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Abstract. According to the increasing interest in metrological systems for the dimensional measurements
of large-size objects in a wide range of industrial sectors, several solutions based on different technologies,
working principles, architectures, and functionalities have recently been developed. Among all, the most
flexible and easily transportable solutions are those that have aroused most interest and have found greater
success. In order to address the needs of Large-Scale Metrology (LSM) applications, a distributed flexible
system based on a network of low-cost InfraRed (IR) sensors – the Mobile Spatial coordinate Measur-
ing System II (MScMS-II) – has been developed at the Industrial Quality and Metrology Laboratory of
Politecnico di Torino. This paper presents a preliminary uncertainty assessment of the system referring
to the measured point coordinates in the 3D space, focusing on the sources of measurement uncertainty
and the related propagation laws. A preliminary metrological characterization of MScMS-II architecture,
experimentally evaluated through a system prototype, is also presented and discussed.

Keywords: MScMS-II; dimensional measurement; uncertainty assessment; metrological characterization;
photogrammetry; Large-Scale Metrology

1 Introduction

The ever increasing interest in metrology for large-sized
objects, since its definition as “Large-Scale Metrology”
(LSM) given by Puttock in 1978 [1], has been responsi-
ble for the wide variety of measurement systems. Different
technologies, working principles, functionalities and archi-
tectures have been implemented, in order to fulfil the re-
quirements of the several industrial sectors involved [2,3].

At present, optical-based systems clearly demonstrate
their advantages over the other approaches and their po-
tentialities for LSM applications [2]. As noted by Estler
et al. [4] in a recent state-of-the-art update, tremendous
improvements have been achieved in this field due to ad-
vancements in optical technology and fast, low-cost com-
putation. However, it is recognized that significant techni-
cal challenges still remain “associated with high accuracy
measurements of large structures” [4]. Furthermore, most
of these systems may not be cost-effective for measure-
ments below a given level of accuracy [5].

Developments in imaging technology, which afforded
the community large area CCD sensors, and improve-
ments of target image location algorithms have led to an
ever-increasing competitiveness of vision-based metrology.
As a matter of fact, different well-settled solutions based
� Correspondence: maurizio.galetto@polito.it

on photogrammetry are commercially available, providing
accurate, portable, and versatile instruments for three-
dimensional coordinate measurement [6, 7]. The funda-
mental principle used by photogrammetry is triangulation.
By taking photographs or video images from at least two
different positions, it is possible to reconstruct the spa-
tial location of a point and, therefore, the geometry or the
main features of an object. Notwithstanding their multiple
sensor-based structure, the existing photogrammetric in-
struments are applied to reduced working volumes and do
not exploit the potentialities of a wireless sensor network
layout.

This paper presents a novel IR-based distributed sys-
tem (MScMS-II – Mobile Spatial coordinate Measuring
System II), designed to perform low-cost, simple, and
rapid indoor coordinate measurements of large-sized ob-
jects exploiting the principles of photogrammetry. A pre-
liminary uncertainty assessment referring to the measured
point coordinates in the 3D space is presented as well, fo-
cusing on the sources of measurement uncertainty and the
related propagation laws.

Compared to other existing systems, the novelty of
MScMS-II is mainly related to its technical and opera-
tional characteristics, which are: scalability, i.e. the ca-
pability to extend the measurement domain in order to
cover large and geometrically complex working volumes
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Fig. 1. MScMS-II architecture [8]. The dashed lines represent
visual links between sensor nodes and retro-reflective spheres
(indicated as A and B) equipping the hand-held probe. The
Bluetooth connection is established between each node and
the processing system.

by properly distributing the network sensors; all-around
visibility of the measuring probe; wireless connection of
network sensors; layout optimisation, intended as the ca-
pability to automatically suggest the optimal sensor posi-
tions in order to efficiently cover a given working volume;
measurement uncertainty automatically calculated and in-
dicated for every measurement; cooperation of blocks of
sensors in order to optimise point acquisitions, system
auto-diagnostics, and power consumption; sensor fusion,
which is the capability to integrate the metrological sys-
tem with other spatially distributed sensors (of temper-
ature, humidity, vibrations, light intensity, etc.) in order
to provide environmental mapping of the working volume
and monitor the operating conditions of the system for
auto-diagnostics or self-calibration.

