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The Wiener-Hopf solution of the isotropic
penetrable wedge problem: diffraction and total field

Vito Daniele, and Guido Lombardi,Member, IEEE

Abstract— The diffraction of an incident plane wave by an
isotropic penetrable wedge is studied using generalized Wiener-
Hopf equations, and the solution is obtained using analytical
and numerical-analytical approaches that reduce the Wiener-
Hopf factorization to Fredholm integral equations of second kind.
Mathematical aspects are described in a unified and consistent
theory for angular region problems. The formulation is presented
in the general case of skew incidence and several numerical tests
at normal incidence are reported to validate the new technique.

The solutions consider engineering applications in terms of
GTD/UTD diffraction coefficients and total fields.

Index Terms— Wedges, Isotropic media, Wiener-Hopf method,
Spectral factorization, Fredholm integral equations, Analytical-
numerical methods, Geometrical optics, Electromagnetic diffrac-
tion, Geometrical and Uniform theory of diffraction.

I. I NTRODUCTION

Nowadays, accurate and efficient solutions of diffraction prob-
lems are of great interest in engineering, mathematical and
physical communities.

This paper presents a general solution of the diffraction
by an isotropic penetrable wedge, see Fig. 1. The diffraction
by a penetrable wedge has constituted in the last century
and constitutes an important and challenging problem. Several
attempts to find the solution have been reported in literature
[1]-[31], where different formulations and analytical and/or
numerical approaches have been presented. All the cited
papers are of great interest, however some of them proposed
incorrect methods and/or solutions.

One of the most interesting attempts to solve the penetrable
wedge problem was proposed in 1964 by Radlow [1]. This
author provided a solution for the diffraction by the right-
angled dielectric wedge solving a multidimensional Wiener-
Hopf equation. In 1969, Kraut et al. ascertained that this
solution was wrong [3]. Moreover the methods proposed
by Zavadskii [2], and Aleksandrova-Khiznyak [5] were also
wrong, see [7].

In 1977 Rawlins [8] provided a solution of the dielectric
wedge problem using a general Integral Equation formulation,
which is based on a standard perturbation technique. Its
method was generalized in 1991 by Kim et al. These au-
thors proposed an approximate solution of an arbitrary-angled
dielectric wedge, which is obtained by performing physical
optic approximation to the dual integral equation in the spatial
frequency domain [12]-[13]: the results are presented in terms
of diffraction coefficients and far-field patterns.
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Fig. 1. The isotropic penetrable wedge.

In 1995 Budaev proposed the application of the popular and
effective technique known as Sommerfeld-Malyuzhinets (SM)
method (for instance see [19] and [32]), to deal with dielectric
wedge problems [18]. The difference equations that arise from
this formulation are originally reduced to singular integral
equations. A regularization method reduces them to Fredholm
equations. Budaev focused his monograph on the correct
mathematical formulations avoiding engineering speculations
such as the evaluation of the diffraction coefficients.

In the authors’ opinion, the most significant results obtained
for the penetrable wedge geometries arise from works using
formulations in the one-dimensional spectral domain as in
[18]. Some of these works produced very important contri-
butions. In particular, in 1999, the monograph about elastic
wedge by Croisille and Lebeau [21] presents a formulation
of the problem in terms of singular integral equations in the
Fourier domain: these equations were successfully solved by
using the Galerkin collocation method. Theoretical and numer-
ical aspects of Budaev’s work were discussed in several papers,
see for example [22] and references therein. In particular the
paper by Kamotski et al. [22] has investigated the diffraction
phenomena in an elastic wedge.

Formulations in a one-dimensional spectral domain based
on the Kontorovich-Lebedev (KL) transform have been pro-
posed in [9] and [15]. In particular, in 2006, Salem et al.
estimate the electromagnetic field excited by a line source in
the presence of an infinite dielectric wedge [29]: the solution
is given in terms of asymptotic approximations for the near
and far fields inside and outside the dielectric wedge.

In this paper we present a new method in the one-
dimensional spectral domain based on the Wiener-Hopf (WH)
technique. It constitutes an extension of the Wiener-Hopf
formulation for impenetrable wedge problems that has been
exhaustively considered in the past by Daniele and Lombardi
[33]-[36]. The central problem of the proposed method is
the factorization of matrix kernels in the WH formulation.
Even though this problem has been considerably studied in
the past, a general method to analytically factorize an arbitrary
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matrix is not known up to now. Since the isotropic penetrable
wedge with arbitrary aperture angle is a problem where no
closed-form general WH factorization is available, we propose
optimal approximate factorizations by using the Fredholm
method introduced in [37] and [34] (inspired by [38]) that
reduces the factorization problem to the solution of Fredholm
integral equations of second kind.

For the sake of simplicity, in this work, we first present the
WH formulation of the isotropic penetrable wedge’s diffraction
problem of a plane wave at skew incidence, and then we
solve the diffraction by a dielectric wedge at normal incidence
focusing the paper on all the mathematical/physical proper-
ties to get the solution. This paper is organized as follows:
Section II deduces the Generalized Wiener-Hopf Equations
(GWHE) of the isotropic penetrable wedge at skew incidence.
After introducing useful mappings, the GWHE are reduced
to two systems of equations with classical WH unknowns.
These Classical Wiener-Hopf Equations (CWHE) are solved
using the Fredholm factorization method [37] that reduces the
factorization problem to the solution of systems of Fredholm
integral equations of second kind. Section III shows the
numerical implementation of the proposed method for the
case of an E-polarized plane wave incident on a dielectric
wedge. In particular we present the numerical solution of
the Fredholm equations for the normal incident case and we
provide approximate representations of an analytical element
of the WH unknowns in the angular complex planew. The
same section addresses the analytical continuation of the ap-
proximate representations. Section IV deals with the evaluation
of the electromagnetic far-field in the whole spatial domain for
the normal incident case. In particular this section presents
the solution in term of total field by estimating the field
components: the Geometrical Optics (GO) component, the
diffracted component, possible surface and lateral waves. Note
that the geometrical optics contribution can be deduced from
the WH formulation without the necessity of solving the Fred-
holm equations. Finally, numerous significant test cases are
presented in section V to validate our technique and practical
discussions are included. We conclude the paper with three
Appendices which are fundamental from an implementation
point of view. The first is devoted to the evaluation of the
source term in the Fredholm equation in the case of a plane
wave incident to the wedge. The second Appendix concerns
the special mappings used in the analytical continuation of
the approximate solutions, and the third one is focused on
spectral properties of the solution. For the sake of brevity, we
have omitted several mathematical proofs that the reader can
find in [28], [35], [37], [41]- [42]. We assert that an important
advantage of using the GWHE formulation (as well as the
spectral method proposed in [21]) is the possibility to solve
wedge problems immersed in anisotropic or bianisotropic me-
dia. Apparently this extension is not possible in the framework
of the Sommerfeld-Malyuzhinets formulations.

II. T HE WIENER-HOPF FORMULATION

Fig. 1 illustrates the problem of the diffraction of a plane wave
at skew incidence by an isotropic penetrable wedge having
permittivity ε1 = εoεr and permeabilityµ1 = µoµr immersed

in the free space (permittivityεo and permeabilityµo). We
consider the cylindrical coordinate system(ρ, ϕ, z) and time
harmonic electromagnetic fields with a time dependence spec-
ified by the factorejω t which is omitted. The incident field is
constituted by plane waves having the following longitudinal
components:{

Ei
z = Eoe

jτo ρ cos(ϕ−ϕo)e−jγo z

Hi
z = Hoe

jτo ρ cos(ϕ−ϕo)e−jγo z
(1)

where:δ andϕo (ϕI = ϕo − π) are respectively the zenithal
and the azimuthal angles which define the direction of the
plane wave,ko = ω

√
µo εo is the wave number and,γo =

ko cos δ and τo = ko sin δ are respectively the longitudinal
component and the transverse component of the wave vector.

Fig. 1 shows two media and four angular regions: 1)
0 < ϕ < Φ, 2) −Φ < ϕ < 0, 3) −π < ϕ < −Φ, and
4) Φ < ϕ < π. The first two regions are in free space,
the second two are in the isotropic penetrable medium that
constitutes the wedge. To facilitate the readability of the paper,
we will extensively use the supplementary anglesϕ1 = π−ϕ
and Φ1 = π − Φ for the definition of quantities inside the
wedge. According to geometrical optics, the field inside the
isotropic penetrable medium is characterized by: the wave
numberk1 = ω

√
µoµrεoεr, the longitudinal component and

the transverse component of the wave vectorγ1 = k1 cos δ1

and τ1 = k1 sin δ1 where δ1 is determined by enforcing
γ1 = γo (the electromagnetic properties of the wedge are
independent of z).

The Wiener-Hopf technique for angular regions’ problems
[33], [35] is based on the Laplace transforms of the longitu-
dinal and tangential components of the electromagnetic field:

Vz+(η, ϕ) =
∫∞
0

Ez(ρ, ϕ)ejη ρdρ,

Iz+(η, ϕ) =
∫∞
0

Hz(ρ, ϕ)ejη ρdρ

Vρ+(η, ϕ) =
∫∞
0

Eρ(ρ, ϕ)ejη ρdρ,

Iρ+(η, ϕ) =
∫∞
0

Hρ(ρ, ϕ)ejη ρdρ

(2)

where the subscript+ (−) indicates plus (minus) functions,
i.e. functions whose regular half-plane is the upper (lower)
half η-plane. To avoid the presence of singularities on the real
axis, we assumeko with a small negative imaginary part. In
the following we will use multiple complex planes (η plane
and−m plane) for the definition of Laplace transforms along
different directionsϕ:

F+(η, 0) =
∫∞
0

f(ρ, 0)ejη ρdρ,

F+(−m,±Φ) =
∫∞
0

f(ρ,±Φ)e−jm ρdρ
(3)

According to the theory presented in [28], [33], [35], [39]-
[42] the generalized Wiener-Hopf equations for the diffraction
of a plane wave at skew incidence by a penetrable wedge are
reported in (4), (5), (6), and (7) respectively for the angular
regions of Fig. 1 numbered in ascending order. The GWHE
are written in terms of the following quantities (8). Note that,
in the expressionξ =

√
τ2
o − η2 (ξ1 =

√
τ2
1 − η2) we define

the proper branch of the square root the one that assumes the
valueτo (τ1) for η = 0.

ξ =
√

τ2
o − η2; ξ1 =

√
τ2
1 − η2

m = −η cosΦ + ξ sin Φ
m1 = −η cosΦ1 + ξ1 sin Φ1

n = −η sin Φ− ξ cosΦ
n1 = −η sinΦ1 − ξ1 cos Φ1

(8)
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{
ξ Vz+(η, 0)− τ 2

o
ω εo

Iρ+(η, 0)− γo η
ω εo

Iz+(η, 0) = −n Vz+(−m, Φ)− τ 2
o

ω εo
Iρ+(−m, Φ) + γo m

ω εo
Iz+(−m, Φ)

ξ Iz+(η, 0) +
τ 2

o
ω µo

Vρ+(η, 0) + γo η
ω µo

Vz+(η, 0) = −n Iz+(−m, Φ) +
τ 2

o
ω µo

Vρ+(−m, Φ)− γo m
ω µo

Vz+(−m, Φ)
(4)

{
ξ Vz+(η, 0) +

τ 2
o

ω εo
Iρ+(η, 0) + γo η

ω εo
Iz+(η, 0) = −n Vz+(−m,−Φ) +

τ 2
o

ω εo
Iρ+(−m,−Φ)− γo m

ω εo
Iz+(−m,−Φ)

ξ Iz+(η, 0)− τ 2
o

ω µo
Vρ+(η, 0)− γo η

ω µo
Vz+(η, 0) = −n Iz+(−m,−Φ)− τ 2

o
ω µo

Vρ+(−m,−Φ) + γo m
ω µo

Vz+(−m,−Φ)
(5)

{
−ξ1 Vz+(η,−π) +

τ 2
1

ω ε1
Iρ+(η,−π) + γ1 η

ω ε1
Iz+(η,−π) = n1 Vz+(−m1,−Φ) +

τ 2
1

ω ε1
Iρ+(−m1,−Φ)− γ1m1

ω ε1
Iz+(−m1,−Φ)

−ξ1 Iz+(η,−π)− τ 2
1

ω µ1
Vρ+(η,−π)− γ1 η

ω µ1
Vz+(η,−π) = n1 Iz+(−m1,−Φ)− τ 2

1
ω µ1

Vρ+(−m1,−Φ) + γ1 m1
ω µ1

Vz+(−m1,−Φ)
(6)

{
ξ1 Vz+(η, π) +

τ 2
1

ω ε1
Iρ+(η, π) + γ1 η

ω ε1
Iz+(η, π) = −n1 Vz+(−m1, Φ) +

τ 2
1

ω ε1
Iρ+(−m1, Φ)− γ1 m1

ω ε1
Iz+(−m1, Φ)

−ξ1 Iz+(η, π) +
τ 2

1
ω µ1

Vρ+(η, π) + γ1 η
ω µ1

Vz+(η, π) = n1 Iz+(−m1, Φ) +
τ 2

1
ω µ1

Vρ+(−m1, Φ)− γ1 m1
ω µ1

Vz+(−m1, Φ)
(7)

In order to obtain a compact formulation of the problem
we introduce the generalized factorization of the functionsξ,
ξ1, n andn1 reported in [33]: generalized factorization means
that f(η) = f+(η)f−(m) andf1(η) = f1+(η)f1−(m1).

