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Abstract 

The aim of this paper is the description of a novel and completely automated technique for carotid 

artery recognition, far (distal) wall segmentation, and intima-media thickness (IMT) 

measurement, a strong clinical tool for risk assessment for cardiovascular diseases.  

The architecture of Completely Automated Multi-resolution Edge Snapper (CAMES, a 

patented class of AtheroEdge™ systems) consists of two stages: (a) automated carotid artery 

recognition based on a combination of scale-space and statistical classification in multi-resolution 

framework; and (b) automated segmentation of lumen-intima (LI) and media-adventitia (MA) 

interfaces for the far (distal) wall and (c) its IMT measurement. 

Our database of 365 B-Mode longitudinal carotid images is taken from four different 

institutions covering different ethnic backgrounds. The ground-truth database was the average 

manual segmentation from three clinical experts. The mean distance ± SD of CAMES w.r.t 

ground-truth profiles for the LI and MA interfaces were 0.081 ± 0.099 mm and 0.082 ± 0.197 mm 

respectively. The IMT measurement error between CAMES and ground truth was 0.078 ± 0.112 

mm.  CAMES was benchmarked against a previously developed automated technique based on 

an integrated approach using feature-based extraction and classifier (CALEX). Even though, 

CAMES underestimated the IMT value, it had shown a strong improvement in segmentation 

errors against CALEX for LI and MA interfaces by 8% and 42%, respectively.  The overall IMT 

measurement bias for CAMES improved against CALEX by 36%. Finally, the paper 

demonstrated that the figure-of-merit of CAMES was 95.8% compared to 87.4% for CALEX.  

The combination of multi-resolution carotid artery recognition and far wall segmentation 

led to an automated, low-complexity, real-time, and accurate technique for carotid IMT 

measurement. Validation on a multi-ethnic/multi-institutional dataset demonstrated the robustness 

of the technique, which can constitute a clinically valid IMT measurement for assistance in 

atherosclerosis disease management. 
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I. Introduction 

The intima-media thickness (IMT) of the carotid artery (CA) is a widely accepted and validated 

marker of progression of atherosclerosis and of onset of cardiovascular disorders, with a 

predictive value for incident myocardial infarction [1]. 

IMT is usually measured by using ultrasound imaging. Normally, a trained sonographer 

manually measures the IMT from longitudinal projections of the CA, but these manual 

measurements methods are time-consuming, subjective, and tedious. Also, due to the lack of 

standardization, the differences in the gain settings, scanner performances, and the training of the 

clinicians, all add up to cause significant variability, especially in large and multi-center studies. 

Figure 1 shows an example of B-Mode longitudinal carotid ultrasound image, with the far wall 

IMT measurement depicted. 

Since early nineties, more than 30 different computer techniques were developed for the 

segmentation of the CA wall in longitudinal images (a state-of-the-art review on the most used 

image processing techniques in carotid wall segmentation and IMT measurement can be found in 

a recent review by Molinari et al. [2]). Conceptually, there are two main groups of computer 

methods for IMT measurement: group one comprises of all the techniques that are completely or 

fully automated, while group two are those that require user interaction or semi-automated. 

Usually, user-dependent methods offer better performance in IMT measurement, allowing 

measurement errors lower than 0.01 mm (an error in the range 1.25 - 2.5%, since the normal 

value of IMT is about 0.4 mm at birth and 0.8 mm at 80 years if no vascular pathologies are 

present [3]). The most popular image processing techniques for CA wall segmentation and IMT 

measurement are based on image gradients and edge-detection [4-6] or parametric deformable 

models (so called snakes) [7-9]. These detection techniques are faster than others, but suffer in 

general from noise. Also, they require user interaction for the region-of-interest (ROI) delineation 

around the distal (far) carotid wall.  
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The aim of this paper is the development of a high-performance automated technique for 

carotid IMT measurement. We present a new strategy based on a two cascaded stage process. 

Stage-I: that combines an edge detection approach based on scale-space paradigm in a multi-

resolution framework; and Stage-II: segmentation of lumen-interface (LI) and media-adventitia 

(MA) borders for the far wall using a combination of first order absolute moment filtering 

followed by edge detection using Heuristics-based strategy. 

Stage-I comprises of edge estimation for the far adventitia borders along the carotid artery. 

This edge estimation uses derivatives of Gaussian Kernels with known scales. The image 

processing paradigm comprises of optimization of the right Kernel size by reverse engineering 

the image framework itself.  This can be accomplished in a multi-resolution framework. Stage-II 

comprises of an edge detector based on the first absolute central moment (originally adapted by 

Faita et al. [4]) adapted in the guidance zone or region of interest followed by Heuristics-based 

peak detection and location. 

We named our new technique as CAMES: Completely Automated Multi-resolution Edge 

Snapper, as we used edge information in multi-resolution framework for both recognition and 

segmentation phases. Special precaution based on anatomic arterial information, extracted using 

statistical intensity distribution is embedded in Stage-I to ensure 100% accuracy during the 

automated recognition phase. We validated CAMES on a multi-ethnic, multi-institutional 

database of 365 images, comprising of normal and pathologic CAs. Finally, we benchmarked 

CAMES against CALEX, our previously developed automated technique [10, 11]. Note, that the 

paper is not focused on segmentation of plaque borders having stenosis in carotid artery, rather 

the segmentation of far (distal) LI and far (distal) MA borders for automated, accurate and 

repeatable IMT measurements. Segmentation of plaque stenosis borders will be presented 

elsewhere. 
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II. Materials and Methods 

A. Image dataset 

Our database consisted of 365 B-mode images collected from four different institutions/hospitals 

around the world. They are: (i) The Neurology Division of the Gradenigo Hospital of Torino 

(Italy), which provided 200 images; (ii) The Cyprus Institute of Neurology of Nicosia (Cyprus), 

which provided 100 images; (iii) The Hospital de S. João do Porto (Portugal), which provided 23 

images; (iv) The Department of Radiology of the University Hospital of Cagliari (Italy), which 

provided 42 images. 

The complete description of the image database and of the patient’s demographics is reported by 

Table I. All the images were acquired in digital format and discretized on 8 bits (256 gray levels). 

The conversion factors (i.e., the physical pixel dimension which we indicate by τ  in the paper 

and in Table I) ranged from 0.06 mm/pixel to 0.09 mm/pixel. The conversion factors were 

slightly different since they depended on the scanner type and scanner settings. Specifically, the 

images from Torino (200 images) and Nicosia (100 images) were resampled in order to set the 

pixel density to 16 pixels/mm and 16.67 pixels/mm, respectively, as already reported by previous 

studies [12, 13]. The two other Institutions allowed the sonographer to set the optimal pixel 

density and no resampling were performed. 

The Institutions took care of obtaining written informed consent from the patients prior to 

acquiring data. The experimental protocol and data acquisition procedure were approved by the 

respective local Ethical Committees.  

