re-transmitted waves. In this case, ® = m{~® and the ni(a) = —— o (79)
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T,; is the residue ot () in a,: Note that the signs of the residue termsniff«) are decided

Toi = Res[Vis(a)l| = Tun da (80) according to the orientation of the integration contour in the
o = sttt talle, = Lot g . Fredholm factorization procedure, see [37] and section II-B.
i — , _ TABLE IV
with To; = Res, [Yz+(77)]|nq and No = —To COS(wO)' DEFINITIONS FOR THE SOURCE TERMi; ()
T,; are obtained by using the Laplace transform of the GO FORO < @, < @,
field components along the = 0 direction in then-plane. T —jAE,Z
In this case the GO field is constituted by only the incident Ia J4E, T sin(%Ee)
wave, see (77). Using Table | for definition Bf, (o) in terms I JAH, T
of longitudinal and tangential field components we obtBjn 5 CGAHL T gin( T
_ o7 J4llo g sin( 23 )
andn;(«).
On the contrary, if% < @, < @, only the polewff‘b) =

(+®) : ; . _ 727rj<Eo+E(()‘,,{))
weo IS located in the proper sheetd < w < 0. In this case Uo1 S

the unconventional minus functioX;_(«) for i = 1,3,5,7 —2mj(Bo—BSY) cot(552)

2P

. Uo
can be decomposed in: 2 @
> i 'y . 2mj( Bot+ESY) sin(T5e
Xio(a) = X5 (a) + —2— (81) 3 @
a— _ 2 (Bo— B cos( T
where X7 («) are standard minus functions representing the o T
- . - - _ 2mj(Hot HEY)
facial spectra without the GO components (in this case the 5 -
incident wave and the fagereflected wave)U,; is the residue ~ 2 (Ho—HED ) cot(552)
of X7 (a) in ay,: Uos - T
: (a)\ i (TPo
_ _ _ 27j( Ho+Hep' ) sin(5552)
U,i = Res [Xl-_(a)Hao = Upy; ;li (82) Uot — ( = ) 28
Mo 2Trj(HﬂfH((,(;l>)cos(%)

Uo8

3

with U,; = Res[X;_ (m)]|moandmo = Mao = To coS(—o + ).
In this second case, from (14), we define the source term: p(a
or

) and H{" are cumbersome coefficients of the fa§:e
Res[X(i)_(a) — %X(i+1)—(a)] reflected wave available from GO. At normal incidengg:

i(q) = %o (83) and H(E?) are simple expressions:
a — Qo

i Egi) — FJ_EO _ Z1 s%n(q)fapu)on s?rl(q)fwta) i
and therefore using (82): @ Z1 sin(®—po)+Zo sin(2—pta) 86
i i (86)
(a) _ pl _ Zosin(®—po)—Z1 sin(P—pta)
= = Hor —FGEO_Z in(®— Z7 sin(®— Ho
= _ UO(i) To + @ Uo(i+1) 0 8in(®—po)+2Z1 sin(P—pia)
e P Y o e | @4 with g1, = ® + g(® — p,), whereg(w) is defined in (49).
Note that the reader can extrapolate the cade< ¢, < 0

. Q) .
~ Notice that, for < ¢, < @, the X_;) functions reported \yhere we need to consider the reflected wave from face
in (19) must be substituted Wltl?(i(i , which is the minus wamol
unknowns purified from the unconventional singular term v:;% ample

decomposition (in the Fredholm factorization the unknow L the sake of readability, we present some explicit expres-

are always standard [37]). sions ofn; () when a dielectric wedge is illuminated by an

U,(;) are obtained by using the Laplace transforms anrE]'pOIa“.zed pla_n(_a wave at_normal mmdenpe. .
the ¢ = +& directions in the—m plane of the GO field The first explicit expression under examinatiorig ) for

& = ;
componens having singlarties n e proper shet hee |- 7 = 1 12 we need o evaiale, I e case ve
Table | and (10)-(11)). el P > . b'i’

Let us focus the attention on the= +® case: the to-be- 77|° - _TgtC(.)s(;f]")t'_ inceTo; = Res [Yiy(n)]l,,, using Table
considered GO components are the incident wave and the f!icéNe obtain that: €4 (1)
a reflected wave. These waves must be considered only if face Tor =200 Fes [Va+ (0, 0], (87)
a (p = +®) is not in shadow. Similar considerations hold fo%ince the GO component is only the incident wave, we
faceb (p = —®) where we need to consider the incident wav — JE, using then-LapIac;e

and the facé reflected wave. Using Table | and (10)-(11) fogzgsig?rlrzj?;?iei[gﬁ(n’ 0l

7o’

Mo

definition of X;_(a) in terms of longitudinal and tangential . S#ap co8(0—po) _inp JE,
field components we obtaifi,; and7;(«). Ve (0,0) = ; Eoe™™ e dp = P (88)
In t'he general case, the source tefy{«) assumes the Using (87) and (23) witho, — —p, we obtain
following form . sin ¢,
Tor = —4j B — 7"~ (89)
flpo < 5. oty Uniy + 25225 Unin)) sin (o)

ni(a) = o — ap B3 \ve observe that sincg?| = g%, Tor = —4j5E,
where the explicit expressions of all non-zéfg,, andU,;; and the explicit expression of; (o) results:
are reported in Table IV when the GO poles are related to the B —4jZE,
incident wave and the face reflected wave (( < ¢, < ). () = = — (90)
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The second explicit expression under examination;igv) We assert that the Snell law in the spectral domain (22)
for % < o, < ® thus we need to evaluaté,; andU,;. In this ensures the continuity relation:
case, the non-standard functions are the minus ones and the - -
' ; ) Py (w,+®) = F ,+® 100
GO pole present in the proper sheetwplane ismS® = (w0, £) = Fi (w1, £1) (100)
mfqu’) = 71, cos(® — p,) (incident and face: reflected wave This property is used in the procedure to derive the recursive

of the facial spectra of face). SinceU,; = Res [Xi_(m)]| equations (53). Let us focus the attention on the properties of

me?