The use of these factorizations and mathematical manipu-
lations (sum and subtraction) of (4)-(7) yield a new system
of equations where theη-plus functions forϕ = 0, π (i.e. the
axial spectraVz+(η, 0), Vz+(η, π), Iρ+(η, 0) and Iρ+(η, π))
are determined in terms ofm- and m1-spectral functions
defined forϕ = ±Φ (facial spectra). It yields a system of
eight functional equations reported in (9) fori = 1, 3, 5, 7. Y(i)+(η) = X(i)+(−m) − ξ−

n+
X(i+1)+(−m)

Y(i+1)+(η) = Ẋ(i)+(−m1) +
ξ1−
n1+

Ẋ(i+1)+(−m1)
(9)

For the sake of brevity Table I reports all the plus/minus
unknowns of (9) defined in terms of:

sab+(−c) = ab+(−c, Φ) + ab+(−c,−Φ) (10)

dab+(−c) = ab+(−c, Φ)− ab+(−c,−Φ) (11)

wherea = {V, I}, b = {z, ρ} andc = {m, m1}.
Equations (9) are GWHE since the unknown functions are

defined in different complex planes,i.e. η andm or m1.
This system of equations are the Wiener-Hopf formulation

of the problem under investigation.

A. Reduction of GWHE to CWHE

In order to solve the system of GWHE (9) where multiple
complex planes coexist, we introduce the special mapping (12)
defined in [33] and used in [36] to solve the equations for
impenetrable wedge. This mapping is used to obtain CWHE
in angular regions with aperture angleΦx and transverse
component of the wave vectorτx. The mapping is used in each
equation of (9) depending on the appropriate angular region.

η = η(η̄) = −τx cos(
Φx

π
arccos(− η̄

τx
)) (12)

With reference to Fig. 1, in regions 1 and 2 the correct mapping
is the first of (13) and is applied to the first equations of (9),
on the contrary in regions 3 and 4 the mapping is the second
one of (13) and is applied to the second equations of (9).

η = η(α) = −τo cos(Φ
π

arccos(− α
τo

))

η = η(β) = −τ1 cos(Φ1
π

arccos(− β
τ1

))
(13)

This procedure yields a new system of eight equations

 Ȳ(i)+(α) = X̄(i)−(α) − ξ−
n+

X̄(i+1)−(α)

Ÿ(i+1)+(β) = Ẍ(i)−(β) +
ξ1−
n1+

Ẍ(i+1)−(β)
(14)

with i = 1, 3, 5, 7 and where the following notations have
been used:̄Y(i)+(α) = Y(i)+(η), X̄(i)−(α) = X(i)+(−m),
X̄(i+1)−(α) = X(i+1)+(−m), and Ÿ(i+1)+(β) = Y(i+1)+(η),
Ẍ(i)−(β) = X(i)+(−m1), Ẍ(i+1)−(β) = X(i+1)+(−m1).
In (14) the terms, that combine thēXi and Ẍi functions,
constitute the matrix WH kernel of the system of equations
whose elements are defined in two complex planes (α andβ).

TABLE I
DEFINITIONS.

Y1+(η) 2
ξ+
n+

Vz+(η, 0)

Y2+(η) 2
ξ1+
n1+

Vz+(η, π)

X1+(−m) −n−
ξ−

svz+(−m)

X2+(−m) 1
ξ2
−

[
τ2

o
ωε diρ+(−m)− γom

ωε diz+(−m)

]
Ẋ1+(−m1) −n1−

ξ1−
svz+(−m1)

Ẋ2+(−m1)
1

ξ2
1−

[
τ2
1

ωε1
diρ+(−m1)− γom1

ωε1
diz+(−m1)

]
Y3+(η) 2

n+
√

τo

[
− τ2

o
ωε Iρ+(η, 0)− γoη

ωε Iz+(η, 0)

]
Y4+(η) 2

n1+
√

τ1

[
τ2
1

ωε1
Iρ+(η,−π) + γoη

ωε1
Iz+(η,−π)

]
X3+(−m) − n−√

τo
dvz+(−m)

X4+(−m) 1√
τoξ−

[
τ2

o
ωε siρ+(−m)− γom

ωε siz+(−m)

]
Ẋ3+(−m1) −n1−√

τ1
dvz+(−m1)

Ẋ4+(−m1)
1√

τ1ξ1−

[
τ2
1

ωε1
siρ+(−m1)− γom1

ωε1
siz+(−m1)

]
Y5+(η) −2

ξ+
n+

Iz+(η, 0)

Y6+(η) −2
ξ1+
n1+

Iz+(η, π)

X5+(−m)
n−
ξ−

siz+(−m)

X6+(−m) 1
ξ2
−

[
τ2

o
ωµ dvρ+(−m)− γom

ωµ dvz+(−m)

]
Ẋ5+(−m1)

n1−
ξ1−

siz+(−m1)

Ẋ6+(−m1)
1

ξ2
1−

[
τ2
1

ωµ1
dvρ+(−m1)− γom1

ωµ1
dvz+(−m1)

]
Y7+(η) − 2

n+
√

τo

[
τ2

o
ωµ Vρ+(η, 0) + γoη

ωµ Vz+(η, 0)

]
Y8+(η) 2

n1+
√

τ1

[
τ2
1

ωµ1
Vρ+(η, π) + γoη

ωµ1
Vz+(η, π)

]
X7+(−m)

n−√
τo

diz+(−m)

X8+(−m) 1√
τoξ−

[
τ2

o
ωµ svρ+(−m)− γom

ωµ svz+(−m)

]
Ẋ7+(−m1)

n1−√
τ1

diz+(−m1)

Ẋ8+(−m1)
1√

τ1ξ1−

[
τ2
1

ωµ1
svρ+(−m1)− γom1

ωµ1
svz+(−m1)

]
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Note that from (8) and (13)

m = τo cos

(
Φ

π
arccos

(
−α

τo

)
+ Φ

)
(15)

m1 = τ1 cos

(
Φ1

π
arccos

(
−β

τ1

)
+ Φ1

)
(16)

We recall that the factorizations of functionsξ, n are studied
in [33] and for the sake of readability we report them below:

n+ =

√
τo − α

2
, n1+ =

√
τ1 − β

2
(17)

ξ− = −
√

τo + α

2
, ξ1− = −

√
τ1 + β

2
(18)

In (14) some of the Wiener-Hopf unknowns arenon-
conventional. We define non-conventionalor non-standard
plus (minus) Laplace transform, the functionsF+(η) (F−(η))
that presents singularities in the standard regularity half plane
Im[η] ≥ 0 (Im[η] ≤ 0). The non-conventional singularities are
typically poles arising from geometrical optics contributions.
Since we suppose that there are no sources in the interior of the
penetrable wedge, the unconventional unknowns are only the
one defined in the exterior region,i.e. the unknowns defined in
theα complex plane. We can intuitively deduce if a plus/minus
η Laplace transform (2) of a plane wave is standard or not,
by examining the direction and the orientation of its flow. If
the Laplace transform is performed along a certain direction
(for instanceϕ = 0 i.e. positive x axis) and the plane wave
is flowing along the same direction but opposite orientation
(−x direction) we obtain a spectrum with a pole in the upper
half-plane when the medium is supposed with small losses
Im[ko] . 0. In this case we obtain standard minus functions
and non-standard plus functions.

B. Fredholm factorization

To obtain approximate solutions of the system of equations
(14) we apply the Fredholm factorization method described
in [34], [37]. This method reduces the WH equations to
Fredholm integral equations using the contour integration and
the Cauchy formula. The integral equations of the Fredholm
factorization are written only in terms of conventional plus
(minus) unknowns [37].

We recall that only the unknowns defined in theα complex
plane can be non-conventional, since there are no sources in
the interior of the penetrable wedge. The geometrical optic
pole isαo = −τo cos

(
π
Φϕo

)
, see [36]. This pole is related to

three waves: the incident wave, the facea reflected wave and
the faceb reflected wave. The location ofαo in theα complex
plane depends onϕo. If ϕo < Φ

2 (ϕo > Φ
2 ) the αo is located

in the upper (lower) half of theα complex plane yielding
unconventional plus (minus) unknowns withIm[ko] . 0.

The extraction of non-conventional parts on the non-
conventional WH unknowns yields the source terms in the
Fredholm equations, see [37]. The source terms in the Fred-
holm equations are related to incident field and/or reflected
fields as the associated polesαo are located in the proper or
improper sheet of theα-plane (see Appendix I of [36]). The
associated polesαo can be captured by contour integration

only if they are located in the proper sheet ofα. A complete
discussion on the source terms of Fredholm equations is
reported in Appendix I.

Using the Fredholm factorization method we obtain the
system of integral equations (19) withi = 1, 3, 5, 7 and where
the source terms̄ni(α) are described in Appendix I.

The complete solution of Wiener-Hopf problem is obtained
in terms of the spectral unknowns by numerically solving the
minus unknowns in (19). We note that the plus unknowns can
be obtained through (14) or by using the equivalent integral
representation available from (19):
Ȳ(i)+(α) = 1

2πj

∞∫
−∞

(
τo+α′√
τ2

o−α′2
− τo+α√

τ2
o−α2

)
X̄(i+1)−(α′)

α′−α
dα′ + n̄i(α)

Ÿ(i+1)+(β) = − 1
2πj

∞∫
−∞

(
τ1+β′√
τ2
1−β′2

− τ1+β√
τ2
1−β2

)
Ẍ(i+1)−(β′)

β′−β
dβ′

(20)

C. Approximate solutions of the Fredholm equations

The numerical solution of the Fredholm integral equations (19)
is obtained in several steps. Taking inspiration from the scheme
already used in other problems, see [36] and [37], the steps
are:

• formulation of the Fredholm equations in the angular
complex planew,

• introduction of contour deformation to enhance the con-
vergence of the Fredholm equations,

• introduction of mapping to relate the unknowns defined
the inner and the outer of the wedge [41],

• numerical discretization of the equation and numerical
representation of the solution in the angular planew,

• analytic continuation of the approximate solutions
through recursive equations in the angular complex plane.

The angular complex planew is particulary useful to estimate
the far field components (Section IV) as already shown in
[36] for the impenetrable wedge case. Since the Fredholm
integral equations (19) are written into two complex planes
(α and β), we need to define two angular complex planes
and two modified angular complex planes (the overlined ones)
respectively related to quantities defined in the free space
region and in the isotropic penetrable region:

α = −τo cos π
Φ

w = −τo cos w̄

β = −τ1 cos π
Φ1

w1 = −τ1 cos w̄1
(21)

with w̄ = π
Φw and w̄1 = π

Φw1.
The properties and the inverse transformations of the map-

pings are reported in Appendix I of [36]. We recall that in the
angular complex planes (w or w1), all the plus functions are
even functions [33], [42]. From (13) and (21) we obtain the
Snell law in the spectral domain

η = −τo cos w = −τ1 cos w1 (22)

We assert thatαo may represent three different waves (the
incident wave, the facea reflected wave and the faceb reflected
wave) that have three different representation inw-plane: see
Appendix I.
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
X̄(i)−(α) + τo+α√

τ2
o−α2 X̄(i+1)−(α)− 1

2πj

∞∫
−∞

(
τo+α′√
τ2

o−α′2
− τo+α√

τ2
o−α2

)
X̄(i+1)−(α′)

α′−α
dα′ = n̄i(α)

Ẍ(i)−(β)− τ1+β√
τ2
1−β2

Ẍ(i+1)−(β) + 1
2πj

∞∫
−∞

(
τ1+β′√
τ2
1−β′2

− τ1+β√
τ2
1−β2

)
Ẍ(i+1)−(β′)

β′−β
dβ′ = 0

(19)

Given (8), (17), (18) the following representations hold in
the w andw1 (w̄ and w̄1) planes:

ξ = −τo sin w ξ1 = −τ1 sin w1

m = τo cos(w + Φ) m1 = τ1 cos(w1 + Φ1)

n = τo sin(w + Φ) n1 = τ1 sin(w1 + Φ1)

n+ =
√

τo cos w̄
2

n1+ =
√

τ1 cos w̄1
2

ξ− =
√

τo sin w̄
2

ξ1− =
√

τ1 sin w̄1
2

(23)

In the following we will use the notations (24) for the axial
spectral unknownsF (η) defined in different spectral domains:
outer (inner) axial refers to directionϕ = 0 (ϕ = π).