For each of the 365 images we had three manual segmentations made by expert sonographers 

(considered as ground truth – GT). To compute the IMT measurement bias, we obtained the 

average LI/MA tracings for every image. 
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B. Architecture of the Multi-resolution Edge Snapper (CAMES) 

The architecture of CAMES was developed by keeping in mind that it should be able to locate the 

carotid artery in the image frame automatically and then segment the far wall of the carotid artery 

by computing the two interface boundaries: lumen-intima (LI) interface and media-adventitia 

(MA) interface. This recognition process must ensure that we are able to distinguish the carotid 

artery layer from other arteries or veins, in particular, the jugular vein (JV). We modeled the 

carotid artery recognition process by taking the hypothesis that carotid artery’s far wall adventitia 

is the brightest in the ultrasound scan frame.  

Our architecture for Stage-I is the recognition of the far adventitia location in the grayscale 

image of the carotid artery using multi-resolution approach in scale-space framework. Once the 

far adventitia layer of carotid artery is recognized, Stage-II can be adapted for LI and MA border 

estimation in the grayscale guidance zone near the far adventitia layer. In summary, our 

architecture consists of two cascaded stages in scale-space paradigm using multi-resolution 

framework adapting edge model approaches fused with Heuristics: (i) Automated recognition of 

the CA in the image frame, and (ii) Automated segmentation of the far (distal) CA wall, i.e., LI 

and MA border estimation process.  

Prior to recognition and segmentation phases, it is necessary to remove the non-relevant 

information in the image such as the patient and device. We developed a simple automated 

cropping procedure that automatically cropped the image in order to discard the surrounding 

black frame containing device headers and image/patient text data [14]. 

The 200 images from Torino were DICOM formatted, whereas all the other images were in 

TIFF or JPEG format and were auto-cropped by relying on the gradient strategy [14]. 
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B.1 Stage-I: Automatic Recognition of the Carotid Artery (CA) 

For the automated identification of the CA in the image frame we need to find the edges of the far 

adventitia borders using scale-space concept in multi-resolution framework. We need a fine to 

coarse down sampling followed by capturing the edges using derivative of Gaussian Kernel with 

known a priori scale. All the intermediate results of the processing steps are shown for the 

reference image shown in fig. 2.A. 

Step 1: Fine to Coarse Down-sampling  

The image was first down-sampled by a factor of two (i.e., the number of rows and columns of 

the image was halved) (fig. 2.B). We implemented the down-sampling method discussed by Zhen 

et al. [15], adopting a bi-cubic interpolation that was tested on ultrasound images and showed a 

good accuracy and a low computational cost. The interpolated value is computed by considering 

the 16 pixels close to the considered one. Given a point (x,y) in the destination image J(x,y), bi-

cubic interpolation can be expressed as: 

J x, y( ) = I m,n( ) ⋅ r m − l − dx( ) ⋅ dy − n + k( )
n= k−1

k+2

∑
m= l−1

l+2

∑  (1) 

where I(x,y) is the input image, l = x⎢⎣ ⎥⎦ , k = y⎢⎣ ⎥⎦ , and the definition of dx and dy is dx = x − l  

and dy = y − k , respectively. The cubic weighting function r(x) is: 

r x( ) = 1
6

p x + 2( )3 − 4 p x +1( )3 + 6p x( )3 − 4 p x −1( )3⎡⎣ ⎤⎦  (2) 

where the function p(x) has the form 

p x( ) = x x > 0
0 x ≤ 0

⎧
⎨
⎩

 (3) 

Full details about down-sampling and bi-cubic interpolation can be found in the work by Zhen et 

al. [15]. The multi-resolution method prepares the vessel wall’s edge boundary such that the 

vessel wall thickness tends to be equivalent to the scale of the Gaussian kernels. This 
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infrastructure will allow the scale-space based vascular edge segmentation methods applicable to 

vessel wall for edge detection, which in turn is necessary for locating the carotid artery in the 

image frame. Note that, this automated method might detect the jugular vein border edges if they 

are present in the image frame. The current architecture allows a methodology to handle this 

challenge in case multiple edges are determined during the process of carotid artery recognition. 

This will be discussed in step 5 (called refinement). 

 

Step 2: Speckle reduction.  

Speckle noise was attenuated by using a first-order local statistics filter (named as lsmv by the 

authors [16, 17]), which gave the best performance in the specific case of carotid imaging. Figure 

2.C shows the despeckled image. The despeckle filter is useful for avoiding spurious peaks during 

the distal (far) adventitia identification in subsequent steps. This technique is very well 

established [16, 17] and gave the authors the optimal results.  

 

Step 3: Far Adventitia recognition. 

The despeckled image was filtered by using a first order derivative of a Gaussian kernel with the 

scale  and convolving with input image I x( ) (being x  is the 2-D vector coordinates ): 

� 

F x,σ( ) = σ ⋅ I x( ) ⊗  ∂ G
∂ x

x,σ( )  (4) 

where 
∂G
∂x  is the first order derivative of the Gaussian kernel G x,σ( )  and F x,σ( )  is the 

filtered image. The Gaussian kernel , which had size S equal to 35x35 pixels, was defined as: 

G x,σ( ) = 1
2πσ 2 e

x 2 2σ 2  (5) 

In eq. (4), the symbol ‘ ⋅ ’ denotes multiplication and the symbol ‘⊗ ’ denotes convolution.  
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Figure 2.D shows the results of the filtering by the Gaussian derivative. The scale parameter ( ) 

of the Gaussian derivative kernel was taken equal to 8 pixels, i.e. twice the expected dimension of 

the IMT value in an original fine resolution image. In fact, an average IMT value of say 1 mm 

corresponds to about 12-16 pixels in the original image scale and, consequently, to 6-8 pixels in 

the coarse or down-sampled image. The white horizontal stripes of fig. 2.D are relative to the 

proximal (near) and distal (far) adventitia layers. 

 

Step 4: Heuristic-Based Automated Far adventitia (ADF)  

Figure 2.E shows the intensity profile of one column (upper edge of the image to lower edge of 

the image) of the filtered image of fig. 2.D. The proximal and distal walls are intensity maxima 

saturated to the value of 255. To automatically trace the profile of the distal (far) wall, we used a 

heuristic search applied to the intensity profile of each column. Starting from the bottom of the 

image (i.e. from the pixel with the higher row index, note that (0,0) is the top left hand corner of 

the image), we search for the first white region where the width of the region is Wsearch pixels. In 

fig. 2.D, the white region corresponding to the far adventitia wall has a width of 8 pixels (equal to 

), which is the same size of the Gaussian kernel (as reported in the description of Step 3). 