using Table Il and (10)-(11), we obtain that: g(w) and g; (w1) in the recursive equations (53) for the esti-
(+0) mation of the GTD diffraction coefficient (76). As discussed
57 (mo ) . . 2 2 . .
Uot = —>——-5~ Res [sver (—m)]| ra (91) in subsections IV-A and IV-B, we require the evaluation of
n-(mo' ) "o the axial spectrg = 0 andy = 7 respectively in the interval
koZo —T-P<w<-—n+Pand-m - P <w; < -7+ Py
Us2 Res[drps (—m)]| (+m) (92) . r X

We recall that the recursive equations (53) are substantially

) ) _of these two kinds:
We recall from the previous subsection that only the facial

spectra of face: have singularities in the proper sheet of F(w) = O[F(w 4 2®), Fr (1 + g(w+®))]  (101)
plane, therefore we obtain that: Fﬂ(wl) = @W[F@ +g1(wy + @1)),13“”(11;1 + ®1)] (102)

Res [svai(—=m)l| ey = Res [Vay (=m, +®)][ cve)  (93)  We observe that for each real (101) requires the evaluation

Res [drp(=m)]|, cow) = Res [Lps (=m, +@)]| cvy  (94)  of F(w) and F,(w;) with real argumentsy andw;. On the
Without loss of generality let us focus the attention @f. contrary, for each reals;, (102) requires the evaluation of
Since the GO components are the incident and the facef’, (w;) with real argumentsy; and the evaluation of(w)

reflected waves we can evaluakees [V, (—m, +®)]| = with complex arguments) determined by the mapping:
using the—m Laplace transform fop = +®

= 52 (mg+q’)) me

w=®o+ gl(wl + @1) (103)
V2 (—m,®) = /(Eo + E(@)eikopcos(®=vo) o —ime g, (g5) Fig. 17 shows (103) foe, = 3 — j0.1 and for different values
5 of ® in the interval—7 — ®; < w; < —®; highlighting the

cardinal pointsw; = —®q, wy = -7+ &1, w; = —7 — Oy.

thus, using (86)7, (~m, @) = ~2F=(41),

The evaluation of the quantitids,; and U,; can be easily w, mapping used in V_
carried out using thev-plane together with then-plane. We L5 — —
Il thatm{™) ds tavs™® = Using (23 P
recall thatm," " corresponds tav,” = —¢,. Using (23) T oo
we obtain: : - - -®=518
. (I) — 0, |
Ust = —j2E,(1 4+ T2y (2 = %0) (96) !
sin(% o) ;
. lo o sin 2o . \ AN
We observe that S'nc%{an@ = & s(a—5,y We obtain E o T
7 LT \
Uor = ~2j 5 Eo(1 + ry) (97) '
. . )
and following the same procedure, we can evaluate the explicit !
expression of/,,: sk R
Usz = —2j = Eo(1 — T'F) cot (222 (98) I
N 29 “R23w8 w4 w8 0 w8 w4 3w w2 Sw8 3wd w8
In this case, the source term («) results: Re
_ —j2Z F, n ko + n TYo Fig. 17. w = ® + g1 (w1 + ®1) mapping fore, =3 — j0.1 and for
n1(a) = ﬁ 1+T5)+ \/ﬁ(l —T'g) cot( 20 ) different values of® in the interval—7 — ®; < w; < —®;. The map
¢ ° (99) starts fromw; = —&; that yieldsw = ® — arccos(,/&,-) and goes all
over the gray lines as long as; = —m — ®; is mapped intow = —®; +
APPENDIXII arccos(,/€r). The symbols(, O, respectively are the mapped value for
=—-&;,— 71+ D1, —7 — Pq.
THE g AND g1 FUNCTIONS i ’ ’
g 9 APPENDIX I

The functionsg(w) and g; (w1 ), see (49) and (50), are multi-
valued functions [42] used extensively throughout the pap
for example in the recursive equations (58jw) and g; (w1)
show branch points located respectively dnw, + nr and
+wyp, + nw with n € N, w, = —jarccosh /g, andwy, =
—arccos(1/,/2,). We assume vertical branch cuisg. the
line (twy,+joo) for the branch pointtw, and the line
(fwqp, j00) for the branch pointtw;,. We remark that our

branch choice is different from the one done by Budaev [18]. M(*J’(%w + g),U') = *M*(*j(%w + g% —u')  (104)

THE OUTER AXIAL STARTING SPECTRA

With the assumption of no losses, we notice that using
complex conjugation of (39) and substitutingu to u we
obtain the same equations with changed in sign sourees,
—n13(u) (see Appendix 1). It yields; (u) = — P/ (—u).

Using thew-plane in M (u, ), i.e. M(—j(Fw + 5),u'),
we observe that for real’ andw:



These properties yield a real sum fed <w <0 in (43),(45)

(26]

EFS

M [

j=— A
R

+ g), m} Py.4(hi) (105)

(27]

(28]

and sincen, 3(u) are purely imaginary forweR, we obtain

purely imaginary outer spectf@’; (w), I (w)}for —® <w <0.
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