2 System description

The MScMS-II consists of three basic units (Fig. 1) [8]: a
network (“constellation”) of wireless sensor devices, suit-
ably distributed all around the measurement volume, to
estimate 3D coordinates of reflective markers; a mobile
wireless and hand-held probe, equipped with two reflec-
tive markers, to “touch” the measurement points; a data-
processing system, using Bluetooth connection, to acquire
and elaborate data sent by each network node.

An earlier prototype of MScMS exploited UltraSound
(US) transceivers in order to communicate and evalu-
ate mutual distances between the network nodes and the
hand-held probe [5]. The poor characteristics of US de-
vices (non-punctiform dimensions, speed of sound depen-
dence on operating temperature, reflection and diffrac-
tion of US signal, etc.) caused a low accuracy in the
measurement results [5]. In order to enhance system per-
formance, current version makes use of IR-based optical
sensors (IR cameras), estimating the position of passive

Fig. 2. Mobile measuring probe [8]. A and B are the two
spherical retro-reflective markers and V is the tip.

retro-reflective markers from their projections in different
camera views.

Currently, a prototype of the distributed network has
been set up by using commercial low-cost IR cameras,
characterized by an interpolated resolution of 1024 ×
768 pixels (native resolution is 128 × 96 pixels), a max-
imum sample rate of 100 Hz, and a Field Of View (FOV)
of approximately 40◦ × 30◦. Each camera implements a
real-time multi-object tracking engine, allowing to track
up to four IR light sources (IR spots). In order to work
with passive markers, each camera was coupled with a
near-IR light source, consisting of a 160-chip LED array
with a peak wavelength of 940 nm and an half-Field Of
View of approximately 80◦. The overall sensor set (camera
and LED array) weights about 500 g and is 13×13×15 cm
sized.

Given a fixed number of cameras, all operating con-
ditions being unchanged, the actual working volume, in-
tended as the region within which the spatial position of a
single marker can be reconstructed, depends on the tech-
nical specifications of IR cameras (e.g. FOV, sensitivity,
pixel resolution and focal length) and light sources (e.g.
LED power and wave length), as well as on their relative
position and orientation [9], and on the size of the markers.
According to triangulation principles, this volume consists
of the volume of intersection of the “field-of-sensing” of at
least two cameras.

The mobile probe (Fig. 2) consists of a rod, equipped
with two reflective markers at the extremes and a
stick at one end to physically “touch” the measurement
points. The markers have been made by wrapping around
polystyrene spheres a retro-reflective silver transfer film.

Referring to Figure 2, as the probe tip (V) lies on the
same line of the centres of markers (A, B), spatial co-
ordinates of point xV ≡ (xV , yV , zV ) can be univocally
determined by the following linear equation:

xV = xA +
(xB − xA)
‖xB − xA‖dV −A (1)

where xA ≡ (xA, yA, zA) and xB ≡ (xB , yB, zB) identify
the centres of markers A and B, respectively. The term

dV −A = ‖xV − xA‖ (2)

is a priori known as it depends on probe geometry.
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Fig. 3. Graphical representation of the localization problem when a setup of four cameras (nc = 4) is used to reconstruct the
3D position of two markers (m = 2).

The so obtained values of xV ≡ (xV , yV , zV ) must be
further corrected by the error due to the non-punctiform
shape of the tip. To this end a specific algorithm has been
implemented in the MScMS-II software.

The probe has been calibrated at nominal temperature
T = 21 ◦C and relative humidity RH = 27% using a
coordinate-measuring machine (DEA IOTA 0101).

The data processing hardware consists of a 2.5 GHz
computer platform, connected to a set of IR cameras via
a Bluetooth link. Each camera provides the data process-
ing system with the 2D coordinates of the IR spot(s) in its
view plane, thus saving computational effort to the com-
puter platform that does not have to perform any image
analysis or identification of spot coordinates.

According to the hardware-software configuration, a
maximum number of seven IR sensors sequentially sam-
pled can be managed by a single PC unit. A modular
approach, based on multiple processing units sharing the
information of different camera sets, can be implemented
to enlarge the working volumes.

The processing software implements: layout evalua-
tion, designing and analysing sensor network configura-
tions; system calibration, providing position, orientation
and technical parameters of sensors; 3D point localization;
and data elaboration procedures [8].