Therefore, a threshold value of 6 pixels width was the optimal choice for our database, and 

ensured the correct identification of the ADF in all the images. On taking the lower values, it lead 

to the identification of other structures that were not the far wall; such structures can be present 

below the carotid far wall (i.e. they are usually deeper than the artery and correspond to the neck 

structures around the trachea). Conversely, higher search region, pixels we could not detect the 

thinner arteries in our database (i.e. the carotids having IMT lower than 05-0.6 mm, typical of 

healthy and young subjects). Therefore, a search region of Wsearch = 6 pixels width was the 

optimal choice for our database, and ensured the correct identification of the ADF in all the 

images. Figure 2.F shows the final ADF profiles. 
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The deepest point of this region (i.e. the pixel with the higher row index) marked the 

position of the far adventitia (ADF) layer on that column. The sequence of points resulting from 

the heuristic search for each of the image columns constituted the overall automated ADF tracing. 

We followed the concept of decimation of columns as adapted by Rossi et al. [18]. They showed 

that their heuristic search procedure combined with decimation ensured a faster and efficient 

strategy for carotid detection.  

 

Step 5: ADF refinement. 

Pilot studies showed that the traced ADF profile could be characterized by spikes and false points 

identification. This could be due to several reasons such as (a) variations in intensities due to 

variety of reasons such as probe interface with skin, frequency of operation and gain settings; (b) 

gaps in the media walls due to non-uniformity of the media layer; (c) presence of jugular vein due 

to orientation scanning; (d) shadow effects due to presence of calcium in the near wall, or 

combination of these. We have therefore introduced a validation protocol, which provides a check 

on the ADF profile ensuring that the location of CA is at correct place and the far adventitia 

segmentation edge is smooth. This architecture of the validation step refines the ADF profile and 

is done in two steps: (a) refinement using anatomic lumen and (b) spike removal. 

• Step 5.1 – Refinement by anatomic (Lumen) reference.  

This check has been introduced to avoid error conditions of ADF profile protruding into 

the lumen vessel or beyond. Thus, the objective should be to ensure that the far adventitia 

borders (stage-I output) does not penetrate lumen region (lumen is above the ADF border 

in the above discussion). We have thus modeled the lumen segmentation region as a 

classification process with two classes similar to the approach by Molinari et al. [8, 19]. 

The number of classes K was set to 50, having interval of 0.02. For detailed discussion on 

optimization of K, readers can see the CULEX strategy for lumen detection by Molinari 

et al. [8, 19]. In previous studies, we showed that pixels belonging to the lumen of the 
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artery are usually classified into the first few classes of this 2DH [8]. Our validation of 

automated computer-based lumen pixels recognition was done against manual 

segmentations. Results revealed that pixels of the lumen have a mean values classified in 

the first 4 classes and a standard deviation in the first 7 classes. We therefore consider a 

pixel as possibly belonging to the artery lumen if its neighborhood intensity is lower than 

0.08 and if its neighborhood standard deviation is lower than 0.14 [14]. Figure 3 shows 

the lumen region selection process in four images: fig. 3.A depicts the original image 

after automatic cropping; fig 3.B depicts the image after speckle noise removal; the 2D 

histogram (2DH) showing the relationship between the normalized mean and normalized 

standard deviation can be seen in fig 3.C. The gray region in the 2DH represents what we 

consider the lumen region of the carotid artery. All the image pixels falling into this 

region have been depicted in gray in fig 3.D.  

We therefore utilize the lumen region as follows. The ADF points along the CA are 

considered one by one. For each ADF point: 

1. Region of Interest Estimation (ROILumen): We consider the sequence of the 30 

pixels (ROILumen) above it (i.e., the 30 pixels located above the ADF point, 

towards the top of the image, and, therefore, with lower row indexes). 

2. Failure of ADF profile point: We test if the ROIL drawn around the ADF profile 

points cross the lumen region and have penetrated into the lumen region by at 

least 15 pixels or more (let’s indicate this threshold value by TLumen). If this does 

not happen, then the ADF profile point is considered to have failed the lumen test. 

Pilot experiments we conducted revealed that suitable values for TL are 

comprised between 12 and 20 pixels. 

3. Tagging of Profile Points: These failed ADF profile points must not belong to the 

ADF boundary. These ADF points which fail the lumen test are tagged as 0, while 
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rest of the points are tagged as 1. ADF All the ADF points that tagged as 0 are 

deleted from the ADF list. 

4. The procedure is repeated for each ADF point along the CA artery. 

Table II summarizes all the thresholds and parameters we used in CAMES. Figure 4 

reports sample results of lumen test. In figure 4.A the initial ADF guess is shown by gray 

squares; fig 4.B shows the ADF points that passed the lumen test (gray diamonds). Figure 

4.C is the down sampled and despeckled image and fig 4.D is the same image with the 

lumen pixels in white. The white diamonds are the ADF points that passed the lumen test. 

Note that even though, the lumen anatomic information, which acts as a reference, 

provides a good test for catching a series of wrongly computed ADF boundary, it might 

slip from sudden bumps which may be due to the changes in grayscale intensity due 

presence of unusual high intensity in lumen region or a calcium deposit in the near wall 

causing a shadow in far wall region. This sudden spike can then be easily detected ahead 

using the spike detection method. 

• Step 5.2 –Spike detection and removal. 

We implemented an intelligent strategy for spike detection and removal. Basically, we 

compute the first order derivative of the ADF profile and check for values higher than 

TSpike = 15 pixels. This value was chosen empirically by considering the image resolution. 

When working with images having approximate resolution of about 0.06 mm/pixel, an 

IMT value of 1 mm would be about 12-16 pixels. Therefore, a jump in the ADF profile of 

the same order of magnitude of the IMT value is clearly a spike and error condition. If the 

spike is at the very beginning of the image (first 10 columns) or at the end (last 10 

columns), then the spiky point is simply deleted. We decided to delete spikes at the 

beginning or end of the image because their correction and substitution with another 

value would require the moving average with the neighboring points. However, spikes at 

the beginning or end of the image usually have too few neighboring points to perform a 
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robust moving average. Therefore, we decided to remove them. Otherwise, all spikes are 

considered and either substituted by a neighborhood moving average or removed. Figure 

5 reports the spike removal procedure for the same image of figure 4. Final ADF points 

are represented by gray circles. 

 

Step 6: Up-sampling of far adventitia (ADF ). 

The ADF profile was then up-sampled to the original fine scale and superimposed over the 

original cropped image (fig. 2.F) for both visualization and determination of the region of interest 

for segmentation (or calibration) phase (Stage-II). At this stage, the CA far adventitia is 

automatically located in the image frame thereby providing the guidance zone for the automated 

border segmentation. 

 

B.2 Stage-II: Domain-Based LI/MA Segmentation Strategy 

Stage-II is focused narrowly in the region of interest, where the objective is to estimate the 

LI/MA borders accurately.  Here we model a filter in the guidance zone, such that the operation 

allows for acting as a high pass filter enhancing the intensity edges. For ultrasound images, such a 

filter can be thought as a First Order Absolute Moment (FOAM). These filtered edges are then 

heuristically captured to build the LI and MA segmentation borders in the far wall of the carotid 

artery in the image frame. Stage-II is sub-divided into three steps as follows: 

Step 1: Creation of the Guidance Zone. 