F (η) = F (−τo cos w) = F̂ (w) = F̄ (α) = F̄ (−τo cos w̄)

Fπ(η)=Fπ(−τ1cos w1)= F̂π(w1)= F̈π(β)= F̈π(−τ1cos w̄1)
(24)

A similar notation is applied to quantities with second ar-
gumentϕ (spectral unknowns for arbitrary directionϕ), for
exampleF (η, ϕ) = F̂ (w,ϕ).

The second step of the procedure allows a fast convergence
of the Fredholm equations by contour deformation. The real
axis contours in the first and second equations of (19) are
warped into straight lines that join the±jτo and ±jτ1 re-
spectively in theα andβ planes. These straight linesλα and
λβ correspond to the two lines respectively in thew̄ and w̄1

planes parameterized by

λα : w̄ = −π

2
+ j u, λβ : w̄1 = −π

2
+ j v (25)

with real u, v. Therefore we have:

α(u) = −τo cos
(
−π

2
+ ju

)
, β(v) = −τ1 cos

(
−π

2
+ jv

)
(26)

The system of equations (19) become (27) withi = 1, 3, 5, 7
and wherePi(u), Qi(v), M(u, u′), ni(u) are defined in (28).

Pi(u) = τoXi+(τo cos
[

Φ
π

(
−π

2
+ ju

)
+ Φ

]
)

Qi(v) = τoẊi+(τ1 cos
[

Φ1
π

(
−π

2
+ jv

)
+ Φ1

]
)

M(u, u′) = eu

(eu−j)
eu′+j

eu+u′+1

ni(u) = n̄i(α(u))

(28)

We observe that the second equations in (27) are valid in
the whole complexv-plane through analytical continuation.
By enforcing the constraintm = m1 (third step) we obtain
the following complex mapping betweenu-plane andv-plane:

v = v(u) =
jπ

2Φ1

(
Φ1 − 2 arccos

cos (π+2j u)Φ
2π√

εtr

)
(29)

whereεtr = (τ1/τo)2. The mapping (29) enforces in (27) the
same parameterization of the spectral quantities (10)-(11) de-
fined on the faces and in particular the parameterization of the
spectral voltages and currents forϕ = ±Φ: Vz+(−m,±Φ) =
Vz+(−m1,±Φ) and Iρ+(−m,±Φ) = Iρ+(−m1,±Φ). The
purpose of this procedure is to obtain a solvable system of
equations whose unknowns are consistent: for example in
terms of thePi(u) avoidingQi(v).

Since the integral term in the second equations of (27) is
performed along the real axis of thev-plane (that corresponds
to a curve in the complexu-plane), we need to estimate the
quantitiesQi+1(v) in terms of the functionsPi+1(u). This
requirement is achieved through the application of the Cauchy
formula:

f(m1(v)) =
1

2πj

∮
γ

f(m)

m−m1(v)
dm =

1

2πj

∞∫
−∞

f(m(u′))

m(u′)−m1(v)

dm(u′)

du′
du′

(30)

where {
m(u) = k cos

[
Φ
π

(
−π

2
+ ju

)
+ Φ

]
m1(v) = k1 cos

[
Φ1
π

(
−π

2
+ jv

)
+ Φ1

] (31)

The fourth step is efficiently implemented using simple
quadrature rules as demonstrated in [36] for impenetrable
wedges. Finally the analytic continuation of the solution is
achieved using recursive equations obtained from the WH
formulation (4)-(7) written in the angular domainsw andw1.

For the sake of simplicity, in the following, we develop the
procedure to obtain the numerical solution for the particular
case of diffraction of an E-polarized plane wave by a dielectric
wedge at normal incidence.

III. N UMERICAL IMPLEMENTATION :
E-POLARIZED PLANE WAVE AT NORMAL INCIDENCE

Since we are dealing with an E-polarized plane wave at
normal incidence on a dielectric wedge (Ho = 0, δ = π

2 ,
µr = 1, Φ < π/2 i.e. acute wedge), all the equations reported
above are simplified, although the procedure to derive the
solution remains similar. In particular the equations reported
in the previous sections are valid with the simplified explicit
definitions reported in Table II. Note thatτo = ko, τ1 = k1,
γo = γ1 = 0, Zo =

√
µo

εo
, Z1 =

√
µo

εoεr
, εtr = εr, while

Yi+(η), Xi+(−m), Ẋi+(−m1) are null for i = 5, 6, 7, 8 and
therefore (27) are not trivial only fori = 1, 3.

Let us consider (27) fori = 1, 3. Using (28), the definitions
of Table II, (23) and (25) we obtain that:

Q1(v(u)) =
n1−

ξ1−

ξ−
n−

P1(u) (32)

i.e. explicitly

Q1(v(u)) =
cosh(u) sin[− (−jv(u)+ π

2 )Φ1
π

+ Φ1]

cosh(v(u)) sin[− (−ju+ π
2 )Φ

π
+ Φ]

P1(u) (33)

Similarly we obtain:

Q2(v(u)) =
Z1 sin2[ 1

2
(−π

2
+ ju)]

Zo sin2[ 1
2
(−π

2
+ jv(u))]

P2(u) (34)

Q3(v(u)) =
cos[ 1

2
(−π

2
+ ju)] sin[− jv(u)Φ1

π
+ Φ1

2
]

cos[ 1
2
(−π

2
+ jv(u))] sin[ juΦ

2
+ Φ

2
]

P3(u) (35)

Q4(v(u)) =
Z1 sin[ 1

2
(−π

2
+ ju)]

Zo sin[ 1
2
(−π

2
+ jv(u))]

P4(u) (36)
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
Pi(u)− tan

−π/2+ju
2

Pi+1(u)− 1
πj

∞∫
−∞

M(u, u′)Pi+1(u′)du′ = ni(u)

Qi(v) + tan
−π/2+jv

2
Qi+1(v) + 1

πj

∞∫
−∞

M(v, v′)Qi+1(v′)dv′ = 0
(27)

TABLE II
DEFINITIONS FORE-POLARIZED PLANE WAVE

AT NORMAL INCIDENCE.

Y1+(η) 2
ξ+
n+

Vz+(η, 0)

Y2+(η) 2
ξ1+
n1+

Vz+(η, π)

X1+(−m) −n−
ξ−

[Vz+(−m, Φ) + Vz+(−m,−Φ)]

X2+(−m) 1
ξ2
−

koZo [Iρ+(−m, Φ)− Iρ+(−m,−Φ)]

Ẋ1+(−m1) −n1−
ξ1−

[Vz+(−m1, Φ) + Vz+(−m1,−Φ)]

Ẋ2+(−m1)
1

ξ2
1−

k1Z1 [Iρ+(−m1, Φ)− Iρ+(−m1,−Φ)]

Y3+(η)
−2
√

ko
n+

ZoIρ+(η, 0)

Y4+(η)
2
√

k1
n1+

Z1Iρ+(η,−π)

X3+(−m) − n−√
ko

[Vz+(−m, Φ)− Vz+(−m,−Φ)]

X4+(−m)

√
ko

ξ−
Zo [Iρ+(−m, Φ) + Iρ+(−m,−Φ)]

Ẋ3+(−m1) − n1−√
k1

[Vz+(−m1, Φ)− Vz+(−m1,−Φ)]

Ẋ4+(−m1)

√
k1

ξ1−
Z1 [Iρ+(−m1, Φ) + Iρ+(−m1,−Φ)]

As reported in step 4 of the previous section, in order to
obtain a solvable system of equations from (27), we need
to estimate the quantitiesQi+1(v) in terms of the functions
Pi+1(u). We recall that this procedure is required for the
evaluation of the integral term in the second equations of (27).

This requirement is achieved through the application of the
Cauchy formula (30), explicitly reported below:

Q2,4(v
′) =

∫ ∞

−∞
Ψ2,4(v

′, u′)P2,4(u
′)du′ (37)

where
Ψ2(v, u) = − ΦZ1 sin2[−π

4 + ju
4 ]

2π2Zo sin2[−π
4 + jv

4 ]

sin[Φ
π

(ju+ 3π
2 )]

cos[Φ
π

(ju+ 3π
2 )]−√εr cos[

Φ1
π

(jv+ 3π
2 )]

Ψ4(v, u) = Ψ2(v, u)
sin[ 12 (−π

2 +jv)]

sin[ 12 (−π
2 +ju)]

(38)
By substituting (33)-(36) in (27) we obtain, with the use
of (37), two decoupled explicit systems of equations (39)
amenable to be solved numerically in terms ofP (u) functions.

Note that the quantitiesn1(u) andn3(u) are related to the
E-polarized incident wave (see Appendix I for details), and
when the plus unknowns are non-standard (0 < ϕo < Φ

2 )

ni(u) = − T̄oi

(j sinh u− cos π
Φ

ϕo)
, i = 1, 3 (40)

with T̄o1 and T̄o3 defined in Appendix I.
Efficient approximate methods for the solution of Fredholm

equations of second kind are widely available in the literature,
see for example [43].

Since the kernel of (39) presents a well suited behavior, we
use a simple sample and quadrature scheme to obtain accurate
and stable numerical solutions. We apply uniform sampling
f(h i) with i = −A

h ..A
h and modified left-rectangle nu-

merical integration formula
∞∫
−∞

f(u)du ≈ h
A/h∑

i=−A/h

f(h i) where

A and h are respectively the truncation parameter and the
step parameter for the integrals inu. This rule has been

successfully applied for the impenetrable wedge case [36].
The total number of samples isN = 2A/h + 1 . We observe
that asA → +∞ and h → 0, the numerical solution of the
Fredholm integral equation converges to the exact solution
[43]; consequentlyh has to be chosen as small as possible
andA has to be chosen as large as possible.

For instance, according to our experience, we assumeA =
A1 = 10 and h = h1 = 0.05 (A1 and h1 are related
to the second and fourth equations in (39)) to get stable
solutions which provide very accurate values in terms ofPi(u)
and Qi(v) samples, voltages’ and currents’ spectra and field
components, see Section V.

The discretized form of equations (39) is reported below:

{
IP1 + D12P2 + K12P2 = n1

D21P1 + D22P2 + K22Q2 = 0{
IP3 + D34P4 + K34P4 = n3

D43P3 + D44P4 + K44Q4 = 0

(41)

where we need to use the discretized form of (37):

Q2,4 = Ψ2,4P2,4 (42)

With reference to the system of equations (39), in (41):
• Pi is the column vector containing the samples ofPi(u)

function,
• I is the identity matrix,
• Dij is the diagonal matrix that represents the function

multiplying Pj(u) in equation numberi,
• Kij is a full matrix that represents the kernel in equation

numberi that multipliesPj(u′) or Qj(v′),
• Ψ2,4 is a full matrix that represents the operators (38),
• ni is the column vector containing the samples of the

source in equation numberi.
All the matrices and vector quantities are of dimensionN .
Simple algebraic manipulations allow to obtain two linear
systems of dimensionN where the unknowns are onlyP2

andP4.
The physical plus WH spectral unknownsVz+(η, 0),

Vz+(η, π), Iρ+(η, 0) and Iρ+(η, π) are reconstructed in the
w and w1 planes (respectivelŷV+(w), V̂π+(w1), Î+(w) and
Îπ+(w1)) via the sampling of (20) and using the definitions
of Table II and (23): see (43)-(46) for the explicit formula
whereQ2,4(h1i) are obtained through (42) and non-standard
plus unknown are considered,i.e. 0 < ϕo < Φ

2 . Note that the
discretization of kernelM(u, u′) in (39) yields artificial poles
in (43)-(46) due to the zeros of(eu+u′ + 1) when u′ = hi.
These poles correspond to spurious singularities on the axial
spectra forw = − 3

2Φ− j Φ
π hi andw1 = − 3

2Φ1 − j Φ1
π h1i.