3 Localization algorithm

In general, given the 3D coordinates of a point xj ≡
(xj , yj , zj), its 2D position uij ≡ (uij , vij) in different
camera image planes πi (Fig. 3) can be obtained through
the following relationship (perspective transformation) [7]:

aij = P iXj (3)

where aij ≡ [
aij bij wij

]T = wij

[
uij vij 1

]T is the
2D pixel position in homogeneous coordinates, Xj ≡[
xj yj zj 1

]T is the corresponding 3D position in ho-
mogeneous coordinates, and P i ∈ R

3×4 is the projec-
tion matrix of the ith camera. It contains 6 external

parameters describing camera position and orientation
(3D position coordinates of the camera perspective cen-
tre xCj ≡ (

xCj , yCj, zCj

)
and orientation angles of its

optical axis (ωi, φi and κi), and 5 internal parameters
which describe the inner properties of the camera (prin-
cipal distance ci, principal point coordinates

(
u0i, v0i

)
,

angle between axes ϑi, and scale coefficient of axes ki) [7].
Each projection matrix P i ∈ R

3×4 can be obtained
as the product of a non-zero scale factor μi with the ma-
trix of internal parameters Ki ∈ R

3×4 and the exterior
orientation matrix M i ∈ R

4×4 [7]:

P i = μiKiM i. (4)

Matrix M i incorporates a shift of axes origin of 3D point
space into the camera centre coordinates rotated into the
camera coordinate system, and a rotation according to
Ri ∈ R

3×3, which is the rotation matrix obtained by con-
sidering three sequential rotations corresponding to the
orientation angles of camera optical axis (ωi about the X-
axis, φi about the once-rotated Y -axis, and κi about the
twice-rotated Z-axis).

From the operational point of view, the elements of
P i are directly obtained by the system calibration proce-
dure [8, 10].

According to equation (4), the 11 physical parameters
of each camera can be derived from the element of P i by
simple mathematical transformations [7].

In general, the so called collinearity equations derive
from equation (3). These equations are the basis of pho-
togrammetry theory and originate from the perspective
projection of a point in the 3D space onto a given camera
viewing plane [6, 7]:

uij = u0i − cui

× r11i (xj − xCi) + r12i (yj − yCi) + r13i (zj − zCi)
r31i (xj − xCi) + r32i (yj − yCi) + r33i (zj − zCi)

− δui

vij = v0i − cvi

× r21i (xj − xCi) + r22i (yj − yCi) + r23i (zj − zCi)
r31i (xj − xCi) + r32i (yj − yCi) + r33i (zj − zCi)

− δvi

(5)
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where cui and cvi are given by the principal distance (focal
length) ci scaled by different factors respectively in the u
and v directions, δui and δvi are the total lens distortions
respectively in the u and v directions, and r11, . . . , r33

are the elements of the rotation matrix Ri.
According to the collinearity equations, given a camera

layout (i.e. nc cameras, with known external and internal
parameters) focused on m markers, for each m-uple of 2D
pixel coordinates uij ≡ (uij , vij), with i = 1, ..., n(2 � n �
nc) and j = 1, ..., m, the localization algorithm provides
the 3D coordinates of the corresponding m retro-reflective
markers (Fig. 3).

The localization procedure is articulated in two main
steps:

1) find the correspondences among 2D points in different
image views,

2) match the 2D information of different camera views for
recovering the spatial coordinates of the 3D point.

3.1 Finding of correspondences among 2D points
in different image views

As to the first step, epipolar geometry, i.e. the intrinsic
projective geometry between two views, has been used to
correlate information from multiple camera images [6, 7].
The correlation between the 2D pixel coordinates of two
points, u ≡ (u, v) and u′ ≡ (u′, v′), detected by two differ-
ent cameras, states to what extent they can be considered
as the projections of the same 3D point onto the camera
image planes. According to epipolar geometry principles,
given a pair of images, to a generic point u ≡ (u, v) in the
first image corresponds a line � (i.e. the epipolar line) in
the second image (Fig. 4). The epipolar line is defined as
the intersection of the image plane of the second camera
with the plane passing through point u ≡ (u, v) and the
two camera centres, xC1 and xC2 , which will also contain
the reconstructed 3D point x ≡ (x, y, z). This line can be
drawn whenever the projection matrices of the given pair
of cameras are known. The image view of the 3D point in
the second image u′ ≡ (u′, v′) will thus lie on the epipo-
lar line �. As a matter of fact, the point correspondence
can be found by evaluating the distance between the 2D
pixel u′ ≡ (u′, v′) in the second image and the epipolar
line corresponding to the 2D pixel u ≡ (u, v) in the first
image.