We built a region-of-interest (ROI) or guidance zone (GZ) around the automatically traced far 

adventitia ADF profile, so called the domain region in which pixel processing was done to 

estimate LI and MA borders. Note that the GZ must have a region whose envelope length is at 

least same length as the width of the ADF curve along the carotid artery. From the database, we 

observed that the average internal diameter of the human common carotid artery is 6 mm [20], 
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which corresponds to be about 100 pixels. Since the total wall thickness for the near and far wall 

when combined is around 30 pixels (we called this as GZheight) which comes to one-third of the 

lumen diameter, we therefore decided to keep the envelope’s GZheight to be around 1/3rd the lumen 

diameter. Figure 6.A shows the GZ (depicted in the original image scale of fine resolution). 

Step 2: Edge Enhancement Gradient of Gaussian (GoG) Filtering: FOAM Operator. 

We used the First Order Absolute Moment (FOAM) operator for final segmentation of LI and 

MA borders in the automatically designed guidance zone obtained from the multi-resolution 

approach. The FOAM operator is a regularized edge-based operator, was first introduced by 

Demi et al. [21] and then extended by Faita et al. [4] for an accurate semi-automated IMT 

measurement in ultrasound images.  

        Considering an image ( , )I x y  and two circular domains having radiuses equal to  θ1  and  θ2 , 

respectively, the FOAM edge ( ),e x y operator is mathematically defined as: 

e x, y( ) = I1 x, y( ) − I x − k, y − l( ) ⋅G k,l,σ 3( )  dk  dl
θ2

∫∫  (6) 

where 

  
I1 x, y( ) = I x − k, y − l( ) ⋅G x, y,σ1( )

θ1

∫∫  dk  dl  and is computed by low-pass filtering 

the input image by a Gaussian kernel with standard deviations equal to  σ1  and domain region 

equal to  θ1 . The FOAM operator represents the spatial distribution of the variability of the 

intensity levels of the points in the domain  θ2  with respect to the average of the domain  θ1  [22], 

with a regularization Gaussian kernel with standard deviation equal to σ 3 . Therefore, in 

homogeneous regions (i.e. in regions without intensity changes and that are of the same gray 

level), the FOAM edge value is close to zero. When computed in proximity of an intensity 

gradient, the FOAM edge value rises to a maximum. Gemignani et al. [22] optimized the values 

of  θ1  and  θ2  for ultrasound vascular images and suggested to link the Gaussian Kernel sizes to 
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the image resolution [22]. Also, they suggested using all the  values equal to 1/3rd of the kernel 

size. This ensured optimized representation of the intensity discontinuities (i.e. in this specific 

case, of the interfaces between the carotid layers). 

Recently, Faita et al. showed that better robustness to noise can be achieved by adopting 

a third Gaussian Kernel function and proposed adopting the following definition of FOAM [4]: 

  (7) 

where 

  
I1 x, y( ) = I x − k, y − l( ) ⋅G x, y,σ1( )

θ1

∫∫  dk  dl  and 

 are computed by low-pass filtering the input 

image by a Gaussian kernel with standard deviations equal to  σ1  and  σ 2 , respectively. The use 

of two different apertures values  σ1  and  σ 2  implements a filter that is similar to the Gradient-of-

Gaussians (GoG) filter, which is a high-pass filter, enhancing the intensity edges. The 

regularization term 
  
G x, y,σ 3( )  is Gaussian filter with standard deviation equal to σ 3 .  

We linked the Gaussian Kernel sizes and  values to the image conversion factor (the best 

conversion factor was τNicosia  = 0.06 mm/pixel, as reported by Table I), and chose the value of 

ηMRAFOAM  = 0.3 mm as pixel conversion factor for the FOAM operator in the multi-resolution 

framework (MRFOAM). Hence, we used the kernel size  θ1  =  θ3  = ηMRAFOAM  / τNicosia . This 

yields,  θ1  =  θ3  = 0.3/0.06 = 5 pixels. As suggested by Faita et al. [4], we took  θ2  = 2 θ1  = 10 

pixels. The Gaussian Kernel parameters were then taken equal to  

and . 
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Table II summarizes the parameters we used in our CAMES technique. The value of 0.3 mm 

value was similar to that adopted by Faita et al., who used a value of 0.28 mm (see [4]). We 

observed that higher values originated larger Gaussian Kernels, which decreased the accuracy of 

the LI/MA representation and, therefore, decreased the FOAM localization performance. 

Conversely, values lower than 0.3 mm originated very small Gaussian Kernels, which did not 

ensure sufficient noise robustness. 

 

Step 3: Heuristic Approach for LI/MA Borders. 

The LI/MA edge interfaces in the GZ were then searched by relying on heuristic search. This can 

be explained much better in the following way: Figure 6.C shows the intensity profile of a 

column of the FOAM operator in fig. 6.B. The LI and MA transitions produce two high-intensity 

peaks on the FOAM column profile and we model these peaks as 90th percentile of the 

distribution along that column. First peak is MA and second peak is LI. 

We continue the search ahead in the direction of the decreasing row index (i.e., towards the top or 

proximal wall of the image) and again the location is searched which reflects 90th percentile of the 

intensity distribution, marked as the LI interface. This procedure is repeated column-by-column 

along the CA artery until all the points along the ADF curve are examined. If one of the two 

maxima’s is not found, that column is discarded.  

A subsequent outlier removal step cleans disconnected columns and regularizes the 

profiles, ensuring the constraint that a maximal distance between LI and MA is lower than 2 mm. 

The constraint of 2 mm is consistent with the IMT value (which is lower than 1 mm for healthy 

adults) even in the case of pathologic vessels with increased wall thickness [23]. An IMT value 

higher than 2 mm can be found only in vessels with the beginning of plaque build-up. This 

regularization step ensures an optimal representation of the LI/MA profiles in healthy arteries or 

in arteries with increased IMT, but it is not suited to plaque analysis. 
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III. Results 

We show the results of the CAMES Vs. CALEX on the 365 image database. We do not compare 

CAMES with FOAM directly, since FOAM is not an automated technique and requires manual 

ROI selection. According to previous studies [18, 24, 25], we defined the CA as correctly 

recognized in the image frame if the distance between the automated tracing of the ADF and the 

manually traced MA boundary was lower than 2 mm (which is a value about twice that of the 

average IMT). CAMES correctly identified the CA in all the 365 images of the dataset, showing 

100% accuracy. This is a first time in the history a computer-based technique can recognize the 

carotid artery automatically. CALEX could not correctly identify the CA in 12 images out of 365, 

having a failure rate of 3.3 %. 

 

A. Distal Wall Segmentation and Performance 

Table III reports the overall LI (first row) and MA (second row) segmentation errors for the 

CAMES (first column) and CALEX (second column) techniques. CAMES outperformed CALEX 

in both LI and MA tracings, leading to an improvement of the distal wall segmentation error 

equal to 8 % for LI and 42 % for MA. The average LI and MA segmentation errors using 

CAMES were 0.081 ± 0.099 mm and 0.082 ± 0.197 mm, respectively. 