Since the solution is obtained via numerical procedure along
the lines λα and λβ (25), i.e. the vertical linesRe[w̄] =
−π

2 (Re[w] = −Φ
2 ) and Re[w̄1] = −π

2 (Re[w1] = −Φ1
2 ), the

two pairs of equations (43), (45) and (44), (46) provide only
analytical elements of the axial spectra. We define thestarting
spectraas the axial spectra respectively in the regularity strips
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


P1(u) − tan

−π
2 +ju

2
P2(u)− 1

πj

∞∫
−∞

M(u, u′)P2(u′)du′ = n1(u)

cosh(u) sin[
jv(u)Φ1

π
+

Φ1
2 ]P1(u)

cosh(v(u)) sin[ ju Φ
π

+Φ
2 ]

+ tan
−π

2 +jv(u)

2

Z1 sin2[ 12 (−π
2 +ju)]P2(u)

Zo sin2[ 12 (−π
2 +jv(u))]

+ 1
πj

∞∫
−∞

M(v(u), v′)Q2(v′)dv′ = 0
P3(u) − tan

−π
2 +ju

2
P4(u)− 1

πj

∞∫
−∞

M(u, u′)P4(u′)du′ = n3(u)

cos[ 12 (−π
2 +ju)] sin[

jv(u)Φ1
π

+
Φ1
2 ]P3(u)

cos[ 12 (−π
2 +jv(u))] sin[ ju Φ

π
+Φ

2 ]
+ tan

−π
2 +jv(u)

2

Z1 sin[ 12 (−π
2 +ju)]P4(u)

Zo sin[ 12 (−π
2 +jv(u))]

+ 1
πj

∞∫
−∞

M(v(u), v′)Q4(v′)dv′ = 0

(39)

V̂+(w) = Vz+(−ko cos w, 0) = − sin( πw
Φ )

4ko sin w

 h
πj

A
h∑

i=−A
h

M
[
−j(πw

Φ
+ π

2
), hi

]
P2(hi)− T̄o1

cos πw
Φ −cos πϕo

Φ

 (43)

V̂π+(w1) = Vz+(−k1 cos w1, π) =
sin( π

Φ1
w1)

4ko sin w1

 h1
πj

A1
h1∑

i=−A1
h1

M
[
−j(πw1

Φ1
+ π

2
), h1i

]
Q2(h1i)

 (44)

Î+(w) = Iρ+(−ko cos w, 0) = − cos( πw
2Φ )

2koZo

 h
πj

A
h∑

i=−A
h

M
[
−j(πw

Φ
+ π

2
), hi

]
P4(hi)− T̄o3

cos πw
Φ −cos πϕo

Φ

 (45)

Îπ+(w1) = Iρ+(−k1 cos w1, π) = −
cos(

πw1
2Φ1

)

2koZ1

 h1
πj

A1
h1∑

i=−A1
h1

M
[
−j(πw1

Φ1
+ π

2
), h1i

]
Q4(h1i)

 (46)

−Φ ≤ Re[w] ≤ 0 (−π ≤ Re[w̄] ≤ 0) and−Φ1 ≤ Re[w1] ≤ 0
(−π ≤ Re[w̄1] ≤ 0). Note that the starting spectra show only
the pole singularity of the incident field. Another important
property is that the regularity segment−Φ ≤ w ≤ 0 (−Φ1 ≤
w1 ≤ 0) belongs to the proper sheetPw (Pw1) as defined in
Appendix I of [36].

To apply the above procedure it is important to study the
behavior at infinity of the spectra. This was accomplished in
[41] and for the sake of brevity it is not reported here.

In order to obtain the global spectra inw andw1 planes we
need analytical continuations of the numerically approximated
analytical elements. We note that if the problem were solved
analytically, the closed form solution would be valid in the
entirew andw1 complex planes. However this is not possible
in the general case of an isotropic penetrable wedge with
arbitrary aperture angle.

The analytical continuation of the numerical results is an
old and cumbersome problem of applied mathematics that
can be approached in various ways. In this work we resort
to recursive equations obtained representing the GWHE (9) of
the problem in thew andw1 planes using Table II and (22)-
(23). By using the continuity relation (100) and eliminating
the spectral unknowns defined at the interfaceϕ = ±Φ, we
obtain (53) where we have defined the functions

V̂d(w) = sin(w)V̂+(w) (47)

V̂πd(w1) = sin(w1)V̂π+(w1) (48)

and where we have introduced theg(w) andg1(w1) functions
derived from (22) and described in Appendix II:

w1 = g(w) = − arccos

(
cos w√

εr

)
(49)

w = g1(w1) = − arccos (
√

εr cos w1) (50)

Since plus functions are even functions in the angular planes
w or w1 [42], we assert thatV̂d(w) and V̂πd(w1) are
odd. The symmetry properties of plus/minus functions to-
gether with (53) ensure the analytical continuation ofV̂+(w),
V̂π+(w1), Î+(w) and Îπ+(w1). For instance, let us con-
sider V̂πd(w1) (V̂d(w)). Its correct evaluation for eachw1

(w) is obtained through the approximate analytical element
V̂

(num)
πd (w1) (V̂ (num)

d (w)) valid in −Φ1 ≤ Re[w1] ≤ 0
(−Φ ≤ Re[w] ≤ 0):

Vπd(w1) =


V

(num)
πd (w1) −Φ1 ≤ Re[w1] ≤ 0

−Vπd(−w1) Re[w1] > 0

2ndeq.in(53) Re[w1] < −Φ1

(51)

Vd(w) =


V

(num)
d (w) −Φ ≤ Re[w] ≤ 0

−Vd(−w) Re[w] > 0

1steq.in(53) Re[w] < −Φ

(52)

Note that the recursive formula (53) of theπ axial unknowns
(ϕ = π) with real argumentw1 requires the evaluation of
the axial unknownsϕ = 0 with complex argumentsw, see
Appendix II and test case 1 in Section V.

The use of rotating waves [44] enables us to represent in the
angular complex planes (w andw1) the Laplace transforms of
the spectral unknowns for a directionϕ in terms of the axial
spectra

V̂d(w, ϕ) =
Zo[Î+(w−ϕ)−Î+(w+ϕ)]+V̂d(w−ϕ)+V̂d(w+ϕ)

2

Î+(w, ϕ) =
Zo[Î+(w−ϕ)+Î+(w+ϕ)]+V̂d(w−ϕ)−V̂d(w+ϕ)

2Zo

V̂πd(w1, ϕ1) =
Z1[Îπ+(w1+ϕ1)−Îπ+(w1−ϕ1)]+V̂πd(w1+ϕ1)+V̂πd(w1−ϕ1)

2

Î+(w1, ϕ1) =
Z1[Îπ+(w1+ϕ1)+Îπ+(w1−ϕ1)]+V̂πd(w1+ϕ1)−V̂πd(w1−ϕ1)

2Z1
(54)

where we have defined the auxiliary quantities:

V̂d(w, ϕ) = sin(w)V̂+(w, ϕ)

V̂πd(w1, ϕ1) = sin(w1)V̂+(w1, ϕ1)
(55)

We observe that the quantities defined inside the dielectric
wedge (0 < |ϕ1| < Φ1) can be derived using symmetry from
the quantities defined outside the wedge (0 < |ϕ| < Φ) using
the following substitutions:

ϕ → −ϕ1, w → w1, Φ → Φ1, ko → k1, Zo → Z1

{V̂+(w), Î+(w)} → {V̂π+(w1), Îπ+(w1)}
(56)
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

V̂d(w) =
Z1 sin(w+Φ)−Zo sin(g(w+Φ))
Z1 sin(w+Φ)+Zo sin(g(w+Φ))

V̂d(w + 2Φ) +
2Zo sin(w+Φ)

[Z1 sin(w+Φ)+Zo sin(g(w+Φ))]
V̂πd(g(w + Φ) + Φ1)

V̂πd(w1) =
2Z1 sin(w1+Φ1)

[Z1 sin(g1(w1+Φ1)+Zo sin(w1+Φ1)]
V̂d(g1(w1 + Φ1) + Φ)− Z1 sin(g1(w1+Φ1))−Zo sin(w1+Φ1)

Z1 sin(g1(w1+Φ1))+Zo sin(w1+Φ1)
V̂πd(w1 + 2Φ1)

Î+(w) = −Z1 sin(w+Φ)−Zo sin(g(w+Φ))
Z1 sin(w+Φ)+Zo sin(g(w+Φ))

Î+(w + 2Φ) +
2Z1 sin(w+Φ)

Z1 sin(w+Φ)+Zo sin(g(w+Φ))
Îπ+(g(w + Φ) + Φ1)

Îπ+(w1) =
2Zo sin(w1+Φ1)

Z1 sin(g1(w1+Φ1))+Zo sin(w1+Φ1)
Î+(g1(w1 + Φ1) + Φ) +

Z1 sin(g1(w1+Φ1))−Zo sin(w1+Φ1)
Z1 sin(g1(w1+Φ1))+Zo sin(w1+Φ1)

Îπ+(w1 + 2Φ1)

(53)

IV. FAR-FIELD EVALUATION

This section is devoted to the evaluation of the far-field pattern
inside and outside the wedge. For the sake of simplicity
we refer to a dielectric wedge structure illuminated by an
E-polarized plane wave at normal incidence, generalization
to skew incidence can be extrapolated from [36] where the
impenetrable wedge is discussed. In this section we make
reference to the evaluation of the exact field components in
the exterior region|ϕ| < Φ. Note that the procedure can be
extended to the evaluation of the field in the interior region
|ϕ1| < Φ1 through the symmetry relations (56).

The exact total field is given by the following inverse
Laplace transforms:

Ez(ρ, ϕ) = 1
2π

∫
Br

Vz+(η, ϕ)e−jηρdη

Hρ(ρ, ϕ) = 1
2π

∫
Br

Iρ+(η, ϕ)e−jηρdη
(57)

whereBr is the Bromwich contour forVz+(η, ϕ), Iρ+(η, ϕ).
We recall that the singularities of standard plus functions are
located in the lowerη half-plane. In this caseBr is any
arbitrary horizontal line located in the upperη half plane.

By introducing thew-plane (η = −ko cos w) we obtain:

Ez(ρ, ϕ) = ko
2π

∫
λ(Br)

V̂+(w, ϕ)ejkoρ cos w sin wdw

Hρ(ρ, ϕ) = ko
2π

∫
λ(Br)

Î+(w, ϕ)ejkoρ cos w sin wdw
(58)

whereλ(Br) is the mapping of theBr contour into thew-
plane. Fig. 2 reports, in thew-plane, possible choices of
Bromwich contours,i.e. horizontal linesIm[η] = cost. These
contours are consistent with Figs. 13 and 14 of [36] where the
properties of the two complex planesη andw are described.

Far-field components (59) are obtained applying the steepest
descent path (SDP) method to equations (58):

Ez(ρ, ϕ) = Eg
z (ρ, ϕ) + Ed

z (ρ, ϕ) + Es
z(ρ, ϕ) + El

z(ρ, ϕ) (59)

where Eg
z is the geometrical optics (GO) contributions (see

[12] for details),Ed
z the diffracted field,Es

z the possible con-
tributions of the surface waves,El

z the possible contributions
of the lateral waves.

Equation (59) introduces the fieldEs
z and El

z in the total
field. These components derive from structural singularities:
respectively poles and branch points of the recursive equations
(53). In particular the branch points are singularities of the
functions g(w) and g1(w1). The evaluation ofEs

z and El
z

as well their interaction with the UTD contribution requires
further studies. Interesting considerations on the mathematical
existence of the branch line contributions as well as on the
radiation conditions in the elastic wedge problems are reported
in [22].