The epipolar line corresponding to point u ≡ (u, v)
can be drawn through the Fundamental Matrix, i.e. the
unique matrix F ∈ R

3×3 which, for all the corresponding
points u ↔ u′, satisfies:

aT Fa′ = 0 (6)

where a ≡ [
a b w

]T = w
[
u v 1

]T and a′ ≡[
a′ b′ w′ ]T = w′ [u′ v′ 1

]T are the 2D pixel positions of
u ≡ (u, v) and u′ ≡ (u′, v′) expressed in homogeneous
coordinates.

For each pair of cameras the fundamental matrix can
be computed according to their projection matrices [7].

Fig. 4. Epipolar geometry principles. xC1 and xC2 are the
camera centres, x ≡ (x, y, z) is the 3D point. u ≡ (u, v) and
u′ ≡ (u′, v′) represent the 2D projection of x onto the image
planes of the first and second camera respectively. e and e′ are
the epipoles of the two cameras, i.e. the intersection of the line
joining the two camera centres with the image plane. � is the
epipolar line corresponding to point u ≡ (u, v).

As the epipolar distance is proportional to the repro-
jection error after triangulation, large epipolar distances
mean pixel correlation mismatches and large reprojection
errors. A threshold method has been implemented to find
correspondences between different image views. Therefore,
the association between point u ≡ (u, v) in the first cam-
era view and point u′ ≡ (u′, v′) in the second camera view
is verified by applying the following threshold constraint:

aT Fa′ < ε (7)

where ε is an empirically-defined threshold according to
camera resolution.

This procedure must be carried out for each couple of
cameras in the measurement layout.

The concurrent presence of more than one retro-
reflective marker within the working volume could give
rise to some ambiguities in measurement point recovery.
In some practical cases, probe positioning with respect
to the IR sensor and its orientation could correspond to
a very small distance between the two pixels in an im-
age view. In order to reduce the errors in pixel correla-
tion, a minimum search approach has been implemented.
Stated that two pixels u′ ≡ (u′, v′) and u′′ ≡ (u′′, v′′) in
the second camera view verified the threshold constraint
(Eq. (7)), the point u ≡ (u, v) in the first camera view
will be correlated to the one (u∗ ≡ (u∗, v∗)) having the
minimum distance to its epipolar line �:

a∗ : aFa∗ = min (aFa′, aFa′′) . (8)

3.2 3D point recovering

The second step of the localization algorithm deals with
the triangulation problem [6, 7]. Given its 2D positions
in n different image planes (with 2 � n � nc), the 3D
coordinates of a point x ≡ (x, y, z) can be obtained by
intersecting the camera projection lines (triangulation).

An approach based on the linearization of the
collinearity equations (Eq. (5)) has been implemented.
This method is applied in most localization algorithms in
photogrammetry for three main reasons: its implementa-
tion facilitates the development of efficient algorithms for
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T
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T
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B̈
T
W f + C̈

T
W CfC − Ẅ f̈

⎤
⎥⎦

(11)

formation and solution of the normal equations in least-
squares adjustment; each observable (known variable) in
equation 5 may be weighted in least-squares adjustment
according to the related covariance matrix; it makes the
computation of the uncertainty of x coordinates auto-
matic [7].

As a matter of fact, the 3D position coordinates of a
point x ≡ (x, y, z) are reconstructed from n camera im-
age points by intersecting their viewing rays (see Figs. 3
and 4). This involves solving the 2 × n collinearity equa-
tions for x. The result is an overdetermined (non-linear)
equation system.

For each camera and each point, equation (5) can be
reorganized into the following form:

(u − u0) + cu

× r11 (x − xC) + r12 (y − yC) + r13 (z − zC)
r31 (x − xC) + r32 (y − yC) + r33 (z − zC)

+ δu = f1

(v − v0) + cv

× r21 (x − xC) + r22 (y − yC) + r23 (z − zC)
r31 (x − xC) + r32 (y − yC) + r33 (z − zC)

+ δv = f2

(9)

where (observations) f1 and f2 are the differences between
the measured and the computed 2D coordinates.