The Percent Statistic Test [26] indicated that CAMES profiles could be considered as 

equivalent to manually traced ones. Considering n=3 and N=365; we obtained p=0.5 and 

θ=0.051. Therefore, considering α = 0.05, the Percent Statistic Test is passed when Z0 >0.448 

(see [26] for details about the Percent Statistic Test). CAMES showed Z0 scores equal to 0.545 

(for the LI interface) and of 0.530 (for the MA interface), while CALEX showed Z0 scores of 

0.478 (LI) and 0.451 (MA).  
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B. IMT Measurement Bias 

The third row of Table III reports the IMT measurement bias. CAMES showed a measurement 

error significantly lower than CALEX (Student’s t-test, p<10-3): CAMES error was as low as 

0.078 ± 0.112 mm, whereas CALEX showed a higher error equal to 0.121 ± 0.334 mm. CAMES 

showed an improvement over CALEX by 36%. Table IV reports the IMT value measured by 

CAMES (first column), CALEX (second column) and ground-truth (GT – third column). It can be 

noticed that CAMES demonstrated a very accurate IMT computation equal to 0.91 ± 0.45 mm, 

which is very close to ground-truth of 0.95 ± 0.41 mm. On the contrary, CALEX measurement 

was less accurate resulting in the IMT value of 0.83 ± 0.39 mm. On the overall, both the 

techniques under-estimated IMTs. 

Another way of interpretation is by computing the figure-of-merit (FoM) in % as: 

FoMCAMES = 100 −
GT IMT −CAMESIMT

GT IMT
⋅100

FoMCALEX = 100 − GT IMT −CALEX IMT

GT IMT
⋅100

 (8) 

Using the above definitions, the FoM for CALEX came out to be 87.4%, while CAMES was 

much superior yielding to 95.8%. This clearly demonstrates the how close and reproducible the 

IMTs are with CAMES compared to CALEX. 

Figure 7 reports the scatter diagrams showing the CALEX (on the left) and CAMES (on the 

right) IMT estimates with respect to GT. CAMES showed a correlation coefficient as high as 0.90 

(95% C.I. = 0.88 – 0.92), whereas the correlation coefficient of CALEX was only of 0.64 (95% 

C.I. = 0.58 – 0.70). 

Figure 8 shows the Bland-Altmann plots for CALEX (left) and CAMES (right). Clearly, 

CAMES estimates are more accurate than CALEX. 

The standard deviation of the IMT bias (i.e. the reproducibility) is equal to 0.122 mm for 

CAMES and 0.334 mm for CALEX. This is partly due to the anatomical differences of the 
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subjects in our database, which comprised healthy and pathological subjects. Part of the 

variability was also due to the differences between the three operators: the first operator measured 

an IMT value equal to 0.93±0.38 mm, the second 0.96±0.37 mm, and the third 0.96±0.41 mm. 

Hence, operator variability affected the overall reproducibility, even though the principal source 

of variability remains the difference among subjects. 

 

IV. Discussion 

The aim of this paper was to develop an automated multi-resolution recognition and edge-based 

segmentation system for high-performance IMT measurement in longitudinal ultrasound B-mode 

carotid imaging.  

We benchmarked the system with recently published standardized system based on an 

integrated approach of feature extraction and classification (called CALEX) and showed an 

improvement of LI and MA interfaces by 8% and 42%, respectively, while the IMT measurement 

bias decreased by 36%. The overall Figure of Merit (FoM) of CAMES was 95.8%. 

Complete automation is a major advantage of this technique. The CA is automatically located 

in the image frame by a processing strategy based on multi-resolution analysis. By fine to coarse 

sampling the image, we lessen the computational burden, yet maintaining accuracy in the far 

adventitia wall tracing. The advantage of using a multi-resolution approach with respect to other 

automated techniques for CA recognition (i.e. local statistics [14], integrated approach [10], 

Hough transform [27], parametrical template matching applied to the radio-frequency signal [18]) 

is the possibility of obtaining a clear visualization of the walls (fig. 2.D) with a very reduced 

computational burden and high robustness to noise. Our stage-I system provides a check based on 

anatomic information such as lumen, which allows full robustness to the system for CA 

recognition. 
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The segmentation in stage-II was performed by using the FOAM edge operator, which is 

conceptually similar to a Gaussian of Gradient (GoG)-based technique incorporating speckle 

noise reduction and high-sensitivity to gray levels changes. Faita et al. showed that FOAM 

operator is very effective in detecting the position of the LI and MA interfaces; in their study, 

they documented a IMT measurement error as low as 0.01 mm, with best performance reaching 

errors of about 0.001 mm [4]. Another edge-based technique was published by Stein et al. [6] in 

2005. They developed a user-driven computer method for aiding IMT measurement where the 

user had to place a ROI around the far adventitia wall, and the program computed the image 

gradients. IMT was measured as distance between the two highest gradient peaks. They obtained 

average IMT measurement errors equal to 0.012 ± 0.006 mm. In a recent extensive review about 

the computer methods for carotid segmentation and IMT measurement from ultrasound images, 

we showed that gradient-based methods are the best performing techniques [2]. High 

performance and fast computation made the Gaussian gradient-based LI and MA detection the 

best choice for CAMES, when used under scale-space framework in multi-resolution paradigm. 

Overall CAMES system performance in terms of LI and MA tracing accuracy were very 

encouraging. First, CAMES tracings differed from manual tracings as much as manual tracings of 

different operators differed among them (Percent Statistic Test). Then, tracing errors could be 

considered in line with the best performing techniques (including user-driven ones) we could find 

in the literature. In 2009, Destrempes et al. [28] proposed a segmentation strategy based on 

Nakagami modeling of the intensities of the artery lumen, and of the intima, media, and adventitia 

layers. They documented tracing errors equal to 0.021 ± 0.013 mm for LI and 0.016 ± 0.007 mm 

for MA. These are the lowest errors we could find in literature. Despite higher LI and MA tracing 

biases, CAMES showed three major advantages when compared to Destrempes’s technique. First, 

the methodology based on Nakagami modeling requires extensive tuning and training of the 

system. This implies that the computational cost is relatively high and that the system 

development procedure is long. Second, specific training and tuning is required in order to 
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optimize performance on a specific scanner. If different scanners acquired the images, then re-

training and re-tuning would be mandatory. Hence, this methodology would not be optimal for 

large multi-centre studies and real time clinical environments. Third, the technique by 

Destrempes is not automated, since user interaction is required for selecting the optimal wall 

portion during the modeling process. 

Figure 9 shows samples of CAMES segmentation. Figures 9.A, 9.C, and 9.E report the LI 

automated tracings of CAMES (white line) in comparison to GT (white dashed line) with 

grayscale cropped image in background; fig. 9.B, 9.D, and 9.F report the MA tracings (black line) 

in comparison to GT (black dashed line).  