The saddle point of the functionjkoρ cos w is −π and the
steepest descendent path is:

w = −π + gd(Im[w]) + jIm[w] (60)

−2π −7π/4 −3π/2 −5π/4 −π −3π/4 −π/2 −π/4 0 π/4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Re[w]

Im
[w

]

SDP
Im[η]=0
Im[η]=0.05

Im[η]=0.1−

Im[η]=0.1+

Im[η]=0.5
GO

Fig. 2. Horizontal (Im[η] = cost.) Bromwich contours and SDP contour
in the w-plane with branch points at±k and k = 1 − 0.1j. The positive
Re[η] direction inBr corresponds to the direction ofλ(Br) towards−π +

arctan(− Im[k]
Re[k]

)− j∞ = −3.042− j∞ in the w plane.
The symbols© are geometrical optics poles of the outer axial spectra referred
to the test case 1 of Section V. From the left to the right side the© symbols
correspond respectively to the faceb reflected wave, the facea reflected wave,
incident wave, see also Fig. 6 of test case 1 in Section V.

wheregd(x) denotes the Gudermann function:

gd(x) = sgn(x) arccos(1/ cosh(x)) (61)

Fig. 2 reports the SDP contour, too. To integrate (58),
the contour is deformed to the SDP passing over the saddle
point −π. In order to deform theλ(Br) contour to the SDP,
we assumeBr with Im[η] < Im[−ko] where small loss
assumption is consideredIm[ko] . 0 . This choice also avoids
the influence of the branch line cuts of the functionξ(η)
(the branch points are±ko) on the approximated numerical
solution, see Fig. 14 of [36] for details.

The contour deformation process can capture singularities
of V̂+(w,ϕ) as poles and branch points, located in the region
between the two contoursλ(Br) and the SDP. On the SDP the
exponential argumentjkoρ cos w is equal to−jkoρ(1+jh(w))
where h(w) is a continuous real function that goes to−∞
toward the end points of the path.

The total far field assumes the following form (62),
where poles are related to geometrical optics fields’ compo-
nents (non-structural singularities) and possible surface waves
(structural singularities), whereas branch points are related to
lateral waves due to theg(w) andg1(w1) functions (structural
singularities).

Ez(ρ, ϕ) = − koe−jkoρ

2π

∫
SDP

V̂+(w, ϕ)ekoρh(w) sin wdw+

− ko
2π

∫
b
V̂+(w, ϕ)e+jkoρ cos w sin wdw+

−jko

∑
i

Res[V̂+(w, ϕ)]wi(ϕ) e+jkoρ cos wi(ϕ) sin wi(ϕ)

(62)
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In (62) wi(ϕ) = woi ± ϕ are the poles ofV̂+(w,ϕ), woi

are the poles of the axial spectral unknownV̂+(w), and b is
the contour deformation to consider the possible contribution
of branch pointswb originated by theg(w) function in the
application of recursive equations.

A. Geometrical Optics fields

The contribution of geometrical optics field arises from the
residues of the poleswi(ϕ) when the poles are captured by
the contour deformation fromλ(Br) to the SDP in thew-plane
(see Fig. 2):

Eg
z (ρ, ϕ) = −jko

∑
i

Res[V̂d(w, ϕ)]wi(ϕ) e+jkoρ cos wi(ϕ) (63)

whereV̂d(w,ϕ) = V̂+(w,ϕ) sin(w).
The number of GO poles (non-structural singularities) de-

pends on the incident angleϕo and the observation angleϕ.
For certain ranges of the two angles we can have contribution
from incident plane waves, reflected plane waves, transmitted
plane waves and multiple reflected/trasmitted plane waves. Be-
sides, the poles relevant to the plane waves could be complex
in presence of total reflections inside the wedge with complex
trasmission/reflection coefficients. The GO terms assumes the
following form:

e+jkoρ cos(wi(ϕ)) = ejkoρ cos(woi±ϕ) = e−jko
−→ρ ·k̂oi (64)

where k̂oi = −x̂ cos woi ± ŷ sinwoi is the unit vector of the
associated plane wave.

Let us suppose real poleswi(ϕ) = woi±ϕ. When we vary
the observation angleϕ, some of the poleswi(ϕ) of V̂+(w,ϕ)
can cross to the left the SDP contour centered in−π. In this
context these poles are not anymore captured by the contour
deformation and their contributions disappear in the total field
creating shadow regions for the corresponding GO waves. We
recall that thewoi are the poles of the axial spectrum̂V+(w)
for ϕ = 0 and−π is the saddle point in SDP. The shadow
regions are generated by the poleswoi located in the interval
−π − Φ < w < −π + Φ as−Φ < ϕ < −Φ. Shadow regions
are related to diffraction component to obtain continuous field
passing through the shadow boundaries.

Since the Fredholm factorization provides the approximate
solution of the spectra only in the strip−Φ ≤ Re[w] ≤ 0,
we must resort to the recursive equations (53) in order to
obtain the requested spectra. We observe that the integral
term in Fredholm integral equations contributes only to the
diffracted fields since it does not contain any poles. Therefore
we can obtain the poles and the relevant residues for the non
structural poles by ignoring the integral term in the Fredholm
factorization, hence it is not necessary to solve the integral
equations to estimate the GO components. This property is
well known in the literature as reported in [18], [21], [23].
Similar considerations can be applied for the interior region.

An excellent discussion of geometrical optics’ contributions
is reported in [12] where multiple reflected and transmitted
waves are treated.

B. Diffracted fields

The SDP integral in (62) represents the diffracted field:

Ed
z (ρ, ϕ) = − koe−jkoρ

2π

∫
SDP

V̂+(w, ϕ)ekoρh(w) sin wdw =

= Eo
e
−j(koρ+ π

4 )
√

2πkoρ
D(ϕ, ϕo)

(65)

where D(ϕ, ϕo) is the Geometrical Theory of Diffraction
(GTD) coefficient. Askoρ → ∞, the major contribution
in (65) is located near the saddle point−π because of the
exponential decay ofekoρh(w), therefore the GTD diffraction
coefficient is:

D(ϕ, ϕo) =
−koV̂d(−π, ϕ)

jEo
(66)

where V̂d(w,ϕ) = V̂+(w,ϕ) sin(w). The external GTD
diffraction coefficient (|ϕ| < Φ) assumes the explicit form
(67) whereV̂d(w) = V̂+(w) sin(w) is an odd function for real
value of w while the plus functionŝI+(w) and V̂+(w) are
even.

D(ϕ, ϕo) = ko
Zo[Î+(−π−ϕ)−Î+(−π+ϕ)]+V̂d(−π−ϕ)+V̂d(−π+ϕ)

2jEo

(67)
Equation (67) is consistent with the definition in terms of

Sommerfeld’s functions presented in [36]:

sE(w) =
jko

2

[
− sin wV̂+(w) + ZoÎ+(w)

]
(68)

D(ϕ, ϕo) =
sE(ϕ− π)− sE(ϕ + π)

Eo
(69)

Uniform expressions of the diffraction component are obtained
using the Uniform Theory of Diffraction (UTD) [45]-[48]:

Ed
z (ρ, ϕ) = Eo

e
−j(koρ+ π

4 )
√

2πkoρ
C(ϕ, ϕo) (70)

C(ϕ, ϕo) = sE(ϕ−π)−sE(ϕ+π)
Eo

+
1−F

(
2koρ cos2

ϕ−ϕo
2

)
2 cos

ϕ−ϕo
2

+

+Ra

1−F
(
2koρ cos2

ϕ+ϕo−2Φ
2

)
2 cos

ϕ+ϕo−2Φ
2

+ Rb

1−F
(
2koρ cos2

ϕ+ϕo+2Φ
2

)
cos

ϕ+ϕo+2Φ
2

+

+
∑
q

Γq

1−F
(
2koρ cos2

ϕ−ϕq−π

2

)
cos

ϕ−ϕq−π

2

(71)

whereRa, Rb andΓq are the Fresnel’s reflection coefficients
respectively due to the first reflection on facea and b, and
the q multiple trasmissions/reflections through the wedge (see
also [12] for the evaluation of the coefficients). Uniform
expressions are required when GO poleswi(ϕ) are near the
saddle point−π. In particular we recall that shadow regions
are possible for singularities of the axial spectra located in
−π−Φ < w < −π + Φ. The uniform expressionEg

z (ρ, ϕ) +
Ed

z (ρ, ϕ) ensures the continuity when the observation angleϕ
crosses the shadow boundaries.

The function F (z) is the Kouyoumjian-Pathak transition
function defined in [47] and its application in the framework
of Wiener-Hopf formulations is reported in eq. (63) of [36].

Concerning the interior region (|ϕ1| < Φ1), we need to
slightly modify the equations and the quantities involved in the
definition of the diffracted field. Using the symmetry relations
(56) it yields:

sint
E (w1) =

jk1

2

[
− sin w1V̂π+(w1) + Z1Îπ+(w1)

]
(72)

Dint(ϕ1, ϕo) =
sint

E (−ϕ1 − π)− sint
E (−ϕ1 + π)

Eo
(73)
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with explicit expression reported in (74).

Dint(ϕ1, ϕo)=k1
Z1[Îπ+(ϕ1−π)−Îπ+(−π−ϕ1)]+V̂πd(ϕ1−π)+V̂πd(−π−ϕ1)

2jEo
(74)

As for the exterior region, uniform expressions
Cint(ϕ1, ϕo) are required when GO polesw1i(ϕ1) =
−ϕ1 ± w1io (with w1io poles of the axial spectrâVπ+(w1)
and Îπ+(w1)) are near the saddle point−π: shadow region
are possible for poles in−π − Φ1 < w1 < −π + Φ1.
Consequently uniform expressions of the diffracted field (75)
are of the same kind of the one for exterior region (70)
and Eg

z (ρ, ϕ) + Ed
z (ρ, ϕ) is continuous when it crosses the

shadow boundaries inside (as outside) the dielectric wedge.

Ed
z (ρ, ϕ1) = Eo

e
−j(k1ρ+ π

4 )
√

2πk1ρ
Cint(ϕ1, ϕo) (75)

The complete GTD diffraction coefficient is defined by:

Dtot(ϕ, ϕo) =


D(ϕ, ϕo) |ϕ| < Φ

Dint(π − ϕ, ϕo) Φ < ϕ < π

Dint(−π − ϕ, ϕo) −π < ϕ < −Φ

(76)

Note that the complete UTD diffraction coefficientCtot(ϕ, ϕo)
assumes the same form ofDtot(ϕ, ϕo).

V. VALIDATION AND NUMERICAL RESULTS

The efficiency, the convergence and the validation of the
proposed approximate solutions is illustrated through several
test problems. The quantities used in this section are explicitly
defined in the previous section: Far-field evaluation. Some of
the following numerical results and figures show the compari-
son between the solution of the dielectric wedge test case and
the solution of the perfect conducting (PEC) wedge with the
rest of physical parameters unchanged.

The first test case is investigated in detail, reporting the
whole procedure to solve the problem: from the definition of
Wiener-Hopf spectral unknowns to the evaluation of the total
field. Moreover, the test cases show the convergence properties
of the proposed method and some physical properties of the
diffraction by a dielectric wedge. The last test compares our
solution with the one of [12]-[13] and shows the computational
efficiency of our method. The first three tests consider non-
standard plus unknowns while the fourth non-standard minus
unknowns.

All the test cases make reference to Fig. 1. In particular,
the wedge is illuminated by a plane wave impinging from a
directionϕo (leaving the wedge with directionϕI = ϕo− π),
see (77). In this paper we denote the azimuthal direction of
the GO waves withϕlab where the subscriptslab are in upper
case (lower case) if referred to a wave that leaves (approaches)
the wedge: for instance, the facea reflected wave propagates
asejkoρ cos(ϕ−ϕra) = e−jkoρ cos(ϕ−ϕRA) with ϕra = 2Φ− ϕo

andϕRA = ϕra − π, see Fig. 1.

A. Test case 1

The first test case analyzes all the properties of our solution
in terms of spectral quantities, diffraction coefficients, total
fields. With reference to Fig. 1 the physical parameters of the

Fig. 3. Test case 1: the GO field, the UTD component and, the total far-field
pattern atkρ = 10.

problem are:Φ = 3π/4, εr = 3, ϕo = π/8, δ = π/2 and
|Ei| = 1V/m.

According to GO, the E-polarized incident plane wave
impinges on the dielectric wedge and generates two reflected
waves and two transmitted waves. The two transmitted wave
are not reflected in the interior region.