Furthermore, there are many cases in which other pa-
rameters or equations must be added to the solution. For
example, it might be necessary to incorporate known geo-
metric constraints, or determine additional calibration pa-
rameters for the camera. Considering all these constraints
and additional parameters, the general linearized expres-
sion of the collinearity equations associated with the geo-
metric constraints equations can thus be written as [7]:

v + Ḃδ̇ + B̂δ̂ + B̈δ̈ = f (10a)

vC + Ċδ̇ + Ĉδ̂ + C̈δ̈ = fC (10b)

where f is the vector of observations obtained by
computing equation (9) for the approximations for the
6 external camera, the 5 internal camera parameters
and added parameters, and the 3 point coordinates
in the 3D space, and v is the vector of the residuals
of point coordinates in the 2D image plane of the
camera. The unknowns in equations (10a) and (10b)
are the corrections to the approximations for the 6
external camera parameters (i.e. the elements of δ̇ =[
xC − xC0 yC − yC0 zC − zC0 ω − ω0 φ − φ0 κ − κ0

]T ),

the corrections to the approximations for the 5 inter-
nal camera parameters, as well as other additional
parameters and constraints (i.e. the elements of
δ̂ = [u0 − u00 v0 − v00 c − c0 k − k0ϑ − ϑ0... ...]T ), and
the corrections to the approximations for the 3 point
coordinates in the 3D space (i.e. the elements of
δ̈ =

[
x − x0 y − y0 z − z0

]T ). Ḃ ∈ R
2×6 is the matrix of

partial derivatives of the two functions in equation (9)
with respect to each of the 6 external camera parameters,
B̂ ∈ R

2×n′
(where n′ � 5) is the matrix of partial

derivatives of the two functions in equation (9) with
respect to each of the 5 internal camera parameters and
added parameters, B̈ ∈ R

2×3 is the matrix of partial
derivatives of the two functions in equation (9) with
respect to each of the 3D point coordinates.

Equation (10b) is the set of linearized equations of ge-
ometric constraints on the same parameters.

According to equations (10a) and (10b), the least-
square normal equations associated with one image of one
point are:

See equation (11) above.
where W ∈ R

2×2 is the weight matrix (i.e. the inverse
of the covariance matrix) associated with the point coor-
dinates (u, v) in the 2D camera image (see Sect. 4.1). In
the same way, matrix Ẇ , Ŵ , and Ẅ refer to δ̇, δ̂, and δ̈
unknown vectors. In equation (11) a compact notation (ḟ ,
f̂ , f̈) has been used in order to indicate the components
of vector f referring to δ̇, δ̂, and δ̈ respectively.

Equation (11) can be rewritten as:⎡
⎢⎢⎣

Ṅ
�

N N̄
�

N
T

N̂ Ñ

N̄
T

Ñ
T

N̈

⎤
⎥⎥⎦

⎡
⎣

δ̇

δ̂

δ̈

⎤
⎦ =

⎡
⎣

ṫ
t̂
ẗ

⎤
⎦ · (12)

Assuming that all systematic errors have been removed
(this issue is seldom completely true in practice and it
is addressed by adding correction parameters), it is pos-
sible to assert that the uncertainty in each point image
coordinates is uncorrelated with that of any other image
coordinates, both other points imaged on the same image
and other images of the same point, although uncertainty
in the u and v coordinates of any single image point may
be correlated. This assumption implies that the total co-
variance Σ matrix and weight W matrix, containing the
covariance and the weight information for all the image
coordinates, are block diagonal. Each block is a 2× 2 ma-
trix corresponding to a single set of image measurements
for one point.
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Extending equations (11) and (12) to a set of n cam-
eras and m points, the obtained normal equations main-
tains the same formulation and have a regular structure
which can be easily implemented in a numerical rou-
tine [7]. The same holds for equations (10a) and (10b).

The localization algorithm used in MScMS-II imple-
ments a simplified adaptation of equations (10a) and
(10b), in which internal and external camera parameters
are known (from self-calibration procedure), and for each
measuring probe a geometrical constraint (i.e. the distance
between the two probe markers) is fixed. This entails the
use of at least two cameras viewing the two probe markers
at the same time.

A set of filtering algorithms has been implemented
as well, in order to remove possible noise or false-
measurements (external IR sources, reflections, etc.), and
distinguish between the two probe markers.