In Stage-I, CAMES correctly processed all the 365 images of the database by tracing the ADF 

profile, showing a success rate of 100%. This percentage drops to 96% if the refinement by 

anatomic reference (Lumen) is omitted. This check is very important in Stage-I, since it increases 

the recognition accuracy and makes the system insensitive to noise and variability. By recognition 

accuracy we mean that instead of CA, JV could be detected. Figure 1.D shows that the lumen 

identification procedure also detects the pixels belonging to the jugular vein (JV). This is correct 

behavior, since the pixels of the JV lumen have same characteristics of those of the CA lumen. 

However, this is not an error condition. In fact, the lumen is used only for the validation of the 

ADF point, and not for their tracing. This means that if a candidate ADF point fails the refinement 

by anatomic reference (lumen) check, it is not part of the ADF curve. No points are added to the 

ADF profile by the anatomic reference (lumen) check procedure. Therefore, the presence of the 

lumen points of the JV does not constitute an error condition for our technique. The JV was 

present in 66% of the images of our database and it was always recognized; however, this did not 

cause any tracing obstruction for far adventitia border detection and carotid artery recognition. 

In our recent review, we showed that snake-based segmentation techniques could provide 

very accurate results whereby, the LI and MA segmentation errors equal to about 0.035 ± 0.032 
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mm and 0.037 ± 0.029 mm, respectively [2, 11]. Clearly, the snake-based technique outperformed 

CAMES.  

However, CAMES has some major advantages over snake-based procedures are. CAMES 

does not require any tuning or parameter optimization. Table II reports all the parameters we set 

and used in CAMES, particularly in Stage-II where we used FOAM. Actually, all the parameters 

are dependent on the conversion factor, which is reported by the first row and which determines 

all the other parameters. According to previous studies, we used a value of 0.3 mm. This value is 

an optimal compromise between the need for accurate localization of the LI/MA interfaces, and 

robustness to noise. If this value decreases, the localization of the LI/MA interfaces becomes 

more accurate, but the FOAM operator becomes noisy, since the Gaussian Kernels become too 

small to ensure noise attenuation. Conversely, if the conversion factor is greater than 0.35 mm, 

the Gaussian Kernels become larger. In this condition, CAMES becomes very robust with respect 

to noise, but the LI/MA representation is less accurate. In fact, larger Gaussian Kernels cause a 

higher blurring on the LI/MA interfaces representation. We found that the value of 0.3 mm was 

suitable for all the images of the database, even if they had a different resolution. Conversely, 

snakes performance is very dependent on the rigidity and elasticity parameters. Fine-tuning of the 

parameters helps obtaining high performance, but reduces applicability to diversity in the image 

data set due to gain settings taken by different set of sonographers. 

CAMES implementation is low in computation and is very fast. CAMES provides LI and MA 

tracings and IMT measurement in less than 15 seconds. Snake-based techniques require several 

iterations until the curve converges to the LI or MA boundary. Hence, computational time is 

usually of about 20-30 seconds. 

Table II summarizes the parameters used in CAMES system. The table has two sets of 

parameters, those used for stage-I and stage-II, respectively. The table has three columns: first 

column shows the parameter and its symbols, column two shows the values the parameter can 

takes, while the last column is the safe range of the parameter. The CAMES parameters related to 
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stage-I are (i) Size (S) of the Gaussian Kernel size; (ii) Scale Parameter ( ), (iii) width of the 

ADF search region (Wsearch); (iv) pixels neighborhood size (WIN), (v) number of classes (K) of the 

2DH, (vi) ROI width for lumen validation (ROILumen ), (vii) Lumen test failure threshold (TLumen) 

and (viii) Spike detection threshold  (TSpike). For a 100% success of stage-I of the CAMES 

system, the best combination of parameters for stage-I were: S equal to 35 pixels;  ranged 

between 6 to 10 pixels, Wsearch equal to 6 pixels; WIN was 10x10 wide, K was equal to 20 classes, 

TSpike ranged 12-16 pixels, ROILumen and  (TLumen) set to 30 and 15 pixels, respectively. The 

sensitivity of ADF   detection would change if ROILumen and TLumen   is set greater than 30 and lower 

than 15 pixels, respectively. This would cause about 10% of the image database to fail stage-I. 

Stage-II set of parameters were: MRFOAM Calibration Factor ( ), Gaussian Kernel 

sizes: ,θ2 , θ3  and Gaussian scale σ1 , σ 2 ,σ 3 . Note that Gaussian Kernel sizes: ,θ2 , θ3  are 

function of  and Gaussian scales σ1 , σ 2 ,σ 3 are function of Gaussian Kernel 

sizes: ,θ2 , θ3 . Thus there was a dependency of Gaussian Kernel sizes and Gaussian scales on 

MRFOAM Calibration Factor ( ). This parameter was set to 0.3 mm. The effect of 

increasing was over smoothing LI/MA peaks in the MRAFOAM edge map, which 

would preclude the accurate LI/MA peak detection increasing the overall system error.  

Conversely, a lower  value caused a noisy FOAM representation, thus originating 

LI/MA profiles characterized by variability and ripple. Thus the most stable and safe value for  

 was set to 0.3 mm made the stage-II completely stable with FoM factor reaching to 

95.8%. Lastly, we would like to remark that the values shown in the middle column for the table 

II were exactly used for all 365 images of the database. We do however believe that, a very large 

database (reaching above 5000 images or above) and cohort studies would completely validate 

our entire system to full proof. We however validated our system sensitivity with variations in 

parameters and further benchmarking with CALEX system.  
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  Overall, the average processing time for CAMES was less than 15 s, while CALEX 

required 3 s [11]. Suri and his team (at Global Biomedical Technologies, Inc.) recently ported the 

system in Windows OS environment using C++ under Visual Studio (called AtheroEdge™), 

obtaining computational costs lower than 1 s per image without refinement check. Work is 

currently active to actually design a platform independent system with GPU settings to make it 

real time. 

 

V. Conclusion 

In conclusion, CAMES brought automation in carotid wall segmentation and IMT measurement 

based on edge detection strategy. Among all possible techniques for automated carotid artery 

location, we introduced a multi-resolution approach, which ensured accuracy and real-time 

computation. Compared to previously developed techniques (based on integrated approach [10] 

or local statistics [8]), multi-resolution required less than 1 s (with respect to 3 s of integrated 

approach [10] and about 30 s of local statistics [8]). Accuracy increased with respect to a 

previously developed automated technique (CALEX). Specifically, the IMT measurement FoM 

improved from 83% to about 94%. Real-time computation, robustness to noise, and complete 

automation, make CAMES a suitable and validated clinical tool for automating and improving 

IMT measurement in multi-center large clinical trials. 
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Table I – Image Database and Patient Demographics 

Characteristics of the image dataset coming for four different Institutions and relative patient 

demographics. The first column reports the institution, the second the number of image, the third 

the conversion factor, the fourth the scanner used. Finally, the last two columns report the number 

of patients and their demographics. 