This configuration allows to define four geometrical optics
shadow boundaries: facea reflected shadow boundary, faceb
reflected shadow boundary, facea transmitted shadow bound-
ary and, faceb transmitted shadow boundary. No incident
shadow boundary exists. As shown in Fig. 3 with different
gray color backgrounds, there are six GO regions: incident
wave regionϕRB < ϕ < ϕRA (I), incident and facea
reflected waves regionϕRA < ϕ < Φ (I+RA), incident and
face b reflected waves region−Φ < ϕ < ϕRB (I+RB),
face a transmitted wave regionΦ < ϕ < ϕTA (TA), face
b transmitted wave regionϕTB < ϕ < −Φ (TB) and, facea
and b transmitted waves region(−π < ϕ < ϕTB)

⋃
(ϕTA <

ϕ < π) (TA+TB).
Fig. 3 reports the GO field, the UTD component and, the total
far-field at the distancekρ = 10 from the edge of the wedge.
According to GO, the problem under examination shows:

• a facea reflected wave angle
ϕRA = −π − ϕo + 2Φ = 3π/8 ' 1.18rad = 67.6o

• a faceb reflected wave angle
ϕRB = π − ϕo − 2Φ = −5π/8 ' −1.96rad = −112.3o

• a facea transmitted wave angle
ϕTA =−2π + Φ + arccos( cos(ϕo+Φ1)√

εr
)'−2.58rad =−147.8o

• a faceb transmitted wave angle
ϕTB = −2π−Φ−arccos( cos(−ϕo+Φ1)√

εr
) ' 2.92rad = 167.3o

The solution of the problem is obtained applying the dis-
cretization method reported in Section III where the Fredholm
factorization method is applied to the GWHE with discretiza-
tion parametersA = 10, h = 0.05.

Fig. 4 shows the behavior of the numerical solution in terms
of the spectral unknownŝV+(w) and Î+(w) in the regularity
segment−Φ ≤ w ≤ 0: the outer axial starting spectra (as
defined in Section III) is purely imaginary (Appendix III).
Relative errors are reported inlog10 scale by considering as
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Fig. 4. Test case 1: a-b) Imaginary parts of spectral unknownsV̂+(w) and Î+(w) in the regularity segment−Φ ≤ w ≤ 0; c-d) relative error inlog10

scale ofIm[kV̂+(w)] andIm[kÎ+(w)]: the reference solution is obtained with discretization parametersA = 12, h = 0.015.

Fig. 5. Test case 1: a-b) Imaginary parts of spectral unknownsV̂π+(w1) and Îπ+(w1) in the regularity segment−Φ1 ≤ w1 ≤ 0 ; c-d) relative error in
linear scale ofIm[k1V̂π+(w1)] andIm[k1Îπ+(w1)]: the reference solution is obtained with discretization parametersA = 12, h = 0.015.
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Fig. 6. Test case 1: a-d) Absolute value of the spectral unknownsV̂+(w), Î+(w), V̂π+(w1) and Îπ+(w1) in (−2π, 0). Dark gray regions are not used to
evaluate the GTD coefficients.

reference solution the one obtained for discretization parame-
tersA = 12, h = 0.015. For the numerical solution we have
chosen different values of the integration parameterA andh in
order to confirm the convergence of our technique. However,
an excessive value ofA (A > 15) yields ill-conditioned
matrices in the discretization process.

Fig. 5 shows the behavior of the numerical solution in
terms of the spectral unknownŝVπ+(w1) and Îπ+(w1) in the
regularity segment−Φ1 ≤ w1 ≤ 0.

As reported in Section IV the evaluation of the GTD
coefficients requires the analytic continuation of the spectral
unknowns{V̂+(w), Î+(w)} and{V̂π+(w1), Îπ+(w1)} respec-
tively in the interval−π−Φ < w < −π + Φ and−π−Φ1 <
w1 < −π + Φ1. The required analytical continuation is
obtained through the recursive equations reported in (53).

Fig. 6 shows the behavior of the absolute value of the spec-
tral unknowns {V̂+(w), Î+(w)} and {V̂π+(w1), Îπ+(w1)}.
The figure highlights the spectral regions necessary to evaluate
the GTD diffraction coefficients (67) and (74),i.e.−π−Φ <
w < −π + Φ and−π − Φ1 < w1 < −π + Φ1. The figure
shows also the GO poles relevant to the GTD for test case 1.
In particular {V̂+(w), Î+(w)} show peaks for the reflected
waves, while{V̂π+(w1), Îπ+(w1)} for the transmitted waves.
The location of the poles agrees with the standard GO theory,
for instance considerwRA ' −4.32 and wTB ' −2.92:

using equations (67) and (74) and, considering that the spectral
unknowns are even function inw (w1), we obtain thatϕRA =
−wRA − π ' 1.18rad and ϕTB = −wTB ' 2.92rad (since
ϕ1 = π − ϕ). Similar considerations hold for the other GO
poles. The GO components can be obtained by using standard
techniques or by applying (63). Notice that the study of the
axial spectra is fundamental. In fact, ifwoi is a singularity of
V̂+(w) (Î+(w)), the spectrum of̂V+(w,ϕ) (Î+(w,ϕ)) presents
the singularitieswoi±ϕ that can be captured by the integration
contour deformation fromBr to SDP, see subsection IV-A.
The singularities ofV̂+(w) (Î+(w)) are reported in Fig. 2
together with different integration contours. WhilekV̂+(w)
andkÎ+(w) are almost purely imaginary functions in(−2π, 0)
(purely imaginary in(−Φ, 0), see Appendix III);k1V̂π+(w1)
and k1Îπ+(w1)) are complex functions as shown in Fig. 7,
where for the sake of simplicity we have reported only the
voltage spectra. The approximate total GTD diffraction
coefficients are estimated substituting the approximations of
the spectral unknowns in (67) and (74). Fig. 8.a reports the
absolute value of the total GTD diffraction coefficient (in dB)
for each observation angleϕ. The peaks of the GTD diffraction
coefficients occur for the GO angles: reflected and transmitted
waves. The convergence is shown in Fig.8.b for different
integration parameters through the evaluation of the relative
error in log10 scale with respect to the reference solution
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Fig. 7. a)Im[kV̂+(w)] for the test case 1 and the PEC wedge, b) real and
imaginary part ofk1V̂π+(w1).

obtained forA = 12, h = 0.015. The log10 scale measures
the level of precision in term of digits for each observation
angleϕ. Fig. 8.c reports the phase of the total GTD diffraction
coefficient (in dB) for each observation angleϕ. Figs. 8.a and
8.c show also the plots for the PEC wedge.

The complete solution is reported in Figs. 9 and 10. The
first figure reports the total field, GO field component, UTD
field component at the distancekρ = 10. Gray regions are
inside the wedge. The second figure shows the comparison
between the total field of the dielectric wedge with the one of
the PEC wedge. We notice that Fig. 9 shows a small loss of
convergence forϕ ' +2.97 and ϕ ' −2.36: the reasons for
the corner behavior are different.

In the first case, whenϕ ' +2.97, the problem is due to
the spectral reconstruction of the Wiener-Hopfπ unknowns
in w1, i.e. V̂π+(w1) and Îπ+(w1). In fact, for ϕ ' +2.97
the UTD/GTD field component is related to the evaluation of
V̂π+(w1) and Îπ+(w1) in w1 = −2.97, see (76) and (74).
We recall that the recursive equations are used to estimate the
spectral unknowns out of the regularity strips (−Φ ≤ Re[w] ≤
0 and−Φ1 ≤ Re[w1] ≤ 0) in particular in the GTD intervals
(−π−Φ < w < −π+Φ and−π−Φ1 < w1 < −π+Φ1). Fig.
11 shows the mapping used in the estimation ofπ functions out
of the regularity segment−Φ1 ≤ w1 ≤ 0 for real value ofw1

(see (53)),i.e.w = Φ+g1(w1+Φ1). The map starts fromw1 =
−Φ1 that yieldsw = Φ−arccos(

√
εr) ' 3π/4− 1.1462 and

goes all over the gray line as long asw1 = −π−Φ1 is mapped

Fig. 8. Test case 1: a) absolute value of the total GTD diffraction coefficient
(dB), b) GTD diffraction’s relative error inlog10 scale using different set of
integration parameters (reference solutionA = 12, h = 0.015), c) phase of
the total GTD diffraction coefficient.

into w = −Φ1 + arccos(
√

εr) ' −π/4 + 1.1462. Uniform
sampling for realw1 is mapped into non-uniform sampling in
complexw. In particular the significant pointw1 = −2.97 is
mapped intow = −Φ1 where the mapping shows a change in
slope and highly non uniform sampling. This is the cause for
the loss of convergence in UTD/GTD forϕ ' +2.97.

The second direction where we experience loss of con-
vergence isϕ ' −2.36 and it is due to the UTD uniform
expression of the GTD field component. Sinceϕ ' −2.36 is
very close to the interface between the two materials (ϕ =
−Φ), the Kouyoumjian-Pathak (KP) transition function [47]
is not adequate to model the problem: the uniform diffraction
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Fig. 9. Test case 1: Total field (solid line), GO field component (squares),
UTD field component (triangles) atkρ = 10.
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Fig. 10. Test case 1: comparison between the total field of the dielectric
(gray line) and the PEC wedge (black line)atkρ = 10.

component is a cylindrical wave whose intensity should vanish
at the interface, on the contrary, at first sight, the KP transition
function’s slope does not consider the change of materials.

B. Test case 2

The second test case shows the convergence properties of our
solution in terms of GTD diffraction coefficient. The closed
form solution of the PEC wedge, see for example [36], allows
to compare the dielectric wedge solution when the relative
permittivity is with high imaginary part and real part equal to
1. Fig. 12 shows the GTD diffraction coefficient (in dB) when
Φ = 3π/4, εr = 1 − εi, ϕo = π/8, δ = π/2 and |Ei| =
1V/m with discretization parametersA = 10, h = 0.05. By
increasingεi the solution converges to the PEC wedge.

C. Test case 3

The third test case highlights the capabilities of our method
to model the scattering and diffraction by a dielectric wedge
in presence of multiple reflections and transmissions. With
reference to Fig. 1 the physical parameters of the problem are:
Φ = 7π/8, εr = 3, ϕo = 13π/32, δ = π/2 and|Ei| = 1V/m.

−π/2 −3π/8 −π/4 −π/8 0 π/8 π/4 3π/8 π/2 5π/8 3π/4 7π/8 π
−1.5

−1.1462
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√

εr)
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1
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1
<−π+Φ

1

Fig. 11. Test case 1:w = Φ+g1(w1 +Φ1) mapping used in the estimation
of π functions out of the regularity segment−Φ1 ≤ w1 ≤ 0. The map
starts fromw1 = −Φ1 that yieldsw = Φ− arccos(

√
εr) (arccos(

√
εr) '

1.1462) and goes all over the gray line as long asw1 = −π−Φ1 is mapped
into w = −Φ1+arccos(

√
εr). Uniform sampling for realw1 corresponds to

non-uniform sampling in complexw. The symbols♦,©,4, � respectively
are the mapped value ofw1 = −Φ1, Φ1−π,−Φ1−arccos(− 1√

εr
),−π−

Φ1.

Fig. 12. Test case 2: the GTD diffraction coefficient (dB).

The E-polarized incident plane wave impinges on the di-
electric wedge and generates one facea reflected wave and
one facea transmitted wave. The transmitted wave is totally
reflected inside the wedge for two times and generates two
evanescent transmitted waves through the two interfaces. This
configuration allows to define three geometrical optics shadow
boundaries (omitting the ones for the evanescent waves): inci-
dent shadow boundary, facea reflected shadow boundary, face
a transmitted and double totally reflected shadow boundary. As
a consequence, there are five GO regions:

• region 1: incident wave
• region 2: incident wave, facea reflected wave, evanescent

wave through facea
• region 3: facea transmitted wave, faceb reflected wave

from facea transmitted wave, double reflected wave from
facea transmitted wave

• region 4: facea transmitted wave, faceb reflected wave
from facea transmitted wave

• region 5: evanescent wave through faceb
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Fig. 14. Test case 3: a-d) absolute value of the spectral unknownsV̂+(w), Î+(w), V̂π+(w1) and Îπ+(w1) in (−2π, 0). Dark gray regions are not used
to evaluate the GTD coefficients.

Fig. 13. Test case 3: the GO field, the UTD component and, the total far-field
pattern atkρ = 10.

The GO field, the UTD component and, the total far-field
pattern are reported in Fig. 13 at the distancekρ = 10 from
the edge of the wedge.