Furthermore, it has to be noted that, as the triangu-
lation results are based on the 2D image views of differ-
ent cameras, they are strongly affected by camera syn-
chronization issues. As a matter of fact, the 3D point
reconstruction algorithm should use the 2D position co-
ordinates of the same point as seen by the different
cameras at the same time instant (synchronized camera
sampling). Whenever a sequential sampling procedure is
implemented, the higher the number of cameras the higher
the total acquisition delay and thus possible discrepancies
among different image views. Whereas it could represent a
problem for tracking dynamic objects, sequential sampling
has negligible influence on measurement performance as
data acquisition is made by keeping the probe in static
conditions.

Multi-camera calibration problem is faced by using a
fully automatic single-point self-calibration technique able
to reconstruct internal parameters as well as positions and
orientations (external parameters) of a camera set [8, 10].

As the external camera parameters are provided in an
unknown coordinate reference system, having the origin in
the centre of the cloud of points, a further step for aligning
and scaling the world coordinate system is needed. To this
end, a laser cut aluminium square (300 × 400 mm sized),
calibrated to submillimeter accuracy at nominal tempera-
ture T = 21 ◦C and relative humidity RH = 27% using a
coordinate-measuring machine (DEA IOTA 0101), is used
as reference artefact [8].

Calibration procedure yields 5 internal camera param-
eters, i.e. the elements of matrix K in equation (4) (the
same for all cameras), and 6 external camera parameters,
i.e. the elements of matrix R in equation (4), as well as
their respective covariance matrices ΣK and ΣR, under
the hypothesis of no correlation between the two sets of
parameters.

4 Uncertainty evaluation

In order to evaluate the metrological potentiality of the
system, a preliminary uncertainty evaluation of measured
3D point coordinates (x, y, z) has been performed us-
ing the Multivariate Law of Propagation of Uncertainty

(MLPU) [11]. Various approaches are suggested in sci-
entific literature according to the different problems at
hand [3, 6, 7]. An alternative approach to MLPU could
be based on Monte Carlo Sampling technique which has
the potential advantage of being independent of lineariza-
tion [3].

In the present work the MLUP has been preferred for
two reasons at least. For LSM applications, the sensor
data are typically accurate to one part in 104 or better, so
that non-linearity in the models do not have a significant
effect on the uncertainty estimates. On the other hand,
uncertainty assessment in the photogrammetry approach
is based on the uncertainty propagation within the least-
square adjustment process of variances and covariances of
input estimated parameters (see Eqs. (10a) and (10b)).

The main contributions to overall uncertainty of 3D
point coordinates may be traced in the following issue:

1) uncertainty of 2D point coordinates, which refers to the
2D pixel coordinates of point projection in the image
plane,

2) uncertainty of camera calibration parameters, which is
associated with the internal and external camera pa-
rameters obtained in the calibration phase,

3) camera synchronization error, which is considered neg-
ligible in static conditions (consideration would be nec-
essary for a dynamic approach, i.e. in case of point
tracking),

4) uncertainty of 3D point coordinates, which can be
traced back to the triangulation algorithm for 3D point
reconstruction,

5) uncertainty of probe tip coordinates, which actually de-
termines the uncertainty of the point coordinates mea-
sured by the MScMS-II.

Hereinafter, the uncertainties of coordinates referring to
2D image, 3D point and probe tip are discussed and ana-
lyzed in more detail.

4.1 Uncertainty of 2D point coordinates

Assuming that the uncertainty in each point image coor-
dinate is uncorrelated with that of any other image coor-
dinate (this is true in absence of systematic errors), both
other points imaged on the same image and other images
of the same point, only uncertainty in the u and v coordi-
nates of any single image point may be correlated. Hence,
each couple of coordinates (uij , vij) in the 2D image plane
of a given camera i, corresponding to a specific point j in
the 3D space, can be associated with a covariance matrix
Σij ∈ R

2×2.
According to the MScMS-II working principles, the

centres of two spherical markers must be localized (Fig. 1).
In this case, the main factors that may contribute to form
Σij matrix are: camera technical characteristics (resolu-
tion, focal length, FOV, sensitivity, lens distortion), sys-
tem layout geometry (size of markers, distance between
camera and markers, position of markers with respect to
the normal of the camera plane of view, fraction of marker
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surface visible by each camera), computational procedures
(2D point correspondence analysis, image processing algo-
rithms), and noise or false-measurements (camera vibra-
tions, external IR sources, reflections, etc.).