 
Institution Total 

Images 
(N) 

Conversion 
Factor (τ ) 
 (mm/pixel) 

Ultrasound 
scanner 

Patients Age 

Torino 

(Italy) 

200  = 0.0625 

 

ATL HDI5000 150 69 ± 16 years 

(50-83 years) 

Nicosia 

(Cyprus) 

100 τNicosia  = 0.0600 ATL HDI3000 100 54 ± 24 years 

(25-95 years) 

Porto 23  = 0.0900 ATL HDI5000 23 [Not published] 
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(Portugal) [24, 25] 

Cagliari 

(Italy) 

42  = 0.0789 Esaote MyLab 70 21 68 ± 8 years 

(59-81 years) 

 

Table II – CAMES parameters 

CAMES parameters and experimental values used. 
 

Parameter Value Experimental Range and Effect 

                                              Stage-I (ADF Identification) 
Gaussian Kernel size (S) 35 pixels S = 35x35 pixels. 

Size of the Gaussian Kernel used during stage I 

process. 

Scale Parameter ( ) 

 

8 pixels = 6-10 pixels. 

Scale of the 1st order Gaussian Kernel derivative 

during the stage I process. 

Width of the ADF white region 

(Wsearch) 

6 pixels Wsearch = 6 pixels. 

Width of the white region for the ADF detection. 

Number of classes of 2DH (K) 50 K = 50. 

Number of classes for the discretization of the 

normalized mean and standard deviation of the 

pixel neighborhood. Each class has 0.02 width. 

ROI width for lumen validation 

(ROILumen ) 

30 pixels Sequence of points above ADF to check for lumen 

test. 

Lumen test failure threshold  

(TLumen) 

15 pixels Threshold for passing the lumen test. 

Spike detection threshold  (TSpike) 15 pixels TSpike = 12-16 pixels. 
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Determines the difference between consecutive 

points of a profile that we consider a spike. 

                                              Stage II (LI/MA segmentation) 
Height of the Guidance Zone 

(GZheight) 

30 pixels GZheight = 30 pixels. 

Height of the GZ, which was taken equal to 1/3rd 

of the lumen diameter. 

MRFOAM Calibration Factor 

( ) 

0.3 mm Determines noise robustness and LI/MA 

accuracy. 

Gaussian Kernel size ( ) 5 pixels  

Implements the GoG filter. 

(  is the conversion factor of Table I) 

Gaussian Kernel size (θ2 ) 10 pixels  

Implements the GoG filter 

Gaussian Kernel size (θ3 ) 5 pixels  

Regularization parameter. 

(  is the conversion factor of Table I) 

Gaussian scale σ1  and σ 3  

Gaussian scale σ 2  

2 pixels 

3 pixels 

  

 

Table III – Performance and Benchmarking 

Overall system performance for CAMES (first column) and CALEX (second column).  

 CAMES CALEX Error reduction 

LI Error ( εLI ) 0.081 ± 0.099 mm 0.088 ± 0.132 mm 8 % 
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MA Error ( εMA ) 0.082 ± 0.197 mm 0.141 ± 0.201 mm 42 % 

IMT Bias ( µ ) 0.078 ± 0.112 mm 0.121 ± 0.334 mm 36 % 

 

Table IV – Average IMT and Figure of Merit (FoM) 

Average IMT value by CAMES (first column) and CALEX (second column), as compared to 

ground-truth (third column). The second row reports the figure-of-merit (FoM). 

 CAMES CALEX Ground-Truth 

IMT measurement 0.91 ± 0.44 mm 0.83 ± 0.39 mm 0.95 ± 0.39 mm 

FoM 95.8 % 87.4 % - 
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Figure Legends 
 

Figure 1 

 

Reference anatomy of a longitudinal ultrasound image of a carotid artery showing the 

lumen – intima (LI), the media – adventitia (MA) interfaces, and the intima-media 

thickness (IMT). 
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Figure 2 
 

 

A) Original cropped image. B) Donwsampled image. C) Despeckled image. D) Image 

after convolution with first-order Gaussian derivative (sigma = 8). E) Intensity profile of 

the column indicated by the vertical dashed line in panel D. (ADF indicates the position 

of the far adventitia wall). F) Cropped image with far adventitia profile overlaid. 
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Figure 3 
 

 
A) Original B-Mode longitudinal image. B) Low-passed filtered image. C) 2DH showing 

in gray the histogram area where we hypothesize the lumen points should concentrate and 

in black all the other pixels. D) Lumen points (in white) overlaid to the original B-Mode 

image of panel A. 

 

JV 
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Figure 4 

 

A) Downsampled and filtered image (first-order Gaussian filter) with the initial ADF 

guess marked by squares. The white arrow indicates incorrect ADF points located below 

the far wall that failed the lumen test and are deleted. B) The ADF points passing the 

lumen check are depicted by diamonds. C) Filtered image. D) ADF points (white 

diamonds) overlaid to the original image with lumen pixels in white. 
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Figure 5 

   

A) ADF points (gray diamonds) that passed the lumen test. The white arrow indicates a 

dot located below the far wall. This point originates spikes in the ADF profile. B) After 

the spike removal procedure, the ADF points are concentrated on the far wall (gray 

circles). 
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Figure 6 

 

A) ROI automatically drawn around the ADF profile (same image of fig. 4.A). B) 

MRAFOAM edge operator associated with the ROI of fig. 8.A. C) Intensity profile of a 

column of image 8.B (indicated by the vertical white dashed line). The peaks indicate the 

LI and MA boundaries. D) Superimposition of LI (white solid) and MA (black solid) 

tracings (computed by CAMES) on the cropped grayscale image. 

(LI – lumen-intima interface; MA – media-adventitia interface; CAMESLI – LI tracing by 

CAMES; CAMESMA – MA tracing by CAMES) 
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Figure 7 

 

Scatter diagram for the CALEX (left panel) and CAMES (right panel) with respect to GT 

(depicted on the horizontal axis). 

 

Figure 8 

 

 

Bland-Altmann plots for CALEX (left panel) and CAMES (right panel). 
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Figure 9 
 

 
 
Samples of CAMES segmentation showing versatility of the technique. A-C-E) Lumen-

intima segmentation and tracings. B-D-F) Media-adventitia segmentation and tracings. 

A) and B) are relative to a straight and horizontal carotid; C) and D) to a curved carotid, 

and E) and F) to a straight and inclined artery. 