The solution of the problem is obtained applying the
discretized method reported in Section III where the Fred-
holm factorization method is applied to the GWHE with
discretization parametersA = 10, h = 0.05. Fig. 14 shows
the behavior of the absolute value of the spectral unknowns
(V̂+(w), Î+(w)) and (V̂π+(w1), Îπ+(w1)). The figure high-

lights the spectral regions necessary to evaluate the GTD
diffraction coefficients (67) and (74),i.e. −π − Φ < w <
−π + Φ and−π − Φ1 < w1 < −π + Φ1. The figure shows
also the GO poles relevant to the GTD for test case 3. In
particular(V̂+(w), Î+(w)) show peaks for the facea reflected
wave (RA) and incident wave (I), while(V̂π+(w1), Îπ+(w1))
for the transmitted and double reflected wave (TARR). Notice
that the lobes reported in Figs. 14.a and 14.b are related to
evanescent waves (complex poles inw).

The complete solution is reported in Figs. 15 where the total
field, GO field component, UTD field component are evaluated
at the distancekρ = 10. Gray regions are inside the wedge.
Comparison between the complete solution of the dielectric
wedge with the one obtained with PEC wedge is also shown.

Note that Fig. 15.a shows loss of convergence in the
diffracted component forϕ ≈ ±1.475rad. This spurious local
corner behavior of the solution is due to the effect of the
mappingw = Φ + g1(w1 + Φ1) in the spectral reconstruction
of the WH unknowns (̂V+(w), Î+(w)) through the recursive
equations (53) as already discussed for the WHπ unknowns
(V̂π+(w1), Îπ+(w1)) at the end of test case 1.

D. Test case 4

The fourth test case shows the validation of our method
through the comparison of our solution with the one proposed
in [12]-[13]. In this test case we shows the capabilities of our
method to model the scattering and diffraction by a dielectric
wedge in presence of multiple reflections and transmissions
and, the performance in terms of computational time. With
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Fig. 15. Test case 3: a) Total field (solid line), GO field component (squares),
UTD field component (triangles) atkρ = 10, b) total field for the dielectric
and PEC wedge.

reference to Fig. 1 the physical parameters of the problem
are: Φ = 7π/8, εr = 2, ϕo = 17π/24, δ = π/2 and |Ei| =
1V/m. The E-polarized incident plane wave impinges on the
dielectric wedge and generates one facea reflected wave and
one facea transmitted wave. The transmitted wave is reflected
and transmitted through faceb. The reflected part is then totally
reflected on facea and generates an evanescent transmitted
wave. This configuration allows to define four geometrical
optics shadow boundaries (omitting the one for the evanescent
wave): incident shadow boundary, facea reflected shadow
boundary, double transmitted shadow boundary, transmitted-
double reflected shadow boundary. As a consequence, there
are six GO regions:

• region 1: incident wave
• region 2: incident wave, facea reflected wave, evanescent

wave through facea
• region 3: facea transmitted wave, faceb reflected wave

from facea transmitted wave, double-reflected wave from
facea transmitted wave

• region 4: facea transmitted wave, faceb reflected wave
from facea transmitted wave

• region 5: double transmitted wave through facea andb
• region 6: no GO components
The GO field, the UTD component and, the total far-field

pattern are reported in Fig. 16 at the distancekρ = 10π
from the edge of the wedge. The figure is obtained using the

Fig. 16. Test case 4: a) the GO field, the UTD component and, the total
far-field pattern atkρ = 10π, b) the UTD component atkρ = 10π.

Fredholm factorization method with discretization parameters
A = 10, h = 0.05 and the results can easily be compared with
the figures reported in [12]-[13].

Note that nearϕ = π/3 the Fig. 16.b shows acorner
behavior due to the use ofg1 in the recursive equations (53).

Table III shows the computational speed of our im-
plementation in Mathematicac©on an IntelrCoreTM2 Duo
CPU (P8400@2.26GHz 3GB RAM). Note that the use of
Mathematicac© let us handle and verify all the mathematical
details of the procedure. The use of a full numerical imple-
mentation of our method would speed up the entire evaluation.

TABLE III
COMPUTATIONAL SPEED

Time Action

< 1s Mathematica definitions
. 130s Discretization
< 2s Linear system generation
< 5s Linear system solution

0.01-0.03s Spectral sample in regularity segment
0.1-0.5s Sample of total field

VI. CONCLUSION

In this paper we present a new method to study the
diffraction by an isotropic penetrable wedge using the WH
technique. The solution is presented in terms of GTD diffrac-
tion coefficients, UTD diffraction coefficients and total fields.

Further work will be focused on the study of the contribu-
tion of the structural singularities and on the computational
aspects for the general skew incidence case.
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APPENDIX I
SOURCE TERM

This appendix is devoted to study the source termn̄i(α) (first-
order pole function) of the Fredholm integral equation formu-
lation (19) when the isotropic penetrable wedge is illuminated
by a general plane wave at skew incidence from the outer
region.

Without loss of generality, let us consider an E-polarized
plane wave. The GO field of the outer region can be evaluated
by solving the simple problem of reflection/transmission of
plane waves at skew incidence:

Eg
z = e−jγo z[Eou(π − |ϕ− ϕo|)ejτo ρ cos(ϕ−ϕo)+

+u(π − |ϕ + ϕo − 2Φ|)E(a)
or ejτo ρ cos(ϕ+ϕo−2Φ)+

+u(π − |ϕ + ϕo + 2Φ|)E(b)
or ejτo ρ cos(ϕ+ϕo+2Φ)] + Eg

zt

(77)

whereu(x) is the unit step function,E(a,b)
or are the reflection

coefficient of the two facesa and b and, Eg
zt is the field

re-transmitted from inside the wedge (see [12] for a deep
discussion), when it is present.

In order to establish the source term̄ni(α) we have
identified the following strategy based on engineering and
mathematical considerations:
A) assuming that the GO is valid,̄ni(α) derives from the
Laplace transform of the known GO field forϕ = 0,+Φ,−Φ
respectively in the complex planesη, −m and−m,
B) we evaluate the source term̄ni(α) using the residue
theorem applied to the non-standard spectral unknowns (see
Section II for definitions)only for the singularities located
in the proper sheet of theα complex plane that contains the
segment−Φ ≤ w ≤ 0, see [36].

In the following we consider the case of incidence0 <
ϕo < +Φ, the opposite case−Φ < ϕo < 0 is obtained using
symmetry.

By ignoring in a first moment the existence domain of
the GO components (77), the application of theη Laplace
transform (3) to (77) forϕ = 0 yields several first-order
pole terms with poles:ηo = −τo cos ϕo for the incident
wave,ηao = −τo cos(2Φ− ϕo) for the facea reflected wave,
ηbo = −τo cos(2Φ+ϕo) for the faceb reflected wave andηtn

for the n re-transmitted waves. The first three poles have the
same representation in theα-plane:αo = −τo cos

(
π
Φϕo

)
.

By ignoring in a first moment the existence domain of
the GO components (77), the application of the−m Laplace
transform (3) to (77) forϕ = +Φ yields several first-order pole
terms with poles:m(+Φ)

o = τo cos(Φ − ϕo) for the incident
wave,m(+Φ)

ao = τo cos(Φ−(2Φ−ϕo)) = τo cos(−Φ+ϕo) for
the facea reflected wave,m(+Φ)

bo = τo cos(Φ−(−2Φ−ϕo)) =
τo cos(3Φ + ϕo) for the faceb reflected wave andm(+Φ)

tn for
the n re-transmitted waves. Note that the first two poles have
the same representation in them-planem

(+Φ)
o = m

(+Φ)
ao and

through (15) we obtain that the first threem(+Φ) poles have
the same representation in theα-plane:αo = −τo cos

(
π
Φϕo

)
.

Similar considerations hold for the third case,i.e. the faceb
ϕ = −Φ: m

(−Φ)
o = τo cos(−Φ−ϕo), m

(−Φ)
ao = τo cos(−3Φ+

ϕo), m
(−Φ)
bo = τo cos(Φ+ϕo), andm

(−Φ)
tn respectively for the

incident, the facea reflected, the faceb reflected and then
re-transmitted waves. In this casem(−Φ)

o = m
(−Φ)
bo and the

first threem(−Φ) poles have the same representationαo =
−τo cos

(
π
Φϕo

)
.

We denote withα(ϕ)
tn the poles of the re-transmitted waves in

the α complex planes for observation anglesϕ = 0,+Φ,−Φ.
These poles are obtained using the first relation of (13) for
ϕ = 0 and (15) forϕ = +Φ,−Φ.

We assert that the source term̄ni(α) is obtained through the
residue theorem applied to the non-standard spectral unknowns
only for the singularities located in the proper sheet of theα
complex plane that contains the segment−Φ ≤ w ≤ 0 [36].

Although the spectral unknowns in theα complex plane
present the polesαo andα

(ϕ)
tn , we consider only the contribu-

tion of αo since: either 1)α(ϕ)
tn is associated to a re-transmitted

wave with existence domain that excludesϕ = 0,+Φ,−Φ
directions or 2)α(ϕ)

tn is located in the improper sheet of
the α plane for ϕ = 0,+Φ,−Φ or 3) both the previous
conditions are simultaneously satisfied. The second condition
is easily verified using thew-plane: the condition becomes
−Φ ≤ w

(ϕ)
tn ≤ 0 with real w(ϕ)

tn for ϕ = 0,+Φ,−Φ where
w

(ϕ)
tn corresponds toα(ϕ)

tn using the expressions ofη and m
in w, see (22)-(23).

Starting from (14) we extract the source term related to
the source poleαo = −τo cos

(
π
Φϕo

)
from the non-standard

unknowns. The location ofαo in theα complex plane depends
on ϕo. With small loss assumption (Im[ko] . 0), if 0 <
ϕo < Φ

2 ( Φ
2 < ϕo < Φ ), αo is located in the lower (upper)

half α complex plane yielding unconventional plus (minus)
unknownsȲi+(α) (X̄i−(α)). The poleαo can be captured by
contour integration only if it is located in the proper sheet of
α. This property is well illustrated in thew-plane: the poleαo

is associated to three different waves with same representation
in α-plane but different in other complex planes such asη, m
andw [36].

Usingη(w) (22) andm(w) (23), we obtain that the incident
wave, the facea reflected wave, the faceb reflected wave show
respectively the following poles in thew-plane

• for 0<ϕo < Φ
2

:wo = −ϕo, wao = −2Φ+ϕo, wbo = −2Φ−ϕo

• for Φ
2

<ϕo <Φ: w
(+Φ)
o = w

(+Φ)
ao = −ϕo, w

(+Φ)
bo = −2Φ−ϕo

andw
(−Φ)
o = w

(−Φ)
bo = −2Φ− ϕo, w

(−Φ)
ao = −4Φ + ϕo

Note that the reader can extrapolate the following other cases
using a similar procedure:−Φ

2 < ϕo < 0 and−Φ < ϕo <
−Φ

2 . Only some of the above poles are locate in the proper
sheet (−Φ ≤ w ≤ 0, see w̄-plane properties in Appendix
I of [36]) and they correspond to existing waves along the
associated directionϕ = 0,+Φ,−Φ.

Let us, now, suppose0 < ϕo < Φ
2 , the unconventional plus

function Ȳi+(α) for i = 1, 3, 5, 7 can be decomposed in:

Ȳi+(α) = Ȳ s
i+(α) +

T̄oi

α− αo
(78)

where Ȳ s
i+(α) are standard plus functions representing the

axial spectra without the GO components (in this case the
incident wave). Since0 < ϕo < Φ

2 only the GO polewo

is located in the proper sheet (−Φ < w < 0 ), therefore the
incident wave is the only one that contributes to the residue
T̄oi. According to (14) and the procedure described in [37] we
define the source term:

n̄i(α) =
T̄oi

α− αo
(79)
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T̄oi is the residue of̄Yi+(α) in αo:

T̄oi = Res [Ȳi+(α)]
∣∣
αo

= Toi
dα

dη

∣∣∣∣
ηo

(80)

with Toi = Res [Yi+(η)]|ηo
andηo = −τo cos(wo).

Toi are obtained by using the Laplace transform of the GO
field components along theϕ = 0 direction in theη-plane.
In this case the GO field is constituted by only the incident
wave, see (77). Using Table I for definition ofȲi+(α) in terms
of longitudinal and tangential field components we obtainT̄oi

and n̄i(α).
On the contrary, ifΦ2 < ϕo < Φ, only the polew

(+Φ)
o =

w
(+Φ)
ao is located in the proper sheet−Φ < w < 0. In this case

the unconventional minus function̄Xi−(α) for i = 1, 3, 5, 7
can be decomposed in:

X̄i−(α) = X̄s
i−(α) +

Ūoi

α− αo
(81)

whereX̄s
i−(α) are standard minus functions representing the

facial spectra without the GO components (in this case the
incident wave and the facea reflected wave).̄Uoi is the residue
of X̄s

i−(α) in αo:

Ūoi = Res [X̄i−(α)]
∣∣
αo

= Uoi
dα

dm

∣∣∣∣
mo

(82)

with Uoi = Res [Xi−(m)]|mo
andmo = mao = τo cos(−ϕo +Φ).