All these factors give their direct or indirect contribu-
tion to the uncertainty in the measurement of 2D point
coordinates. In general, considering the image plane of
a camera, the average measurement uncertainty of non-
signalized points is around 0.2 ÷ 0.5 pixel [6]. If the fea-
ture to be measured consists of a symmetrical distribution
of pixel values, many mathematical methods can be im-
plemented to determine the centre, among these worth
mentioning: the Local Centroid method, the Correlation
method, the Least-Squares Matching method, and the
Structural methods [6]. All of them may be efficiently im-
plemented in order to obtain centre point coordinates and
the corresponding uncertainty. The Least-Squares Match-
ing method, however, is the most convenient since it auto-
matically provides the covariance matrix of the two com-
puted coordinates.

A significant factor in determining 2D point uncer-
tainty is the size (diameter) of imaged points. It is di-
rectly correlated to marker position and distance, and
camera characteristics (resolution, focal length, FOV, sen-
sitivity and lens distortion). The optimum marker size
ranges between about 5 and 15 pixels in diameter [6].
Smaller points do not provide enough information, while
larger points diameters may result in too large numbers
of observations to be processed. An empirical relationship
between marker size and achievable point uncertainty re-
ported by [6] shows that as the marker size increases over
25 pixels, the function rapidly converges to an uncertainty
of about 0.005 pixel. On the other hand, with a marker
size under 5 pixels, the uncertainty reaches values over
0.01 pixel.

For a preliminary assessment of point coordinate
uncertainty in MScMS-II measurements, considering the
low-level resolution of the cameras used for the prototype
assembling, the pixel uncertainty (intended as standard
deviation of each of the two pixel coordinates (u, v)) has
been assumed equal to 0.5 pixel with no covariance be-
tween the two coordinates.

In standard operational condition of the system, a
MATLAB routine for image processing, based on Least-
Squares Matching method, provides the covariance matri-
ces for the centres of each of the two probe markers, as
well as the (u, v) coordinates.

4.2 Uncertainty of 3D point coordinates

According to equation (12) extended to a set of n cameras
and m points, the following reduced normal equation may
be derived:

δ̈ = N̈
−1

(
ẗ − N̄

T
δ̇ − Ñ

T
δ̂
)

. (13)

Once the covariances Σ̇ and Σ̂ of the δ̇ and δ̂ parameters
are known (by the calibration procedure), the covariance
Σ̈ of the point coordinates (δ̈ parameters) can be cal-
culated by applying the MLPU to equation (13). It can

be demonstrated that the propagated point covariance is
given by [7]:

Σ̈ = N̈
−1

+N̈
−1

N̄
T
Σ̇N̄N̈

−1
+N̈

−1
Ñ

T
Σ̂ÑN̈

−1
. (14)

The diagonal 3×3 block elements of Σ̈ are the covariances
of the 3D coordinates of measured points.

It must be noted that the covariance of 2D pixel co-
ordinates is implicitly present in equation (14) (see the
definition of N̈ in Eqs. (11) and (12)).

4.3 Uncertainty of probe tip coordinates

The covariance of the probe tip coordinates ΣV ∈ R
3×3

in each measurement is calculated by applying the MLPU
to the linearized form of equation (1), as well:

ΣV = ΩΣP ΩT (15)

where Ω ∈ R
3×7 is the Jacobian of the function in equa-

tion (1), i.e. the matrix of its partial derivatives with re-
spect to the 3 coordinates of the centres of the two probe
markers, and the parameter dV −A.

ΣP ∈ R
7×7 is the covariance matrix of parameters in

equation (1), obtained by extracting from Σ̈ the elements
corresponding to covariance matrix ΣA−B ∈ R

6×6 of xA

and xB and adding the variance σ2
dV −A

of dV −A estimated
during the probe calibration:

ΣP =

⎡
⎣ΣA−B

0
0

0 0 σ2
dV −A

⎤
⎦ . (16)

The diagonal elements of ΣV are the variances of the 3D
coordinates of the point measured by the probe.

They can be used to evaluate the extended uncertainty
of point coordinates by extracting the corresponding stan-
dard deviations and multiplying them by an opportune
coverage factor [11].

The uncertainty contribution due to the correction of
the non-punctiform shape of the tip is usually neglected.
Therefore, it can be considered by adding minor modifi-
cations to equations (15) and (16).

5 Experimental tests for preliminary
metrological characterization

In the current system configuration, the network layout
consists of six commercial low-cost IR sensors, arranged
in a 5.0× 6.0× 3.0 m working environment according to a
grid-based configuration. This results in an actual working
volume of about 2.0 × 2.0 × 2.0 m.