(CAMESLI – LI tracing by CAMES; CAMESMA – MA tracing by CAMES; GTLI – 

ground truth LI boundary; GTMA – ground truth MA boundary) 



 

 - 40 - 

Biographies 
 

Filippo Molinari, PhD, was born in Piacenza, Italy. He received the Italian 

Laurea degree and the Ph.D. in Electronics from the Politecnico di Torino, Torino, Italy, 

in 1997 and 2000, respectively. Since 2002, he is Assistant Professor on faculty of the 

Dept. di Electronics of the Politecnico di Torino. Since 2001, he taught courses on 

biomedical signal processing, biomedical image processing, and instrumentation for 

medical imaging. His research topics include the analysis of biosignals and the 

biomedical image processing applied to the computer-aided diagnosis and therapy. In the 

field of ultrasound imaging, Dr. Molinari developed diagnosis procedure for vascular 

applications and thyroid assessment. Dr. Molinari is member of the IEEE Engineering in 

Medicine and Biology Society (EMBS), of the Italian Group of Bioengineering (GNB), 

and of the American Institue for Ultrasound in Medicine (AIUM). 

 

C. S. Pattichis (S’88–M’88–SM’99) was born in Cyprus, in January 30, 

1959. He received the Diploma degree in technician engineering from the Higher 

Technical Institute, Nicosia, Cyprus, in 1979, the B.Sc. degree in electrical engineering 

from the University of New Brunswick, NB, Canada, in 1983, the M.Sc. degree in 



 

 - 41 - 

biomedical engineering from the University of Texas, Austin, in 1984, the M.Sc. degree 

in neurology from the University of Newcastle Upon Tyne, U.K., in 1991, and the Ph.D. 

degree in electronic engineering from the University of London, London, U.K., in 1992. 

He is currently a Professor in the Department of Computer Science, University of 

Cyprus, Nicosia, Cyprus. His research interests include e-health, medical imaging, 

biosignal analysis, and intelligent systems. He has been involved in numerous projects in 

these areas funded by the European Union (EU), the National Research Foundation of 

Cyprus, the INTERREG, and other bodies, with a total funding managed in excess of five 

million Euros. He was on the Editorial Board of the Journal of Biomedical Signal 

Processing and Control. He is the Co-Editor of the books: M-Health: Emerging Mobile 

Health Systems (New York: Springer, 2006), and Information Technology in 

Biomedicine (IEEE, to be published in 2010). He is the coauthor of the monograph 

Despeckle Filtering Algorithms and Software for Ultrasound Imaging (San Rafael, CA: 

Morgan & Claypool, 2008). He is the author or coauthor of 52 refereed journal and 142 

conference papers, and 19 chapters in books in these areas. 

 

Guang Zeng received the B.S. degree from Xiangtan University, China in 

1998. He received the M.S. degree in 2005 and the Ph.D. degree in 2008 from Clemson 

University, SC, USA, both in Electrical Engineering. He is currently working in the 

Aging and Dementia Imaging Research Laboratory, Mayo Clinic, Rochester, MN. His 



 

 - 42 - 

research interests include biomedical image processing, pattern recognition and computer 

vision. 

 

Luca Saba, MD, received the MD degree from the University of 

Cagliari, Italy in 2002. Today he works in the A.O.U. of Cagliari. Dr Saba research fields 

are focused on Neuroradiology, Multi-Detector-Row Computed Tomography, Magnetic 

Resonance, Ultrasound, and Diagnostic in Vascular Sciences.  

His works, as lead author, achieved more than 75 high impact factor, peer-reviewed, 

Journals. Dr. Saba has written 7 book chapters and he presented more than 400 papers in 

National and International Congress. Dr Saba is member of the Italian Society of 

Radiology (SIRM), European Society of Radiology (ESR), Radiological Society of North 

America (RSNA), American Roentgen Ray Society (ARRS) and European Society of 

Neuroradiology (ESNR). 

 

U Rajendra Acharya, PhD, Deng, is a Visiting faculty in Ngee 

Ann Polytechnic, Associate faculty in SIM University, Singapore and Adjunct faculty in 

Manipal Institute of Technology, Manipal, India. He received his Ph.D. from National 



 

 - 43 - 

Institute of Technology Karnataka, Surathkal, India and DEngg from Chiba University, 

Japan. He has published more than 145 papers. He is in the editorial board of many 

journals and served as Guest Editor for many journals. His major interests are in 

Biomedical Signal Processing, Bio-imaging, Data mining, Visualization and Biophysics 

for better healthcare design, delivery and therapy.  

 

Roberto Sanfilippo, MD,  

 

Andrew Nicolaides, MS, FRCS, PhD (Hon) graduated from 

Guy’s Hospital Medical School, London University, London, U.K., in 1962. He received 

the M.S. degree from the Royal College of Surgeons of England, London, U.K., and the 

F.R.C.S., and F.R.C.S.E. degrees from the Royal College of Surgeons of England, 

London, and the Royal College of Surgeons of Edinburgh, Midlothian, U.K., in 1967. He 

is currently the Professor Emeritus at Imperial College, London and an Examiner for 

M.S. and Ph.D. degrees for London University, London. He is also a “Special Scientist” 

at the University of Cyprus, Nicosia, Cyprus, and theMedical Director of theVascular 

Screening and Diagnostic Centre, London. His current research interests include the 

genetic risk factors for cardiovascular disease, identification of individuals at risk and the 

development of effective methods of prevention, especially stroke. He is Editor-in-Chief 



 

 - 44 - 

of International Angiology and is on the Editorial Board of many vascular journals. He is 

the coauthor of more than 500 original papers and editor of 14 books. 

 

Jasjit S. Suri, PhD, MBA, Fellow AIMBE, is an innovator, 

visionary, scientist, and an internationally known world leader, has spent over 25 years in 

the field of biomedical engineering/sciences and its management. Dr. Suri has written 

over 350 peer-reviewed publications. He has championed the field imaging sciences. He 

received his Masters from University of Illinois, Chicago, Doctorate from University of 

Washington, Seattle, and Executive Management from Weatherhead School of 

Management, CWRU, Cleveland. Dr. Suri is a committee member of several journals and 

companies. Dr. Suri was crowned with President’s Gold medal in 1980 and the Fellow of 

American Institute of Medical and Biological Engineering (AIMBE), awarded by 

National Academy of Sciences, Washington DC in 2004. Dr. Suri has been the chairman 

of IEEE Denver section and has won over 50 awards during his career. 

heart, brain, spine, thyroid, eye, vasculature, breast and prostate. He has championed the 

field of image segmentation and registration for image guided surgical applications. 

During his leadership, he has released over six different products along with the FDA 

approvals such as: Voyager, SenoScan and Artermis. 

He received his Masters from University of Illinois, Chicago, Doctorate from University 

of Washington, Seattle, and Executive Management from Weatherhead School of 



 

 - 45 - 

Management, Case Western Reserve University (CWRU), Cleveland. Dr. Suri has been 

board member of several international journals and conference committees. Dr. Suri was 

crowned with President’s Gold medal in 1980 and the Fellow of American Institute of 

Medical and Biological Engineering (AIMBE), awarded by National Academy of 

Sciences, Washington DC in 2004. Dr. Suri has been the chairman of IEEE Denver 

section and has won over 50 awards during his career. 

 