In this second case, from (14), we define the source term:

n̄i(α) =
Res[X̄(i)−(α) − ξ−

n+
X̄(i+1)−(α)]

∣∣∣
αo

α− αo
(83)

and therefore using (82):

n̄i(α) =
Ūo(i)

(α− αo)
+

τo + α√
τ2

o − α2

Ūo(i+1)

(α− αo)
(84)

Notice that, for Φ
2 < ϕo < Φ , theX−(i) functions reported

in (19) must be substituted withXs
−(i), which is the minus

unknowns purified from the unconventional singular term via
decomposition (in the Fredholm factorization the unknowns
are always standard [37]).

Uo(i) are obtained by using the Laplace transforms along
the ϕ = ±Φ directions in the−m plane of the GO field
components having singularities in the proper sheet ofα (see
Table I and (10)-(11)).

Let us focus the attention on theϕ = +Φ case: the to-be-
considered GO components are the incident wave and the face
a reflected wave. These waves must be considered only if face
a (ϕ = +Φ) is not in shadow. Similar considerations hold for
faceb (ϕ = −Φ) where we need to consider the incident wave
and the faceb reflected wave. Using Table I and (10)-(11) for
definition of X̄i−(α) in terms of longitudinal and tangential
field components we obtain̄Uoi and n̄i(α).

In the general case, the source term̄ni(α) assumes the
following form

n̄i(α) =

If [ϕo < Φ
2
, T̄o(i), Ūo(i) + τo+α√

τ2
o−α2

Ūo(i+1)]

α− αo
(85)

where the explicit expressions of all non-zeroT̄o(i) and Ūo(i)

are reported in Table IV when the GO poles are related to the
incident wave and the facea reflected wave (0 < ϕo < Φ).

Note that the signs of the residue terms inn̄i(α) are decided
according to the orientation of the integration contour in the
Fredholm factorization procedure, see [37] and section II-B.

TABLE IV
DEFINITIONS FOR THE SOURCE TERM̄ni(α)

FOR0 < ϕo < Φ.

T̄o1 −j4Eo
π
Φ

T̄o3 j4Eo
π
Φ

sin(πϕo
2Φ

)

T̄o5 j4Ho
π
Φ

T̄o7 −j4Ho
π
Φ

sin(πϕo
2Φ

)

Ūo1

−2πj
(

Eo+E
(a)
or

)
Φ

Ūo2

−2πj
(

Eo−E
(a)
or

)
cot( πϕo

2Φ )

Φ

Ūo3

2πj
(

Eo+E
(a)
or

)
sin( πϕo

2Φ )

Φ

Ūo4

2πj
(

Eo−E
(a)
or

)
cos( πϕo

2Φ )

Φ

Ūo5

2πj
(

Ho+H
(a)
or

)
Φ

Ūo6 −
2πj

(
Ho−H

(a)
or

)
cot( πϕo

2Φ )

Φ

Ūo7 −
2πj

(
Ho+H

(a)
or

)
sin( πϕo

2Φ )

Φ

Ūo8

2πj
(

Ho−H
(a)
or

)
cos( πϕo

2Φ )

Φ

E
(a)
or and H

(a)
or are cumbersome coefficients of the facea

reflected wave available from GO. At normal incidenceE
(a)
or

andH
(a)
or are simple expressions:

E
(a)
or = Γ⊥a Eo = Z1 sin(Φ−ϕo)−Zo sin(Φ−ϕta)

Z1 sin(Φ−ϕo)+Zo sin(Φ−ϕta)
Eo

H
(a)
or = Γ

‖
aEo = Zo sin(Φ−ϕo)−Z1 sin(Φ−ϕta)

Zo sin(Φ−ϕo)+Z1 sin(Φ−ϕta)
Ho

(86)

with ϕta = Φ + g(Φ− ϕo), whereg(w) is defined in (49).
Note that the reader can extrapolate the case−Φ < ϕo < 0

where we need to consider the reflected wave from faceb.

Example
For the sake of readability, we present some explicit expres-
sions of n̄i(α) when a dielectric wedge is illuminated by an
E-polarized plane wave at normal incidence.

The first explicit expression under examination isn̄1(α) for
0 < ϕo < Φ

2 thus we need to evaluatēTo1. In this case, the
non-standard functions are the plus ones and the GO pole is
ηo = −τo cos(ϕo). SinceToi = Res [Yi+(η)]|ηo

, using Table
II, we obtain that:

To1 = 2
ξ+(ηo)

n+(ηo)
Res [Vz+(η, 0)]|ηo

(87)

Since the GO component is only the incident wave, we
can evaluateRes [Vz+(η, 0)]|ηo

= jEo using theη-Laplace
transform forϕ = 0

V i
z+(η, 0) =

∫ ∞

0

Eoe
jkoρ cos(0−ϕo)ejηρdρ =

jEo

η − ηo
(88)

Using (87) and (23) withwo = −ϕo we obtain

To1 = −4jEo
sin ϕo

sin
(

π
Φ

ϕo

) (89)

We observe that sincedα
dη

∣∣∣
ηo

= π
Φ

sin( π
Φ (−ϕo))

sin(−ϕo) , T̄o1 = −4j π
Φ

Eo

and the explicit expression of̄n1(α) results:

n̄1(α) =
−4j π

Φ
Eo

α− αo
(90)



19

The second explicit expression under examination isn̄1(α)
for Φ

2 < ϕo < Φ thus we need to evaluatēUo1 andŪo2. In this
case, the non-standard functions are the minus ones and the
GO pole present in the proper sheet ofα-plane ism

(+Φ)
o =

m
(+Φ)
ao = τo cos(Φ− ϕo) (incident and facea reflected wave

of the facial spectra of facea). SinceUoi = Res [Xi−(m)]|mo
,

using Table II and (10)-(11), we obtain that:

Uo1 = − ξ−(m
(+Φ)
o )

n−(m
(+Φ)
o )

Res [sV z+(−m)]|
m

(+Φ)
o

(91)

Uo2 =
koZo

ξ2
−(m

(+Φ)
o )

Res [dIρ+(−m)]|
m

(+Φ)
o

(92)

We recall from the previous subsection that only the facial
spectra of facea have singularities in the proper sheet ofα
plane, therefore we obtain that:

Res [sV z+(−m)]|
m

(+Φ)
o

= Res [Vz+(−m, +Φ)]|
m

(+Φ)
o

(93)
Res [dIρ+(−m)]|

m
(+Φ)
o

= Res [Iρ+(−m, +Φ)]|
m

(+Φ)
o

(94)

Without loss of generality let us focus the attention onUo1.
Since the GO components are the incident and the facea
reflected waves we can evaluateRes [Vz+(−m,+Φ)]|

m
(+Φ)
o

using the−m Laplace transform forϕ = +Φ

V g
z+(−m, Φ) =

∞∫
0

(Eo + E(a)
or )ejkoρ cos(Φ−ϕo)e−jmρdρ (95)

thus, using (86),V g
z+(−m, Φ) =

−jEo(1+Γ⊥a )

m−m
(+Φ)
o

.

The evaluation of the quantitiesUoi and Ūoi can be easily
carried out using thew-plane together with them-plane. We
recall thatm(+Φ)

o corresponds tow(+Φ)
o = −ϕo. Using (23)

we obtain:

Uo1 = −j2Eo(1 + Γ⊥a )
sin(Φ− ϕo)

sin( π
Φ

ϕo)
(96)

We observe that sincedα
dm

∣∣
m

(+Φ)
o

= π
Φ

sin πϕo
Φ

sin(Φ−ϕo) we obtain

Ūo1 = −2j
π

Φ
Eo(1 + Γ⊥a ) (97)

and following the same procedure, we can evaluate the explicit
expression ofŪo2:

Ūo2 = −2j
π

Φ
Eo(1− Γ⊥a ) cot(

πϕo

2Φ
) (98)

In this case, the source term̄n1(α) results:

n̄1(α) =
−j2 π

Φ
Eo

α− αo

[
(1 + Γ⊥a ) +

ko + α√
k2

o − α2
(1− Γ⊥a ) cot(

πϕo

2Φ
)

]
(99)

APPENDIX II
THE g AND g1 FUNCTIONS

The functionsg(w) andg1(w1), see (49) and (50), are multi-
valued functions [42] used extensively throughout the paper,
for example in the recursive equations (53).g(w) andg1(w1)
show branch points located respectively in±wb + nπ and
±w1b + nπ with n ∈ N, wb = −j arccosh

√
εr and w1b =

− arccos(1/
√

εr). We assume vertical branch cuts,i.e. the
line (±wb,±j∞) for the branch point±wb and the line
(±w1b,±j∞) for the branch point±w1b. We remark that our
branch choice is different from the one done by Budaev [18].

We assert that the Snell law in the spectral domain (22)
ensures the continuity relation:

F̂+(w,±Φ) = F̂+(w1,±Φ1) (100)

This property is used in the procedure to derive the recursive
equations (53). Let us focus the attention on the properties of
g(w) andg1(w1) in the recursive equations (53) for the esti-
mation of the GTD diffraction coefficient (76). As discussed
in subsections IV-A and IV-B, we require the evaluation of
the axial spectraϕ = 0 andϕ = π respectively in the interval
−π − Φ < w < −π + Φ and−π1 − Φ < w1 < −π + Φ1.

We recall that the recursive equations (53) are substantially
of these two kinds:

F̂ (w) = Θ[F̂ (w + 2Φ), F̂π(Φ1 + g(w + Φ))] (101)

F̂π(w1) = Θπ[F̂ (Φ + g1(w1 + Φ1)), F̂π(w1 + Φ1)] (102)

We observe that for each realw, (101) requires the evaluation
of F̂ (w) and F̂π(w1) with real argumentsw andw1. On the
contrary, for each realw1, (102) requires the evaluation of
F̂π(w1) with real argumentsw1 and the evaluation of̂F (w)
with complex argumentsw determined by the mapping:

w = Φ + g1(w1 + Φ1) (103)

Fig. 17 shows (103) forεr = 3− j0.1 and for different values
of Φ in the interval−π − Φ1 < w1 < −Φ1 highlighting the
cardinal points:w1 = −Φ1, w1 = −π + Φ1, w1 = −π−Φ1.

−π/2 −3π/8 −π/4 −π/8 0 π/8 π/4 3π/8 π/2 5π/8 3π/4 7π/8 π
−1.5

−1.1462

0

1.1462

1.5

Re

Im

w
1
 mapping used in V

π

Φ=3π/4
Φ=7π/8
Φ=5π/8

Fig. 17. w = Φ + g1(w1 + Φ1) mapping for εr = 3− j0.1 and for
different values ofΦ in the interval−π − Φ1 < w1 < −Φ1. The map
starts fromw1 = −Φ1 that yieldsw = Φ − arccos(

√
εr) and goes all

over the gray lines as long asw1 = −π − Φ1 is mapped intow = −Φ1 +
arccos(

√
εr). The symbols♦,©, � respectively are the mapped value for

w1 = −Φ1,−π + Φ1,−π − Φ1.

APPENDIX III
THE OUTER AXIAL STARTING SPECTRA

With the assumption of no losses, we notice that using
complex conjugation of (39) and substituting−u to u we
obtain the same equations with changed in sign sources,i.e.
−n1,3(u) (see Appendix I). It yieldsPi(u) = −P ∗

i (−u).
Using thew-plane inM(u, u′), i.e. M(−j( π

Φw + π
2 ), u′),

we observe that for realu′ andw:

M(−j(
π

Φ
w +

π

2
), u′) = −M∗(−j(

π

Φ
w +

π

2
),−u′) (104)
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These properties yield a real sum for−Φ≤w≤0 in (43),(45)

A
h∑

i=−A
h

M
[
−j(

πw

Φ
+

π

2
), hi

]
P2,4(hi) (105)

and sincen1,3(u) are purely imaginary forwεR, we obtain
purely imaginary outer spectra{V̂+(w), Î+(w)}for −Φ≤w≤0.
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