In Section 4 an approach for preliminary uncertainty
evaluation of point coordinates based on the MLPU has
been introduced. Assuming for all cameras and measured
points a pixel uncertainty (intended as standard deviation
of each of the two pixel coordinates (u, v)) of 0.5 pixel
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with no covariance between the two coordinates, and a
standard deviation of dV −A parameter equal to 0.05 mm,
the uncertainty propagation algorithm gives 3D point co-
ordinate uncertainties in the whole working volume lower
than 5 mm.

Performance evaluation, however, requires comparison
with independent measurements either from independent
control points or through the use of calibrated scale bars
spaced throughout the measurement volume. For example,
the German guideline VDI/VDE 2634 [12] recommends
the use of specific calibrated scale bars that can be em-
ployed to determine ISO conformant length measuring er-
rors [3].

Preliminary experimental tests have been carried out
to evaluate prototype performance (in terms of measure-
ment accuracy, repeatability, and reproducibility) as well
as system potentialities [8, 13].

The evaluation of the measurement accuracy of point
coordinates has been carried out using the 3D calibrated
square of aluminium alloy used for system calibration. The
reference points have been measured by the MScMS-II
system prototype, by moving the artefact in 5 different
positions uniformly distributed within the working vol-
ume. The obtained results show that 50% of the mea-
sured points is within a distance of 1.9 mm from the nom-
inal position, while 94.2% of results is less than 5 mm far
from the nominal position. At worst the maximum mea-
sured distance is below 6.5 mm [8]. By considering sev-
eral issues (e.g. geometric distortion of the reconstructed
working volume and measurement process) whose effects
on measurements strongly depend on the point location
within the working volume, the severe experimental test-
ing procedure consistently affect the extent of measure-
ment deviations as well as their high variability.

In a second test, measurement repeatability of point
coordinates has been tested on 5 different points, uni-
formly distributed within the working volume, by repo-
sitioning the probe in the same positions for 30 times. It
is noteworthy that repeatability characteristics are related
to the sensor device performance as well as to the operator
skills. Human skills actually represent an external factor
related to capabilities in holding the probe in a fixed posi-
tion. The sample standard deviation of repeatability tests
was found to be smaller than 1.25 mm [8].

Finally, measurement reproducibility of point coordi-
nates has been tested with reference to 5 points, repeating
the measurement 30 times with different mobile probe ori-
entations. Reproducibility tests stress the importance on
measurement quality of network and probe relative posi-
tion and orientation. A sample standard deviation smaller
than 3.45 mm has been obtained [8].

6 Conclusions

A preliminary assessment of the measurement uncertainty
of MScMS-II, a low-cost optical IR-based system for LSM
applications, has been presented referring to theoretical
calculations and experimental results. The evaluation of

the coordinate uncertainty of a measured point in the
3D space has been performed according to the MLPU,
and starting from the triangulation-based localization al-
gorithm and the geometric constraints of the implemented
architecture. Further considerations on uncertainties due
to self-calibration procedures and sensor data sampling
methods have been also included.

The preliminary experimental results, aimed at evalu-
ating the system performance in terms of accuracy, re-
peatability and reproducibility, reveal MScMS-II limits
and potentialities for the application in the field of LSM.
As a matter of fact, the system prototype does not ap-
pear to be very competitive if compared to commercial
systems (e.g. CMMs, laser trackers, iGPS), whose accu-
racy deviation, in the same working volume, may range
from a few micrometers up to one millimetre at worst. On
the other hand, it demonstrates a great potential whenever
cost and flexibility are considered. While ensuring scala-
bility and modularity that existing commercial systems
cannot guarantee, the prototype still has significant room
for enhancement mainly related to the improvement of the
employed technology. Current CCD sensors (128×96 pix-
els), although very cheap, could be easily replaced with
higher performance ones with no much impact on the cost
of the entire system, and a significant augmentation in
accuracy (one order of magnitude at least).

In a research perspective, a closer examination of
factors affecting measurement uncertainty, including IR
hardware characteristics, self-calibration and localization
algorithms, will be carried out. Further investigation will
be devoted to the effects of the calibration and scaling
procedures, and to possible correction models for correct-
ing systematic errors. In addition, feasibility of a multi-
resolution system, integrating the proposed network-based
solution with highly accurate optical systems, will be in-
vestigated.
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